A Monopolistic Competition Model of the Horticultural Industry with a Risk of Harmful Plant Invasion

- E. Barbier, (University of Wyoming)
- J. Gwatipedza (University of Wyoming)
- **D. Knowler (Simon Fraser University)***
- S. Reichard (University of Washington)
- * Associate Professor, School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia

Introduction

- Growth in demand has led to expansion of the horticulture industry but has increased the risk of invasion by exotic plants (Reichard & White 2001)
- We model the North American horticulture industry using a monopolistic competition approach
- Also estimate the probability that a new introduced exotic species will become invasive, based on duration data and the characteristics for a sample of exotic plants
- We derive the privately & socially optimal number of nurseries and determine the appropriate tax rate (annual license fee) for the industry, or <u>introducer pays tax</u>
- We extend the work of Knowler & Barbier (2005) and revise and update a preliminary version of this research

Horticulture industry model

- Dixit-Stiglitz monopolistic competition fits the "stylized facts" of the horticulture industry (Dixit & Stigitz 1977)
- Consumers prefer a variety of differentiated plants, including exotic, imported species
- Firms ("nurseries") are vertically integrated
- An integrated nursery firm imports plant material, propagates it and sells this differentiated product in the retail market
- Estimate the representative firm's profit function, based on data from the US and Canadian horticulture industries

7/3/2009

Modeling assumptions

- Nursery firms import new exotic plant species as a onetime fixed cost, *F*, and produce a unique bundle of plants under increasing returns to scale
- Consumers maximize utility from the "nursery good" and a homogenous composite good
- Consumer preference for a variety of nursery goods is captured by the parameter γ, which measures substitutability between different plant bundles, with 0 < γ < 1 and σ = 1/(1 γ) > 1 is elasticity of substitution
- We also assume that the industry is constrained by regional resource availability, *L*, measured in labor units

Private industry equilibrium

In the short run, each firm's profits are inversely related to the total number of nurseries, n, in the industry:

$$\pi(n)^s = \frac{1-\gamma}{\gamma} \left(\frac{L}{n} - F\right), \quad 0 \le \gamma \le 1$$

In the long run, industry profits are zero, and the privately optimal number of nurseries is:

$$n^p = \frac{(1-\gamma)L}{F}$$

Social welfare (I)

Considering industry output only, then social welfare is the sum of consumers' and producers' surplus:

$$W(n) = S(n) + \Pi(n)$$

Consumer surplus is:

$$S(n) = \left(\frac{1-\gamma}{\gamma}\right) \left(\frac{a}{\gamma}\right)^{\frac{\gamma}{\gamma-1}} n = Dn, \quad D = \left(\frac{1-\gamma}{\gamma}\right) \left(\frac{a}{\gamma}\right)^{\frac{\gamma}{\gamma-1}}$$

where 'a' is marginal labor cost of production

Social welfare in this case is: $W'(n^s) = 0$

Social welfare (II)

- For a social optimum, we must also consider the expected social costs from the risk of a harmful plant invasion
- The risk of a newly imported exotic species becoming invasive can be analyzed as a duration problem
- Such problems are characterized by a *hazard rate*:

 $h(t) = \lim_{\Delta t \to 0} \left\{ P(\text{plant invades in } (t, t + \Delta t) | \text{plant has not invaded by } t) / \Delta t \right\}$

The hazard rate for species k depends on the number of nurseries selling the plant, n(t), and plant attributes, a_k:

$$h(t) = \varphi(n(t), a_k), \, \varphi_n > 0$$

Stochastic optimization problem

Invasion damages, $G(\tau)$, are a function of the random time of invasion, τ :

$$G(\tau) = \int_{\tau}^{\infty} e^{-\delta(t-\tau)} c A(t) dt$$

where A(t) is area invaded and 'c ' is average damage per ha invaded

The social planner maximizes the expected present value of welfare:

$$\max_{n} J = E\left\{\int_{0}^{\tau} W(n(t))e^{-\delta t}dt - G(\tau)\right)e^{-\delta \tau}\right\}$$

where the expectation is taken with respect to $\boldsymbol{\tau}$

Deterministic optimization problem

Reed and Heras (1992) transform this problem into deterministic optimal control by introducing a new state variable, y(t), with:

$$\frac{dy}{dt} = h(t) = \varphi(n(t), a_k): \quad y(0) = 0$$

The stochastic problem now forms a standard deterministic optimal control problem:

$$\max_{n} J = \int_{0}^{\infty} e^{-\delta t - y(t)} \left[W(n(t)) + \delta G(\tau) \right] dt$$

subject to the above equation of motion

Welfare maximizing equilibrium and tax

Condition for establishing the last nursery in the industry in the long run is:

$$W'(n) - h_n \frac{W(n) + \delta G(\tau)}{\delta + h(n)} = 0$$

• Substituting for W(n) and rearranging gives the socially optimal number of nursery firms in the long-run:

$$n^* = \left(\frac{\Pi'(n) + D}{D}\right) \frac{\delta + h(n)}{h_n} - \frac{\Pi(n) + \delta G}{D}$$

 The introducer pays tax, χ, internalizes the expected social cost of invasion and is a form of license fee

Estimating the industry profit function

For the US and Canada we used panel data to estimate:

$$\pi(n) = b_o + b_1 \left(\frac{L_{it}}{n_{it}} - F_{it}\right) + \varepsilon_{it}, \ b_1 = (1 - \gamma) / \gamma$$

- The value of γ was recovered as 0.7757 for the US and 0.1154 for Canada
- The results suggest that there is more differentiation in nursery products for the Canadian market compared to the US market

Time elapsed since introduction

Variables for herbaceous species analysis (a_k)

Name	Definition	Mean	Minimum	Maximum
Continent	Number of continents	2	1	4
	covered by native range			
Global	Number of global	5	0	24
	bioregions already invaded			
Annual	Plant form is annual	0.3	0	1
	(vs. perennial, etc.)			
Flower	Length of flowering period	14.4	8	45
	in weeks			
Selfcompatible	Flowers are selfcompatible	0.67	0	1
	(reproduce singly)			
Polyploidy	Has more than two sets of	0.6	0	1
	chromosomes per nucleus			
Abiotic	Fruit is dispersed	0.85	0	1
	abiotically (vs. biotically)			
Germno	Has no specific	0.48	0	1
	germination requirements			

Component matrix for PCA of herbaceous plant characteristic variables

Variable	Component						
	FS1	FS2	FS3	FS4			
Continents	.759	113	101	052			
Global	.668	043	.547	025			
Polyploidy	.597	.240	121	.212			
Abiotic	.147	.734	108	.037			
Annual	216	.643	.464	.151			
Flower	088	039	.841	.035			
Selfcompatible	.009	.209	035	.869			
Germno	136	.501	231	617			

Regression results for herbaceous species using PCA hazard model (Dependent var. is "duration")

	All Covariates				Only Significant Covariates (if any)			
	Weibull		Exponential		Weibull		Exponential	
Variable	Coefficient	p	Coefficient	p	Coefficient	p	Coefficient	p
		value		value		value		value
ONE	5.300	0.000	5.315	0.000	5.299	0.000	5.313	0.000
FS1	-0.221	0.054	-0.252	0.067	-0.221	0.054	-0.251	0.067
FS2	0.256	0.014	0.279	0.023	0.256	0.014	0.278	0.023
FS3	-0.254	0.010	-0.275	0.021	-0.257	0.009	-0.278	0.020
FS4	-0.014	0.896	-0.023	0.861				
Ν	106		106		106		106	
φ parameter	0.005		0.005		0.005		0.005	
<i>p</i> parameter	1.144		1.000		1.145		1.000	
LL	-140.298		-141.199		-140.307		-141.217	

Simulated optimal tax and number of nurseries selling a new exotic herbaceous species ($\varphi = 0.009$)

Share of profits:	1%	10%	25%	50%	75%	100%
USA						
Nurseries, <i>n</i> *	34,727	31,949	27,319	19,603	11,886	4170
Firm tax (\$/year)	45	446	1116	2231	3347	4462
n */n p (%)	99	91	78	56	34	12
Canada						
Nurseries, <i>n</i> *	3048	2856	2536	2002	1468	934
Firm tax (\$/year)	49	491	1228	2456	3684	4913
n */n p (%)	99	93	83	65	48	30

7/3/2009

WEAI Conference 2009

Summary of simulation results

- We developed a general MC framework to model the private and socially optimal number of firms in the horticulture industry when there is a risk of bioinvasion
- We then determined the optimal 'introducer pays' tax to internalize the externality
- The outcome is highly sensitive to the share of individual exotic plant sales in final profits
- Optimal US industry size is more sensitive to the tax because of greater substitutability ($\gamma_{US} > \gamma_{C}$) & lower CS
- An annual license fee would raise substantial revenues that could cover damage costs from a future invasion and fund screening programs for newly introduced species

Thank vo e wish to acknowledge USD for funding this research School of Resource & Environmental Management

Simon Fraser University