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Implicit differentiation

Here are the basic steps to use implicit differentiation to

find the derivative of y with respect to x if the two are

related by an equation but not a function.

• Differentiate the equation, treating y as a function of

x even though it is not expressed as one. Remember

to use the chain rule to differentiate y, since we are

treating it as a function of x!

• The resulting expression has dy
dx in it, since we have used
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the chain rule on y. Now do algebra to solve for it.

• Now that we know a formula for dy
dx, we can plug in

values for x and y to find a numerical value for the

derivative.

Example 1. Find dy
dx when exy+4x−3 = 5x2. (Do this

twice, the second time by taking the natural logarithm of

both sides).

Example 2. Two manufacturers of widgets are in direct

competition. Because of the many variables in pricing and
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the number of widgets sold per day by the first company
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publicity, the number of widgets they sell does not add up

to a constant, but 6x2 + xy + 5y2 = 120, 000, where x is

the number of widgets sold per day by the first company

and y by the second. If both companies are currently

selling 100 widgets, what would be the effect on the first

company if the second is increase sales by ten widgets per

day.
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Example 3. The Cobb-Douglas model of production

uses functions of the form P = xay1−a to model

production level P , where x represents an amount of

capital and y represents an amount labor. Why does

this make sense? Suppose widget production level P

is modeled by x
1
4y

3
4, where P is measured in thousands

of units, x in millions of dollars, and y in hundreds of

workers. If currently x is 16 and y is 81, what would dP
dt

be if there is currently a move to capitalize further at a

rate of $2 million per quarter and increase workers at a

rate of 300 per quarter. What is the expected increase in



5

production per quarter?



5

production per quarter?

Example 4. When the price of gadgets is p dollars each,

the manufacturer is willing to supply x hundred units

where x2 − 2 x
5+p − p2 = 20.



5

production per quarter?

Example 4. When the price of gadgets is p dollars each,

the manufacturer is willing to supply x hundred units

where x2 − 2 x
5+p − p2 = 20. How fast is the supply

changing when the price is $5 and increasing at the rate

of 20 cents per week?
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Understanding the derivative of the
logarithm function

Now that we have implicit differentiation, we can use the

fact that d
dxe

x = ex to show that

Theorem 5. The derivative of ln(x) with respect to x is
1
x.

Proof: Start with the fact that elnx = x, and

differentiate both sides. Remember that we don’t really

know yet what the derivative of lnx is. To take the

derivative of the left side, we must use the chain rule; the
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derivative of x is straightforward:

d

dx
elnx = elnx d

dx
lnx = x

d

dx
lnx,

while d
dxx = 1. So we have x d

dx lnx = 1, so d
dx lnx = 1

x.



8

Critical points



8

Critical points

Our main application of derivatives will be using them to

find where a function is biggest or smallest.



8

Critical points

Our main application of derivatives will be using them to

find where a function is biggest or smallest. This process

is called optimization/maximization/minimization.



8

Critical points

Our main application of derivatives will be using them to

find where a function is biggest or smallest. This process

is called optimization/maximization/minimization. The

usefulness is clear - we’d all like to maximize our income

and minimize our expenses



8

Critical points

Our main application of derivatives will be using them to

find where a function is biggest or smallest. This process

is called optimization/maximization/minimization. The

usefulness is clear - we’d all like to maximize our income

and minimize our expenses (if only this were as easy in

our personal lives as we will find doing it through

equations).



8

Critical points

Our main application of derivatives will be using them to

find where a function is biggest or smallest. This process

is called optimization/maximization/minimization. The

usefulness is clear - we’d all like to maximize our income

and minimize our expenses (if only this were as easy in

our personal lives as we will find doing it through

equations).

Back when we were determining where a function

increased or decreased, we saw that the first step was
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