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Theorem 7. The derivative of ln(x) is 1
x.

Note that this fills in a spot which has been missing on

the list of derivatives. In general the derivative of
1

n+1x
n+1 = xn. But this does not work for n = −1. But

in the function ln(x) has derivative x−1.

Example 8. Find the derivative of the function f(x) =
x ln(x).


