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mean of some sample, will be denoted our usual x.

Definition 1. • A parameter is some feature of your

population that you are interested in.

• A statistic is some feature of your sample with which

you would like to approximate the parameter.

One of the basic facts of probability and statistics is that

if one takes larger and larger samples from a population,

a statistic will approach its corresponding parameter (so

for example x will approach µ). When formalized, this is

called the “Law of Large Numbers.” But this does not
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help us in our ultimate goal of extrapolating data It says

for example that we approach the right answer if we can

survey larger and larger random samples of car buyers.

But if we can only sample 1000 people, then what we

really want to know is how close we are to the actual

parameter “in all likelihood.”
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Sampling distributions

A basic practice in statistics is to take a distribution and

sample from it.

Definition 2. Given a population, the sampling

distribution for samples of size n is the probability

distribution of some parameter as we take values n times.

We go thoroughly through an example looking at

sampling distributions and comment thoroughly as we go

along.
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Consider the collection of numbers

S = {2, 2, 5, 6, 7}.

What is the mean? Ans: 4.4.

We can consider all samples from our collection of size 1.

There are 5 of them and again, the mean of the samples

is again 4.4. The standard deviation is 2.302.
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Now consider all samples of size 3, and their means.

There are again 10 such samples (you might recall this

from our digression on binomial coefficients), which we

won’t list. The means for these 10 samples are

{3, 3.333, 3.667, 4.333, 4.667, 4.333, 4.667, 5, 5, 6}

The standard deviation is now only .886.

Our sampling distribution for samples of 3 out of our

original group S is
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Example 5. What is the probability, approximately, of

getting more than 550 heads when flipping a coin 1000
times?

The next theorem brings us closer to the techniques we

will ultimately use to do statistics.

Theorem 6. The sampling distribution for the mean of

n measurements of some data which is known to be

following a distribution of N(µ, σ) is itself normal, given

by N(µ, σ/
√

n).

Example 7. For men’s heights, distributed according to
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N(70, 4), what is the probability that nine men chosen at

random have an average height between 70 and 73?

Compare this with our previous answer as to the

probability of finding a single man with such height.
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The Central Limit Theorem

Theorem 9. The sampling distribution of means of

random samples of size n from a population with mean µ

and standard deviation σ is approximately

N(µ, σ/
√

n)

when n is large.

This theorem is true no matter what the original

distribution of our population is! (unlike the previous

theorem)
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This theorem is key to the kingdom of statistics. Think

of what is happening to the standard deviation - getting

smaller. What does that tell us? Knowing the deviation

of the sampling distribution and the fact that it is

approximately normal, we know how likely it is that a

sample is within that deviation (or some multiple) from

the mean. So we can understand our basic question: how

far our sample mean probably is from the real mean.

Before we do precisely these kinds of computations, let’s

see the Central Limit Theorem in action.
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Example 10. We look at the grade distribution for an

exam.

50 60 70 80 90 100

5

10

15

20
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Now we take means of all samples of size 2, and look at

the histogram of those numbers. (There are 7875 such

samples.)
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25

50

75

100

125

150

175
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Now samples of size 3. (325500)

50 60 70 80 90 100

1000

2000

3000

4000

5000
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Example 11. Suppose that the average price of a new

car purchase is $24145 with a standard deviation of $3615.

Suppose you take a survey of 1000 car purchases. What

is the probability that the average over your survey is over

$25000?


