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Partial derivatives

Definition 1. If f(x, y) is a function of two variables,

its partial derivative with respect to x, denoted either ∂f
∂x

or fx(x, y), is the function obtained by treating y as a

constant and differentiating with respect to x. Similarly,

the partial derivative with respect to y, denoted ∂f
∂y or fy,

is obtained by treating x as a constant and differentiating

with respect to y.
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Geometric and practical interpretations

Recall that one of the first and most important

interpretations of the derivative was that it was the slope

of the tangent line to a curve. There is a similar first

interpretation of the partial derivative. As we illustrate

on the overhead, the partial derivative with respect to x

is the slope, within the plane where y is fixed at some c

and x and z are allowed to vary, of the tangent line to

the graph of the function.

Thus, practically speaking, if you were walking along
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some surface which you could then think of as the graph

of a two-variable function, then the partial derivatives tell

you about how steep your climb or descent will be if you

walk parallel to the x or y axes (due north-south or

east-west). You might wonder how you could find out

about the steepness of the climb or descent if you travel

northeast - that’s the topic of the gradient of a function.
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Higher-order partial derivatives

As in the case of a single variable, we are free to take a

derivative of a derivative. The notation works as follows:

Definition 3. The partial derivative with respect to x of

the partial with respect to x is fxx or ∂2f
∂x2.

The partial derivative with respect to y of the partial with

respect to x is fxy or ∂2f
∂y∂x.

The partial derivative with respect to x of the partial with

respect to y is fyx or ∂2f
∂x∂y.

The partial derivative with respect to y of the partial with
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Example 4. Find all four second-order partial derivatives

of f(x, y) = x2y3 + exy
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Theorem 7. The rate of change of a two-variable

function at a point in a given direction is the dot product

of the gradient vector at that point with a unit vector in

that direction.
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Example 8. Find the rate of change of the function

x2 + y2 at the point (1, 1) in the direction of the unit

vectors

[
1√
2

1√
2

]
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Example 8. Find the rate of change of the function

x2 + y2 at the point (1, 1) in the direction of the unit

vectors

[
1√
2

1√
2

]
and

[
− 1√

2
1√
2

]
.


