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amount it costs to produce a given good. Functions can

also be algebraic, such as the function which takes a

number, squares it, subtracts π from the answer, and

then takes the reciprocal of that quantity.

Even if you are more interested in functions which

measure real-world quantities, part of the power of

calculus, and of mathematics in general, is connecting

those functions with algebraic functions. For example,

both F = ma (Newton) and E = mc2 (Einstein)

changed the world, relating fundamental physical
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Making new functions from old

Adding, subtracting and multiplying functions is

straightforward to both execute and understand.

Example 3. “Profit is the difference between total

revenue and total cost” is translated into taking the

difference of functions.

Taking the quotient of functions can be trickier. For

algebraic functions, you have to be careful because the

domain might change.

Example 4. If f(x) =
√

x and g(x) = x2−3x+2, what
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is the domain of the function f(x)
g(x)?

For real-world functions, which may contain error, what

would seem to be a small amount of error in the

denominator could lead to huge error in the final answer.

Example 5. To measure speed, we take distance

travelled and divide it by time. What if we tried to

measure the speed of a jet by using a stopwatch over 100

yards?
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Question 7. Are all lines in the plane graphs of linear

functions?

There are many ways to describe a given linear function.

An important skill to develop is the ability to translate

between the different descriptions. Key to many of these

descriptions is the notion of slope.

Definition 8. The slope of the line y = mx + b is equal

to m. It measures the change in y if x is increased by

one. If one is not given the slope explicitly, it can be

computed by m = y2−y1
x2−x1

where (x1, y1) and (x2, y2) are
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any two points on the line.

Example 9. Sketch some lines with slope 1, −1, 2, −3,
1
2 and −2

3 .

Example 10. The points (−1,−1) and (3, 7) are both

on the line y = 2x + 1. We can verify the formula for

m in this case,and then take two other points on the line

and use them to calculate the slope.

The different descriptions we will use are as follows,

listed from simplest to most complicated. We translate

each to the standard form, and give an example.
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