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Limits at finite points

Definition 1. (Intuitive) We say the limit of f(x) as x

tends to c is L if the values f(x) are always arbitrarily

close to L once x is close enough to c. Notationally, we

say limx→c f(x) = L. If there is no L for which this is

true, we say that the limit does not exist.

Limits at finite points are conceptually tricky. Sometimes

one has to pretend that the function does not exist at

that point and use the values at nearby points to try to

come up with a single possible value which fits with the
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• limh→0
3h+h2

h = 3.



4

Continuity



4

Continuity

We cover the concept of continuity only to reinforce our

understanding of limits.



4

Continuity

We cover the concept of continuity only to reinforce our

understanding of limits.

Definition 3. If the limit limx→c f(x) exists, f(c) is

defined, and these two quantities are equal we say that f

is continuous at x = c.



4

Continuity

We cover the concept of continuity only to reinforce our

understanding of limits.

Definition 3. If the limit limx→c f(x) exists, f(c) is

defined, and these two quantities are equal we say that f

is continuous at x = c.

Intuitively, functions which are continuous everywhere are

those which can be graphed without picking up the

pencil.
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Question 4. In the examples above, which functions are

continuous?

Continuity is a property enjoyed by almost all basic

functions at almost all of their values.
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Bonus topic: consequences of continuity

Continuity is such a fundamental property that there is a

whole field of mathematics, called topology, devoted to

understanding its consequences.

Theorem 5. (The Intermediate Value Theorem) If f(x)
is a continuous function with f(0) > 0 and f(1) < 0 then

there is some x in between 0 and 1 with f(x) = 0.

The Intermediate Value Theorem is clear from pictures

illustrating it. It is also easy to think of concrete

examples such as the function f(x) = 1− 3x.
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• limx→∞
A
xk = 0 for k > 0 any A (no matter how large!).

• The limit as x → c of a sum of functions is the

sum of their limits. Similarly for products, as well as

quotients provided the limit of the denominator is not

zero (unfortunately for you, in most problems it will be

zero).

• A great trick for trying to compute limx→c
f(x)
g(x) where

both the numerator and denominator go to zero

or infinity is to multiply both the numerator and
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denominator by the same factor to get a finite limit.

Example 6. • limx→0
x(x+2)

x2

• limx→∞
x2−2x+4

3x2+1

• limx→∞
x2−2x+4

3x3+1
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Procedure for computing limits

To do a limit problem go through the following steps.

1. Substitute the limiting value into the function.

2. (Optional) Make a table of values of the function near

the limiting value (which for limits at positive or negative

infinity means substituting large positive or negative

numbers).

3. (Optional) Graph the function near the limiting value.
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zero) you’re done - the limit is that value. We may

also deduce this when the graph indicates the function

is continuous, or by plugging in values. We must use

words to explain the deduction with these methods.
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4. If the result of substitution is a finite number (including

zero) you’re done - the limit is that value. We may

also deduce this when the graph indicates the function

is continuous, or by plugging in values. We must use

words to explain the deduction with these methods.

Example: limh→0
h2−3
h+1 = 0−3

0+1 = −3.
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5. If this resulting expression is a finite number divided by

infinity, then the limit is zero.

Example: lims→∞
45

s2+s
substitutes to 45

∞, so the limit

is zero since 45 divided by a large number approaches

zero.
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6. If the resulting expression is a finite number divided by

zero, then the limit is positive or negative infinity. If we

are in a setting where the limit must be finite, we would

say it does not exist.

Example: limx→3
x2+4
x2−9 = +∞ since the denominator

goes to zero while the numerator approaches 13, and 13
divided by a really small number is a really big number.
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7. If the resulting expression is infinity, possibly over a

finite number, then the limit is positive or negative

infinity. Here in all of the methods we must justify by

an observation that the function gets larger.

Example: limx→+∞ x2 + 2x is +∞ since x2 +2x > x so

the function gets larger as x does.
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sometimes one can find a common factor, divide, and
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graphing methods can point us to the right answer,

which is then best justified by the division method

(though the table method is acceptable).
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8. If the resulting expression is zero over zero, then

sometimes one can find a common factor, divide, and

then get a well-behaved limit. Here the table and

graphing methods can point us to the right answer,

which is then best justified by the division method

(though the table method is acceptable).

Example: limx→3
x2−x−6

x−3 looks like 0
0 so we check and

find that x2 − x− 6 = (x− 3)(x + 2) so that the limit

is the same as limx→3(x + 2) = 5.
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9. If the resulting expression is infinity over infinity,

sometimse one can multiply the numerator and

denominator by the same factor to get a well-behaved

limit. Here the table and graphing methods are

discouraged, since it is hard to know how large values

need to be to approach the correct value.

Example: lims→+∞
2s2+1
s3−3s

looks like ∞
∞. After trying a few

things, we multiply both the numerator and denominator

by 1
s2

. We get lims→∞
2+ 1

s2

s−3
s

which when we plug in looks
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like 2
∞, so the limit is zero.
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Using limits to understand rules for
derivatives

Our development of limits lets us fill in some details for

our rules for taking derivatives.

For one example, to take the derivative of f(x) + g(x)
we consider

lim
h→0

[f(x + h) + g(x + h)]− [f(x) + g(x)]
h

,
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For another example, we revisit the famous computation

of the derivative of f(x) = xn. The key is to understand

a general formula for (x + h)n, which starts out

xn + n · xn−1 + · · · .


