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Abstract 
 
Economists have long been interested in measuring distributional impacts of policy 
interventions. As environmental justice (EJ) emerged as an ethical issue in the 1970s, the 
academic literature has provided statistical analyses of the incidence and causes of 
various environmental outcomes as they relate to race, income, and other demographic 
variables. In the context of regulatory impacts, however, there is a lack of consensus 
regarding what information is relevant for EJ analysis, and how best to present it. This 
paper helps inform the discussion by considering the use of inequality indices to quantify 
the distribution of environmental pollutants.  We demonstrate the use of a set of indices 
using data from the Sulfur-dioxide (SO2) trading program and Heavy Duty Diesel (HDD) 
rule.   
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I.  Introduction 
 
Economists have been interested in analyzing the distribution of environmental benefits 

for almost as long as they have been calculating the benefits themselves. While the tools 

for conducting benefits analysis are well developed, those for examining equity, or 

distributional effects, are less so. 
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Most OECD countries routinely perform a regulatory impact analysis of 

significant new environmental rules (OECD 2002).  These analyses typically contain an 

estimate of monetized benefits and costs of options under consideration.  They may also 

discuss how these benefits and costs are distributed across various subgroups, economic 

sectors, or regions.  In the U.S. various Executive Orders (EO) require some 

distributional analysis (e.g., EO 13045 addresses children’s health, EO 13211 addresses 

energy issues).  Relevant to this discussion, EO 12898, Federal Actions to Address 

Environmental Justice in Minority Population and Low-Income Populations, requires 

federal agencies to address disproportionately high and adverse human health or 

environmental effects on minority populations and low-income populations (Federal 

Register 1994).  To date, however, implementation of EO 12898 has been slow and 

inconsistent (see GAO 2005, 2007 for critiques of U.S. Environmental Protection Agency 

(EPA) implementation). 

To be useful in the policy-making process, distributional analysis should facilitate 

the ranking of alternative outcomes.  Such rankings are inherently normative, and thus 

should reflect the views of society as opposed the views of the technical staff preparing 

the analysis.  There is a tradeoff.  Purely descriptive analysis such as pollution exposure 

rates by subgroup may be difficult to digest and interpret in a consistent manner. 

However, methods for aggregating the data into easily presented rankings have the 

potential for implicitly reflecting staff value judgments.  Ideally, the analysis would be 

prepared in a manner that is easy to understand yet flexible enough to allow normative 

judgments to be imposed explicitly.  
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In addition, for purposes of both decision-making and environmental justice there 

is a need for consistency and transparency.  These concepts are related.  Consistency 

implies that the decision-maker uses a similar framework to make decisions across rules.  

If a certain distribution of outcomes is preferred to another for one pollutant, then a 

similar ordering should be preserved for others.  For the purposes of EJ, defined by the 

U.S. EPA to include fair treatment and meaningful involvement, transparency in 

decision-making is essential (EPA 2010).  Interested parties should be able to identify the 

information and methodology used to make a decision is a way that is clear and 

accessible.  In identifying methods for use in EJ analysis for regulatory policy we are 

cognizant of the need for both consistency and transparency.  

The economics literature has generally had one of two objectives with respect to 

EJ analysis: to understand whether vulnerable population subgroups (typically defined by 

race or income) have borne a disproportionate adverse environmental impact or to 

understand the distributional impact of environmental policy by subgroup.  Strategies to 

achieve the first objective have two components: to find an association between impacts 

and subgroups and to identify causality.  A first step, for example would be to see if 

vulnerable groups are located in highly polluted areas.  If so, the next step might be to 

determine whether pollution sources located near existing communities, or whether 

members of vulnerable groups locate near existing sources (see, for example, Been 1994; 

Been and Gupta 1997; Wolverton 2009). 

The second objective typically takes a retrospective look at a policy (such as 

emissions trading) to determine how it affects different subgroups.  A key challenge for 

this type of analysis is to specify an appropriate counterfactual scenario.  In order to 
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know the impact of a policy, one must make an assumption about what the environmental 

impacts would have been in its absence, all else equal (see Shadbegian, et al. 2007). 

Regulatory analysis has a different objective, however.  Whether by court order, 

legislative mandate, citizen petition, etc. a regulatory body such as the U.S. EPA is given 

a fairly general mandate to control emissions of a particular pollutant, with many 

implementation options left to the discretion of the agency.  In the context of evaluating 

the relative merits of various options, EJ concerns raise three crucial questions: what is 

the baseline distribution of the pollutant across subpopulations of interest, what is the 

projected distribution under each option under consideration, and how might one rank the 

desirability of the alternate distributions (Maguire and Sheriff 2011).  

The statistical tools used in the academic literature are limited in their ability to 

address these three questions.  The primary tool for evaluating the existence of an 

environmental justice is regression analysis in which emissions or probability of being 

exposed to emissions is regressed on demographic characteristics and other explanatory 

variables.  Alternatively, at the simplest level, one can calculate correlation or Spearman 

rank correlation coefficients.  Although this type of analysis can be informative about 

baseline conditions, it offers little in the way of prediction regarding potential regulatory 

options.  Pearson correlation measures the degree to which the relationship can be 

explained using a linear function, not the strength (slope) of the relationship.  Spearman 

correlation measures the degree to which the relationship can be explained using a 

monotonic function, not the strength of the relationship.  A ranking based on these 

measures would imply social preferences based on noise rather than pollution exposure 
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since steep relationship with a little noise has lower value than a flat relationship with no 

noise. 

Regressions often use demographic variables such as percent minority in a census 

block group to predict environmental outcomes such as emissions, ambient pollution 

levels, or probability of being within a given distance of a pollution source.  Regressions 

have generally been run on data from historic programs.  For prospective regulatory 

analysis, they would need to be run on data generated from pollution dispersion models.  

It is unclear how to formulate statistical inference from this type of data. 

Even ignoring this issue, information generated from this type of regression may 

be useful, but is not a welfare measure and is problematic for ranking outcomes.  As 

opposed to simple correlations, regressions indicate the strength of a relationship, not just 

the direction.  Caution should be used however, in interpreting the results.  If one option 

weakens the relationship between percent minority and pollution, does this mean that it is 

better from an EJ standpoint?  Not necessarily, since percentages mask the absolute 

number of people in each geographic unit.  In addition, high variance in outcomes for a 

particular group will tend to drive up standard errors, reducing the likelihood of finding 

statistically significant effects.  However, such variance may be due to hot spots that 

could be indicative of a potential EJ problem.  Pollution, for example, may be highly 

concentrated in a subset of minority neighborhoods, with the rest having relatively low 

levels.  Such a distribution might be more problematic than a slightly higher average 

exposure with little variation. 

An alternative approach compares the distributions of environmental outcomes 

across populations under alternative control scenarios including the baseline.  From this 
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perspective, for any given level of the total outcome one might posit that the ideal 

distribution is for every individual to have an identical share of the total.  The objective 

of comparing alternative scenarios is to provide a mechanism by which a policy maker 

can rank the distributions of policies that fail to meet this ideal.  

A similar ranking problem has been faced in the development and public finance 

literature in the context of comparing distributions of income.  Since the 1970s, a rich 

theoretical literature has described the properties of ethical index numbers (cite).  This 

approach begins with an assumption of individual utility functions that are increasing and 

convex in the good being analyzed, and independent of all other characteristics.  A simple 

utilitarian social welfare function ranks distributions of the good across the population.  

Seminal results in this literature have shown that any ranking system involves the implicit 

choice of a social evaluation function.  Since one cannot pursue this line of analysis 

without making a normative judgment regarding this choice, it is important to choose a 

set of social preferences that has sensible properties, as we discuss below.  

Recently, the public health literature has started to use ethical index numbers to 

evaluate environmental policy outcomes (cite).  This literature has used inequality 

indices, particularly the Atkinson index, to rank distributions of pollution.  It has, 

however, largely ignored the welfare theory underpinning these measures.  Although the 

Atkinson index has a number of properties that are desirable for environmental justice 

analysis, particularly its ability to be decomposed into population subgroups, it is not well 

suited for analyzing distributions of adverse outcomes.  Since many environmental 

outcomes of interest (e.g., emissions, ambient pollution levels, health risk) are “bads”, 



DRAFT:  Please do not quote or cite. 
 

7 
 

this use of index numbers implicitly adopts perverse social preferences such that, all else 

equal, outcomes with more pollution are more highly ranked.  

Here, recognizing both the potential usefulness of ethical index numbers as a tool 

for environmental justice analysis and the potential for their misuse, we suggest use of 

the Kolm-Pollak family of inequality index, and its associated social evaluation function.  

Although it has a well-developed theoretical pedigree, this index has been largely ignored 

in the applied income distribution literature.  The Kolm-Pollak index shares the key 

desirable properties of the Atkinson index, but easily accommodates bad outcome 

variables, like pollution.  

In the next section we discuss in greater detail the theoretical implications of using 

inequality indices to analyze distributions of bad environmental outcomes focusing on the 

Atkinson and Kolm-Pollak indices.  Next we use the Kolm-Pollak index to evaluate the 

environmental justice implications of the SO2 trading program and Heavy Duty Diesel 

rule. 

II. Inequality Indices 

An inequality index is a function that translates distributions into a single number.  To 

narrow the field of potential index numbers, researchers have developed a number of 

useful properties with which to classify them.  This axiomatic approach to choosing an 

appropriate index number begins by selecting a set of desirable properties, then 

identifying aggregator functions that satisfy them.  Some commonly used properties are:1 

1. Relative Measure.  Multiplying the outcome variable of all individuals by the 
same factor does not affect the index value. 
 

                                                 
1   Kom (1976a) and Kolm (1976b), among others, provide a detailed treatment of axioms 1-6.  Blackorby 
and Donaldson (1978) and Blackorby and Donaldson (1980) provide a detailed treatment of axiom 7.   
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2.  Absolute Measure.  Adding the same amount to the outcome variable of all 
individuals does not affect the index value. 
 

3. Normalization.  Index equal to zero implies perfect equality. 
 

4. Transfer Principle.  The inequality index does not increase as a unit of the 
outcome variable is transferred away from one individual towards another with a 
lower-valued outcome. 
 

5. Diminishing Transfer Principle.  A transfer of a unit of a good (bad) outcome 
between two individuals who have relatively low amounts of the good (bad) 
affects the index value more (less) than the transfer among two individuals who 
are the same distance apart, but higher in the distribution. 
 

6. Welfare Independence.  Society's willingness to trade an increase in one 
individual's outcome for a decrease in another's does not depend on the 
unchanged outcome level of a third individual. 

 
7. Impartiality.  No variable besides the outcome of interest affects the value of the 

index. 
 

8. Consistency in Aggregation.  An inequality index can be used to analyze 
subpopulations such that social evaluations made using the entire population 
arrive at the same result as those made applying the same preference structure to 
the collection of sub-populations. 

 
Relative indices are convenient for analyses of income distributions across countries 

or time since one does not have to account for exchange rates or inflation.  As argued by 

Kolm (1976a), however, relative indexes can be misleading.  Suppose the income of both 

members of a population of two individuals doubles.  If prices do not change the 

difference in purchasing power between the two would also double, thus suggesting that 

the new distribution is less equal.  An absolute inequality index would increase to reflect 

this change, while relative index would not. 

The transfer principle is a fundamental requirement for an inequality index.  It states 

that increasing the dispersion of the outcome across the population should increase the 

measure of inequality.  The diminishing transfer principle is an extension that 
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incorporates the normative belief that an inequality index should be more sensitive to 

changes in the allocations of people who are less well-off, or in the case of pollution, 

those who have greater exposure.  

The intuition behind welfare independence can be most easily understood in the case 

of a simple transfer that does not change the average outcome variable for a population.  

This property implies that the change in the index number arising from a transfer between 

two individuals is not affected by the distribution of the outcome variables for the rest of 

the population.  

Impartiality means that all individuals are treated symmetrically in calculating the 

inequality index, regardless of other attributes besides the outcome of interest.  Note that 

this property does not preclude analysis of sub-populations differentiated by such 

attributes.  For example, one could calculate an impartial inequality index for an entire 

population in which race does not affect the value, and one could re-calculate the same 

index for various sup-populations. 

Finally, for the purposes of EJ analysis we add a final property that the index should 

accommodate a ranking of “bad” outcomes, such as pollution, whereby those who are 

most exposed receive greater weight than those with less exposure.   

Any ranking system such as an inequality index implicitly relies upon a social 

evaluation function.  Determining that distribution A is less equal than B and 

consequently A is preferred to B, all else equal, is tantamount to determining that the 

social welfare generated by distribution A is greater than that generated by B, according 

to some social evaluation function. 
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Some orderings require little structure from the social evaluation function.  Holding 

mean outcomes constant for example, the Lorenz partial ordering is consistent with any 

social evaluation function that is the sum of utility functions that are increasing and 

concave in the outcome variable (Atkinson 1970).  Blackorby and Donaldson (1978, 

1980) show how to recover an explicit representation of the social evaluation functions 

associated with inequality indices that satisfy axioms 1 and 4 and either 2 or 3.  The 

equally distributed equivalent (EDE) value of a distribution is the amount of the outcome 

variable which, if given equally to every individual in the population, would leave society 

just as well off as the actual distribution.  The EDE thus embodies a set of social and 

individual preferences and is a measure of social welfare.  It also enables rankings of 

distributions with different means.  

The concept of the EDE value is also useful for purposes of analyzing inequality by 

population subgroups (based on race, income, etc.).  Axiom 8 requires that the EDE 

calculated for the entire population yields the same result as the EDE calculated on the 

basis of the EDEs of each subgroup (Blackorby and Donaldson 1978, 1980).  This 

property ensures that the same set of preferences is used to rank subpopulations as 

ranking an entire population.  It also guarantees that total inequality for a population can 

be completely decomposed into within and between group inequalities.  Satisfaction of 

this property is thus necessary for many aspects of EJ analysis where consideration of 

sub-groups, specifically those defined by race, ethnicity or income categories is 

important. 

Some authors (e.g., Levy, et al. 2007) have advocated presenting inequality indices 

alongside average outcomes so as not to impose normative assumptions on the efficiency-
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equity tradeoff.  This approach does not avoid the imposition of the analyst's preferences, 

however, it only encourages the use of logically inconsistent preferences.  By using a 

given inequality index to rank distributions with the same mean, one has already adopted 

a normative position that implies a specific ranking of distributions with different means.  

Put another way, if one does not like the ranking of distributions with different means 

implied by the social evaluation function associated with a given index, one should not be 

using that index as a measure of inequality in the first place.  Kaplow (2005) goes so far 

as to argue that inequality indices are not particularly useful for comparing distributions 

with different means; instead all comparisons should be based on the underlying social 

evaluation function. 

Although the EDE may be sufficient for ex post comparisons of total distributions, 

inequality indices can be useful in the policy-design process.  Such information can 

potentially be of value for fine-tuning policy instruments.  Knowing that a particular 

option results in large average gains with a regressive distribution, for example, may 

provide a signal to look for ways of modifying the policy to make it more equitable.  

Such information would be lost by focusing purely on the EDE. 

Similarly, with respect to EJ analysis, it can be informative to decompose an 

inequality index by population subgroups.  The index allows the analyst to determine 

whether a welfare change for a subgroup is due to a change in average outcomes or their 

distribution.  The index may also be useful in identifying the potential for “hotspots” in a 

subgroup of interest.  In principle, this type of information should be directly embedded 

into a well-specified social welfare function.  Due to the technical difficulty of 
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developing an index that does not satisfy impartiality, however, such an approach is not 

currently feasible. 

Within the class of relative indices, Kolm 1976a and Blackorby and Donaldson 1978 

show that the Atkinson family of indexes is the only one that satisfies axioms 3-8.  

Similarly, Kolm (1976a) and Blackorby and Donaldson (1980) show that the Kolm-

Pollak family of indexes is the only one that satisfies all other axioms except 1.  

Consequently, for the rest of this discussion, we focus on these two types of inequality 

indexes.2 

Atkinson Index The Atkinson index, ܫ஺, is defined as: 

஺ܫ   (1 ൌ
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Throughout the paper, we employ the notation that ܰ is the population, ݔ௡, is the 

outcome for individual ݊ ൌ 1,… , ܰ, and ߤ is the mean outcome.  For convenience, we 

suppose that individuals have been ranked such that ݔଵ ൑ ଶݔ ൑ ڮ ൑  ே.  Atkinson 1970ݔ

derived this index based on the underlying assumption that individual preferences are 

consistent with a utility function that is increasing and concave in the outcome variable 

and exhibits constant relative risk aversion, ܷሺݔሻ ൌ ܣ ൅ ଵିఌ/ሾ1ݔܤ െ  ܤ and ܣ ሿ (withߝ

being positive constants).  The (constant) elasticity of the marginal social value placed on 

increasing the outcome variable for any given individual is െߝ. 

The parameter ߝ is commonly referred to as the inequality aversion parameter.  It 

allows the analyst to specify the amount society is willing to trade a reduction in the 

                                                 
2   For a discussion of other index numbers in the context of income distribution, see Chakravarty (1990), in 
the context of environmental outcomes, see Levy, et al. (2006). 
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outcome variable for one individual for an increase for another.  A value of zero implies 

that society is indifferent between transfers among any two individuals.  The higher the 

parameter's value, the more weight society places on transfers to individuals with lower 

outcomes.  Since the choice of parameter value is entirely normative, it is common to 

calculate Atkinson indexes for several values in order to determine how sensitive 

rankings are to the choice. 

It is important to stress that ݔ is a desirable outcome variable.  The EDE of the 

Atkinson index for ߝ ് 0, as indicated above, is increasing in ݔ.   The Atkinson index 

takes a value between zero and unity (with the interpretation as the percent reduction in a 

good that society would be willing to give up in order to have a perfectly equal 

distribution of the rest) since the EDE is necessarily lower than the mean.  In contrast, if 

 .were a bad, the EDE would be higher than the mean ݔ

Another consequence of incorrectly using the Atkinson index to measure the 

distribution of bad outcomes is that the index would violate the diminishing transfers 

principle since greater weight is placed upon the most well off individuals (those with 

low outcomes), rather than the worst off. 

The Atkinson Index is generally not defined for negative numbers, thus 

precluding a simple redefinition of bads in that way.3  Transforming a bad into a good by 

replacing it with its complement (e.g., parts per billion of an ambient pollutant to parts 

per billion of “clean” air) may have the undesirable result of rendering an index value so 

small as to be within rounding error.  To put this in perspective, consider the income 

distribution of a society of billionaires who differed in wealth by only a few dollars.  It 

                                                 
3   Even for examples in which negative values are defined, (Blackorby and Donaldson 1982) show that the 
Atkinson index generates the perverse result that a progressive redistribution reduces social welfare. 



DRAFT:  Please do not quote or cite. 
 

14 
 

would be almost perfectly equal, with the value of the corresponding Atkinson Index 

being extremely close to zero.  Note that this does not mean that the distributional effects 

are insignificant.  If the good were clean air or probability of not dying from cancer the 

percent reduction society would be willing to give up for an equal distribution might be 

quite small, but the value of that reduction might be significant.  Nonetheless, presenting 

the results in a manner such that a regulation changes the Atkinson Index by a miniscule 

amount may not be informative.4  This approach also cannot be used if the outcome 

variable is emissions (e.g., there is no natural complement for tons of SO2.) 

The Atkinson index is commonly used in income distribution analysis and it has 

recently been used to measure environmental or health outcomes.  Waters (2000) used an 

Atkinson index to analyze distribution of access to health care in Ecuador.  Levy, et al. 

(2007) use the Atkinson Index to evaluate the distribution of mortality risk resulting from 

alternative power plant air pollution control strategies in the United States.  Levy, et al. 

(2009) use the Atkinson index to analyze reduction in mortality risk from particulate 

matter reductions from regulating transportation.  Fann, et al. (2011) use the Atkinson 

index to evaluate the distributional impacts of a multi-pollutant air quality regulatory 

strategy in Detroit.  Since the latter three studies used an Atkinson index to measure 

distributions of bad outcomes, the reported policy rankings are questionable due to their 

reliance on social preferences that are not well behaved. 

Kolm-Pollak index  The Kolm-Pollak index, ܫ௄ is defined as: 

௄ܫ   (2 ൌ ቊ
ଵ

ఌ
݈݊ ଵ

ே
∑ ݁ఌሾఓି௫೙ሿ, ߝ ൐ 0ே
௡ୀଵ

0, ߝ ൌ 0
 

                                                 
4   Some authors (e.g., Levy, et al., 2009, Fann, et al. 2011) have tried to address this problem by replacing 
a bad outcome variable with its reciprocal.  Unfortunately, this approach implies a utility function that is 
not generally concave in the original outcome variable (e.g., pollution) of interest. 
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As shown by Blackorby and Donaldson (1980), using this index to rank outcomes 

is consistent with the utility function developed by Pollak (1971), ܷሺݔሻ ൌ െ݁ିఌ௫.  As 

with the Atkinson index, ߝ can be interpreted as an inequality aversion parameter.  For 

the Kolm-Pollak index, the elasticity of marginal social welfare with respect to a change 

in an individual's allocation is െݔߝ.  Unlike the Atkinson index, this elasticity varies with 

the outcome variable.  Consequently, the inequality aversion parameter needs to be 

appropriately scaled in order to maintain comparability across different units of 

measurement.  Atkinson and Brandolini (2010) suggest choosing ߝ such that a desired 

elasticity is achieved for the mean outcome level. 

Since this utility function is increasing and concave in ݔ, it is equally 

inappropriate to use index values generated from undesirable outcomes with this measure 

as it is with the Atkinson measure.  In contrast with the Atkinson index, however, the 

Kolm-Pollak index readily accommodates bad outcomes if one simply subtracts them 

from some arbitrary benchmark value.  Such an operation preserves the appropriate 

welfare ranking and is equivalent to measuring the distribution of a complementary 

“good.”  The property of an absolute index that adding the same amount to everyone in 

the population does not change the value of the index helps in this regard since it ensures 

that the value of the index is independent of the benchmark.  

III. Demonstration:  SO2 Trading Program  

The Kolm-Pollak index has been seldom used in the context of income distribution 

analysis (exceptions include Blackorby, et al. 1981; Atkinson and Brandolini 2010).  To 

our knowledge, it has not been used to evaluate distributions of environmental outcomes.  

Here we provide an illustration using data from actual and counterfactual sulfur-dioxide 
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(SO2) emissions from 1995.  The counterfactual emissions data were originally generated 

by Ellerman, et al. (1997).  Shadbegian, et al. 2007 combined the emissions information 

with demographic data from the U.S. Census to conduct an environmental justice (EJ) 

analysis. 

Here we extend the Shadbegian, et al. (2007) analysis using a Kolm-Pollak index and 

EDE to describe the effect of the two policy alternatives (command-and-control and cap-

and-trade) on population subgroups divided by race and income. 

The emissions data are tons of SO2 from power plants under two scenarios: the 

observed cap-and-trade policy and a hypothetical continuance of previous command-and-

control (CAC) regulation.  These data are combined with Census demographic 

information on surrounding communities at a 25-mile radius.  

There are several shortcomings involved in using this type of data.  First, SO2 is not 

the outcome of interest to the populations affected.  SO2 acts as a precursor to particulate 

matter, which in turn causes a number of adverse health effects.  Ideally, we would be 

analyzing the distribution of these pollution-induced health impacts.  Second, we have 

demographic information for communities surrounding sources, whereas ideally we 

would have ambient pollution levels for the communities.  If a single community is 

affected by multiple sources, then this cumulative impact would not be reflected in this 

data.  Third, using a 25-mile radius is unlikely to reflect the true dispersion of the 

pollutant.  Ideally we would use a more sophisticated model that would take factors such 

as weather conditions, wind direction, and smokestack height into account.   

Together, these caveats suggest that the results presented here are at best a very crude 

proxy of actual EJ impacts.  Nonetheless, the data do present the opportunity to conduct a 
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useful proof-of-concept of how an EJ analysis might be conducted using the Kolm-Pollak 

methodology. 

We begin with a generalized Lorenz curve, GL, depicting cumulative emissions by 

population percentile using the formula (Shorrocks 1983): 

ܮܩ   (3 ቀݔ, ௞
ே
ቁ ൌ ∑ ௡ேݔ

௡ୀଵ  

Figure 1a presents the generalized Lorenz curves for the entire population, where 

pollution is arrayed as it would be if it were treated as a good, from the least exposed to 

the most exposed.  As depicted, the baseline curve dominates the trading curve (where 

the closer a curve is to the 45 degree line the greater the equality), which we attribute to 

the counter-intuitive ordering of the data.  When we multiple pollution by -1 to show 

pollution as a “bad” we get the opposite result, as shown in Figure 1b.  The trading GL 

curve dominates (lies completely above) the CAC curve.  This dominance indicates that 

for a large set of social welfare functions, society prefers the outcomes generated by 

trading.  This ranking is affected by both the average outcome and the distribution of 

outcomes. 

From the generalized Lorenz curve it is useful to derive the traditional (relative) 

Lorenz curve and the absolute Lorenz curve (Moyes 1987) in order to separate the 

distributional effects of the two policy options from their average effects.  The former 

divides each ݔ௡ in Equation 3 above by ߤ, while the latter subtracts the mean from each 

 .௡.  As shown in Figure 2, the two approaches yield strikingly different implicationsݔ

Relative Lorenz curves have the intuitive interpretation of illustrating what percent of the 

total allocation of the outcome variable belongs to a given percentile of the population. 

Note that unlike relative Lorenz curves for a good, the relative curves for a bad are 
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concave.  The 45 degree line represents perfect equality.  Since the distribution is ranked 

in order of increasing welfare, the people at the bottom have relatively more of the bad 

than people at the top.  The relative Lorenz curves for the two policies are virtually 

indistinguishable from each other.  This similarity reflects the fact that the two 

distributions are close to proportionate to each other.  In addition, the curves show that no 

policy Lorenz dominates the other with respect to equity of distribution, since the two 

curves cross for every subpopulation. 

The absolute Lorenz curves in Figure 3 have the interpretation of indicating the 

average amount of pollution that would need to be taken away from an individual 

belonging to a given percentile in order to bring his exposure to the population mean.  In 

contrast, the absolute Lorenz curves show clear differences between the two policies for 

every subgroup.  Moreover, the two policy curves never cross, allowing one to rank the 

trading policy above CAC in terms of absolute Lorenz dominance for every 

subpopulation in terms of distributional equity.  This dominance reflects the fact that if 

the trading policy induces a proportional shift downwards in the distribution, then the 

worse off (those with the highest pollution exposure under CAC) are the ones who 

receive the greatest benefits in terms of tons of SO2 reduction. 

Now turning to the indices, Table 1 presents three ways of ranking the two 

pollution control regimes by population subgroups using the Atkinson Index.  The first 

two columns compare the average pollution emissions for each regime.  Trading results 

in a steep decline in emissions for all groups.  For the entire population, emissions fall by 

18 thousand tons per capita.  By subgroup, people below the poverty line had the highest 



DRAFT:  Please do not quote or cite. 
 

19 
 

emissions under CAC and experienced the largest average drop from trading, 22 

thousand tons.  Each other subgroup had a drop of about 19 thousand tons. 

In distributional terms, trading resulted in a more equitable distribution for the 

population as a whole as well as within most subgroups, as indicated by the third and 

fourth columns in Table 1.  The non-white subgroup had the most equitable distribution 

of emissions under CAC, while the poor had the least equitable.  The white and 

subgroups had the biggest improvement in equity, albeit the changes are virtually 

indistinguishable.  We attribute this result to the fact that the index is giving more weight 

to transfers among those who are relatively well off to begin with (i.e., have less 

pollution).   

Turning to Table 2, we use these same data to demonstrate the Kolm-Pollak 

Index.  The first two columns are identical to Table 1 showing the mean exposure rates 

under the two scenarios.  In order to calculate the Kolm-Pollak index we multiple 

emissions by -1 to account for the fact that pollution is a bad.  The results for the index 

are in the third and fourth columns of Table 2.  Here we see a more dramatic change in 

equality between the CAC and trading scenarios.  Emissions are distributed much more 

equitably under the trade scenario for the entire population as well as each sub-group.  

Combining mean and distributional effects, the EDE shows large improvements in 

overall welfare attributable to trading.  Overall, equivalent emissions fell from 76 to 41 

thousand tons per capita in the trade scenario. 

The inter-group inequality measure (i.e., between race and between income 

measures) answers the following question (Blackorby et al. 1981):  “How much 

additional emissions per capita would society be willing to tolerate to move from a 
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distribution in which each member of each population subgroup received its respective 

intragroup EDE, to one in which every individual received the EDE for the entire 

population?”  

Let K be the number of mutually exclusive subgroups, indexed by k, with ௞ܰ 

denoting the population of subgroup k, ߠ௞ denoting its EDE, and ߠ denoting the total 

EDE.  The answer is the weighted sum of subgroup EDEs less the total EDE: 

௜௡௧௘௥ܫ   (4 ൌ
ଵ

ே
∑ ௞ܰߠ௞
௄
௞ୀଵ െ  ߠ

Comparisons of inter-group distributional equity show that trading reduced existing 

disparities between groups.  Even under command and control, between group inequality 

is small compared to within group measures.  This result is unsurprising given that the 

white and non-poor subgroups are respectively about six and eight times as large as their 

complementary subgroups.  Consequently, the weighted average in Equation 4 is 

dominated by the EDE for the relatively large subgroups, which in turn is close to the 

total population EDE.  Nonetheless, by this measure intergroup inequality was virtually 

eliminated by the trading mechanism. 

IV. Demonstration:  Heavy Duty Diesel Rule 

We provide a second demonstration of the Kolm-Pollak index using data from EPA’s 

Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control 

Requirements (HDD) Rule (U.S. EPA 2000).  This rule placed requirements on engines 

and fuel standards for heavy-duty engines and vehicles to reduce the harmful effects 

associated with ozone, particulate matter, and other pollutants.5   

                                                 
5   It is important to note that this is a demonstration analysis only; EPA is not revisiting this rule.  In 
addition, the air quality modeling data used in this rule reflect the emissions inventory at the time the rule 
was written (2000) and do not reflect the current emissions inventory.  In addition, the modeling platform 
EPA uses to estimate changes in air quality has been updated since this rule was published.   
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For this analysis we have data on demographic data for over 47,000 12x12 kilometer 

grid cells across the U.S.  The air quality modeling is conducted for 36x36 kilometer grid 

cells over which the demographic data are layered.6  Grid cells vary greatly in terms of 

population size, ranging from 0 to over 2 million people in more densely populated areas.  

For each grid cell we have the baseline and control scenario fine particulate matter (i.e., 

PM2.5) concentrations for the year 2030 as predicted by the modeling results.  In addition, 

we have information on the percent living below the poverty line, the percent Black, 

White, Asian and Native American, as well as the percent Hispanic in each grid cell.  For 

this analysis we are able to calculate exposure for each sub-group under the baseline 

scenario as well as the predicted changes to the HDD rule for 2030.7   

Figure 4 shows the GL for the entire population, with the pollutant depicted in 

ascending order (i.e., least to most exposed).  As with the SO2 analysis we find that the 

baseline scenario dominates the control, a result we attribute to the counter-intuitive 

ordering of pollution.   

Next we turn to the Kolm-Pollak index.  Table 3 provides the results for the baseline 

and control scenarios for the entire population as well as sub-groups of interest.  We see 

that average exposures are reduced for the total population under the control scenario, as 

well as for each sub-group.  Exposures decrease by 0.65 micrograms per cubic meter per 

capita for the entire population.  We also see that exposures are greatest for non-whites 

and the non-poor sub-groups.   

                                                 
6   The use of grid cell information to examine near-roadway impacts may not be appropriate because the 
modeling data are likely to imprecise at this level of geographic detail.  Therefore, results should be 
interpreted as a demonstration only.   
7   We present a more limited set of results for the HDD analysis due to time constraints; future work will 
incorporate a more complete analysis.   



DRAFT:  Please do not quote or cite. 
 

22 
 

Equality also improves for the total population and all sub-groups under the control 

scenario.  PM2.5 is distributed most equally for the White and non-poor sub-groups, 

although there are greater improvements in equality for the non-White and poor groups.  

Between race equality improves, but is much higher than the equality across income 

groups, which is relatively insignificant.  The EDE shows that across the entire 

population 15 micrograms per cubic meter (mg/m3) per capita of PM2.5 would result in 

an equal distribution, as compared to the average in the control scenario of 14.09 mg/m3.   

V. Concluding Thoughts 

Introducing quantitative tools for examining distributional effects in environmental 

regulatory analysis is important in order to respond to E.O. requirements, specifically, 

E.O. 12898 (Federal Register 1994), but also to provide information to the public.  While 

economists have very clear, consistent methods for examining efficiency, less attention 

has been paid to distributional analysis.  The purpose of this paper is to introduce one 

method for incorporating distribution into regulatory analysis through the use of 

inequality indices.  Such indices have long been used to examine income inequality, but 

have only recently been used in the public health and environmental fields.   

We explore the properties and underlying social evaluation function for two indices, 

the Atkinson Index and Kolm-Pollak index.  The former has long been used in both 

literatures mentioned above, but violates a key property necessary for environmental 

regulatory analysis, accommodating “bad” outcomes.  Because the underlying social 

evaluation function for the Atkinson Index assumes that distribution of the good among 

those with less of it (which is intuitively appealing when discussing income) is preferred, 

results using this index for the distribution of a bad (where those with less, like pollution, 
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are actually better off) are suspect.  The Kolm-Pollak index, while rarely used in 

empirical analysis is able to accommodate distributions of “bads.”   

We demonstrate the Kolm-Pollak index using two regulatory scenarios:  the SO2 

trading program and the HDD rule.  In both cases we find intuitive results that comport 

with the regulatory improvements made for both pollutants.  In addition, the index 

provides a way to rank various sub-groups and scenarios according to the distributional 

outcomes, information that may be useful to both the decision-maker and the public.  We 

stress, however, that the results from these analyses are for demonstration purposes only. 

Future research is needed to more fully explore the theoretical and empirical 

properties of the Kolm-Pollak index under these and other regulatory scenarios.  In 

particular we will further decompose our race sub-groups into the component parts (i.e., 

Black, White, Asian and Native American, for the HDD rule).  This work appears 

promising for providing transparent, consistent, scientifically appropriate information for 

both decision-makers and the public regarding the distributional effects of environmental 

regulations.   
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Table 1:  Atkinson Index 
(1000 tons SO2 per capita) 

Epsilon = 0.5 
 Mean Index EDE 
Sub-group CAC Trade CAC Trade CAC Trade 
Total 51 33 0.24 0.23 39 25 
White 52 33 0.25 0.24 39 25 
Non-white 50 31 0.19 0.20 41 25 
Non-poor 51 32 0.24 0.24 39 25 
Poor 56 34 0.23 0.22 43 27 
Between Race  0.00008 0.000002   
Between income  0.0003 0.0001   

 

Table 2:  Kolm-Pollak Index 
(1000 tons SO2 per capita) 

Epsilon = 0.5/51 
 Mean Index EDE 
Sub-group CAC Trade CAC Trade CAC Trade 
Total 51 33 25 9 76 41 
White 52 33 27 9 78 42 
Non-white 50 31 13 6 63 38 
Non-poor 51 32 24 9 75 41 
Poor 56 34 30 9 86 43 
Between Race  0.14 0.01   
Between income  0.07 0.001   
 

Table 3:  Kolm-Pollak Index 
(mg/m3 PM2.5 per capita) 

Epsilon = 0.5/15 
 Mean Index EDE 
Sub-group Base Control Base Control Base Control 
Total 14.74 14.09 0.99 0.91 15.73 15.00 
White 13.98 13.37 0.88 0.80 14.86 13.37 
Non-white 17.38 16.61 1.20 1.10 18.58 17.71 
Non-poor 14.78 14.13 0.97 0.89 15.75 15.01 
Poor 14.46 13.83 1.15 1.06 15.60 14.89 
Between Race  4.19 3.99   
Between income  0.00004 0.00003   
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