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Sampling distributions

We will repeat our main goal many times in many ways.

Here’s an easy question to remember: how does one

compute the “margin of error” for a poll? How does

Gallup know that 65% plus or minus 4% of Americans

like chocolate chip cookies? Do they really know that,

anyways?

Remember from last time that we are trying to

understand a parameter (like the true average of

purchase prices for cars in the U.S.) from a statistic (the
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Definition 1. Given a population, the sampling

distribution for samples of size n is the probability

distribution of some parameter of the samples (for example

the mean) as we go through all possible samples.

We go thoroughly through an example looking at

sampling distributions and comment thoroughly as we go

along.
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Consider the collection of numbers

S = {2, 2, 5, 6, 7}.

What is the mean? Ans: 4.4.

We can consider all samples from our collection of size 1.

There are 5 of them and again, the mean of the samples

is again 4.4. The standard deviation is 2.302.
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Now consider all samples of size 3, and their means.

There are again 10 such samples (you might recall this

from our digression on binomial coefficients), which we

won’t list. The means for these 10 samples are

{3, 3.333, 3.667, 4.333, 4.667, 4.333, 4.667, 5, 5, 6}

The standard deviation is now only .886.

Our sampling distribution for samples of 3 out of our

original group S is
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Example 2. Calculate the sampling distribution for

the mean of samples of three out of the data set

{−1, 0, 0, 2, 3, 6}.
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X 3 3.333 3.667 4.333 4.667 5 6

Probability .1 .1 .1 .2 .2 .2 .1

Example 2. Calculate the sampling distribution for

the mean of samples of three out of the data set

{−1, 0, 0, 2, 3, 6}.
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The Central Limit Theorem

Theorem 4. The sampling distribution of means of

random samples of size n from a population with mean µ

and standard deviation σ is approximately

N(µ, σ/
√

n)

when n is large.

This theorem is true no matter what the original

distribution of our population is! (unlike the previous

theorem)
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This theorem is key to the kingdom of statistics. Think

of what is happening to the standard deviation - getting

smaller. What does that tell us? Knowing the deviation

of the sampling distribution and the fact that it is

approximately normal, we know how likely it is that a

sample is within that deviation (or some multiple) from

the mean. So we can understand our basic question: how

far our sample mean probably is from the real mean.

Before we do precisely these kinds of computations, let’s

see the Central Limit Theorem in action.
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Example 5. We look at the grade distribution for an

exam.
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Example 5. We look at the grade distribution for an

exam.
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Now we take means of all samples of size 2, and look at

the histogram of those numbers. (There are 7875 such

samples.)
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Now we take means of all samples of size 2, and look at

the histogram of those numbers. (There are 7875 such
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Now samples of size 3. (325500)
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Example 6. Suppose that the average price of a new car

purchase is $24145 with a standard deviation of $3615.
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Example 6. Suppose that the average price of a new car

purchase is $24145 with a standard deviation of $3615.

Suppose you take a survey of 1000 car purchases. What

is the probability that the average over your survey is over

$25000?
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Example: Process Control

The Central Limit Theorem has many applications, since

sampling can be useful well beyond the realms of surveys

and opinion polls.

• Imagine a manufacturing process for, say, ball bearings.

The bearings are supposed to be 10 mm in diameter.

In fact, when the manufacturing process is working

correctly, they are distributed normally N(10, .7).
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• We can’t check every bearing as it is too time

consuming. Every hour we take a sample of 10 bearings,

and take the mean diameter. The sample distribution of

the means, x should be N(10, .7/
√

10) = N(10, .221).
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So an entry above the upper control line should be a rare

event and should mean that we check our production

line to see if problems have developed.
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