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Practice with the definite integral and the
Fundamental Theorem

Example 1. Use both the Fundmental Theorem and a

Riemann sum with 50 terms to evaluate
∫ 3

1
x

x+1.
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Further applications of the definite
integral

Many quantities can be well-approximated (to first order)

by a Riemann sum f(x1)∆x + f(x2)∆x + · · ·+ f(xn)∆x

Any such quantity can be computed with a definite

integral. The FTC can be applied to compute the

integral, so the FTC is useful well beyond computing

areas under or between curves.
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• Evaluate
∫ 1
−1 π

(1
2(1 − x2)

)2
dx.

Using similar techniques one can compute the volume of

spheres, cones, donuts, and satellite dishes.

These kinds of applied integration problems often

comprise an entire course! In fact, the technique of

chopping a problem into (tiny) pieces, analyzing the

pieces, and then integrating the pieces into a whole is

what gave the subject its name.



7

Example 3. A metal rod is made with an alloy of two

metals, metal A which weighs 2 grams per cm of length

and metal B which weighs 5 grams per cm of length.



7

Example 3. A metal rod is made with an alloy of two

metals, metal A which weighs 2 grams per cm of length

and metal B which weighs 5 grams per cm of length.

Suppose that one end of a 10cm rod is all metal B and

the other end is a fifty-fifty mix, and the mix of metals

changes linearly.



7

Example 3. A metal rod is made with an alloy of two

metals, metal A which weighs 2 grams per cm of length

and metal B which weighs 5 grams per cm of length.

Suppose that one end of a 10cm rod is all metal B and

the other end is a fifty-fifty mix, and the mix of metals

changes linearly. How much does the rod weigh?
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Areas between curves

We can use this same Riemann sum analysis to quickly

evaluate areas between two curves.

To find the area between the graph of f(x) and that of

g(x) between x = a and x = b we evaluate∫ b

a |f(x) − g(x)|dx.

Example 4. Find the area of the region between the

functions f(x) = x and g(x) = x2 and the vertical lines

at x = −3 and x = −1.
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