

Natural Disasters and their Labor Market Consequences: Evidence from the 1998 Flood in Bangladesh

Valerie Mueller (IFPRI) Agnes Quisumbing (IFPRI)

WEAI Conference, Vancouver June 30, 2009

INTERNATIONAL FOOD POLICY RESEARCH INSTITUTE

Background

- Natural disasters have long-term consequences on agricultural growth (Sachs, 2001; Gallup and Sachs, 2000)
- Natural disasters impede accumulation of physical and capital stock (Yamauchi et al., 2008a, 2008b; Skoufias, 2003)
- Climate change increasing droughts, floods, and sea level (IPCC, 2007)
- Large development literature on constraints of households to cope with shocks

Research Objective

- Few studies focus on role of migration and labor markets in coping with natural disasters
- Migration and employment in RNF sector used to cope with shocks
- We evaluate how resilient labor markets in rural Bangladesh were to the 1998 "flood of the century" (short-term vs. long-term)
- We also look at factors that mitigated the damages
- Panel household survey collected for flood impact assessment (del Ninno et al., 2001)

Theoretical Insight on Disasters and Markets

- Consumption smoothing literature shows failure of the PIH model in developing countries
- Literature lacks insight on long-term impacts of widespread shocks
 - Community risk-sharing less likely as informal creditors overburdened (Townsend, 1994)
 - Underinvestment because of risk aversion and asset depletion (Rosenzweig and Binswanger, 1993)

Long-term Disaster Impacts on Labor Markets

- Complementarity of capital and labor crucial
- Decline in agricultural labor demand (most focus on this effect)
- Non-farm labor market also vulnerable if migration is costly or local labor surplus from shock

The 1998 "Flood of the Century"

- Bangladesh use to annual floods
- 1998 flood most severe due to duration and coverage
- Food assistance programs available
- Short-term effects on consumption, nutrition, assets, debt (del Ninno et al., 2001)
- Recent studies focus on long-term impacts on consumption, and physical and human capital accumulation (Yamauchi et al., 2008a, 2008b; Quisumbing, 2005a, 2005b)

Data

- 757 households in 126 villages from November 1998-May 2004 (four rounds)
- Focus on casual labor market module
- Use previous month wage data*
- Plot level information on normal and realized flood depth (feet)
- Village flood measure averages the deviation of the 1998 depth from the normal
- Mitigation: Irrigation, soil type, credit, distance to nearest market

Empirical Strategy

- Daily wage regression
- Covariates
 - Individual labor supply characteristics
 - Flood measure
 - Control for initial labor market conditions in 1997
 - Include thana, month, and year fixed effects
- Pooled OLS and Random effects models*
- Short-term vs. Long-term models
- Thana clustering for arbitrary correlation of flood impacts

Baseline results

GLS
0 0 0 0 7
9 -0.007
.0) (0.012)
-0.020
.8) (0.019)
-0.044*
2) (0.026)
1470
0.30

Agricultural vs. Non-Agricultural Wages

	Pooled	RE	Pooled	RE
	OLS	GLS	OLS	GLS
1998 Flood shock	-0.009	-0.009	0.014	0.014
	(0.013)	(0.013)	(0.014)	(0.014)
1998 Flood shock*Year 1999 dummy			-0.036	-0.036
			(0.023)	(0.025)
1998 Flood shock*Year 2004 dummy			-0.069**	-0.065***
			(0.023)	(0.025)
1998 Flood shock*Agriculture	-0.015	-0.013	-0.038**	-0.036***
	(0.018)	(0.018)	(0.014)	(0.015)
1998 Flood shock*Year 1999 dummy*			0.027	0.027
Agriculture			(0.017)	(0.017)
1998 Flood shock*Year 2004 dummy			0.034***	0.032***
Agriculture			(0.006)	(0.007)
Observations	1470	1470	1470	1470
R-squared	0.30	0.30	0.31	0.31

Mitigation

- Percent Irrigation: Ability to shift cultivation to the dry season
- Drainage capacity: soil type can reduce the scope of the crop loss
- Presence and scale of informal credit system:
 Can reduce the distress sale of assets
- Proximity to markets and bazaars: provide workers access to additional outlets for employment

Findings on Mitigation

- Areas with clay soil were most severely affected in the short term
- Irrigation and credit access might mitigate flood impacts
 - Irrigation variable didn't vary over time, so couldn't identify statistically significant effect
 - Credit access results weren't robust
- Labor markets closer to the weekly market or bazaar were less affected than those further away in the long-term

Conclusion

- Severe flood caused 4-5% decline in real wages
- Emergency relief programs might have protected individuals in the short-term but not the long-term
- Non-agricultural markets suffered perhaps due to their dependence on the recovery of other markets
- Migration could possibly mitigate these impacts suggesting policies aimed at reducing moving and search costs may be a temporary solution to recover from major flood