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Average rate of change

A fundamental philosophical truth is that everything

changes. In physics, the change in position is known as

velocity or speed. In economics, the change in price is

known as inflation. In business, the change in costs is

sometimes known as trend. In mathematics, the change

in values of a function is known as the derivative. But to

understand the derivative, which will measure

“instantaneous” change, you need to to first be

comfortable with “average” change over some intervals.
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Calculating average speed.

If you travel 200 miles in four hours, what is your average

speed? What about 75 miles in one and a half hours?

Average speed =
distance travelled

total time

Questions to ponder: Do these calculations necessarily

mean you went 50mph for four hours?
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Next, what if, instead of giving you total distance

travelled, you need to calculate from a position function

which describes where you are?

Example 1. A ball which is dropped from the top of the

Tower of Pisa has travelled down 16t2 feet after t seconds.

What is its average speed over the first three seconds?

over the first five seconds? between the second and fifth

second?
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Calculating slopes of secant lines to a curve.

Next we look at what at first appears to be unrelated to

dropping a ball.

Definition 2. A secant line goes through two points on

the graph of the function. In symbols, it is a line through

(a, f(a)) and (b, f(b)) for some a and b.

Example 3. Find the secant lines to the graph of f(x) =
16x2 through the points with: a = 0, b = 3, a = 0, b = 5,

a = 2, b = 5.

What do you notice about this and the previous
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problem?

Example 4. Some functions will be sketched on the

board; find the slopes of secant lines as indicated.
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Formula for average rate of change

Definition 5. In general, the average rate of change of

some function f(x) as x varies between values a and b is

f(b)− f(a)
b− a

.

This can be computed in any way that f is presented,

through a formula, through a graph, or in a table.
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Example 6. Find the average rate of change for $1000

invested at a rate of five percent over four years. (Note:

this is not the interest rate).

Example 7. Analyze different measured and predicted

rates of change for world population according to:

http://www.unfpa.org/6billion/pages/worldpopgrowth.htm
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The derivative

The derivative is the central topic of study in this class.

It measures the instantaneous rate of change of a

function at all times.

Before formalizing it, which is difficult, we will try to

understand it in examples parallel to those we have done

for average rate of change.
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Instantaneous speed

Question to ponder: how does your speedometer

calculate how fast you are going at one moment?

(What does “how fast you are going at one moment”

even mean?)

Example 8. How fast was the ball falling two seconds

after it was dropped from the Tower of Pisa? Five second

after?
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Slope of tangent lines

Definition 9. A tangent line to a curve is a line which

intersects the curve at some point, but does not cross the

curve.

Informally, a tangent line “kisses” the curve.

Question 10. How could we calculate the equation of

the line which is tangent to f(x) = 16x2 at x = 2? at

x = 5?
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Formula for instantaneous rate of change

We would see similarities in trying to compute average

and instantaneous differences regardless of what our

functions are measuring. The following definitions work

in all such cases. First, for average rate of change, we

re-write a = x and b = x + h, so that the difference

quotient becomes f(x+h)−f(x)
h . So for example if a = 3

and b = 4, we would instead think of x = 3 and h = 1.

The reason we change from a and b to x and h is to be

consistent with the derivative.
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