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Distance to equilibrium, a cartoon of cutoff:
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These slides are at
http://pages.uoregon.edu/dlevin/TALKS/durham.pdf
In particular this document contains a bibliography.

David A. Levin Cutoff for Markov Chains

http://pages.uoregon.edu/dlevin/TALKS/durham.pdf


References

The cutoff phenomenon for families of Markov chains was first
identified in the groundbreaking works of Diaconis, Shahshahani
and Aldous in the 1980’s.

In 1996, P. Diaconis wrote:

At present writing, proof of a cutoff is a difficult,
delicate affair, requiring detailed knowledge of the chain,
such as all eigenvalues and eigenvectors.

(From P. Diaconis (1996). “The cutoff phenomenon in finite Markov
chains”. In: Proc. Nat. Acad. Sci. U.S.A. 93.4, pp. 1659–1664. DOI:
10.1073/pnas.93.4.1659.)
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Nonetheless, here, I will focus on examples where cutoff can be
proved via probabilistic arguments, generally not requiring detailed
analysis of eigenvalues and eigenvectors.

Early (and current) work focused on random walks on symmetric
group (shuffling), and other groups.

See talks by Bernstein and Nestoridi for recent cutoff breakthroughs
on such walks!

Also: see talk by Hermon for a different kind of example where the
degree is bounded.
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Plan

Definitions, simple examples of cutoff and non-cutoff

“Product condition” conjecture and counterexamples, product
chains

Strong stationary times

Phase transition phenomenon for Glauber dynamics (some
details for the mean-field case) and role of cutoff

Bounded degree examples, path coupling and the biased
exclusion process
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Part I: Introduction and simple examples

Definitions

Coupling

Lower bounds

Examples
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Most of these beginning examples were analyzed in by Diaconis,
Graham, Shahshahani, Aldous.

The term “cutoff” appears first in work of Aldous and Diaconis
(1986).
(Also “variation threshold” and “separation threshhold” in Aldous
and Diaconis (1987).)

While exact calculation of eigenvalues and eigenvectors is possible
in these examples and give much more precise information, the
simple arguments I give here are useful because they are robust and
often generalizable, unlike spectral methods. And they are good
enough to yield cutoff.

Upper bounds via L2 analysis only work when L1 and L2 mixing
occur at the same time.
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Set-up

(Xt) is an ergodic Markov chain with transition matrix P on a
finite state space X .

The unique stationary distribution is π satisfies π=πP.

Let

d(t) = max
x∈X

‖Px(Xt ∈ ·)−π‖TV = max
x∈X

1

2

∑
z
|Pt(x,z)−π(z)|

= max
x∈X

sup
A⊂X

|Px(Xt ∈ A)−π(A)|

denote the total variation (L1) distance between the law of Xt

and π.

Classical asymptotics: For a fixed chain, d(t) → 0 as t →∞.
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Other distances

Lp distance, 1 < p ≤∞,

dp(t) = max
x

∥∥∥1− Pt(x,y)

π(y)

∥∥∥
Lp(π)

Separation distance:

ds(t) = 1−min
x,y

Pt(x,y)

π(y)
.

Also useful:
d̄(t) = max

x,y
‖Pt(x, ·)−Pt(y, ·)‖TV .

It is d̄(t) which is submultiplicative: d̄(s+ t) ≤ d̄(s)d̄(t).

Note that d(t) ≤ ds(t), also

ds(2t) ≤ 1− (1− d̄(t))2 ≤ 2d̄(t) ≤ 4d(t) .
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Families of chains

Let {(X (n)
t )}∞n=1 be a sequence of chains.

The state spaces X (n) and transition matrices depend on
instance-size parameter n.

For example, random walk on the n-cycle: Xn =Zn =Z
mod nZ.

Let

t(n)
mix(ε) = min{t : d(n)(t) < ε}

t(n)
mix = t(n)

mix(1/4) .

Our point of view: How does t(n)
mix(ε) scale as n →∞?

General references on mixing: Aldous and Fill (2002), Saloff-Coste
(1997), L. Peres, and Wilmer (2009, 2017).
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For example, we will show via elementary arguments that there
are constants c1 and c2 so that for random walk on the n-cycle,

c1n2 ≤ t(n)
mix ≤ c2n2 .

Is there a sharp constant c? (independent of ε) such that
t(n)

mix(ε) ∼ c?n2? (Cutoff.)

Or is it that:
d(n)(cn2) ∼φ(c)

where φ smoothly interpolates between φ(0) = 1 and φ(∞) = 0.
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Tool: coupling

Given pair of starting states, x,y, let (Xt ,Yt) be a Markov chain
such that

(Xt ) is a MC with transition matrix P started at x,
(Yt ) is a MC with transition matrix P started at y.

Let τ= min{t ≥ 0 : Xt = Yt}.

Suppose Xt = Yt for t ≥ τ.

Doeblin:

‖Pt(x, ·)−Pt(y, ·)‖TV = 1

2

∑
z
|Px(Xt = z)−Py(Yt = z)|

= 1

2

∑
z
|Px(Xt = z,τ> t)−Py(Yt = z,τ> t)|

≤P(τ> t)

If d̄(t) = maxx,y ‖Pt(x, ·)−Pt(y, ·)‖, then d(t) ≤ d̄(t) ≤ 2d(t).

Note that d̄(s+ t) ≤ d̄(s)d̄(t).
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Lazy random walk on Hypercube: {0,1}n

coin tossed to decide replacement bit

0011010011

same random coordinate K selected for
updating

0110001010 0110011010
0011010011

1

Pick a coordinate K uniformly at random, and refresh by
replacing current bit at K with an independent random bit.

Couple two copies of the chain (Xt) and (Yt) by choosing the
same coordinate in both chains and refreshing both chains
with the same bit.

The chains must have met when every coordinate has been
selected at least once!

David A. Levin Cutoff for Markov Chains



References

Reduces to “coupon collector problem”:

P(τ> t) ≤
n∑

k=1
P(coordinate k not selected) = n

(
1− 1

n

)t

.

Taking t = n logn+ cn yields d(t) ≤ e−c, whence

tmix(ε) ≤ n logn+n log(1/ε) .

This is off by a factor of two; however, we will see later a
modification which gives a sharp bound.
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A better coupling for Random Walk on the Hypercube

Need to only couple until within distance
p

n

Then use diffusive behavior of Hamming distance.

David A. Levin Cutoff for Markov Chains



References

Reduce to one-dimensional chain

Ehrenfest diffusion:

Let Wt be the hamming weight, Wt :=∑n
i=1 X (i)(t).

‖P1(Xt ∈ ·)−π‖ = ‖Pn(Wt ∈ ·)−πW‖

P(Wt+1 −Wt = x |Ft) =


1
2 x = 0
Wt
2n x =−1
n−Wt

2n x =+1

.
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Since (Xt) is transitive, d(t) = ‖P1(Xt ∈ ·)−π‖.

Couple lazy chains: toss a coin to decide which chain moves.
Once the chains meet, they move together.

Let (Dt) be the difference between the two Hamming weights.

Ez,w[Dt+1 −Dt |Ft] =−Dt

n

Ez,w[Dt] ≤ (1−n−1)tD0 ≤ ne−t/n

The stationary distributions cannot distinguish order
p

n sites
which are not mixed. (CLT.)

Drive the expected distance down to
p

n in (1/2)n logn steps.

By comparison to simple random walk, only need O(n)
additional steps to hit zero.

Thus P(Dt 6= 0) is small if t = (1/2)n logn+αn.
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Lower bounds via a statistic

Proposition 1.

For f : X →R, define σ2
? := max{Varµ(f ),Varν(f )}. If

|Eν(f )−Eµ(f )| ≥ rσ?

then ∥∥µ−ν∥∥
TV ≥ 1− 8

r2 .

In particular, if for a Markov chain (Xt) with transition matrix P the
function f satisfies

|Ex[f (Xt)]−Eπ(f )| ≥ rσ? ,

then ∥∥Pt(x, ·)−π∥∥
TV ≥ 1− 8

r2 .
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Let W (x) =∑
i x(i) be the Hamming weight, and Rt be the number of

coordinates not updated by time t.

E1(W (X t) | Rt) = Rt + (n−Rt)

2
= 1

2
(Rt +n) ,

so

E1(W (X t)) = n

2

[
1+

(
1− 1

n

)t]
Also

Var(W (X t)) ≤ n

4

Thus

|Eπ(W )−E1(W (X t)| =σpn

(
1− 1

n

)t

.

Thus if t = 1
2 n logn−nα, then

d(t) ≥ 1−8e2−2α .
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There is a window of size n around (1/2)n logn where mixing
occurs:

lim
α→−∞ liminf

n
d(tn +αn) = 1, lim

α→∞ limsup
n

d(tn +αn) = 0.

This is an example of cutoff!
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Lazy random walk on the cycle

Start two particles on Zn at x and y.

Flip a coin to decide which particle to move.

The clockwise distance between the two particles is itself a
simple random walk on {0,1, . . . ,n}.

Classical gambler’s ruin bounds the expected time it takes to
hit 0 or n.

Ex,y(τ) ≤ n2

4

Thus tmix(1/4) ≤ 2n2.
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Lower bound for cycle

Consider the set A = [n/4,3n/4].

Since π(A) = 1/2,

d(t) ≥ 1

2
−Pt(0,A) .

By Chebyshev, if t ≤ n2/32, then Pt(0,A) ≤ 1/4.

Thus tmix ≥ n2/32.
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Cutoff

A family of chains has cutoff at mixing times {tn} with window wn if
wn = o(tn) and

lim
α→∞ liminf

n→∞ d(tn −αwn) = 1

lim
α→∞ limsup

n→∞
d(tn +αwn) = 0.

There is a cutoff iff for all ε

lim
n

tmix(ε)

tmix(1−ε)
= 1.
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When rescaling by tmix, the chain has a cutoff if d approaches a step
function:

lim
n

d(n)(ctmix) =
{

1 c < 1

0 c > 1

����
(�)

�

�
�(n)(�)
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The family has pre-cutoff if it satisfies

sup
0<ε<1/2

limsup
n→∞

t(n)
mix(ε)

t(n)
mix(1−ε)

<∞ .

Thus there are c0 and c1 such that

liminfd(n)(ctmix) = 1 [c < c0]

limsupd(n)(ctmix) = 0 [c > c1]
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Cutoff is often said to be a high dimensional phenomenon,
with the hypercube being a key example.

More generally, a stationary measure corresponding to a large
number of independent or weakly independent variables give
rise to the cutoff phenomenon. Examples: hypercube, or more
generally product chains as dimension tends to infinity. Also
high-temperature Ising model.

Early examples all correspond to high-degree chains: walks on
symmetric groups, hypercube all have degrees which are
unbounded.

Recently, cutoff explored in bounded degree graphs. (See the
talk by Hermon on Friday for an example!)
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Two arms of research

Given specific family, find the mixing time, prove cutoff, and
identify the window.

Provide criteria for the existence of cutoff for classes of chains.
[“Product condition”, hitting time characterizations, etc.]
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Part II

Necessary condition for cutoff.

A conjecture on cutoff.

Counterexamples.
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Spectral Analysis for Reversible Chains

P is reversible if π(x)P(x,y) =π(y)P(y,x) for all x,y.
If P is reversible then P has n real eigenvalues
1 =λ1 >λ2 > ·· ·λ2 >−1.
Let fj be the eigenvector with eigenvalue λj of P. Then

4
∥∥Pt(x, ·)−π∥∥2

TV ≤
∥∥∥∥Pt(x, ·)

π(·) −1

∥∥∥∥2

2
=

n∑
j=2

fj(x)2λ2t
j .

“This bound is both the key to our present understanding and
a main method of proof for cutoff phenomena.” (Diaconis
1996).
A chain is transitive if for all x,y, there exists a bijection φ such
that φ(x) = y and P(φ(z),φ(w)) = P(z,w) for all z,w.
Transitive chains satisfy:

4
∥∥Pt(x, ·)−π∥∥2

TV ≤
∥∥∥∥Pt(x, ·)

π(·) −1

∥∥∥∥2

2
=

n∑
j=2

λ2t
j .
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Relaxation time

The relaxation time trel = 1/(1−λ?), where λ? = max2≤i≤n |λi|.
The relaxation time is the time required for observations to be
approximately uncorrelated.

Time to mix from typical starting points.

(trel −1)log(1/2ε) ≤ tmix(ε) ≤ trel log

(
1

επmin

)
.
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Hypercube

Lazy random walk on {0,1}n.

Eigenvalues are 1− j
n with multiplicity

(n
j

)
.

∥∥∥∥Pt(x, ·)
π(·) −1

∥∥∥∥2

2
=

n∑
k=1

(
1−k

n

)2t
(

n

k

)
≤

n∑
k=1

e−2tk/n

(
n

k

)
= (1+e−2t/n)n−1

The RHS is bound by ee−2c −1 when

t = 1

2
n logn+ cn

Note L2 and TV mixing occur at the same time for hypercube.

High multiplicity of the second eigenvalue yields cutoff.
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Necessary gap condition

Proposition 2 (Cf. Aldous and Diaconis (1987) Proposition 7.8(b)).

If there is a pre-cutoff, then tmix/(trel −1) →∞.

Proof.

Suppose that the ratio does not tend to infinity. There is an infinite
set of integers J and c1 > 0 such that

trel −1

tmix
≥ c1 n ∈ J .

Since
tmix(ε) ≥ (trel −1)log(1/2ε)

Thus
tmix(ε)

tmix
≥ trel −1

tmix
log(1/2ε) ≥ c1 log(1/2ε)

Let ε→ 0.
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The cycle and the hypercube, revisited, and a conjecture

For the cycle, tmix ³ n2 and trel ³ n2, so there is no cutoff.

For the hypercube tmix/trel ³ logn →∞ and there is a cutoff.

Many such examples led Y. Peres in 2004 to conjecture that the
condition tmix/trel →∞ is usually sufficient for cutoff.

Note that for Lp distance, 1 < p ≤∞, the conjecture was proven
by Chen and Saloff-Coste (2008).

While there are counterexamples, it remains to find wide
classes where it is true. It has been verified in many specific
contexts.
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Pre-cutoff, but no cutoff

The following example is due to D. Aldous:
2n

2/31/3

2/31/3
5n

1/5 4/5

n
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The total variation distance looks like

(15+5/3) t

d(t)

21n15 n n
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Assume the right-most state has a loop.

Since the stationary distribution grows geometrically from
left-to-right, the chain mixes once it reaches near the
right-most point.

It takes about 15n steps for a particle started at the left-most
endpoint to reach the fork. With probability about 3/4, it first
reaches the right endpoint via the bottom path. (This can be
calculated using effective resistances

When the walker takes the bottom path, it takes about (5/3)n
additional steps to reach the right. In fact, the time will be
within order

p
n of (5/3)n with high probability.
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In the event that the walker takes the top path, it takes about
6n steps (again ±O(

p
n)) to reach the right endpoint.

Thus the total variation distance will drop by 3/4 at time
[15+ (5/3)]n, and it will drop by the remaining 1/4 at around
time (15+6)n.
windows of order

p
n.

Thus, the ratio tmix(ε)/tmix(1−ε) will stay bounded as n →∞,
but it does not tend to 1.

David A. Levin Cutoff for Markov Chains



References

Since there is a pre-cutoff, tmix/trel →∞.

Thus tmix/trel →∞ not sufficient for cutoff.

Other counterexamples due to I. Pak, H. Lacoin.
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Recap

A family of chains has cutoff at mixing times {tn} with window wn if
wn = o(tn) and

lim
α→∞ liminf

n→∞ d(tn −αwn) = 1

lim
α→∞ limsup

n→∞
d(tn +αwn) = 0.

There is a cutoff iff for all ε

lim
n

tmix(ε)

tmix(1−ε)
= 1.
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When rescaling by tmix, the chain has a cutoff if d approaches a step
function:

lim
n

d(n)(ctmix) =
{

1 c < 1

0 c > 1

����
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�
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The family has pre-cutoff if it satisfies

sup
0<ε<1/2

limsup
n→∞

t(n)
mix(ε)

t(n)
mix(1−ε)

<∞ .

Thus there are c0 and c1 such that

liminfd(n)(ctmix) = 1 [c < c0]

limsupd(n)(ctmix) = 0 [c > c1]

(15+5/3) t

d(t)

21n15 n n
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Summary of our two simple examples: random walk on hypercube
and cycle

Lazy SRW on the hypercube has

1

2
n logn− c1n log(1/ε) ≤ tmix(ε) ≤ 1

2
n logn+ c2 log(1/ε)

The mixing time is the time to randomize all but O(
p

n) sites.
This time is concentrated around (1/2)n logn.

Alternatively, diagonalizing shows that the L2 distance satisfies

d2(t) = [1+o(1)]
p

ne−t/n ,

since the second eigenvalue 1−1/n has multiplicity n.

L2 mixing and L1 mixing coincide in this case.

Lazy SRW on the cycle does not have a cutoff, as
gap · tmix = tmix/trel remains bounded.

Hypercube suggested products should have cutoff.
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Biased Random Walk on n-Path

Suppose (Xt) is nearest-neighbor random walk on n-path:

P(Xt+1 −Xt =+1 |Ft) = p

P(Xt+1 −Xt =−1 |Ft) = 1−p

Let β= 2p−1 > 0 be the bias.

Since π is geometric; 1−o(1) of the mass is within O(1) of n.

● ● ● ● ● ● ● ● ● ●
●

●

●

●

●
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The chain mixes once it is in a neighborhood of n.

By the Central Limit Theorem,

Xt ∼βt + c
p

tZ ,

where Z is a standard Normal random variable.

Thus need t = n
β to mix, and

There is window of O(
p

n).
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Trees

Despite the fact that the distance to the origin on an d-ary tree
behaves like a biased random walk, the random walk on the
tree does not have cutoff. (But now the worst starting location
is on the boundary.)

Consider the binary tree of depth k. Couple lazy random walks
(Xt) and (Yt) by selecting one at random to move, until they are
at the same level; Once at the same level, move both towards
root or away from root together.

They must have met by the time it takes for Xt to hit leaves and
then root.
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Commute time via effective resistance

Commute time identity:

2|E|R(a ↔ b) = Ea(τb)+Eb(τa) .

For binary tree, to find effective resistance from root to
boundary, glue together all vertices at the same level:

The commute time from leaves to root for non-lazy walk is

2|E|R(ρ↔ ∂T) = 2(n−1)
k∑

j=1
2−j ≤ 2n

Thus tmix ≤ 16n

David A. Levin Cutoff for Markov Chains
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Lower bound via Cheeger constant

Let
Q(A,Ac) = ∑

x∈A,y∈Ac

π(x)P(x,y).

If

ΦA = Q(A,Ac)

π(A)
,

then for π(A) ≤ 1/2,

tmix ≥ 1

4ΦA
.

(Sinclair and Jerrum 1989).
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Lower bound for binary tree uses Cheeger constant.

Take S to be the “right” tree below the root.

Φ(S) = 1/[2(n−2)]; thus tmix ≥ n−2
2 .

We also have trel ≤ tmix ≤ c1n.

Sinclair and Jerrum (1989) implies that trel ≥ 1/2Φ?, whence
trel ≥ c2n.

Conclude that both tmix ³ n and trel ³ n, whence there is no
cutoff.
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More on trees

There are examples of trees with cutoff (Peres and Sousi
2015b). This exploits the relation between hitting time and
mixing as developed in Peres and Sousi (2015a) (also Oliveira
(2012).)

In fact, the condition tmix/trel →∞ is sufficient for cutoff on
trees (Basu, Hermon, and Peres 2017).

Basu, Hermon, and Peres (2017) establish for the parameter

hit1/2(ε) = min{t :

[
max

x
max

A :π(A)≥1/2
Px(τA > t)

]
≤ ε}

that there is a cut-off for a family of lazy reversible chain if and
only if

hit1/2(ε)−hit1/2(1−ε) = o(hit1/2(1/4))

David A. Levin Cutoff for Markov Chains
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Product chains

Suppose that Pi is a transition matrix on Xi for i = 1,2, . . . ,n. Define
for x,y ∈X =∏n

i=1 Xi,

P̃i(x,y) :=
{

Pi(x(i),y(i)) if x(j) = y(j) for j 6= i,

0 otherwise.
,

Let

P = 1

n

n∑
i=1

P̃i ,

so P corresponds to choosing a coordinate at random and making a
move according to Pi in that coordinate.

Product chains studied in Diaconis and Saloff-Coste (1996).
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Cf. Barrera, Lachaud, and Ycart (2006) and Aldous and Diaconis
(1987)

Theorem 1.

Suppose, for i = 1, . . . ,n, the spectral gap γi for the chain with
reversible transition matrix Pi is bounded below by γ and the

stationary distribution π(i) satisfies
√
π(i)

min ≥ c0, for some constant
c0 > 0. If P is the matrix above, then the Markov chain with matrix P
satisfies

tcont
mix (ε) ≤ 1

2γ
n logn+ 1

γ
n log(1/[c0ε]). (1)

If the spectral gap γi = γ for all i, then

tcont
mix (ε) ≥ n

2γ

{
logn− log

[
8log

(
1/(1−ε)

)]}
. (2)
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Lazy chains have a cutoff if and only if the corresponding
continuous time chains have a cutoff. (Chen and Saloff-Coste
2013).
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Hellinger distance

The Hellinger distance

dH (µ,ν) =
√∑

x

(√
µ(x)−

√
ν(x)

)2

satisfies for µ=∏
µ(i) and ν=∏

ν(i)

d2
H (µ,ν) ≤∑

d2
H (µ(i),ν(i)) .

Also
‖µ−ν‖TV ≤ dH (µ,ν) ,

and if µ¿ ν, then

dH (µ,ν) ≤ ‖dµ

dν
−1‖L2(ν)
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As for discrete-time chain, the spectral decomposition of P gives for
reversible chains that

2‖Px(Xt ∈ ·)−π‖TV ≤ e−γt

πmin

The continuous time chain X t satisfies

Px(X t = y) =
n∏

i=1
Px(X (i)

t/n = y(i)) .

Thus

d2
H (Pt(x, ·),π) ≤∑

d2
H (Px(X (i)

t/n ∈ ·),πi) ≤
∑‖Px(X (i)

t/n ∈ ·)
πi

−1‖2
2 ≤

ne−2γt

c2
0

.
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Yn = (X (n)
1 (t), . . . ,X (n)

n (t)), where {X (n)
i }n

i=1 are iid.

Lacoin (2015): For any sequence (Xn)

limsup
tmix(1−ε)

tmix(ε)
≤ 2.

Easiest to see that it also holds for separation; if D is for the
product

D(n)
s (t) = 1− (1−d(n)

s (t))n

ts(n−2/3) ≤ T n
s (1−ε) ≤ T n(ε) ≤ tn

s (n−4/3) ≤ 2tn
s (n−2/3) .

Holds for TV distance via Hellinger distance.
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Lacoin Example

From Lacoin (2015)

εn = 2−n2
.
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The stationary mass is at C except o(1); the chain mixes once it
reaches C.

With high probability, before the chain reaches C, it makes no
backtrack, and it takes the shortcut.

Thus a single copy of the chain has a cutoff at n.

The product chain reaches Cn in about time 2n if one of the
coordinates takes the “long way”, which occurs with non-zero
probability.

Thus the hitting time of Cn has some mass concentrated near
n and some concentrated at 2n.
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If τ is the hitting time of C, then

nPA(τ> cn) = nPA(τ> cn | long)
1

n
+nPA(τ> cn | short)(1− 1

n
)

→


∞ c < 1

1 c ∈ (1,2)

0 c > 2.

If τprod is the hitting time of Cn,

dprod(cn) =P(τprod > cn)+o(1)

= 1− (1−P(τ> cn))n

→


1 c < 1

1−e−1 c ∈ (1,2)

0 c > 2
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Note that each coordinate is low entropy: essentially determined by
a highly biased coin flip.

Thus, there are caveats to “high dimensions have cutoff”: need
reasonable entropy in each dimension.

We see here that lack of cutoff is related to lack of concentration of
hitting time.
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Part III

Strong Stationary Times

The Ising Model

Path coupling and the biased exclusion process
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Strong Stationary Times

A strong stationary time τ is a stopping time such that
Px(Xτ ∈ ·) =π, and
τ and Xτ are independent.

The separation distance

sx(t) = max
y

[
1− Pt(x,y)

π(y)

]
satisfies

‖Pt(x, ·)−π‖TV ≤ sx(t) .
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Lemma 2.

If τ is a SST then
sx(t) ≤Px(τ> t) .

Proof.

From the definition,

Px{τ≤ t, Xt = y} =Px{τ≤ t}π(y). (3)

Fix x ∈X . Observe that for every y ∈X ,

1− Pt(x,y)

π(y)
= 1− Px{Xt = y}

π(y)

≤ 1− Px{Xt = y, τ≤ t}

π(y)
=P{τ> t} .
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Top-to-random card shuffle
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Next card to be placed in one of the slots

Original bottom card

under the original bottom card
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Theorem 3.

If there exists a halting state for x, then τ is optimal:

sx(t) =Px(τ> t) .

Proof.

If y is a halting state for starting state x and the stopping time τ, then

1− Pt(x,y)

π(y)
= 1− Px{Xt = y}

π(y)

≤ 1− Px{Xt = y, τ≤ t}

π(y)
.

is an equality for every t. Therefore, if there exists a halting state for
starting state x, then

sx(t) =Px(τ> t).
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Example: Top-to-random insertion. Let τ be one shuffle after the
first time that the next-to-bottom card comes to the top.
Since this is a sum of geometrics (+1), the coupon collector analysis
applies:

Px(τ> n logn+ cn) ≤ e−α .

In fact Erdös and Rényi (1961) show that

Px(τ< n logn+ cn) ∼ e−e−c

The optimality of τ shows that there is a separation cut-off at n logn
with window of size n.
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Separation vs Total variation cutoff

Separation and total-vartiation cutoffs are not equivalent.
(Hermon, Lacoin, and Peres 2016).

They are for birth-and-death chains (Ding, Lubetzky, and
Peres 2010).
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Three regimes for the Ising model

High temperature (β<βc):
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Three regimes for the Ising model

low temperature (β>βc),
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Three regimes for the Ising model

critical temperature (β=βc),
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Mixing behavior of Glauber dynamics for Ising

Picture to confirm, precise definitions to follow. Glauber
dynamics for the Ising model on graph with n vertives.

At high temperature, mixing is as fast as possible n logn, with
cutoff.

At critical temperature, the mixing is polynomial in n with no
cut-off

At low temperature, mixing is exponential in n.

At low temperature, confined to one of the phases, there is fast
mixing with a cutoff.

Lattice cases beyond the scope of these lectures, but we will
provide some details for the complete graph.

Key idea is that careful couplings can give bounds sharp
enough to prove a cutoff.
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Introduction to Glauber dynamics for Ising model

Let Gn = (Vn,En) be a graph with N = |Vn| <∞ vertices.

The nearest-neighbor Ising model on Gn is the probability
distribution on {−1,1}Vn given by

µ(σ) = Z(β)−1 exp

(
β

∑
(u,v)∈En

σ(u)σ(v)

)
,

where σ ∈ {−1,1}Vn .

The interaction strength β is a parameter which has physical
interpretation as 1

temperature .
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Glauber dynamics

The (single-site) Glauber dynamics for µ is a Markov chain (Xt)
having µ as its stationary distribution.

Transitions are made from state σ as follows:

1 a vertex v is chosen uniformly at random from Vn.

2 The new state σ′ agrees with σ everywhere except possibly at v,
where σ′(v) = 1 with probability

eβS(σ,v)

eβS(σ,v) +e−βS(σ,v)

where
S(σ,v) := ∑

w:w∼v
σ(w).

Note the probability above equals the µ-conditional probability of a
positive spin at v, given that that all spins agree with σ at vertices
different from v.

David A. Levin Cutoff for Markov Chains



References

Glauber dynamics

The (single-site) Glauber dynamics for µ is a Markov chain (Xt)
having µ as its stationary distribution.

Transitions are made from state σ as follows:

1 a vertex v is chosen uniformly at random from Vn.

2 The new state σ′ agrees with σ everywhere except possibly at v,
where σ′(v) = 1 with probability

eβS(σ,v)

eβS(σ,v) +e−βS(σ,v)

where
S(σ,v) := ∑

w:w∼v
σ(w).

Note the probability above equals the µ-conditional probability of a
positive spin at v, given that that all spins agree with σ at vertices
different from v.

David A. Levin Cutoff for Markov Chains



References

Glauber dynamics

The (single-site) Glauber dynamics for µ is a Markov chain (Xt)
having µ as its stationary distribution.

Transitions are made from state σ as follows:

1 a vertex v is chosen uniformly at random from Vn.

2 The new state σ′ agrees with σ everywhere except possibly at v,
where σ′(v) = 1 with probability

eβS(σ,v)

eβS(σ,v) +e−βS(σ,v)

where
S(σ,v) := ∑

w:w∼v
σ(w).

Note the probability above equals the µ-conditional probability of a
positive spin at v, given that that all spins agree with σ at vertices
different from v.

David A. Levin Cutoff for Markov Chains



References

A conjecture

For the Glauber dynamics on graph sequences with bounded
degree, tn

mix =Ω(n logn). (Hayes and Sinclair 2007)

For Ising, lower bound ofΩ(n logn) from Ding and Peres (2009);
simple proof from Nestoridi (2017).

If the Glauber dynamics for a sequence of transitive graphs satisfies
tn

mix = O(n logn), is there is a cut-off? (Peres)
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Mean field case

Take Gn = Kn, the complete graph on the n vertices: Vn = {1, . . . ,n},
and En contains all

(n
2

)
possible edges.

The total interaction strength should be O(1), so replace β by β/n.
The probability of updating to a +1 is then

eβ(S−σ(v))/n

eβ(S−σ(v))/n +e−β(S−σ(v))/n

where S is the total magnetization

S =
n∑

i=1
σ(i).

The statistic S is almost sufficient for determining the updating
probability.

The chain (St) will be key to analysis of the dynamics.
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Mean field has tmix = O(n logn)

A consequence (that can be obtained, e.g., from Aizenman and
Holley (1987)) of the Dobrushin-Shlosman uniqueness criterion:
For the Glauber dynamics on Kn, if β< 1, then

tmix = O(n logn).

(See also Bubley and Dyer (1998).)
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High temperature mean-field

Theorem 4 (L.-Luczak-Peres 2010).

Let (X n
t ) be the Glauber dynamics for the Ising model on Kn. If β< 1,

then tmix(ε) = (1+o(1)) n logn
2(1−β) and there is a cut-off.

In fact, we show that there is window of size O(n) centered about

tn = 1

2(1−β)
n logn.

That is,
limsup

n
dn(tn +γn) → 0 as γ→∞.

and
liminf

n
dn(tn +γn) → 1 as γ→−∞.
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Critical temperature mean-field

Theorem 5 (L.-Luczak-Peres 2010).

Let (X n
t ) be the Glauber dynamics for the Ising model on Kn. If β= 1,

then there are constants c1 and c2 so that

c1n3/2 ≤ tmix ≤ c2n3/2.
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Low temperature mean-field

If β> 1, then
tn

mix > c1ec2n.

This can be established using Cheeger constant – there is a
bottleneck going between states with positive magnetization and
states with negative magnetization.

Arguments for exponentially slow mixing in the low temperature
regime go back at least to Griffiths, Weng and Langer (1966)

Our results show that once this barrier to mixing is removed, the
mixing time is reduced to n logn.
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The bottleneck

Let Ak be those configurations with magnetization k. Then

µ(Abαnc) = 1

Z(β)
e−n[φ(α)+o(1)].

The function φ changes shape at β= 1:

0.2 0.4 0.6 0.8

0.68

0.685

0.69

0.695
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The bottleneck

IfΩ+ are configurations with strictly positive magnetization,

Q(Ω+, (Ω+)c)

π(Abn/2c)
≤ expn[φ(1/2)+o(1)]

expn[φ(α0)+o(1)]
.

If β> 1, there is α0 so that φ(α0) ≥φ(1/2) and then

φS ≤ c1e−c2n.
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Truncated dynamics for low temperature mean-field

If the bottleneck at zero magnetization is removed by truncating the
dynamics at zero magnetization, then the chain converges fast:

Theorem 6 (L.-Luczak-Peres).

Let β> 1. Let (Xt) be the Glauber dynamics on Kn, restricted to the set
of configurations with non-negative magnetization. Then
tn

mix = O(n logn).

Ding, Lubetzky, and Peres (2009a) show that in fact there is a cutoff
for the censored dynamics.
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Proof idea for low temperature

Use coupling: Show that for arbitrary starting states, can run
together two copies of the chain so that the chains meet with high
probability in O(n logn) steps.

First show that the magnetizations will agree after O(n logn)
steps, when chains are run independently. (Hard part –
involves hitting time calculations.)

After magnetizations agree, couple the chains as below.
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A coupling (any temperature)

Write (Xt) and (X̃t) for the two chains. We assume that S(Xt) = S(X̃t).

Let J be the vertex selected for updating in Xt , and let s ∈ {−1,1} be
the spin used to update Xt(J).

The X̃-chain will also be updated with the spin s at a site J̃ which
has X̃t(J̃) = Xt(J), although it will not always be that J = J̃ .

If Xt(J) = X̃t(J), then update both chains at J .

If Xt(J) 6= X̃t(J), then pick J̃ uniformly at random from

{i : X̃t(i) 6= Xt(i) and X̃t(i) = Xt(J)}.
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A coupling, continued

If Dt is the number of sites where Xt and X̃t disagree, then when
Dt ≥ 0,

E[Dt+1 |Ft] ≤
[

1− c1

n

]
Dt .

It takes O(n logn) steps to drive this expectation down to ε.

David A. Levin Cutoff for Markov Chains



References

A coupling, continued

If Dt is the number of sites where Xt and X̃t disagree, then when
Dt ≥ 0,

E[Dt+1 |Ft] ≤
[

1− c1

n

]
Dt .

It takes O(n logn) steps to drive this expectation down to ε.

David A. Levin Cutoff for Markov Chains



References

Magnetization chain: key equation

If St =∑n
i=1 Xt(i), then for St ≥ 0,

E[St+1 −St |Ft] ≈−
[

St

n
− tanh(βSt/n)

]
.
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β< 1

When β< 1, using the inequality tanh(x) ≤ x for x ≥ 0 shows that for
St ≥ 0,

E[St+1 |Ft] ≤ St

(
1− 1−β

n

)
Need [2(1−β)]−1n logn steps to drive E[St] to

p
n.

Additional O(n) steps needed for magnetization to hit zero.
(Compare with simple random walk.)

Can couple two versions of the chain so that the magnetizations
agree by the time the magnetization of the top chain hits zero.

Once magnetizations agree, use a two-dimensional process to
bound time until full configurations agree. Takes an additional O(n)
steps.
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Two-dimensional chain

1 2 3 · · · · · · · · · n
σ0 + + + + + + - - - - - - -

u0 v0
Xt + + + - - - + + + + - - -

A(Xt ) B(Xt ) C(Xt ) D(Xt )

Ut = |{i : Xt(i) =σ0(i) =+1}|
Vt = |{i : Xt(i) =σ0(i) =−1}|.

We have

‖Pσ0 {Xt ∈ ·}−µ‖TV = ‖Pσ0 {(Ut ,Vt) ∈ ·}−µ2‖TV.
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Two-dimensional chain (continued)

1 2 3 · · · · · · · · · n
σ0 + + + + + + - - - - - - -

u0 v0
Xt + + + - - - + + + + - - -

A(Xt ) B(Xt ) C(Xt ) D(Xt )
X̃t + + + + - - + + + - - - -

A(X̃t ) B(X̃t ) C(X̃t ) D(X̃t )

If Rt = Ut − Ũt , then

E[Rt+1 −Rt | Xt] ≤ 0.

If Rt+1 −Rt > 0 with probability bounded away from zero, can
compare to simple random walk.

Holds if Ut/n,Vt/n not near 0 or 1, which is true after initial phase,
provided σ0 is not too unbalanced.

After the initial phase, Rt = O(
p

n).
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Two-dimensional chain (continued)
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β= 1. Why n3/2?

Expanding tanh(x) = x−x3/3+·· · in the key equation yields

E[St+1 −St |Ft] ≈−1

3

(
St

n

)3

.

Need t =Θ(n3−2α) steps for E[St] = nα.

By comparison with nearest-neighbor random walk, need
additional n2α steps to hit zero.

Total expected time to hit zero is

O(n3−2α)+O(n2α)

The choice α= 3/4 makes the powers equal, and gives hitting time
with expectation n3/2.

Once the magnetizations agree, need additional O(n logn) to make
the configurations agree.
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More detailed picture

Subsequently, Ding, Lubetzky, and Peres (2009b) showed that if
β= 1−δ with δn2 →∞, the dynamics has a cutoff at time
n

2δ log(δ2n) with window size n/δ.

If β= 1±δwith δn2 = O(1), the mixing time isΘ(n3/2) with no cutoff.
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Note that at low temperature, the dimension is effectively reduced.

The chain is more analogous to the barbell:

Despite the apparent high dimensionality, there is not cutoff.
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Recent breakthroughs on Ising

Lubetzky and Sly (2013) and Lubetzky and Sly (2016) show that
there is cutoff on Zd

n for β<βc.

Lubetzky and Sly (2012) show that on Z2
n, at βc, the mixing is

polynomial in n.

For Potts:

Lubetzky and Sly (2014) show cutoff for Glauber dynamics for
Potts on Zd

n for β small.

Cuff, Ding, Louidor, Lubetzky, Peres, and Sly (2012) give the
complete picture on the complete graph for Potts.
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Random walk on d-regular graphs

Many early examples of cutoff were for chain sequences with
unbounded degree (such as the hypercubes).

Simple random walk on random d-regular graphs on n vertices
is an example where the degree is bounded.

Lubetzky and Sly: For random d-regular graphs, cutoff at
d

d−2 logd−1(n) with window O(
√

log(n))

This established a conjecture of Durrett.
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Lubetzky and Sly use that random d-regular graphs are locally
tree-like.

Thus can compare to the walk on the tree.

More delicate analysis of the geometry yield results for the
non-backtracking random walk: With high probability,

dlogd−1(dn)e ≤ tmix(ε) ≤ dlogd−1(dn)e+1

Eliminating the noise produced by backtracking moves
reduces the window to constant size.

In fact, it was observed by Peres that cutoff for SRW can be
reduced to cutoff for non-backtracking RW (NBRW).

This is used in Lubetzky and Peres to show cutoff for SRW on
Ramanujan graphs (expanders with optimal gap)
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Proof idea in L-S for upper bound

A cover tree at u is a map φ : Td → G so that φ(ρ) = u and φ
maps the neighbors of w to the neighbors of φ(w).
If (Xt) is SRW on Td, then φ(Xt) is SRW on G.
Key estimate: if w and u are “nice” points separated by
distance around logd−1(log(n)), and j is near logd−1(n), then

P(φ(Xt) = v | |Xt | = j)&
1

n
.

Thus

P(Wt = v)&P(|Xt | near logd−1(n))
1

n
The CLT for Xt guarantees that if

t = d

d−2
logd−1 n+α

√
logd−1(n)

then the above is

(1+o(1))
1

n
(1−Φ(−c1α)) .
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Some further results

Berestycki, Lubetzky, Peres, and Sly (2015) prove that from
random starting point, SRW on supercritical random graphs
has cutoff.

Worst case mixing is slower, due to dangling paths.
(Fountoulakis and Reed, and Benjamini, Kozma and Wormald)
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Path coupling

Theorem 7 (Bubley and Dyer).

Suppose the state space X of a Markov chain is the vertex set of a
graph with length function ` defined on edges. Let ρ be the
corresponding path metric. Suppose that for each edge {x,y} there
exists a coupling (X1,Y1) of the distributions P(x, ·) and P(y, ·) such
that

Ex,y
(
ρ(X1,Y1)

)≤ ρ(x,y)e−α (4)

Then

d(t) ≤ e−αtdiam(X ),

and consequently

tmix(ε) ≤ d− log(ε)+ log(diam(X ))

α
e.
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Path coupling: Biased Exclusion Process

Descriptions either as k particles on {1,2, . . . ,n} or nearest-neighbor
paths:

0 1 2 3 4 5 6 7 8

x

0 1 2 3 4 5 6 7 8

y
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With probability p, place a local min, with probability 1−p
place a local max. The bias is β= 2p−1.

Proper choice of a metric in path coupling can be powerful
tool.
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Pre-cutoff

Theorem 8 (L.-Peres 2016).

Consider the β-biased exclusion process on {1,2, . . . ,n} with k
particles. We assume that k/n → ρ for 0 < ρ ≤ 1/2.

1 If nβ≤ 1, then
t(n)

mix ³ n3 logn . (5)

2 If 1 ≤ nβ≤ logn, then

t(n)
mix ³

n logn

β2 . (6)

3 If nβ> logn and β< const. < 1, then

t(n)
mix ³

n2

β
. (7)

Moreover, in all regimes, the process has a pre-cutoff.
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Related results

Lacoin 2016 showed cut-off at π−2n3 logn for the unbiased
case.

Labbé and Lacoin 2016 recently showed cutoff for fixed bias.
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Upper bound via path coupling

The following path coupling argument is due to Greenberg,
Pascoe, and Randall 2009:

Let α=√
p/q; if x and y differ at a single neighbor, let

`(x,y) =αn−k+h .

0 1 2 3 4 5 6

x

h = 2y

0 1 2 3 4 5 6

x

y

h = -2
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0 1 2 3 4 5 6

x

h = 2y

0 1 2 3 4 5 6

x

y

h = -2

Let x be the upper configuration, and y the lower. Here the
edge between v−2 and v−1 is “up”, while the edge between
v+1 and v+2 is “down”, in both x and y.

If v is selected, the distance decreases by αn−k+h.

If either v−1 or v+1 is selected, and a local minimum is
selected, then the lower configuration y is changed, while the
upper configuration x remains unchanged. Thus the distance
increases by αn−k+h−1 in that case. We conclude that

Ex,y[d(X1,Y1)]−d(x,y) =− 1

n−1
αh+n−k + 2

n−1
pαh+n−k−1

= αh+n−k

n−1

(
2p

α
−1

)
= αh+n−k

n−1

(
2
p

pq−1
)

.
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In all cases, if δ= 1−2
√

p(1−p) > 0, then

Ex,y[d(X1,Y1)] = d(x,y)

(
1− δ

n−1

)
≤ d(x,y)e−

δ
n−1 .

By the path coupling technique of Bubley and Dyer, it is
enough to check that distance contracts for neighboring states:
As δ>β2/2

tmix(ε) ≤ 2n

β2

[
log(1/ε)+ log(diam)

]
If β→ 0, then

tmix(ε) ≤ 2n

β2

[
log(ε−1)+n[β+O(β2)]−2logβ+O(β)

]
.

If β= 1/n then tmix(ε) = O(n3 logn), as in unbiased case.

Need different method for β< 1/n.
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Selected Open Problems

Cyclic-to-random transpositions.

n
1

2

3
4

5

3

5

2
1

4

8

Used in cryptographic algorithm RC4

Lower bound of cn logn in Peres, Sinclair, and Mossel (2004)
and upper bound of n logn Saloff-Coste and Zúñiga (2007).
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Glauber dynamics for Ising at high temperature on any
transitive graph.

Potts model on lattice down to critical temperature. Energy for
Potts is

H(σ) =−∑
i∼j

1(σ(i) =σ(j))
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