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 See http://www.finfacts.com/irelandbusinessnews/publish/article_100047805.shtml1

for recent announcement by the Saudi Arabia of two new  refineries, each with a processing
capacity of 400,000 barrels of oil per day, to increase the exports of refined products. See also
U.S.-Saudi Business Council (2005) for a more direct statement of the policy. For China, see the
“White paper on Resource Exploitation”and “China’s Policy on Mineral Resource”respectively
available on http://www.china.org.cn/c-white/20031223/3htm and, for India, Government of
India (1993).  Also, see Government of Ontario, Ministry of Natural Resources’ publication
“Mineral Exploration and Mining Development”at 
http://www.serviceontario/mining/english/MineDevelopment.htm, and Lloyd (1991).
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Optimal Domestic Processing of Exhaustible Resource Exports under Stock
Uncertainty

1. Introduction

Notwithstanding the ever-increasing integration of the world economy through

international trade and investment, development strategies that encourage exporting exhaustible

natural resources in the processed rather than raw form continue to remain as attractive to

economic policy-makers in developing countries as in the 1970s. Witness, for example, the

statements of policy on minerals processing by China and India, or Saudi Arabia’s resolve to

develop greater capabilities in crude oil refining and other ancillary activities. Even the highly

developed and globally well-integrated economies of Australia and Canada place restrictions on

processing their minerals outside of their territories.  Nevertheless, the analytical literature on the1

subject has remained relatively sparse. 

Long (1974), Vousden (1975), Kemp and Suzuki (1975), Aarrested (1979), Harris (1982)

and Withagen (1985) are the earliest important analytical contributors, but with a clear focus on

the optimal rates of resource extraction in the presence of domestic processing rather than on the

degree of domestic processing. Kumar (1988, 1997) takes the broader, development policy

perspective, posing three distinct questions:  What, if any, are the determinants of domestic 

http://www.china.org.cn/c-white/20031223/3htm
http://(http://www.serviceontario/mining/english/MineDevelopment.htm
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processing?  Is the usual presumption of the policy-makers in favor of enhanced levels of

domestic processing of an exhaustible natural resource prior to exporting theoretically justified

under free trade?  If yes, what are the optimal levels of domestic processing and the associated

optimal investment policy? Kumar (1988) explores the first two questions in the context of a

small open economy and malleable capital, while Kumar (1997) focuses on the second and the

third in the presence of capital stock adjustment costs, deriving the optimal time-profiles of the

rate of extraction, the level of domestic processing and capacity expansion in the processing

sector. Three principal findings emerge from this analysis. First, if capital is the only other (other

than the natural resource) factor necessary for processing, a constant returns-to-scale technology

in the processing sector gives rise to complete specialization in the export markets. Second,

replacing constant with decreasing returns-to-scale or including adjustment costs that increase

with the rate of capacity expansion imply – unlike the preceding result – a presumption in favor of

a steadily increasing level of domestic processing, as measured by the proportion of extracted

resource amount undergoing some processing prior to exporting. Third, if and when capacity

expansion is deemed desirable, the optimal pattern of investment activity is of the front-end

loading variety so that all of the capacity expansion takes place well before resource exhaustion.

These results and the underlying analysis pertain to the case of perfect certainty regarding

the size of the initial resource stock. In what follows, we attempt to extend the analysis to the case

when the size of the initial resource stock is uncertain, with a view to determining the robustness

of the perfect certainty results. 

We devote the next section to describing the economic setting and analyzing the case of

malleable capital. In section 3, we widen the scope of our analysis by incorporating increasing
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adjustment costs. We conclude in section 4 by summarizing our findings.

2.  Domestic Processing under Malleable capital

In keeping with Kumar (1988), we postulate a small open economy completely dependent

upon natural resource exports that are made possible by the exploitation of a non-renewable,

natural resource stock of uncertain size. Let the random variable S > 0 represent the initial size of

the resource stock. As the economy extracts the resource, it may export the entire extracted

1amount, say X(t), in its raw form at price P  or elect to further process a proportion ì(t) thereof

2prior to exporting at price P . We also assume that the economy does not possess the wherewithal

necessary for further processing. It therefore imports (rents) the necessary plant and equipment

K(t) at the fixed price (real rental) r from the international capital goods (services) market to carry

out the processing activity. After paying for its capital goods (services) imports, the economy uses

the remaining export revenue to import a composite consumption good in the amount C(t). If

U(C(t)) denotes the instantaneous, strictly concave utility function with U(0) = 0, the basic

planning problem faced by the economy to determine the socially desirable level of domestic

processing may be specified as:

 (1)

subject to 

, (2)

, (3)
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, (4)

where all of the prices are time-independent and measured in units of the consumption good;

F( , ) is the production function describing processing sector technology, exhibiting positive but

diminishing marginal products for both inputs; g(s) is the probability distribution of S with the

maximum possible value of S; ä > 0 is the constant discount or time-preference rate; and E stands

for mathematical expectation, which is taken over the probability distribution of ô, a random

variable denoting the uncertain resource exhaustion date.

If we assume that S is continuous and let Q(t) and G(s) denote respectively the cumulative

extraction to date and the cumulative probability distribution of S, we may transform the

preceding stochastic optimal control problem into a deterministic one as follows:

(5)

subject to 

, (6)

, (7)

plus definition (2) and the non-negativity constraints (3). A dot over a variable denotes its time

derivative. ð(Q(t)) = 1 - G(Q(t)) is the survival rate for S, and T is the least upper bound of the

support of the implied probability distribution of ô. Since ô is non-negative, T $ 0, and is free to



 See Kumar (2005), pp 409-11, for details.2

 In the presence of ð(Q(t)) in the objective functional, the strict concavity of U(C(t))may3

not be sufficient for existence. In what follows, however, it becomes obvious that a solution does
indeed exist and is unique.
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vary.2

Assuming that an optimal program exists , the necessary conditions for solving this3

deterministic control problem include, in addition to definition (2), state equation (6) and

boundary conditions (7),

, (8)

 , (9)

       , (10)

, (11)

, (12)

            , (13)

           , (14)

, (15)

, (16)

iwhere ë is the co-state variable; è’s are the Lagrange multipliers; F  (i = 1, 2) are the two partial

derivatives of F( , ); and H is the Hamiltonian. Also, for ease in notation, we have suppressed the

time argument of the various functions. We continue to follow this practice in the rest of the
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paper unless the possibility of confusion dictates otherwise.

 Some features of the optimal program are immediately obvious from the necessary

conditions: (i) Since the natural resource must be necessary for processing in that F(K, 0) = 0, 

4X > 0 (è  = 0) along the optimal program, except possibly at T; (ii) K > 0 if only if ì > 0, and is

2 1 1imported until P F  (the marginal revenue product) is equal to r (the real rental on capital); (iii) è

2> 0 and è  > 0 cannot hold simultaneously so that there exist at most three, possibly repeatable,

1 2phases of domestic processing: no domestic processing (ì = 0, or è  > 0 and è  = 0), partial

1 2 1domestic processing (0 < ì < 1, or è  = 0 and è  = 0) and full domestic processing (ì = 1, or è  = 0

2and è  > 0). 

We examine next the optimal program by characterizing the phases the economy may

experience and their sequence. As in the case of perfect certainty, the nature of processing sector

technology plays a crucial role.

Proposition 1: If F(K, ìX) is linear homogenous,  the phase 0 < ì < 1 is in general not part of the

optimal program.

Proof: As UN(C) > 0 always and ð(Q) > 0 except at the terminal date T, there does not exist a 

0 < ì < 1 such that (9) and (10) are satisfied simultaneously for arbitrary, positive X and K unless

1 2P , P  and r are of very special magnitudes.P

While necessary condition (9) determines whether the economy of proposition 1 at all

engages in domestic processing, (8)-(11) together describe the time-paths of extraction,

consumption, and capital imports. It is easy to check that regardless of which of the two possible

phases the economy is in,

, (17)



 To derive (17) and (18)  for the no processing phase, we make use of the fact that 4

1 2 1 2 2 1 2ì = 0 6 C = P  X . Similarly, for ì = 1, P  F = r and C = P F X such that x = X /K , F  and F  are
all constants.
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, (18)

where is the consumption elasticity of marginal utility (the inter-temporal

elasticity of substitution), and  is the hazard function of S.  Solving (17) and4

(18) is fundamental to characterizing the optimal program. However, closed form solutions do not

seem possible without further describing the nature of the utility and hazard functions. Proposition

2 below extends the essential message of proposition 2 in Kumar (1988) to the case of stock

uncertainty for a wide class of the iso-elastic utility function and any continuous initial resource

stock probability distribution with finite support. 

Proposition 2: If (a) F(K, ìX) is linear homogenous, (b)U(C) is iso-elastic with 0 < g < 1, and (c)

, (i) the economy is in the ì = 0 (ì = 1) phase accordingly as

, where K(X) is such that . (ii) Optimal T = 4 and,

along the optimal program,  and  when ì = 0, and 

when  ì = 1. 

Proof: (i) In view of (a) and proposition1, this part of the proposition is immediately obvious from

(9) and (10). (ii) (17) ensures  in both phases. Next, so long as ì = 0, is the

obvious optimal choice, for otherwise C is unnecessarily lower and H is not maximized. If,

however, ì =1, (a) and (10) ensure . Now, adapting (17) to the special case of the



 Follows from the observations that for ,  and .5

See Kumar (2005), p 413, for the rationale.

 Below, we repeatedly utilize this method of proof, or a variant thereof, for identifying6

the optimal program. It essentially involves three steps: (i) establishing the existence and nature
of the stationary contour for X, (ii) delineating qualitatively the possible programs in the phase
plane, and (iii) demonstrating that one and only one program is consistent with the transversality

- 9 -

stipulated iso-elastic utility function yields  such that, along the 

contour, terminal X = 0.  In the light of (c), therefore, there exist at most three possibilities for5

optimal X as depicted in Figure 1:  throughout with X(T) > 0 and optimal T < 4;  after at

most a finite period with X(T) > 0 and optimal T < 4; and  throughout with X(T) = 0 but

optimal T indeterminate. Now, the integration of (18) for a constant g yields ;

whence . Consequently, (8) and (11) imply

, which may hold only if C(T) =

X(T) = 0. This precludes the first two possibilities. Finally, integrating  as stipulated in (17)

for the case of iso-elastic utility yields .

Given that  under the third option, the integrand in the preceding expression for UN(0)

is positive. Whence it follows that C(T) = X(T) = 0 only if T = 4. As this is also consistent with the

transversality condition (16), we may conclude that optimal forever in either of the two

phases, thereby completing the proof. P6



condition and thereby optimal. For a more comprehensive treatment of the method in the context
of a strictly concave utility function, see Kumar (2005), pp 417-18.

 Dasgupta, Eastwood and Heal (1978).7

- 10 -

We allow next for a decreasing returns-to-scale processing technology, a typical

characterization of the Dasgupta-Heal economy . The result below replicates Kumar (1988),7

proposition 3, for the utility function and resource stock distributions of proposition 2.

Proposition 3: If (a) F(K, ìX ) exhibits decreasing returns-to-scale and 

, (b) U(C) is iso-elastic with 0 < g < 1, and (c) , (i) the economy

is in the 0 < ì < 1 (ì = 1) phase accordingly as , where K(X) is such

that . (ii) The 0 < ì < 1 phase, if observed, lasts for at most a finite period of time

and is necessarily followed by the ì = 1 phase, which lasts forever. (iii) Along the optimal program,

,   and .

iProof: (i) Let denote the partial derivative of F  with respect to the j-th argument (i,  j =1, 2). In

view of the condition on marginal products, the existence of K(X) > 0 such that

and  is trivially assured for arbitrary X  > 0. Let .

Differentiating  with respect to X and substituting for KN(X) yields

 because F(  ,  ) exhibits decreasing returns-to-scale. Consequently, the

2restriction (a) on F  implies that there always exists a 0 < ì <1 such that  and

 simultaneously. If, however, , the necessary

condition (9) implies that ì = 1 is the obvious optimal choice from the start. (ii) If 0 < ì <1,



 Follows from and decreasing returns-to-scale. 8
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 is constant. Whence  and  

throughout the phase. This in turn implies  throughout the phase. As a result,

  with N a constant. Hence .

Next differentiating (8) with respect to t and substituting for , we obtain

 such that .  This

implies that there exist once again at most three possibilities for optimal X: (i) optimal X rises

continuously; (ii) optimal X rises continuously after declining for a finite period of time; and 

(iii) optimal X declines continuously throughout the phase. The use of essentially the same

argument as that employed in the proof of part (ii) of the preceding proposition ensures that optimal

 throughout the phase, with a terminal X = 0 and T = 4 if exhaustion takes place in the

phase. As , this  in turn ensures ì = 1 in finite time before optimal X = 0. When ì = 1,

however,  such that, along the optimal program, . Once

again, differentiating (9) with respect to t and replacing  with the expression just derived yield  8

  and that
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Following, yet again, essentially the same logic as before, we may conclude that optimal 

and that the resource stock is exhausted asymptotically. (iii) In view of the preceding, it suffices to

note that when ì = 1,  because KN (X) > 0.P

3. Domestic Processing in the Presence of Capital Stock Adjustment Costs

In the preceding section, the economy is precluded from engaging in any domestic capital

formation. We now do away with this restriction and stipulate instead that the economy possesses a

certain initial capability or capacity in the form of plant and equipment stock to further process the

resource. Therefore, along with choosing the level of domestic processing in each time-period, it

also decides on the extent to which it should add, through imports, to its current capacity for

processing. In keeping with Kumar (1997), we also stipulate that adjusting capacity entails real

Acosts which are additional to those of importing plant and equipment. If adjustment costs, say C ,

are directly related to the level of gross investment I, the altered planning problem becomes:

(19)

subject to

         , (20)
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(21)

I plus constraints (3), state equation (6) and boundary conditions (7), where P  is the constant import

Aprice of investment goods and C  (I) is adjustment costs a la Gould (1968) such that

  and . (22)

Upon appropriately defining the Hamiltonian and the Lagrangean for the problem, the

necessary conditions corresponding to (8)-(16) turn out to be:

(23)

 , (24)

       , (25)

(26)

        (27)

, (28)

      , (29)

           , (30)

, (31)

.            (32)

State equations (6) and (21), boundary conditions (7) and definition (20) are the other necessary

conditions. 
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As in the malleable capital case, some general features of the optimal program are

4immediately obvious from the necessary conditions. First, X > 0 (è  = 0) along the optimal program,

except possibly at T as natural resource must be necessary for processing. Second, conditions (24),

(28) and (29) together imply that the economy may once again experience at most three, possibly

repeatable, phases of domestic processing, identified in exactly the same manner as before. Third,

(25) suggests that, unlike the previous case, positive capital formation or capacity expansion is

neither ensured nor ruled out a priori even in phases of positive domestic processing. Fourth, (24)

and (25) together indicate that the constant returns-to-scale technology may no longer preclude

incomplete specialization in domestic processing. In the rest of this section we examine the nature of

the optimal program.

The no processing phase is the easiest to characterize as evidenced by the result below.

Proposition 4: (i) The economy is in the ì = 0 phase only so long as . (ii) If  in

addition, (a) U(C) is iso-elastic with 0 < g < 1 and (b) , optimal , , and

the phase lasts for ever. (iii) If, however, (c) , ì = 0 is never optimal.

Proof: (i) Trivially obvious from (24). (ii) Since ì = 0 implies zero output in the processing sector, I

= 0 is the obvious optimal choice, for otherwise C would be smaller and the Hamiltonian will not be

1maximized. Moreover, with ì = I = 0, C = P  X and . Now, differentiating (23) and

substituting for  yield , which is(17) adapted for the iso-elastic utility

function. Next, combining (23) and (26) yields , the counterpart of(18) for our

1special case of iso-elastic utility. As the latter implies ë (T ) = 0, we may argue in the manner of

proposition 2 that optimal C(T) = X(T) = 0 as well, with the result that optimal T = 4 and .
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Finally, as there is never any switch into a domestic processing phase, I remains zero from start to

finish. (iii) Trivial, given the restriction, because for arbitrarily given K > 0 and X > 0, there always

exists a 0 <  ì < 1 such that .P

Characterizing  the domestic processing phases is more involved as the economy may enter

these with either a zero or a positive investment level. Preserving analytical tractability in the context

demands progressively greater specificity of the processing technology as well as additional

restrictive assumptions regarding the nature of investment activity as evidenced by the following

results.

Proposition 5: (i) If (a) , the economy is in the 0 < ì < 1 phase only so long as

. (ii) If in addition (b) F( , ) is linear homogeneous, (c) U(C) is iso-elastic with 0

< g < 1, (d)  and (e) I = 0, optimal  such that after at most a finite

period of time ì = 1 before resource exhaustion. 

Proof: (i) Trivial in view of (24) and condition (a). (ii) With I = 0, and F( , ) linear homogenous,

 with , a constant such that

. Next, time-differentiation of (23) and subsequent substitution for

 yield  with  as

1  . C > P X  Finally, proceeding  in the manner of the proof of proposition 2, we may establish that



 In demonstrating that terminal X(T) = 0, the only noteworthy difference from the proof9

of proposition 2 lies in the limiting value of UN(C(T)), which turns out to be greater than, rather
than equal to, U(C(T))/C(T).
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optimal  X and C decline asymptotically towards zero.  The linear homogeneity of F(K, ìX ) and the9

constancy of K also imply  , ensuring that ì = 1 in finite time before resource

exhaustion.P  

Proposition 6: If (a) F( , ) is linear homogeneous Cobb-Douglas, (b)U(C) is iso-elastic with 0 < g <

1, (c) , (d) 0 < ì < 1, (e) I > 0, and (f) ,  and

, where  is the competitive output share of natural resource in the processing

sector,  and  such that ì = 1 in finite time before resource exhaustion. 

Proof: From (A3) in part I of the appendix,

 

such that  . Consequently, the

contour is bounded by  from above and by 



 Follows from the easily made observation that X implied by  the said contour is strictly10

less than that implied by the upper limiting contour.
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from below as depicted in Figure 2. Next, arguing in the manner of proposition 2, we find that there

now exist as many as four different options for optimal X if resource exhaustion were to occur within

the phase: it continuously rises from start to finish; it continuously rises after at most a finite period of

time; it continuously declines after at most a finite period of time; and it continuously declines from

start to finish. As before, we may immediately preclude the first two options from further

consideration as they imply resource exhaustion with a positive X(T) over a finite T. Although the

remaining options are consistent with the requirement of zero terminal extraction over T = 4, the third

option carries the possibility of  (and reversion into the no processing phase)during periods of

increasing X. In the light of the linear homogeneity of the processing technology, this is possible only

if during such periods. In view of the first inequality in (f)and the expression for , this is

possible only if .That is, optimal X must lie entirely above the contour

. As the said contour is entirely located in the region between  and its

upper limiting contour   as depicted in Figure 2, it implies a

contradiction . Consequently,  throughout under the third option. As this is also true of the10

fourth option as well, we may conclude that optimal  throughout the phase. By

implication,  always and ì=1 in finite time.P

Corollary1: Under conditions stipulated in proposition 6, , , throughout the



 The result effectively rules out the third option in the preceding proposition as the11

optimal program.
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 0 < ì <1 phase such that I may become zero before the switch into the ì = 1 phase.11

Proof: Follows trivially from the observation that optimal program lies entirely in the region below

the contour  and the expressions for the three rates of change detailed in part

I of the appendix.P

We turn next to characterizing the ì = 1 phase. Once again, we must consider two

possibilities: I = 0 throughout the phase and I > 0 sometime during the phase.

Proposition 7:(i) The economy is in the ì = 1 phase as long as . (ii) If in

addition, (a) F( , ) is linear homogeneous Cobb-Douglas, (b) U(C) is iso-elastic with 0 < g < 1, 

(c)  and (d) I = 0 throughout the phase, optimal  and , asymptotically

exhausting the resource.

Proof: (i) Trivial in view of condition (24). (ii) With  ì = 1 and I = 0 in (20), (a) implies

. Next, differentiating (23) with respect to t and substituting for  yield

 such that  with terminal X = 0.

Consequently, we may once again establish that optimal  and  with optimal X(T) =

C(T) = 0 and T = 4 if resource exhaustion takes place in the phase.P

Proposition 8: If (a) F( , ) is linear homogeneous Cobb-Douglas, (b) U(c) is iso-elastic with 0 < g <

1, (c) , (d) ì =1, (e) I > 0, (f) , and , 
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(g) ,  and the ì =1 phase lasts forever. 

Proof: We proceed in the manner of the proof of proposition 6. As detailed in part II of the appendix,

contour is bounded by  from below and 

 from above in the manner of Figure 2 , with appropriate

changes in contour labels. Consequently, once again optimal  after at most a finite period,

asymptotically exhausting the resource if ì =1 is the terminal phase. Moreover, just as in the case of

proposition 6, we may argue that  is possible only if optimal X lies in the region above the

contour , which, of necessity, is confined entirely to the region between

and the upper limiting contour. Since, as depicted in the diagram, optimal X never enters this

region, it follows that  along the optimal program so that a switch into another phase is never

optimal.P

Corollary 2: Under conditions stipulated in proposition 8, optimal , , and 

throughout the ì =1 phase such that I = 0 before resource exhaustion.

Proof: From (A 15) in part III of the appendix,

 such that   provided

. As the optimal program lies entirely in the region below



 See part IV of the appendix.12
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, it is obvious that condition is always satisfied, for  and

. Next, the equation system (A4) in part II of the appendix implies that  provided

. As from part IV of the appendix

, a straightforward substitution in the preceding inequality

completes the proof. A similar procedure can be utilized to show that  as well.  Finally, we12

note that the expression for also implies that it will become zero before resource exhaustion.P

4. Findings and Concluding Remarks

Above, we have reconsidered the issue of the social desirability of domestic processing of

exhaustible, natural resource exports in a small open economy with a view to determining if the

perfect certainty results due to Kumar (1988, 1997) extend to the case of uncertain resource stock. 

The first two of the three results under examination concern the commonly held presumption

among policy makers in favour of a steadily rising level of domestic processing under free trade.

Kumar (1988) has argued that such a presumption is not always justified, for if capital is a malleable

input such as a flow of imported services, alterable at will, a constant returns-to-scale resource

processing technology implies complete specialization in the export markets. Kumar(1997), on the
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other hand, has demonstrated that the presumption does become justified when capital is a stock and

capacity expansion is viewed as a non-reversible activity entailing adjustment costs. In proposition 1

and proposition 5(i) respectively we have been able to fully extend, without any additional

assumptions, the two results to the case of a continuously distributed uncertain but ultimately finite

resource stock.

The remaining result under examination relates to the pattern of capacity expansion in the

context of non-malleable capital. Kumar (1997) has shown that if and when capacity expansion in the

processing sector is deemed desirable, the optimal investment for capacity expansion declines

continuously over time, coming to a stop well before resource exhaustion. Through propositions 6 and

8 and corollaries 1 and 2, we have also been able to confirm this front-end loading pattern of capacity

expansion under stock uncertainty, though only under somewhat restrictive circumstance: uncertain

but ultimately finite resource stock, Cobb-Douglas processing technology, iso-elastic utility and

additional assumptions regarding the nature of investment activity for capacity expansion. While

Cobb-Douglas production function and iso-elastic utility are the essential work-horses of natural

resource economics, the additional assumptions may demand further justification.

Stipulated as conditions (f) and (g) in propositions 6 and 8, the additional assumptions

comprise four inequalities. The first inequality in (f), which replicates (27) in Kumar (1997), simply

ensures that investment is profitable on the margin during capacity expansion. 

The next inequality in (f) stipulates that the investment elasticity of marginal adjustment costs

is greater than the larger of  and unity, rather than being merely positive as posited in the

certainty scenario. Other things remaining equal, more rapidly rising capital stock adjustment costs

will generate relatively lower levels of investment. Moreover, in the exhaustible resource literature,



 See footnote 15 in Kumar (1997).13
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stock uncertainty invariably implies a more conservative extraction profile. As less extraction must, of

necessity, entail less processing and processing capacity, the stipulation is neither implausible nor

inconsistent. 

The last of the inequalities in (f) places an upper bound on the optimal rate of capital

formation or capacity expansion by requiring that expansion of processing capacity must be entirely

financed out of capital’s share of the processing sector output. In the absence of any capacity

expansion constraints, the restriction is intuitively not unrealistic. In any case, the alternative is worse,

for, in the reverse situation, the model implies a positive lower bound on investment levels if and

when capacity. expansion does take place. 

The fourth inequality, stipulated only in proposition 8 as condition (g), places an upper limit

on the social rate of savings (capital formation), determined by the inter-temporal elasticity of

substitution. As the social savings rate is assumed (the third inequality above) to be never greater than

the competitive output share of capital, the restriction will be always satisfied provided the share also

does not exceed the stipulated limit. Notwithstanding the observation that similar restrictions on

relative shares have been common place in neo-classical growth theory, it is easily verified that

known estimates of capital’s relative output share in the mining and mineral industry do satisfy the

criterion for all reasonable values of the elasticity parameter.  13

In addition to the results discussed above, we have also derived in the two preceding sections

a number of other results that tend to duplicate the other main results in Kumar (1988, 1997). In

particular, propositions 2 and 3 in section 2 are the uncertainty counterparts of propositions 2 and 3 in

Kumar (1988). Similarly, corollaries 1 and 2 represent an attempt to duplicate the characterization of



 See, Kemp (1976).14

- 23 -

the optimal program detailed in section 3 of Kumar (1997) in terms of the optimal rates of extraction,

the levels of domestic processing and capacity expansion.

Finally, as regards the nature of the optimal program, the monotonic and continuously

declining nature of the optimal rate of extraction is especially noteworthy in the light of Kemp’s

observation in his pioneering contribution.  As also explained in Kumar (2005), this is a direct result14

of the continuously increasing hazard function associated with an uncertain but ultimately finite

resource stock. As a continuously declining extraction rate is fundamental to obtaining rising levels of

domestic processing and capacity expansion of the front-end loading variety, one wonders if the

uncertainty results presented here are themselves robust under different characterizations of the

hazard function, say, for example, those associated with resource stock distributions with unbounded

support. It is also worth pointing out that the analytical framework used is one of partial equilibrium.

Would the introduction of a non-traded goods sector significantly change the results? These obviously

make good material for further research.
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Appendix

I. The time-differentiation of (23) with substitution from (26) yields

. (A1)

Similarly, combining (23) and (25), time-differentiating the resultant equation and substituting from

(26) and (27) yield

. (A2)

Next, (20) and (A1) - (A2) together yield

(A3)

Also, (d) must imply . Whence . Combining these with the

third inequality in (f) ensures in turn as well as

. When joined with the second inequality in (f), the last of the derived

relations yields . 

Whence, minor manipulations of (A3) in the light of the preceding inequalities generate the two

bounds for . 

II. Time-differentiating (20), (23) and (25) with ì = 1 and substituting from (26) and (27) yield the
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system: 

    (A4)

Whence

(A5)

(A6)

(A7)
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where

(A8)

Consequently,

(A9)

Next, in view of condition (f) in the proposition, A(7) implies

Whence

(A10)

because  and condition (g) ensures that the expression in the second set of large parentheses

in the preceding inequality is positive. Further, in view of the first inequality in condition (f), (A7) and

(A8) also imply
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      (A11)

Moreover,

(A1 2)

because , whereby

(A13)

as  always and  A(10) and A(13) then furnish respectively the lower and upper limiting

contours for .

III. In view of the first inequality in (f), substituting ä for , (A7) yields

 (A14)

Now, the remaining two inequalities in (f) and condition (g) together ensure that the expression

contained in the third set of large parentheses is positive such that 

(A15)

IV, If , (A 7) implies .
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Substituting for Ä from (A8), it then follows that .

Similarly, (A 7) also implies that . Whence,  once

again substituting for Ä from (A 8) yields .
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