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Example 2. Find the probability that you there is a pair

dealt in a hand with five cards.
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• If a random variable X takes on a finite number of

possible values, it is called a discete random variable.

All of our examples so far have been discrete.

• If a random variable X takes on a range of possible

values, it is called a continuous random variable.

• The sample space is still the collection of possible values

for X.

• The probability distribution of a random variable is the

assignment of probabilities to the values in the sample
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• What is P (2 ≤ X ≤ 3)?

• Which is more likely, that X is between 3 and 4 or that

X is between 5 and 7?

Compare the answer to the last question to the answer

you would get if X were uniformly distributed.
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