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Example 2. The function x2 is an anti-derivative of 2x.

The function x2 + 7 is also an anti-derivative of 2x. The

function ex2
is an anti-derivative of 2xex2

.

Example 3. Name anti-derivatives of 3x2 and 1
x.

Notice that in our first two examples, one function,

namely 2x had two anti-derivatives, namely x2 and

x2 + 7. In fact, any function will have many

anti-derivatives, which makes taking anti-derivatives

different in character from taking derivatives or doing

algebraic manipulations.
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Integral notation

We saw above that more than one function can be an

anti-derivative for a given function. That may be

worrisome at first, but the following theorem puts the

situation under control.

Theorem 5. If F (x) is an anti-derivative for f(x) then

any other anti-derivative is equal to F (x) + C, where C

is some constant (function).

For example, we saw that x2 + 7 is an anti-derivative for

2x. And so is x2, which is equal to (x2 + 7) +−7.
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Another anti-derivative is x2 + 52, which is (x2 + 7) + 45.

It feels more natural to say that any of these

anti-derivatives is of the form x2 + C, where C can be

any constant.

To make matters more or less confusing (depending on

your point of view), the collection of anti-derivatives of a

function has another name.
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Definition 6. The family of all anti-derivatives of a

function f(x) is denoted
∫

f(x)dx, which is also called

the indefinite integral. If F (x) is some anti-derivative

of f(x), we have the equality (of families of functions)∫
f(x)dx = F (x) + C.

We will see later why the word “indefinite”. This

notation is named as follows:
∫

is the integral sign; f(x)
is the integrand; dx denotes the variable of integration;

and C is called the constant of integration.

Example 7. Evaluate:
∫

x−5dx and
∫

e5xdx.
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