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• f(x) = 1 over the whole real number line.

• f(x) = x
2 for x between 0 and 2 and zero otherwise.

• f(x) = x
2 for x between −1 and 1 and zero otherwise.

Example 4. Suppose that X is distributed according to

D =


1
12 1 ≤ x ≤ 3
1
2 3 ≤ x ≤ 4
1
9 4 ≤ x ≤ 7

0 otherwise
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• What is the state space?

• What is P (2 ≤ X ≤ 3)?

• Which is more likely, that X is between 3 and 4 or that

X is between 5 and 7?

Compare the answer to the last question to the answer

you would get if X were uniformly distributed.



6

One way to get a distribution is to take the histogram of

a data set and divide by the total number of individuals

so that the area is one.



6

One way to get a distribution is to take the histogram of

a data set and divide by the total number of individuals

so that the area is one. The probabilities computed

correspond to percentages of the data.



6

One way to get a distribution is to take the histogram of

a data set and divide by the total number of individuals

so that the area is one. The probabilities computed

correspond to percentages of the data.

Example 5. Translate between probability and percentile

questions about scores of students taking an exam.
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Doing calculations with normal distributions works much

as before. Instead of calculating percentiles, we are

calculating probabilities.

Example 7. Let our random event be the random choice

of a U.S. adult male, assuming a probability distribution

which is approximately normal N(70, 4)..

1. What is our random variable? Our state space?

(theoretical vs. actual)

2. What is the probability that our randomly chosen man

is between 70 inches and 73 inches tall?
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Sampling distributions

A basic practice in statistics is to take a distribution and

sample from it.

Definition 8. Given a population, the sampling

distribution for samples of size n is the probability

distribution of some parameter as we take values n times.

We go thoroughly through an example looking at

sampling distributions and comment thoroughly as we go

along.
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is again 4.4. The standard deviation is 2.302.
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Now consider all samples of size 3, and their means.

There are again 10 such samples (you might recall this

from our digression on binomial coefficients), which we

won’t list. The means for these 10 samples are

{3, 3.333, 3.667, 4.333, 4.667, 4.333, 4.667, 5, 5, 6}

The standard deviation is now only .886.

Our sampling distribution for samples of 3 out of our

original group S is
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Compare this with our previous answer as to the

probability of finding a single man with such height.


