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Logarithmic functions

Many common functions arise through “undoing” basic

functions (more formally, we say they are inverses of

basic functions). For example, subtraction was invented

as the inverse of addition, division as the inverse of

multiplication, and the square root as the inverse of the

squaring function.

Definition 1. The inverse of the exponential function ax

is called the logarithm function (with a base of a) denoted

loga(x). By this definition, loga ax = x and aloga x = x.
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The logarithm with a base of e is called the natural log

function and is denoted ln(x).

Example 2. • log10 10000 = 6 because 106 = 100000.

• log2
1
8 = −3 because 2−3 = 1

8.

• ln
√

e = 1
2 because e

1
2 =

√
e.

The properties of the logarithm function follow from

those of the exponential function.
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• loga(xy) = loga x + loga y because ax+y = axay.

• loga xy = y loga x because (ax)y = axy.

• logb x = logb a·loga x follows from the previous property.

In other words, logarithms turn multiplication to addition

and turn exponentiation to multiplication. Also note that

the last property says that logarithms with different bases

are related by multiplication by a constant.
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Logarithms are handy in problems involving exponentials.

Example 3. A radioactive material decays at a rate of

0.5% per year. How long would it take for half of the

material to decay?

Example 4. How long would it take for $1000 invested

at 7% to become $1500? How long would it take the

balance to double?
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Growth and graphs of exponentials and
logarithms

Exponential functions grow (or decay) very quickly.

Logarithmic functions grow extremely slowly. For

example, we may look at how fast each of these

functions “go from 1 to 100:” x; x2; 3x; log10 x.

Technology permitting, we may elaborate on this by

looking at graphs of these and other functions.
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Average rate of change

A fundamental philosophical truth is that everything

changes. In physics, the change in position is known as

velocity or speed. In economics, the change in price is

known as inflation. In business, the change in costs is

sometimes known as trend. In mathematics, the change

in values of a function is known as the derivative. But to

understand the derivative, which will measure

“instantaneous” change, you need to to first be

comfortable with “average” change over some intervals.
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Next, what if, instead of giving you total distance

travelled, you need to calculate from a position function

which describes where you are?

Example 5. A ball which is dropped from the top of the

Tower of Pisa has travelled down 16t2 feet after t seconds.

What is its average speed over the first three seconds?

over the first five seconds? between the second and fifth

second?

Question 6. How could we calculate exactly how fast

the ball is going after two seconds?
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Calculating slopes of secant lines to a curve.

Next we look at what at first appears to be unrelated to

dropping a ball.

Definition 7. A secant line goes through two points on

the graph of the function. In symbols, it is a line through

(a, f(a)) and (b, f(b)) for some a and b.

Example 8. Find the secant lines to the graph of f(x) =
16x2 through the points with: a = 0, b = 3, a = 0, b = 5,

a = 2, b = 5.

What do you notice about this and the previous
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problem?
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General average rate of change

Definition 9. In general, the average rate of change of

some function f(x) as x varies between values a and b is

f(b)− f(a)
b− a

.

This can be computed in any way that f is presented,

through a formula, through a graph, or in a table.

Example 10. Analyze different measured and predicted
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rates of change for world population according to:

http://www.unfpa.org/6billion/pages/worldpopgrowth.htm


