Optimal Border Policies for Invasive Species under Asymmetric Information

Linda Fernandez UC Riverside Glenn Sheriff EPA

Invasive Species Problem

- Unintentional inclusion of a harmful pest in shipment of a valuable good.
- The crop itself or a byproduct such as soil born insect on plants for planting or on wood packaging material
- Exporters can undertake effort to abate risk
- Risk varies by exporter

- Extends McAusland and Costello (2005)
- Shipments
 - 'Clean' or 'Infected'
 - Standard downward-sloping demand curve in importing country.
 - 'Infected' shipments cause (constant) marginal damage *d*.

- Importer (e.g., NAPPO)
 - Risk neutral.
 - Chooses inspection intensity *I*. Increasing convex cost function *k*(*I*).
 - *I* is the probability of discovering infection conditional on shipment being infected.
 - -I causes good value to depreciate.
 - Fumigates detected infected shipments at cost f.
 - Makes transfer *t* and imposes fumigation fee ϕ .

- Regulator's Objective: Maximize expected domestic social welfare
 - cost of inspection
 - value of good to domestic consumers
 - expected damage from invasive
 - net payments to exporters.

- Exporters:
 - Unit supply of good.
 - Risk neutral.
 - Baseline risk *B* of infection.
 - Can undertake abatement effort $a = a^{\ell}$, a^{h} .
 - Abatement reduces risk to *B-a*.
 - Heterogeneous abatement cost (private info).
 - Type 1 exporter $\theta c = \theta c^{\ell}$, $\theta c^h : 0 < \theta < 1$.
 - Type 2 exporter cost is $c = c^{\ell}$, c^{h} .
 - Probability of type 1: g.

• Stackelberg game

S (T)

- Regulator chooses *I*, offers contracts to exporters $\langle t_i, \phi_i \rangle$ *i*=1,2, to maximize

$$\int_{0}^{\delta(I)} p(z) dz - \delta(I) p(\delta(I)) - k(I) - g \{ [B - a_1] [[1 - I]d + I[f - \phi]] + t_1 \} - [1 - g] \{ [B - a_2] [[1 - I]d + I[f - \phi]] + t_2] \}$$

- Exporters choose contract and abatement that maximize profit, e.g., for type 1: $\pi_1 = t_1 - \theta c_1 - I\phi_1(B - a_1) + \delta(I)p(\delta(I))$

- Symmetric Information Baseline
 - Regulator can dictate *a*, only subject to participation constraints that exporter profit be non-negative.
 - Never optimal to have $a_1 < a_2$.
 - Focus on (interesting) case $a_1 > a_2$.

• Symmetric information contracts:

 $t_1 = \theta c^h - \delta(I) p(\delta(I));$ $t_2 = c^\ell - \delta(I) p(\delta(I));$ $\phi_1 = 0;$ $\phi_2 = 0.$

9

- Asymmetric Information
 - Regulator cannot dictate abatement
 - Contracts must satisfy incentive compatibility constraints in addition to participation.

$$t_{1} - \theta c_{1} - I\phi_{1}(B - a_{1}) + \delta(I)p(\delta(I)) \geq t_{1} - \theta \tilde{c}_{1} - I\phi_{1}(B - \tilde{a}_{1}) + \delta(I)p(\delta(I))$$

$$t_{1} - \theta c_{1} - I\phi_{1}(B - a_{1}) + \delta(I)p(\delta(I)) \geq t_{2} - \theta c_{1} - I\phi_{2}(B - a_{1}) + \delta(I)p(\delta(I))$$

$$t_{1} - \theta c_{1} - I\phi_{1}(B - a_{1}) + \delta(I)p(\delta(I)) \geq t_{2} - \theta \tilde{c}_{1} - I\phi_{2}(B - \tilde{a}_{1}) + \delta(I)p(\delta(I))$$

• Asymmetric Information Contracts: - abatement non-increasing in type – low type gets information rent $t_1 = [1-\theta]c^{\ell} + \theta c^h + I\phi_1(B-a^h) - \delta(I)p(\delta(I));$ $t_2 = c^{\ell} - \delta(I)p(\delta(I));$ $\phi_1 = \frac{\theta[c^h - c^\ell]}{I[a^h - a^\ell]};$ $\phi_2 = 0.$

Policy Scenarios

- Extensions
 - Limited liability
 - Use information to offer different inspection regimes
 - Technical assistance
 - Cooperative/non-cooperative strategies among multiple importers (e.g., NAPPO)

Case Studies

- Wood packaging: wood-boring insects
- Horticulture informal clean stock program
- Netherlands bulb industry-soil born pests