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vector but a number. Dot products can supply us with

alternate notation for linear equations.

Example 2. [
3 2

]
·
[
x

y

]
= 5

is an alternate notation for the equation 3x + 2y = 5.

Any collection of related data (that is any series of

numbers) can (and rightfully should) be collected in a

vector. The dot product is then useful in describing

linear relationships in that data.
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Example 3. Let V denote the number of vampires in

Sunnydale and S be the number of vampire slayers. We

may collect these data in the vector

[
V

S

]
. Let W be the

number of vampires next year, which is 1.2 times the

number of vampires this year minus 26 times the number

of slayers. Then we have

W =
[
1.2 −26

] [
V

S

]
.
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] [
1 2 3
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]−1
0
1

 [
1 2 3
4 5 6

] [
5 −2
1 3

]

So, the matrices M and N can only be multiplied if the

number of columns of M equals the number of rows of

N . So in the second example, while the two matrices

given can be multiplied, they could not be if their order

is reversed. Reversing order of matrices is a problem even
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can be written in matrix-vector notation as[
2 3
1 −2

] [
x

y

]
=

[
5
3

]

Because matrix multiplication is associative, some

applications can be developed cleanly.

Example 7. Suppose that the number of vampires and

slayers in Sunnydale changes from one year to the next
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according to [
Vnew

Snew

]
=

[
1.2 −26

1
100 1

] [
Vo

So

]
.

(Interpret this equation.) Then after ten year you would

expect[
1.2 −26

1
100 1

] [
1.2 −26

1
100 1

]
· · ·

[
1.2 −26

1
100 1

] [
Vo

So

]
.

vampires and slayers to be on the prowl. Because

matrix multiplication is associative, this can be written
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and computed more succinctly as

[
1.2 −26

1
100 1

]10 [
Vo

So

]
.

This example is a taste of population modeling using

matrices. For a more complete story, take Math 342.
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Solving systems of equations using
inverses of matrices

Matrices are collections of numbers which behave in

some ways just like numbers themselves. We can add,

subtract and multiply them, and there is a zero matrix.

The similarities only go so far, though - only square

matrices can both be added and multiplied, the

multiplication is complicated and it depends on the order

in which the matrices appear!
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Our next step will be to learn how to “divide” matrices,

which will be essential in solving matrix equations.

Remember that for numbers to solve the equation

3x + 2 = 8 we first need to subtract to get 3x = 6 and

then we divide both sides by 3 - the key step! - to get

x = 2.
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Inverses of matrices

Definition 12. The inverse of a square matrix M is one

which we call M−1 (as opposed to 1
M) where MM−1 =

I = M−1M .

Theorem 13. The inverse of the 2× 2 matrix

[
a b

c d

]
is[

d
ad−bc

−b
ad−bc

−c
ad−bc

a
ad−bc

]
.

Note that the number ad− bc which appears everywhere

in this formula has its own special name; it is the
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Using inverses to solve linear systems

Let M be a square matrix, X be a column vector of

variables and C be a column vector of constants (of

compatible sizes). To solve the equation MX = C we

first find M−1 (if it exists) and then multiplying both

sides by M−1 we get M−1MX = M−1C, or

IX = M−1C or X = M−1C.



19

So the steps to solve MX = C are:

1. Find M−1.



19

So the steps to solve MX = C are:

1. Find M−1.

2. Compute the product M−1C.



19

So the steps to solve MX = C are:

1. Find M−1.

2. Compute the product M−1C.

3. (For thoroughness) check that your answer works.



19

So the steps to solve MX = C are:

1. Find M−1.

2. Compute the product M−1C.

3. (For thoroughness) check that your answer works.

Example 15. Use matrix algebra to solve the system of

equations 5x + 7y = 3, 2x + 3y = −1.



19

So the steps to solve MX = C are:

1. Find M−1.

2. Compute the product M−1C.

3. (For thoroughness) check that your answer works.

Example 15. Use matrix algebra to solve the system of

equations 5x + 7y = 3, 2x + 3y = −1.

One great advantage to matrix methods is in solving

related systems.



19

So the steps to solve MX = C are:

1. Find M−1.

2. Compute the product M−1C.

3. (For thoroughness) check that your answer works.

Example 15. Use matrix algebra to solve the system of

equations 5x + 7y = 3, 2x + 3y = −1.

One great advantage to matrix methods is in solving

related systems.



20

Example 16. Solve the matrix equation

[
3 2
1
2

1
2

] [
x

y

]
=[

5
6

]
.
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5
6

]
. What if we replace

[
5
6

]
by

[
1
2

]
?
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Example 16. Solve the matrix equation

[
3 2
1
2

1
2

] [
x

y

]
=[

5
6

]
. What if we replace

[
5
6

]
by

[
1
2

]
? By

[
−1
π

]
?

With these techniques (and calculators in hand) we can

move on to swiftly solving problems with more variables.
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Example 17. The average yield on A-bonds is 6%, on

B-bonds is 7% and on C-bonds is 10%. Because of a

hedging scheme, you must invest twice as much money in

A bonds as C bonds. Find the amounts to invest for the

following desired outcomes:
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Example 17. The average yield on A-bonds is 6%, on

B-bonds is 7% and on C-bonds is 10%. Because of a

hedging scheme, you must invest twice as much money in

A bonds as C bonds. Find the amounts to invest for the

following desired outcomes:

• $25K invested with an annual return of $1.8K.
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Example 17. The average yield on A-bonds is 6%, on

B-bonds is 7% and on C-bonds is 10%. Because of a

hedging scheme, you must invest twice as much money in

A bonds as C bonds. Find the amounts to invest for the

following desired outcomes:

• $25K invested with an annual return of $1.8K.

• $30K invested with an annual return of $2.2K.
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Example 17. The average yield on A-bonds is 6%, on

B-bonds is 7% and on C-bonds is 10%. Because of a

hedging scheme, you must invest twice as much money in

A bonds as C bonds. Find the amounts to invest for the

following desired outcomes:

• $25K invested with an annual return of $1.8K.

• $30K invested with an annual return of $2.2K.

• $40K invested with an annual return of $2.9 K.
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Example 17. The average yield on A-bonds is 6%, on

B-bonds is 7% and on C-bonds is 10%. Because of a

hedging scheme, you must invest twice as much money in

A bonds as C bonds. Find the amounts to invest for the

following desired outcomes:

• $25K invested with an annual return of $1.8K.

• $30K invested with an annual return of $2.2K.

• $40K invested with an annual return of $2.9 K.


