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are those manufactured with process A, and those

manufactured with process B.

• Compare some variable of two different populations,

such as men and women, or left-handed people and

right-handed people.

The methods used are much like for single sample

confidence intervals and hypothesis tests. We gave some

explicit formulae last time. This time we will first “just

work things through” in testing a hypothesis and then

give a step-by-step treatment of confidence intervals.
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Example of hypothesis testing: exercise 17.38

This exercise gives some IQ data for some boys and girls

from the same midwestern school district and asks if

there is a statistically significant difference between the

means. After keying some numbers into a calculator, we

get the following information for our two samples:

Population Mean Sample Size Sample mean Sample s.d.

Girls µ1 31 x1 = 105.84 s1 = 14.27
Boys µ2 47 x2 = 110.96 s2 = 12.12
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1. Our null hypothesis is that boys’ IQ scores are the same

as girls’ IQ scores. That is

H0 : µ1 = µ2.

Our alternative hypothesis is that boys have higher IQ

scores.

Ha : µ1 < µ2 or µ1 − µ2 < 0.

We wish to test this using our data.
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2. We calculate our two-sample t-statistic

t =
x1 − x2√

s21
n1

+ s22
n2

=
105.84− 110.96√

6.569 + 3.125
=
−5.12
3.114

= −1.644.
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2. We calculate our two-sample t-statistic

t =
x1 − x2√

s21
n1

+ s22
n2

=
105.84− 110.96√

6.569 + 3.125
=
−5.12
3.114

= −1.644.

3. We calculate our P -value. Since Ha is µ1 − µ2 < 0, we

wish to look for P (t ≤ −1.644). We use t(30) since

31 is our smaller sample size. (see p. 452 for a more

accurate way to determine degrees of freedom).

From the calculator, P (t ≤ −1.644) = .0553.
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4. We draw our conclusion: If we assume H0 is true, then

the probability of seeing samples like the ones we have is

.0553. This is moderately low, so our assumption that

H0 was true is probably wrong. So, this is moderate

evidence that boys score higher on IQ tests than girls.

Which is in turn evidence that small differences in tests

such as IQ tests do not accurately reflect much of

anything.

5. We can ask the calculator to do the test for us. This

is under STAT , TESTS, 4:2-SampTTest. We get

df = 56.93, t = −1.64, P = .053.
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We still need to do step 4 (conclusion) above. And we

need to do it carefully, because we’ve possibly lost track

of what all our numbers mean.
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In order to use t-statistics to study two-sample problems,

we need the following conditions to be satisfied, just as

for single-sample problems.

• An independent SRS from each populations. For

example if we were trying to sample men and women,

it won’t work to take a random sample of men, and then

to take their wives or girlfriends as the other sample.

• Both populations need to be normally distributed, or...



9

• If distributions aren’t close to normal but no outliers

and no strong skewedness, need sample sizes over 15.



9

• If distributions aren’t close to normal but no outliers

and no strong skewedness, need sample sizes over 15.

• Generally sample sizes greater than 40 are OK even with

strongly skewed distributions or outliers.



9

• If distributions aren’t close to normal but no outliers

and no strong skewedness, need sample sizes over 15.

• Generally sample sizes greater than 40 are OK even with

strongly skewed distributions or outliers.

If these conditions hold then we can follow these steps to

compare these different populations, finding a confidence

interval for the difference of means µ1 − µ2.



9

• If distributions aren’t close to normal but no outliers

and no strong skewedness, need sample sizes over 15.

• Generally sample sizes greater than 40 are OK even with

strongly skewed distributions or outliers.

If these conditions hold then we can follow these steps to

compare these different populations, finding a confidence

interval for the difference of means µ1 − µ2.

• Compute the standard error of the two samples, SE =√
s21
n1

+ s22
n2

.



9

• If distributions aren’t close to normal but no outliers

and no strong skewedness, need sample sizes over 15.

• Generally sample sizes greater than 40 are OK even with

strongly skewed distributions or outliers.

If these conditions hold then we can follow these steps to

compare these different populations, finding a confidence

interval for the difference of means µ1 − µ2.

• Compute the standard error of the two samples, SE =√
s21
n1

+ s22
n2

.



10

• Use the t(k) distribution where k is one less than the

smaller of the two sample sizes.



10

• Use the t(k) distribution where k is one less than the

smaller of the two sample sizes.

• Find t∗ as in the one-sample case so that C% of the area

is between −t∗ and t∗.



10

• Use the t(k) distribution where k is one less than the

smaller of the two sample sizes.

• Find t∗ as in the one-sample case so that C% of the area

is between −t∗ and t∗. We can look this up in Table C.



10

• Use the t(k) distribution where k is one less than the

smaller of the two sample sizes.

• Find t∗ as in the one-sample case so that C% of the area

is between −t∗ and t∗. We can look this up in Table C.

• With C% confidence,



10

• Use the t(k) distribution where k is one less than the

smaller of the two sample sizes.

• Find t∗ as in the one-sample case so that C% of the area

is between −t∗ and t∗. We can look this up in Table C.

• With C% confidence, we can say the true difference of

means is between (x1−x2)−t∗SE and (x1−x2)+t∗SE.
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Example 1. Mean body temperatures: In one study, 65

men and 65 women have their temperature taken (in

similar conditions). The male mean is 98.105 with a

standard deviation of 0.699. The female mean is 98.394,

with a standard deviation of 0.743. Give a 95% confidence

interval for the difference between these means and test

the hypothesis that women have higher temperatures than

men at the 0.05 level. What if the data were drawn from

samples of only 20 men and 22 women?
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So for example, we might be interested in the question:

what proportion of the population is left-handed?

• Take sample from class. Not truly random, but probably

random enough for a question like this. Let p̂ be the

proportion of left-handed people.

• But how can we know how well this approximates

proportion p from the general population?
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Left-handedness is a categorical variable, with only two

values (YES and NO). So it can’t be normally

distributed. What can a histogram look like?

But consider samples of size 10, for example. If we look

at what proportion of a sample is left-handed, we have

11 possible values: 0, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1.

As the size of the sample increases, the number of

possible values for the proportion of left-handed people

also increases. We have the following variant of the

central limit theorem:
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Theorem 2. Let X be some random variable of a large

population which has values YES and NO. Take SRS of

size n from our population, and let p̂ be the proportion of

the sample which is “YES.”

• For large n, the sampling distribution of p̂ is

approximately normal; N(p, σ) where

• p is the proportion of the entire population which is

“YES” and
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Getting back to statistical inference, we would like to do

inference aimed at estimating p from p̂. The normalized

z-statistic, which is behind the scenes of both confidence

intervals and hypothesis testing, would be z = p̂−p
σ where

σ =
√

p(1− p)/n as in the theorem. If n is large, then p̂

was approximately normal. Thus z will be approximately

standard normal.

In practice, we won’t know p. We use p̂ in place of p to

get the standard error in place of the standard deviation.

So we set s =
√

p̂(1− p̂)/n, and then z = p̂−p
s To get a

confidence interval C, we choose z∗ a critical value for
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To do inference, we need to know we are reasonably close

to a normal distribution. Here are some conditions:

• Our sample is a SRS.

• The population is at least 10 times the sample size.

• The sample size is “large enough.” (At least 15

successes and 15 failures.)
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Unfortunately, even for relatively large n, this can be not

so close to Normal. Fix (recommended to always use):

the “Plus four” confidence interval. Let p = successes+2
n+4 .

Then the C% confidence interval is between

p− z∗
√

p(1−p)
n+4 and p + z∗

√
p(1−p)
n+4 .

Example 5. Redo our estimate for left-handers using the

“plus four” confidence interval.

Example 6. Establish some confidence intervals (both

the usual and plus four) for polls found at:

http://www.usatoday.com/news/polls/tables/live/2005-02-28-poll.htm
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