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Abstract

The impact of finite forecasting horizons on price dynamics is examined in a standard
infinite-horizon asset-pricing model. Our theoretical results link forecasting horizon in-
versely to expectational feedback, and predict a positive relationship between expectational
feedback and various measures of asset-price volatility. We design a laboratory experiment
to test these predictions. Consistent with our theory, short-horizon markets are prone to sub-
stantial and prolonged deviations from rational expectations, whereas markets with even a
modest share of long-horizon forecasters exhibit convergence. Longer-horizon forecasts
display more heterogeneity but also prevent coordination on incorrect anchors – a pattern
that leads to mispricing in short-horizon markets.
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Highlights:

• An asset-pricing model with heterogeneous finite-horizon planning is developed.

• Longer horizons are shown to reduce price volatility and mispricing.

• A lab experiment confirms the predictions from the model.

• Disagreement in forecasts at longer horizon prevents coordination on wrong anchors.
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1. Introduction1

Most macroeconomic and finance models involve long-lived agents making dynamic2

decisions in the presence of uncertainty. The benchmark modeling paradigm is the ratio-3

nal expectations (RE) hypothesis, which, in a stationary environment, can be captured by4

a one-step-ahead formulation of the model dynamics together with boundary conditions;15

the impact of future plans at all horizons are fully summarized by one-step-ahead fore-6

casts. Thus, under RE the issue of the decision horizon is hidden. When agents are more7

plausibly modeled as boundedly rational (BR), a stand must be taken on the decision and8

forecasting horizon employed. In this paper, using a simple asset-pricing model, we study9

the importance of the forecasting horizon length, both theoretically and in a lab experiment.10

Forecast horizons are clearly relevant to many macroeconomic and financial issues,11

including, for example, forward guidance in monetary policy, the impact of fiscal policy, or12

trading strategies in asset markets. Under BR the forecast horizon of households and firms13

affects their economic and financial decisions and their reaction to policies.14

Financial markets provide motivation for the specific focus of both our theoretical15

model and our experiment. If agents have long horizons, does this lead to greater or smaller16

price volatility than if agents use shorter horizons? The answer is not obvious. There is a17

long-standing view that short-horizon agents are likely to induce greater instability because18

of their tendency to chase short-term gains. This argument was forcefully stated by Keynes19

(1936, Chap. 12, Sect. V-VI) in well-known passages in which he discusses price fluctua-20

tions and instability resulting from a market emphasis on short-term speculation.2 On the21

other hand, in a standard RBC model that is known to be very stable under short-horizon22

adaptive learning, Evans et al. (2019) find that long-horizon decision-making instead leads23

to greater instability.24

Therefore, a question of considerable importance is how the behavior of asset prices25

depends on the decision horizon of agents and on how they form expectations over this26

horizon. In reality, agents’ behavior needs not be invariant to the forecasting horizon or the27

1These boundary conditions include initial conditions on the state, as well as no-Ponzi scheme and
transversality conditions. Typically, a non-explosiveness condition ensures these latter two.

2Early findings in survey data report how short-horizon investors tend to use extrapolative investment
strategies, whereas longer-horizon investors tend to use mean-reverting trading rules (Frankel and Froot,
1987). In the heterogeneous-agent literature, interactions between fundamental traders and chartists are key
to generating short-run deviations from fundamentals but mean reversion in the long run; see, e.g. LeBaron
(2006). In lab experiments, it has also been shown that short-run forecasters tend to coordinate on trend-
following rules, which amplifies bubbles; see, e.g., Hommes (2021).
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nature of the forecasting task; and agents need not operate on the same planning horizon.28

This variety of behaviors may have non-trivial implications for expectations and prices.29

Ultimately, whether these implications materialize is an empirical question.30

The primary goal of this paper is to design an asset pricing model populated by bound-31

edly rational agents with finite forecasting horizons that can be analyzed for different con-32

figurations of horizons, and implemented in the lab. By tuning the horizon of the expecta-33

tions, our lab experiment allows us to test how forecasting horizons affect price dynamics.34

What is novel in our experiment, among other important features, is that we study the role35

of the forecasting horizon and use the experimental data to test different theories of learning36

and how these fit with short-horizon and long horizon forecasting.37

Our contribution stands at the crossroad of two literatures: the learning literature, as38

implemented, e.g. in dynamic general equilibrium models (Evans and Honkapohja, 2001),39

and the experimental literature concerned with behavioral finance; see, e.g., Palan (2013);40

Noussair and Tucker (2013). While our focus lies in the former, we borrow from the latter41

the laboratory implementation that allows us to design a group experiment whose main42

features remain as close as possible to the theoretical learning setup (see Section 3).43

We choose the framework of a consumption-based asset pricing model à la Lucas44

(1978). We replace the standard rational expectations and representative agent assump-45

tions with heterogeneous expectations and BR decision-making based on an approach de-46

veloped in Branch et al. (2012).3 Heterogeneous expectations about future prices constitute47

a motive for trade between otherwise identical agents.48

We show that our implementation of bounded rationality in the Lucas setting leads49

to a particularly simple connection between individual decisions and expectations about50

future asset prices: an individual agent’s conditional asset demand schedule reduces to a51

linear function of their endowment, the market clearing price and the agent’s expectation52

of the average asset price over the given horizon. This latter feature facilitates elicitation of53

forecasts from the human subjects in the lab. In this setting, expectations about future asset54

prices constitute a central element of the price determination and impart positive feedback55

into the price dynamics: higher price forecasts translate into higher prices.56

3Under BR, the decision horizon in general equilibrium settings has been considered by a variety of
authors. The widely used one-step-ahead “Euler equation” learning is extensively discussed in Evans and
Honkapohja (2001). An infinite-horizon approach developed by Preston (2005) has been utilized in several
settings, e.g. Eusepi and Preston (2011). The intermediate finite decision-horizon approach used in this paper
also relates to Woodford (2018); Woodford and Xie (2019).
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We find, in our theoretical setting, that expectational feedback depends negatively on57

forecast horizon length. This in turn implies that under a standard adaptive learning rule, the58

rate at which market price converges to the fundamental price is increasing in the planning59

horizon. These results, together with other findings from the adaptive learning literature60

(discussed in detail in Section 2.2) lead to several hypotheses which we then test experi-61

mentally. For example, our results suggest that longer forecast horizons lead to reduced62

price volatility and result in prices that are closer to their fundamental value.463

We design an experiment that belongs to the class of “learning-to-forecast” experi-64

ments (LtFEs),5 which focuses on the study of expectation-driven dynamics. In these ex-65

periments, participants’ beliefs are elicited and the implied boundedly optimal economic66

decisions, conditional on beliefs, are computerized. This specification is in line with how67

economic theory models market clearing, and it isolates the effects of interactions between68

planning horizons and expectation formation by eliminating other price determinants which69

arguably influence the real-world prices, e.g. interactions between price dynamics and spec-70

ulation or price dynamics and liquidity.71

As we will see, the model’s strong expectational feedback permits expectation-driven72

fluctuations and (nearly) self-fulfilling price dynamics. Expectational feedback is paramount73

in modern macroeconomic models, and the strength of the feedback can be policy depen-74

dent.6 Our findings suggest that the degree of expectational feedback in macro models, and75

the potential for self-fulfilling dynamics, will also depend on the agents’ forecast horizons.776

The asset-pricing model underlying our lab experiment is easily summarized: there77

is a fixed quantity of a single durable asset, yielding a constant, perishable dividend that78

comprises the model’s single consumption good. The initial allocation of assets is uniform79

across agents (referred to, in the experiment, as participants). Each period, each agent80

forms forecasts of future asset prices and, based on these forecasts and their current asset81

holdings, their asset demand schedules are determined. These schedules are coordinated by82

a competitive market-clearing mechanism, yielding equilibrium price and trades. If expec-83

4The formal statement of the corresponding hypothesis is given in Section 3.4.
5See the earlier contribution of Marimon et al. (1993). More recent experimental studies within macro-

finance models include Adam (2007); Assenza et al. (2021); Kryvtsov and Petersen (2021). This literature is
surveyed in Duffy (2016) and Arifovic and Duffy (2018).

6This is evident in textbook new-Keynesian models, but also generically featured in DSGE models.
7Data collected in LtFEs are informative about broad classes of markets and behaviors: see, e.g.,

Kopányi-Peuker and Weber (2021) who compare price dynamics in LtFEs with experimental call markets,
and Cornand and Hubert (2020) who compare forecasts in LtFEs and real-world forecasts from surveys.
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tations of all agents were fully rational, they would make optimal decisions. Participants’84

payoffs reflect forecast accuracy and utility maximization. A random termination method85

emulates an infinite-horizon setting and yields a constant effective discount rate induced86

by the probability of termination. This economy has a unique perfect-foresight equilibrium87

price – the “fundamental price” – determined by the dividend and the discount factor.88

We consider four experimental treatments, based on horizon length, T : short horizon89

(T = 1), long horizon (T = 10), and two treatments with mixtures of short and long hori-90

zons. We are interested in several questions: Does the horizon of expectations matter for the91

aggregate behavior of the market? If so, how do the horizon and heterogeneity of horizons92

affect this behavior? In particular, are long-horizon expectations (de)stabilizing?93

In line with our theoretical results, we find that markets populated only by short-horizon94

forecasters are prone to significant and often prolonged deviations from the fundamental95

price. By contrast, if all traders are long-horizon forecasters, the price path is consistent96

with convergence to the fundamental price. Note that our specification does not prede-97

termine the results. Our experimental findings need not have agreed with our theoretical98

predictions. In particular, if subjects had held fully rational expectations, the results across99

the four treatments would have been identical. Instead, the price behaviors across treat-100

ments differ greatly, which is reflected in distinct forecasting behaviors across horizons,101

including the treatments involving mixed horizons.102

A detailed analysis of individual forecasts reveals that the failure of convergence in103

short-horizon markets reflects the coordination of participants’ forecasts on patterns derived104

from price histories, e.g. “trend-chasing” behavior. In contrast, coordination of subjects’105

forecasts appears more challenging in longer horizon treatments: long-horizon forecasters106

display more disagreement. The resulting heterogeneity of long-horizon expectations im-107

pedes coordination on trend-chasing behavior and favors instead adaptive learning, leading108

to convergence towards the fundamental price. Given these two polar cases, a natural ques-109

tion arises: what share of long-horizon forecasters would be large enough to stabilize the110

market price? Our findings suggest that even a modest share of them is enough.111

A substantial literature has investigated financial markets in a laboratory setting. Exist-112

ing LtFEs involve environments where only one- or occasionally two-step-ahead expecta-113

tions (as in, e.g., Rholes and Petersen (2021)) matter for the resulting price dynamics. An114

exception is Anufriev et al. (2020), who allow for forecast horizons of up to three periods.115

Like us, they report more market volatility associated with shorter horizons. In contrast to116

them, we provide a micro-founded model of BR decision making with heterogeneous fore-117
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cast horizons, which allows us to study expectation formation over different horizons in the118

same market environment. Our theoretical model is closely connected to our lab implemen-119

tation, and is based on a standard macro asset-pricing model rather than a mean-variance120

framework.121

Several experimental studies have been concerned with belief elicitation at longer hori-122

zons: see, e.g., Haruvy et al. (2007) and Colasante et al. (2020). However, in these studies,123

players’ forecasts do not affect price dynamics. Hirota and Sunder (2007) and Hirota et al.124

(2015) studied the influence of trading horizons on prices in a setting that differs greatly125

from ours, and found that longer forecast horizons lead to convergence of prices to funda-126

mentals. Noussair and Tucker (2006) show how futures markets can prime subjects toward127

thinking about more distant prices, which contributes to stabilizing current prices; see also128

De Jong et al. (2022). Duffy et al. (2019), among others, study prices in an experimental129

market with an indefinitely lived asset, for example due to bankruptcy. They find that “hori-130

zon uncertainty” does not significantly affect traded prices. Their framework also differs131

greatly from ours.132

The paper is organized as follows. Section 2 gives the theoretical framework. Section 3133

details the experimental design and our hypotheses based on predictions from the learning134

model. Section 4 provides the results of the experiment and Section 5 concludes.135

2. Theoretical framework: an asset-pricing model136

The underlying framework of our experiment is a consumption-based asset-pricing137

model à la Lucas (1978). This model can be interpreted as a pure exchange economy with138

a single type of productive asset; at time t, each unit of the asset costlessly produces yt units139

of consumption. The textbook model refers to this asset as a “tree” that produces “fruit.”140

In the experiment, we use the framing of a “chicken” producing “eggs.” This terminology141

reduces the likelihood that participants with a background in economics or finance would142

recognize the textbook asset-pricing model, and it also facilitates the implementation of an143

infinite-horizon environment in the lab by suggesting an asset with a finite life.144

2.1. The infinite-horizon model145

There are many identical agents, each initially endowed with q > 0 chickens, where146

each chicken lays y > 0 non-storable eggs per period. In each period, there is a market147

for chickens. Each agent collects the eggs from her chickens, consumes some, and sells148

the balance for additional chickens. Alternatively, the agent can sell chickens to increase149
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current egg consumption. This decision depends on both the current price of chickens, and150

forecasts of future chicken prices.151

To formalize the model, we consider the representative agent’s problem:

maxE ∑
t≥0

β
tu(ct), s.t. ct + ptqt = (pt + y)qt−1, with q−1 = q given, (1)

where u′ > 0 and u′′ < 0, qt−1 is the quantity of chickens held at the beginning of period152

t, ct is the quantity of eggs consumed, and pt is the goods-price of a chicken. Finally, E153

denotes the subjective expectation of the agent.154

Under RE, which, in our non-stochastic setting reduces to perfect foresight (PF), the155

Euler equation is u′(ct) = p−1
t (pt+1 + y)u′(ct+1). There is no trade in equilibrium, i.e.156

ct = qty. Thus the perfect foresight steady state is given by c = qy and p = (1−β )−1βy.157

We refer to p = (1−β )−1βy as the fundamental price (value) of the asset, and often refer158

to the PF equilibrium as the RE equilibrium, or REE. Note that in REE, the representative159

agent holds wealth constant and consumes her dividend each period; this same behavior160

obtains even if agents are endowed with different initial wealth levels.161

2.2. The model with finite-horizon agents162

We relax the assumption of perfect foresight over an infinite horizon and consider the163

behavior of a BR agent with a finite planning horizon T ≥ 1. This relaxation introduces164

the need to specify a terminal condition for the agent’s decision problem, in the form of an165

expected wealth target qe
t+T , i.e. the number of the chickens the agent expects to hold at the166

end of the planning period. We assume qe
t+T = qt−1: the agent views his current wealth as a167

good estimate for his terminal wealth. This assumption is based on the following principle:168

if, at a given time t, current price and expected future prices coincide with the PF steady169

state, then the agent’s decision rule should reproduce fully optimal behavior.8 It follows170

that if the forecasts of all agents align with the PF steady state then REE obtains.171

The BR agent’s problem may now be presented as follows: in each period t, taking172

as given wealth qt−1, prices pt and price expectations pe
t+k for k = 1, . . . ,T , the agent173

chooses current and future planned consumption and savings, ct+k for k = 0, . . . ,T and174

qt+k for k = 0, . . . ,T − 1, to maximize ∑
T
k=0 β ku(ct+k) subject to the budget constraints175

8See On-line Supplementary Materials: Appendix A.1 for discussion. This is a bounded optimality exten-
sion of the principle, introduced by Grandmont and Laroque (1986), which in particular requires that forecast
rules reproduce steady states.

6



ct + ptqt = (pt + y)qt−1, ct+k + pe
t+kqt+k = (pe

t+k + y)qt+k−1 for 1 ≤ k < T , and ct+T +176

pe
t+T qt−1 = (pe

t+T +y)qt−1. In this last equation, the period t +T expected terminal wealth177

qe
t+T has been replaced with qt−1, as per our assumption. On-line Supplementary Materials:178

Appendix A.2 derives the individual demand curves for assets, which depend negatively on179

prices and positively on price forecasts.180

We now consider equilibrium price dynamics in the BR market. We allow for hetero-181

geneous forecasts and planning horizons, and it is convenient to work with the linearized182

model, and to thin notation we reinterpret variables as deviations from the non-stochastic183

steady state. Formally, we distinguish agents by type i ∈ {1, . . . , I}, where agents of type184

i have planning horizon Ti and price forecasts pe
i,t+k. Let αi be the proportion of agents of185

type i. Finally, let p̄e
it(Ti) = T−1

i ∑
Ti
k=1 pe

i,t+k be agent i’s forecast of the average price over186

his planning horizon. The following result characterizes equilibrium price dynamics:187

Proposition 2.1 There exist type-specific expectation feedback parameters ξi > 0 such that188

ξ ≡ ∑i ξi < 1 and pt = ∑i ξi · p̄e
it(Ti).189

All proofs are in the On-line Supplementary Materials: Appendix A. We note that the each190

of the feedback parameters ξi depends on the weights {α j}I
j=1 as well as the correspond-191

ing planning horizons {Tj}I
j=1. From this result, we see that the time t price only depends192

on the agents’ forecasts of the average price of chickens over their planning horizon, i.e.193

{p̄e
it(Ti)}I

i=1. The asset-pricing model with heterogeneous agents is therefore an expecta-194

tional feedback system, in which the perfect foresight steady-state price is exactly self-195

fulfilling and is unique.196

If expectations are homogeneous across planning horizons, i.e. p̄e
it(Ti) = pe

t , ∀i, then197

the model’s dynamics become pt = ξ pe
t , where, by Proposition 2.1, ξ ∈ (0,1). More can198

be said about this expectational feedback parameter in the homogeneous case.199

Proposition 2.2 Let I ≥ 1, αi ≥ 0, ∑αi = 1, Ti ≥ 1, and assume p̄e
it(Ti) = pe

t , ∀i. Then:200

1. If planning horizons are homogeneous then 1≤ T < T ′ =⇒ ξ > ξ ′.201

2. For the case of two planning horizons, if T1 < T2 then ∂

∂α1
ξ > 0.202

Proposition 2.2 says that the expectational feedback in this system is always positive but203

less than one. When there is a single planning horizon, increasing its length reduces the204

feedback. The strongest feedback occurs when T = 1, where ξ = β . Finally, for two agent205

types, increasing the proportion of agents using the shorter horizon increases the feedback.206
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Next we consider whether agents using simple learning rules would eventually coordi-
nate their forecasts on the REE. Put differently, is the REE stable under adaptive learning?
In Section 4.4, where we analyze subject-level forecasts from the experiment, we consider
several types of forecast rules; here, for theoretical considerations, we focus on one promi-
nent class of adaptive learning rules which has each of the N agents updating beliefs via

p̄e
it(Ti) = p̄e

it−1(Ti)+ γt(pt−1− p̄e
it−1(Ti)). (2)

Here, 0 < γt ≤ 1 is called the “gain” sequence, which is assumed to satisfy ∑t γt = ∞. There207

are two prominent cases in the literature: “decreasing gain” with γt = t−1, which provides208

equal weight to all data; and “constant gain” with γt = γ ≤ 1, which discounts past data.209

Corollary 1 Under decreasing and constant gain, p̄e
it(Ti) and pt converge to the REE price210

as t→ ∞. Furthermore, asymptotically, agents make fully optimal savings decisions.211

Corollary 1 shows that under adaptive learning of the form (2), the price dynamics converge212

to the fundamentals price. This result is independent of the number of agent-types and the213

lengths of their horizons, and can be extended to include heterogeneous gains.214

The empirical macro literature employing adaptive learning is almost exclusively based215

on constant gain algorithms, and the analysis of our experimental results will be simi-216

larly focused. Under constant gain learning, the rate of convergence, i.e. 1− ζ where217

ζ = pt/pt−1, is time invariant: see On-line Supplementary Materials: Appendix A. In the218

homogeneous horizon case 1−ζ = γ(1−ξ ), which emphasizes that the rate of convergence219

is inversely related to the magnitude of ξ . The following result identifies the dependence220

of 1−ζ on the planning horizon.221

Corollary 2 Under constant gain learning, the rate at which market price converges to its222

fundamental value is increasing in individual planning horizons Ti.223

Numerical investigations indicate that this result can be extended to allow for heteroge-224

neous (constant) gains that are held fixed as planning horizons are varied.225

Stochastic versions of model like pt = ξ pe
t have been studied under constant gain learn-226

ing. It is known that the extent and speed of convergence depend on the expectational feed-227

back parameter ξ .9 In short-horizon settings a number of authors have noted the possibility228

9See, e.g. Evans and Honkapohja (2001, Ch. 3.2, 3.3 and 7.5).
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that when the expectational feedback parameter is near one, near-random-walk behavior229

of asset prices is almost self-fulfilling, in that the associated forecast errors can be small,230

while also leading to significant departures from REE and excess volatility.10 In our model231

this phenomenon arises most forcefully when T = 1 and β is near one so that ξ is near one.232

Values of ξ near one also have implications for forecast accuracy. In particular, for233

some simple salient forecast rules, including those based on possibly-weighted sample av-234

erages (γ small) or near random walks (γ large), as well as higher-order trend-chasing235

models, expectations are nearly self-fulfilling. Thus in this case, even if the price level is236

far from the REE, the agents’ forecast errors can be small. We will come back to this point237

later when interpreting our experimental results.238

The results and discussion above point to the following implications for this model239

under learning, which we would expect to be reflected experimentally:240

Implication 1: Prices and individual forecasts converge over time towards the REE.241

Implication 2: The extent and speed of convergence toward the REE will be greater the242

smaller is the expectational feedback parameter ξ .243

Implication 3: Deviations of forecasts from REE will be smaller for smaller ξ .244

Implication 4: The level of price volatility will be lower the smaller is ξ .245

These implications are reflected in the hypotheses we develop and test in the experiment.246

3. The experimental design247

The experiment is couched in terms of a metaphorical asset market in which assets are248

chickens (and thus finite-lived), and dividends are eggs (and thus perishable), comprising249

the experiment’s unique consumption good. Participants are traders who make saving de-250

cisions based on forecasts of future chicken prices. In the experiment, participants submit251

price forecasts that are then coupled with the decision rules derived in Section 2 to de-252

termine their demand-for-saving schedules. Equilibrium prices and saving decisions are253

determined each period via market clearing.254

3.1. Environment and procedures255

Each group in the experiment is composed of J = 10 participants. At the opening256

of a market, each forecaster/trader is endowed with a given number of chickens. This257

10See, e.g., Blanchard and Watson (1982), Branch and Evans (2011) and Adam et al. (2016)
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number is the same across all forecasters/traders, but participants can only observe their258

own endowment and do not know the total number of chickens in the market.259

Upon entering the lab, each participant is assigned the single task of forecasting the260

average market price of a chicken in terms of eggs over a given horizon, and this horizon261

remains the same throughout the experiment. Trading and the resulting egg consump-262

tion levels are computerized on behalf of the subjects. Each period, elicited forecasts are263

inserted into individual asset demand schedules, which are then aggregated, yielding the264

market clearing price. This price determines the market’s trade volume, and is used to265

update individual asset holdings, egg consumption and utility level. Thus, conditional on266

forecasts, the outcomes in the lab are determined exactly as in our theoretical framework.267

Individual and aggregate asset demand schedules are given in the On-line Supplementary268

Materials: Appendix A, by (A.11) and (A.12), respectively, and the timing of events is269

given in Figure 1.270

The dividend is common knowledge, and participants operate under no-short-selling271

and no-debt constraints. Each period, they must consume at least one egg. Eggs are both272

the consumption good and the medium of exchange, but only chickens are transferable273

between periods (see Crockett et al. 2019 for a similar setup).274

Transposing this type of model to a laboratory environment requires resolving a number275

of issues, as discussed for instance in Asparouhova et al. (2016). Two major concerns276

are the emulation of stationarity and infinitely lived agents. Stationarity is an essential277

feature as it rules out rational motives to deviate from fundamentals, hence allowing us to278

get cleaner data on potential behavioral biases. An infinite-lifetime setting, together with279

exponential discounting and the dividend process, determines the fundamental value of the280

asset. This may play an important role in the belief formation process of the participants.281

We use the standard random termination method originally proposed by Roth and282

Murnighan (1978) to deal with infinite lifetime in the laboratory. If each experimental283

market has a constant and common-knowledge probability of ending in each period, the284

probability of continuation is known to theoretically coincide with the discount factor. In285

the instructions of our experiment, the metaphor of the chickens allows us to tell the partici-286

pants the story of an avian flu outbreak that may occur with a 5% probability in each period287

(corresponding to a discount factor β = 0.95). If this is the case, the market terminates: all288

chickens die and become worthless.289

As for the stationarity issue, we choose a constant dividend process. The fundamental290

value associated with this dividend value and discount factor was not given to the partici-291
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pants. However, we think it likely that the experimental environment, including in partic-292

ular the constant dividend process, is concrete enough to induce the idea of a fundamental293

value for a chicken in terms of eggs to the participants.294

As discussed in Asparouhova et al. (2016), a major difficulty lies in the constant ter-295

mination probability (discount factor). Participants should perceive the probability of a296

market to end to be the same at the beginning of the experimental session as towards the297

end of the time span for which they have been recruited. We therefore use the “repetition”298

design of Asparouhova et al. (2016): we recruited the participants for a given time and ran299

as many markets as possible within this time frame. Furthermore, we recruited them for 2300

hours and 30 minutes but completed most of the sessions within 2 hours so as to keep the301

participants’ perception of the session’s end in the distant future throughout the experiment302

(see also Charness and Genicot (2009) for such an implementation). We did so by starting303

a new market only if not more than 1 hour and 50 minutes had elapsed since the partici-304

pants entered the lab. If market was still running after this time constraint, the experimenter305

would announce that the current 20-period block (see below) was the last one.306

[Figure 1 about here.]307

Finally, our framework involves two additional difficulties. Most importantly, partic-308

ipants have to form forecasts over a given horizon, say over the next 10 periods, but the309

market may terminate before period 10. In this case, the average price corresponding to310

their elicited predictions is not realized, and participants’ tasks cannot be evaluated (see be-311

low how the payoffs are determined). In order to circumvent this issue, we use the “block”312

design proposed by Fréchette and Yuksel (2017): each market is repeated in blocks of a313

given number of periods, and the termination or continuation of the market is observed314

only at the end of each block. This design allows the experiment to continue at least for the315

number of periods specified in the block, without altering the emulation of the stationary316

and infinite living environment from a theoretical viewpoint.317

In our experiment, the length of a block is taken to be 20 periods, which corresponds to318

the expected lifetime of a chicken with a 5% probability of termination. The random draws319

in each period are “silent,” and participants observe only every 20 periods whether the320

chickens have died during the previous 20 periods. If this occurred, the market terminates321

and they enter a new market from period 1 on. If this did not occur, the market continues322

for another 20-period block. In period 40, participants observe whether a termination draw323

has occurred between periods 20 and 40. If this is the case, the market terminates and a new324

11



one starts; if not, participants play another 20-period block till period 60, etc. Only periods325

during which the chickens have been alive count towards the earnings of the participants.326

To prevent knowledge of the fundamental being carried over across markets we vary327

the dividend y, and thus the equilibrium price, between markets. We also vary the initial328

endowment of chickens to match the symmetric equilibrium distribution and keep liquidity329

and utility levels constant across markets: see Table 1.11 On entering each new market,330

participants receive the corresponding values through a pop-up message, and those values331

remain on the screen throughout the market (see On-line Supplementary Materials: Ap-332

pendix B, Figure 1). To avoid perfect predictions, we add a small noise term υ to the price,333

with υ ∼N (0,0.25).334

[Table 1 about here.]335

3.2. Payoffs336

We elicit price forecasts from participants, but those forecasts translate into trade deci-337

sions, and the predictions of our theoretical model partly rely on the properties of the utility338

function and the incentive to smooth consumption over time. For this reason, the payoff339

of the participants consists of two parts: at the end of each market, all participants receive340

experimental points based either on forecast accuracy or on their resulting egg consump-341

tion with equal probability. This design avoids “hedging” and maintain equal incentives342

towards the two objectives (forecasting and consuming) throughout each market. Payoff343

tables are reported in the On-line Supplementary Materials: Appendix D.344

The consumption payoff is u(c) = 120 · ln(c) (c≥ 1). Specifying a concave utility func-345

tion provides tight control on subjects’ preferences and induces the consumption smoothing346

behavior that underlies the predictions from the theoretical model (see also Crockett et al.347

(2019)). Participants are paid only for periods during which chickens are alive. The payoff348

based on utility is simply the sum of their utility realized in each of those periods.12
349

To limit the cognitive load of the experiment and impart fairness between the payments350

for the forecasting and the utility maximization tasks, predictions are rewarded using a351

quadratic scoring rule, which ensures a decreasing and concave relationship between the352

11We remark that only integer values of chickens and eggs are allowed to be traded/consumed. The large
number of chickens renders this imposition inconsequential.

12These widely used cumulative payments align with discounted utility maximization with random termi-
nation under risk neutrality. Sherstyuk et al. (2013) find that the potential bias if agents are risk averse is of
little empirical importance. Moreover, it would not impact our treatment differences.

12



payoffs and the forecast errors: max
(
1100− 1100/49(error)2,0

)
. If the error is higher than 7,353

the payoff is zero. We must take account of the fact that there are necessarily periods before354

the death of the chickens for which forecast errors are not available. Consequently, the355

number of realized average prices over T periods, and the associated forecasting payments,356

is lower than the number of utility payments that take place in every period. To circumvent357

this discrepancy, the last rewarded forecast is paid T + 1 times to the participants. This358

also incentivizes them to submit accurate forecasts for every period, as they are uncertain359

about which one will be the last and, hence, the most rewarded. If the chickens die in the360

first block before T + 1 periods, participants were paid on utility. At the end of all the361

markets, the total number of points earned by each participant was converted into euros at362

a pre-announced exchange rate, and paid privately.363

3.3. Instructions and information364

Participants were given instructions that they could read privately at their own pace365

(see On-line Supplementary Materials: Appendix D). The instructions contain a general366

description of the markets for chickens, explanations about the forecasting task and how367

it translates into computerized trading decisions, information about the payoffs, and pay-368

off tables, as well as an example. The instructions convey a qualitative statement of the369

expectations feedback mechanism that characterizes the underlying asset pricing model.370

This information set implies that subjects know the form of, and the sign restrictions on,371

the price law of motion, but do not know the exact coefficient value, which is consistent372

with the theoretical model. Qualitative knowledge of the fundamentals is also in line with373

the functioning of real-world markets, while keeping the cognitive load of the instructions374

reasonable.375

At the end of the instructions, participants had to answer a quiz on paper. Two experi-376

menters were in charge of checking the accuracy of their answers, discussing their potential377

mistakes and answering privately any question. The first market opens only after all par-378

ticipants had answered accurately all questions of the quiz. This procedure allows us to379

be confident that all participants start with a reasonable understanding of the experimental380

environment and their task. Of the participants, 90% (218) reported that the instructions381

were understandable, clear or very clear.382

3.4. Hypotheses and experimental treatments383

The testable implications discussed in Section 2.2 relate the feedback parameter ξ to the384

price dynamics. In the experiment, we adopt the setup considered in Item 2 of Prop. 2.2:385
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two types of agents, distinguished by forecast horizon. This setup implies that ξ depends386

on the horizon lengths and the share of each agent-type. We design four treatments, labeled387

L, M50, M70 and S, and summarized in Table 2.388

First, we consider homogeneous planning horizons. Item 1 of Proposition 2.2 estab-389

lishes that the feedback ξ is inversely related to horizon length. In treatment Tr. S (for390

‘short’), all subjects forecast price over the planning horizon T = 1, and ξ reaches its upper391

bound β < 1. In Treatment L (for ‘long’) all subjects forecast average price over the next392

T = 10 periods, giving the lowest value of ξ that we explore. Ten is chosen as a compro-393

mise between the feasibility in the lab and reduction in ξ : see Figure 2b for the comparison394

of the expectational feedback across our different treatments.395

Second, we allow for two planning horizons. Item 2 of Prop. 2.2 shows that the feed-
back parameter ξ ∈ (0,1) increases with the share of short-horizon forecasters α . Figure
2 illustrates the effect of α on ξ for calibration of the model implemented in the labora-
tory. As is clear from Figure 2a, the impact on ξ is nonlinear, magnifying the stabilization
power of even a small share of long-horizon agents. We add two intermediate treatments
where the fraction α ∈ (0,1) of short-horizon planners takes the values 70% and 50% (Tr.
M70 and Tr. M50 respectively, for ‘mixed’), and the rest of the subjects are long-horizon
forecasters. With this set up, the law of motion of the price, based on Eq. (12), is

pt =p+ξs

(
∑s(pe

s,t− p)
αJ

)
+ξl

(
∑l(pe

l,t− p)

(1−α)J

)
, (3)

where p is the fundamental price, and

ξs =
αh(1)

αg(1)+(1−α)g(10)
, ξl =

(1−α)h(10)
αg(1)+(1−α)g(10)

,

g(T ) =
(
1−β

T+1)−1 (
1−β

T) and h(T ) =
(
1−β

T+1)−1
(1−β )T β

T .

The sums are over the short (s) and long (l) horizon participants, respectively, and pe
i,t is396

the expectation of average price over agent i’s forecast horizon(short=1andlong=10). Fi-397

nally, ξs and ξl measure the expectational feedback induced by the short- and long-horizon398

forecasters, respectively. SeeTable 2 for specific values used in the experiment.399

Proposition 2.2 and the implications established in Section 2.2, provide the first three400

main hypotheses to be tested through the experimental treatments. Corollary 1, suggests401

convergence in all treatments since the feedback parameter is always less than one. How-402
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ever, the implications at the end of Section 2.2 suggest that convergence to the REE can be403

tenuous if ξ is near one, as in Tr. S. These considerations suggest the following hypotheses:404

Hypothesis 1a (Price convergence) Under each treatment, participants’ average forecasts405

and the price level converge towards the REE.406

Hypothesis 1b (Price deviation) The higher the share of short-horizon forecasters, the407

more likely average forecasts and the price level will fail to converge towards the REE.408

Hypothesis 2 (Price volatility) Increasing the share of short-horizon participants increases409

the level of price volatility.410

Our theoretical results suggest coordination of agents’ expectations will increase over411

time as agents learn the REE. Since heterogeneous expectations provide a motive for trade412

in our experiment, we test the following in all treatments:413

Hypothesis 3 (Eventual coordination) Price predictions of participants become more ho-414

mogeneous over time. As a consequence, trade decreases over time.415

[Table 2 about here.]416

Besides providing an empirical test of the theoretical implications of the model, one fur-417

ther advantage of learning-to-forecast experiments is that they make it possible to collect418

“clean” data on individual expectations because the information, underlying fundamentals,419

and incentives are under the full control of the experimenter. Knowledge of fundamentals420

renders the measurement of mispricing patterns trivial; specification of the information re-421

ceived by the participants makes it possible to filter out which information really affected422

agents’ expectations, which are the only degree of freedom in the experiment. We can then423

use this rich dataset to test additional hypotheses regarding participants’ forecasting behav-424

ior. In the current context, it is of interest to compare the forecasts of short-horizon and425

long-horizon participants. A variety of factors suggest that long-horizon forecasting is more426

challenging than short-horizon forecasting. Long-horizon forecasting involves accounting427

for a sequence of endogenous outcomes, whereas short-horizon forecasting involves con-428

templation of only a single data point, and hence a lighter cognitive load.429

This discussion suggests that there may be more variation of price forecasts for long-430

horizon forecasters than for short-horizon forecasters. To measure this heterogeneity we431

use cross-sectional dispersion, defined in terms of the relative standard deviation of sub-432

jects’ forecasts within each period. We have the following two hypotheses:433
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Hypothesis 4 (Coordination and forecast horizons) Long-horizon forecasters exhibit more434

heterogeneity of forecasts, than short-horizon forecasters.435

Hypothesis 5 (Trade volume and forecast horizons) Higher shares of long-horizon fore-436

casters result in greater heterogeneity of forecasts and, hence, higher trade volumes.437

[Figure 2 about here.]438

3.5. Implementation439

The experiment was programmed using the Java-based PET software.13 Experimental440

sessions were run in the CREED lab at the University of Amsterdam between October 14441

and December 16, 2016. Most subjects (124 out of 240) had participated in experiments442

on economic decision making in the past, but no person participated more than once in this443

experiment. Each of the four treatments involved six groups of ten participants, for a total444

of 240 subjects, who participated in a total of 63 markets, ranging from 20 to 60 periods.445

The average earnings per participant amount to C22.9 (ranging from C10.8 to C36.6).446

4. The experimental results447

In Section 4.1, we provide a graphical overview of the price data from the experimental448

markets. In Section 4.2 we examine our hypotheses using cross-treatment statistical com-449

parisons. Section 4.3 conducts an empirical assessment of convergence to REE using price450

data. Finally, Section 4.4 connects the cross-treatment differences in terms of aggregate451

behavior to distinct forecasting behaviors across horizons by analyzing individual data.14
452

4.1. A first look at the data453

Figure 3 displays an overview of the realized prices in the experimental markets for454

each of the four treatments. Each line represents a market, with the reported levels corre-455

sponding to the deviations from the market’s fundamental value, expressed in percentage456

13The PET software was developed by AITIA, Budapest under the FP7 EU project CRISIS, Grant Agree-
ment No. 288501.

14We adopt a 5% confidence threshold to assess statistical significance. When carrying out econometric
analysis, we use OLS estimates, autocorrelation in error terms is detected by Breusch-Godfrey tests, and
heteroskedasticity using Breusch-Pagan tests. When needed, we use the consistent estimators described in
Newey and West (1994). Significant differences between distributions are established using K-S tests and
Wilcoxon rank sum tests to address non-normality issues.
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points.15 Plots with individual forecast data for each single market are given in On-line457

Supplementary Materials: Appendix B: see Figures 2 to 4. In those figures, blue corre-458

sponds to long-horizon forecasts, red to short-horizon forecasts, dots to rewarded forecasts459

and crosses to non-rewarded forecasts. Finally, the solid line is the realized price and the460

dashed horizontal line is the fundamental price.461

A first visual inspection of the market price data in Figure 3 leads us to identify three462

different emerging patterns: (i) convergence to the fundamental price (see, for instance, in463

Figure 3d, Tr. L, Gp. 2 in purple or Gp. 6 in orange); (ii) mispricing, that we characterize by464

mild or dampening oscillations around a price value that is different from the fundamental465

value; either above the fundamental price, i.e. overpricing, or below the fundamental price,466

i.e. underpricing (see, for an example of each type of mispricing, the two markets played467

by Gp. 1 in Tr. M70 on Figure 3b, red lines); and (iii) bubbles and crashes, described by468

large and amplifying oscillations (where the top of the “bubble” reached several times the469

fundamental value); see, e.g., the markets of the first group in Tr. S (Figure 3a, red lines).470

This first glance at the data already leads us to question Hypothesis 1a, as it is clear that471

not every market exhibits price convergence towards the fundamental value. On the other472

hand, we see patterns in the data that are in line with Hypothesis 1b: while large deviations473

from fundamentals are observed in the short-horizon treatments (Tr. S and Tr. M70), they474

are absent from the long-horizon treatments (Tr. M50 and Tr. L). Moreover, the problem of475

mispricing seems particularly acute in the short-horizon markets.476

[Figure 3 about here.]477

Interestingly, though, the observed bubbles break endogenously, which is not usual in478

LtFEs.16 Several features of our setting may be behind this phenomenon: (i) the framing479

in terms of chickens and eggs, or (ii) incentives related to the payoff-relevant utility: in the480

end-of-experiment questionnaire some participants reported attempting to lower the price481

because they experienced low payoff along a bubble.17
482

15The apparent asymmetry around zero in the proportional deviations from fundamental values reflects
that the price cannot be negative, while there is no upper bound except for the artificial one of 1000 that is
unknown to the subjects until they hit it.

16The only exception is Market 2 of Group 2, in Tr. S, where one participant hits the upper-bound of 1000
and receives the message that his predictions have to be lower than this number. Note that this bound has
been implemented for technical reasons, and none of the participants were aware of this bound, unless they
reach it. This bound was reached 25 times out of the 18,170 forecasts elicited across all markets and subjects
(which is about 0.1% of all forecasts).

17We also note that a high price provides incentives to sell – and therefore to submit a lower prediction
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In the rest of this section, we explore the differences between treatments and confront483

these with our theoretical implications and experimental hypotheses. We now formulate484

five main results in the context of our five hypotheses.485

4.2. Cross-treatment comparison486

Table 3 reports cross-treatment comparisons of aggregate data. The first rows show sig-487

nificant cross-treatment differences regarding the price deviation (from fundamental), price488

volatility and, to a lesser extent, forecast dispersion: see Table 3 for definitions of these489

terms. These differences confirm the visual impression that the horizon of the forecasters490

matters for price dynamics and convergence towards the REE. The discrepancy between491

the realized price and the fundamental is strikingly lower in Tr. L than in Tr. S. Moreover,492

while the discrepancy from the REE is not statistically different between Tr. L and Tr. M50,493

prices are significantly closer to the fundamental price in those two treatments than in Tr.494

M70. These difference lead us to reject Hypothesis 1a in favor of Hypothesis 1b:495

Finding 1 (Price convergence) Increasing the share of long-horizon forecasters from 0%496

to 30% and also from 30% to 50% significantly reduces price deviation from the REE.497

Turning to Hypothesis 2, we find long-horizon forecasters have a stabilizing influence498

on prices. The price in Tr.S is significantly more volatile than in all other treatments, while499

price volatility is not significantly different between Tr. M50 and Tr. L. Those observations500

yield the following finding, consistent with Hypothesis 2:501

Finding 2 (Price volatility) Increasing the share of long-horizon forecasters from zero502

percent to 30% and also from 30% to 50% significantly reduces price volatility.503

Our results suggest a threshold effect in the share of short-horizon forecasters on price504

convergence and volatility. A large share of short-horizon forecasters (more than half of505

the market) is necessary to hinder stabilization and convergence.506

[Table 3 about here.]507

Regarding Hypothesis 3, we consider the issue of coordination between participants.508

The trade volume significantly decreases in all treatments except Tr. S. Similar dynamics509

are observed for the within-participants forecast dispersion over time. In Tr. S, neither510

than the average of the group – a strategy that was also reported a few times.
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the forecast heterogeneity nor the trade volume shrinks over time.18 Therefore, in partial511

support of Hypothesis 3, we obtain the following result:512

Finding 3 (Eventual coordination) In all treatments except in Tr. S, participants’ fore-513

casts become more homogeneous over time and, hence, the trade volume decreases over514

time.515

Our last two hypotheses relate to the differences across treatments of participants’ de-516

gree of coordination. Table 3 gives some evidence that the presence of more short-horizon517

forecasters leads to more homogeneous forecasts: forecast dispersion is higher in Trs. L and518

M70 than in Tr. S. In mixed treatments, coordination among agents with common forecast519

horizons can be assessed. For example, in Tr. M50, looking at the first market of Gp. 4,520

or at all markets in Gp. 5 and 6, it is clear that short-horizon forecasts are closer to each521

other than the long-horizon ones (see Figure 3 in the On-line Supplementary Materials:522

Appendix B). This is confirmed by statistical analysis: in this treatment, the average dis-523

persion between short-horizon forecasters is 0.057, versus 0.163 among the long-horizon524

forecasters, and the difference is significant (p-value < 2.2e− 16). Using also the trade-525

volume and forecast-dispersion rows in Table 3, and in line with Hypotheses 4 and 5, we526

find the following:527

Finding 4 (Coordination and forecast horizons) Long-horizon forecasters exhibit greater528

cross-sectional forecast dispersion than do short-horizon forecasters.529

Finding 5 (Trade volume and forecast horizons) The higher the share of long-horizon530

forecasters in a market, the greater the cross-sectional dispersion of price forecasts and531

the higher the trade volume.532

These findings align with the survey-data analysis of Bundick and Hakkio (2015) and the533

experimental work of Haruvy et al. (2007) (done in non-self-referential environments).534

There are two additional considerations of interest that are less directly connected to535

our hypotheses: first, possible learning effects resulting from repetition; second, the impli-536

cations of performance metrics based on received utility versus forecast accuracy.537

18A regression of the trade volume on the period leads to the coefficients -0.433, -0.348, -0.699 and 0.021
for, respectively, Tr. L, M50, M70 and S, with the associated p-values < 2e−13 except for Tr. S with 0.493.
Similarly, with the forecast dispersion as a dependent variable, the same estimated coefficients are -0.004,
-0.004, -0.005 and 6.185e-05 with the associated p-values of 0.020, 5.4e-06, 0.002 and 0.935.
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The repetition design of our experiment allows us to look at learning effects in sequen-538

tial markets with the same group of subjects. Replications of the seminal Smith et al. (1988)539

bubble experiment find that large deviations from fundamentals disappear if the market is540

repeated several times with the same participants (Dufwenberg et al., 2005).541

Results from our experiment convey the impression that price fluctuations do not de-542

crease with participants’ experience: see figures in the On-line Supplementary Materials:543

Appendix B. On the contrary, a bubble can take several markets to arise, and price devia-544

tions from fundamental tend to amplify with market repetitions. This is especially the case545

in Groups 1, 2 and 4 of Tr. S. Deviations from fundamental tend also to increase with546

market repetition in Gp. 5 of Tr.L.19 Not only are learning effects absent, in fact our results547

suggest that volatility in the form of bubbles and crashes persists across markets.548

Turning to the role of performance metrics, we return to Table 3 and consider the earn-549

ings of participants in different treatments. While not directly connected to our hypotheses,550

incentives are an essential ingredient of theory testing using laboratory experiments. The551

data from the last two rows of Table 3 reveal that there is no noticeable difference in par-552

ticipants’ earnings across treatments, whether based on utility or forecasting.553

4.3. Assessing convergence to the REE554

Since Hypotheses 1a-1b are the primary focus of the experiment, this subsection and the555

next complement Finding 1. Here we formally test whether convergence to the fundamental556

value occurs in the experimental markets. We follow the method presented in Noussair557

et al. (1995), which consists in estimating the value to which the price would converge558

asymptotically if a market were extrapolated indefinitely.20 As the lengths of our markets559

differ and most are short due to the stochastic termination rule, this approach appears well560

suited to our experiment.561

We estimate the following equation for each of the four treatments separately:

pg,m,t− pg,m

pg,m
=

1
t

6

∑
g=1

∑
m∈ΩMg

Dg,mb1,g,m +
t−1

t

6

∑
g=1

∑
m∈ΩMg

Dg,mb2,g,m, (4)

19Linear regressions of the absolute deviations of prices and forecasts from the REE on the order of the
market confirms the absence of convergence along sequential markets. By design, repeated markets had
different fundamental prices, which makes it difficult to carry over knowledge from one market to the next.

20Duffy (2016) identifies circumstances in which Noussair et al. (1995)’s method has shortcomings, and
suggests an alternative regression to address them. In our case, these circumstances only arise in one out of
the 63 markets (in the first market of Tr. S, Group 2).
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with pg,m,t the realized market price in period t in Group g ∈ {1, ...,6} and market m; ΩMg562

the number of markets played by Group g; Dg,m a dummy taking the value one if the price563

comes from Group g and market m and zero otherwise; and pg,m is the fundamental value564

of the price in Group g and market m.565

The estimated coefficients of these regressions provide the fitted initial (b̂1,g,m) and566

asymptotic (b̂2,g,m) prices. If b̂2,g,m is not significantly different from zero, we cannot re-567

ject the hypothesis of strong convergence towards the fundamental, i.e. b2,g,m = 0. If568 ∣∣b̂1,g,m
∣∣> ∣∣b̂2,g,m

∣∣ holds significantly, the evidence supports weak convergence towards the569

fundamental. The results are collected in Figure 4. Details of the estimations are in On-line570

Supplementary Materials: Appendix C.571

[Figure 4 about here.]572

The distributions of the estimated coefficients in Figure 4 reveal a net decrease in the573

estimated distances of the price to fundamental in Tr. M70, M50 and L (compare the paired574

box plots per treatment).21 However, a decrease is not observed in Tr. S. The estimated575

final distances are particularly concentrated around zero in Tr.L, and even more strikingly576

in Tr.M50. Econometric analysis shows that weak convergence obtains in all but one market577

in Tr. L, and most markets in Tr. M50. By contrast, fewer than two-thirds of the markets in578

Tr. M70 exhibit weak convergence, and fewer than one-half of the markets in Tr. S. Results579

on strong convergence show a similar pattern.580

As a complement to Finding 1, we draw from this exercise the following insight:581

Finding 6 (Statistical convergence) Convergence to the REE is more frequently observed582

when the share of long-horizon forecasters is increased.583

This finding conforms with Hypothesis 1b and Figure 4 rejects Hypothesis 1a.584

We now examine factors that contribute to the convergence failures observed in Tr.M70585

and Tr.S. Initial conditions in a given market may be correlated with terminal conditions in586

the previous market: see figures in On-line Supplementary Materials: Appendix B. Price587

patterns, such as systematic mispricing and oscillatory behaviors, sometimes appear to588

21A box plot illustrates a distribution by reporting the four quartiles, with the thick line being the median,
and the two whiskers being respectively Q1 and Q4 within the lower limit of Q1− 1.5(Q3−Q1) and the
upper limit of Q3+1.5(Q3−Q1). Outside that range, data points, if any, are outliers and represented by the
dots. In the figure, each pair of box plots represents a treatment. The first box plot of each pair gives the
distribution of the estimated initial values b̂1,g,m, the second one the estimated asymptotic values b̂2,g,m in (4).
The zero line represents convergence to fundamental.
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carry over from one market to another even though the information from previous markets589

is not displayed to participants.590

We compute the correlation between the estimated initial price values {b̂1,g,m} and the591

price levels prevailing in the preceding market. This correlation is 0.6644 (p-value 0.0000)592

when the previous prevailing prices is measured as the average price over the last 10 periods593

of the previous market, and is 0.3444 (p-value: 0.0057) when measured as simply the last594

observed price in the preceding market.22
595

Equation (4) can also be used to assess the role of price histories in convergence failures,596

by conducting an analysis of the variance of the estimated asymptotic coefficients {b̂2,g,m}597

in terms of three factors: the fundamental value; the price in period one; and the last price598

in the previous market.23 Results, reported in Figure 5, reveal a striking pattern: asymptotic599

price values are almost entirely driven by fundamental values in Tr.L and M50, while initial600

price levels and price histories explain a considerable amount of the asymptotic price values601

in Tr.M70, and an even larger amount in Tr.S. This analysis confirms the dynamics reported602

in Figure 4, and sheds further light on Hypotheses 1a and 1b: coordination of subjects’603

forecasts on an incorrect anchor, namely past observed prices, is responsible for the lack of604

convergence observed in Tr.M70 and Tr.S and, hence, the rejection of Hypothesis 1a.605

Finding 7 (Fundamental and non-fundamental factors)606

(i) When the share of long-horizon forecasters is large enough, the asymptotic market607

price is driven by fundamentals only.608

(ii) If short-horizon forecasters dominate, the asymptotic market price is partly driven609

by non-fundamental factors, in particular past observed price levels.610

[Figure 5 about here.]611

To shed some light on the causal mechanisms behind those results, we now seek to612

understand how the participants formed their price forecasts and how those individual be-613

haviors connect to the observed market prices in the experiment.614

22For first markets, we took 50 as the previous value because it corresponds to the middle point of the
empty price plot that the participants observe before entering their first forecast; see the screen shots, On-line
Supplementary Materials: Appendix B, Figure 1. Removing first markets results in fewer data points, but the
correlation pattern persists.

23The variance decomposition was done using the Fourier amplitude sensitivity test.
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4.4. Participants’ forecasts and aggregate outcomes615

At the end of the experiment, participants were asked to describe in a few words their616

strategies. Analysis of the answers makes clear that the vast majority of participants, aside617

from strategic deviations for trading purposes, made use of past prices. The observation that618

expectations about future market prices depend on past trends has also found wide support619

in the experimental literature – see the early evidence reported in Smith et al. (1988) and620

Andreassen and Kraus (1990), and more recent evidence found in Haruvy et al. (2007); see621

also the empirical literature, starting from early contributions such as Shiller (1990).622

To estimate the dependence of participants’ forecasts on past data, we begin with the
following class of simple, yet flexible, agent-specific forecasting models:

pe
j,t = β0 +β1 pt−1 +β2 pt−2 +δ1 pe

j,t−1. (5)

This class extends the constant gain implementation of equation (2) to include models623

conditioning on pt−2. Clearly, participants could have paid attention to even more lags of624

the observable variables – a few reported to have done so – but most referred to at most the625

last two of prices in their strategy. Of course, including lagged expectations is an indirect626

way of accounting for the influence of additional lags of prices.24
627

We focus on the following three special cases of the forecasting model (5):628

Naive expectations: β0 = β2 = δ1 = 0 and β1 = 1

Adaptive expectations: β0 = β2 = 0, β1 ∈ (0,1), and β1 +δ1 = 1

Trend-chasing expectations: β0 = δ1 = 0, β1 > 1, and β1 +β2 = 1

Under naive expectations, pe
j,t = pt−1. Although we label this “naive,” these are the optimal629

forecasts if the price process follows a random walk, and naive expectations are therefore630

“nearly rational” when prices follow a near-unit root process. We note that naive expec-631

tations corresponds to constant-gain adaptive learning with γ = 1: see Section 2.2. Under632

adaptive expectations, agents forecast as pe
j,t = pe

j,t−1+β1(pt−1− pe
j,t−1). This rule, which633

corresponds to the constant-gain adaptive learning rule of Section 2.2 with 0 < γ < 1, is634

known to be optimal if the price process is the sum of a random walk component and white635

noise, i.e. a mix of permanent and transitory shocks: see Muth (1961).636

24In principle, this forecasting model could generate negative price forecasts, in which case it would be
natural for agents to impose a non-negativity condition.
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Under trend-chasing expectations, agents forecast as pe
j,t = pt−1+φ (pt−1− pt−2) where637

φ = β1−1> 0. This rule performs well in bubble-like environments in which price changes638

are persistent. In fact, this forecasting rule is optimal if the first difference in prices follows639

a stationary AR(1) process. Intuitively, agents are forecasting based on the assumption that640

the proportion φ of last period’s price change will continue into the future. Finally, we note641

that trend-chasing expectations can lead to stable cyclical price dynamics.642

We focus on the class of simple rules (5) for parsimony and because they nest salient643

special cases. However, adaptive learning is much more general, both in terms of included644

regressors and in allowing parameters to evolve over time as new data become available.645

[Figure 6 about here.]646

Figure 6 illustrates the potential for these simple forecasting rules to explain the price647

data in five different experimental markets: see graphs (a) to (e). The dashed horizontal line648

is the fundamental price and the dotted line is the realized price in the experimental market.649

Dots correspond to simulated price forecasts and the solid line gives the implied, simulated650

market prices. To construct the simulated price forecasts, a parametric specification of a651

particular forecasting model is chosen, and, for each agent, is initialized using their fore-652

casts in the first two periods of the experiment. In each subsequent period, agents’ forecasts653

are determined using the forecasting model, previously determined simulated prices, and a654

small, idiosyncratic white noise shock. Note that the simulated and experimental price time655

series are close to each other. Figure 6 also highlights the systematic differences between656

treatments and horizons in belief formation and links them to the observed price patterns.657

Graph (a) provides an example of trend-chasing behavior that emerged from treatment658

S. The simulated data are based on setting φ = β1−1 = 0.3, strikingly illustrate the pos-659

sibility of a bubble and crash being generated by trend-chasing forecast rules. Graph (b)660

gives an example of adaptive expectations associated to treatment L, with parameterization661

β1 = 0.7 and δ1 = 0.3, showing apparent convergence to the fundamental price.662

Graphs (c) and (d) correspond to treatment M50, in which short-horizon forecasters663

are naive and trend-following, respectively, and long-horizon forecasters form expectations664

adaptively. The simulated price paths depend on the individuals’ initial forecasts in each665

market, a significant factor in the observed dynamics. Graph (c) exhibits persistent depar-666

tures from fundamentals, while in graph (d) the short-horizon trend-chasers generate cyclic667

dynamics as well as apparent convergence. Finally, graph (e) corresponds to M70 with668

short-horizon trend-chasing forecasters and long-horizon forecasters forming expectations669
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adaptively. Here the cyclicality arising from the trend-followers is even more pronounced.670

The presence of only 30% long-horizon types appears insufficient to impart convergence.671

Using step-by-step elimination, we examined individual participant-level forecast data,672

pooled across markets, and looked for simplifications of the model (5) in an attempt to673

determine if, and to what extent, participants used one of the three simple rules listed above,674

and whether there exist systematic differences in forecasting behaviors across horizons.675

We found, considering all 240 participant forecast series,25 that more than half the short-676

horizon participants had forecasts consistent with trend-chasing rules, and more than a third677

of the long-horizon participants had forecasts consistent with adaptive expectations.26
678

The estimated coefficients β̂0, β̂1, β̂2 and δ̂1 from (5) for each participant are illustrated679

in Figure 7: smaller, solid triangles identify long-horizon forecasters and larger triangles680

identify short-horizon forecasters.27 Panel 7a shows a scatterplot of the components β̂1681

and β̂2 for each participant. Under the restrictions β̂0 = δ̂1 = 0 and β̂1 > 1, the trend-682

chasing model aligns with the constellation of points on the part of the downward-sloping683

dashed line that lies within the shaded region. Clearly, there are striking differences in the684

behaviors of participants tasked with short-horizon versus long-horizon forecasting.685

A substantial number of the short-horizon points in Panel 7a lie on, or close to, the686

trend-chasing constellation. The trend-chasing restrictions cannot be rejected for 56% of687

the short-horizon forecasters. Panel 7b shows the corresponding scatterplot of the compo-688

nents β̂1 and δ̂1. Under the assumptions that β̂0 = β̂2 = 0 and 0 < β̂1 < 1, the adaptive-689

expectations model aligns with the constellation of points on the part of the downward-690

sloping dashed line that lies within the shaded region in panel 7b.28 In contrast with the691

behavior exhibited by short-horizon forecasters, a substantial number of the long-horizon692

points in panel 7b lie on, or close to, the adaptive-expectations constellation. The adaptive-693

expectations restrictions cannot be rejected for more than one-third of the participants in694

long-horizon treatments. We summarize these findings as follows:695

25The experiments included 18 treatment S, 14 treatment L, 18 treatment M70, and 13 treatment
M50markets, with 10 participants in each market, giving 630 market-participant forecast series.

26For 212 of 240 participants, the step-by-step elimination process leads to a forecasting model in which
at least one variable other than the intercept is significant. Also, the average R2 is high for each treatment
(ranging from an average of 0.884 in Tr.L to 0.962 in Tr.M50), which confirms the ability of the simple class
of rules (5) to capture the main features of participants’ behavior.

27A few of the participants’ estimated coefficients lie outside the ranges chosen for Figure 7.
28Naive expectations corresponds to limiting cases (i.e. β̂1 → 1) of both trend-chasing and adaptive-

expectations forecasting models.
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Finding 8 (Individual forecast behaviors) Short-horizon and long-horizon forecasters dis-696

play different forecasting behaviors: (i) More than one-half of the short-horizon forecasters697

form forecasts consistent with trend-chasing behavior. (ii) More than one-third of the long-698

horizon forecasters form forecasts consistent with adaptive expectations.699

These results align with Hypothesis 1b: distinct forecasting behaviors across horizons im-700

ply differences in price patterns. Trend-chasing behavior tends to preclude, and adaptive701

expectations tend to impart convergence to REE. Finding 8 also suggests greater forecast-702

model heterogeneity in long-horizon treatments, providing some support to Hypothesis 4.703

[Figure 7 about here.]704

The plots in Figure 7 include estimates that do not appear, even after accounting for705

statistical significance, to align with any of the special cases identified above. There are706

several possible explanations. First, it is possible that some subjects use less parsimonious707

forecasting rules than are captured by the class (5). Second, given that most subjects partic-708

ipated in multiple markets, it is quite possible that some of these participants used different709

rules in different markets. Our pooling estimation strategy does not account for this. Third,710

in general, under adaptive learning , in addition to the intercept, the other coefficients in711

the subjects’ forecasting rules may evolve over time to reflect recent patterns of the data.712

Finally, we note that if ξ is near one then any collective forecast of the deviation of price713

from fundamentals is nearly self-fulfilling; this point is particularly germane for Tr. S.714

Finding 8 sheds further light on the observed treatment differences. Admittedly, it is715

difficult, using the whole dataset, to distinguish between the effects on prices of changes in716

ξ and differences in how expectations are formed over different horizons. It is more reveal-717

ing to look into Trs. M50 and M70 only, where all subjects, whether long- or short-horizon718

forecasters, operate in the same market environment – only the nature of their forecasting719

task differs. In these treatments, Finding 8 still holds: subjects systematically used distinct720

rules to forecast over short and long horizons; see Figures 7c-7d. It follows that prices dis-721

play different patterns across Trs. M50 and M70 in part because the respective participants’722

forecasting tasks differ, and not only because the expectational feedback differs.723

Visually, we cannot identify a different pattern between the top panels and the bottom724

panels. We verify this visual impression by using chi-squared tests for equality of pro-725

portions. The proportions of trend-chasers in the four treatments pooled together, in the726

two heterogeneous-horizon treatments pooled together, in Tr. M50 only, and in Tr. M70727
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only, are not significantly different from each other
(
χ2(3) = 1.38, p-value = 0.71

)
. Sim-728

ilarly, the proportions of adaptive learners in the four treatments pooled together, in the two729

heterogeneous-horizon treatments pooled together, in Tr. M50 only, and in Tr. M70 only,730

are not significantly different from each other
(
χ2(3) = 1.85, p-value = 0.60

)
.731

In summary, longer forecast horizons induce lower expectation feedback and long-732

horizon treatments are empirically associated with adaptive expectations; both of these733

features induce price stability and more frequent convergence to the fundamental price. By734

contrast, shorter forecast horizons result in higher expectation feedback and short-horizon735

treatments are empirically associated with trend-chasing behavior; both of these features736

lead to persistent departures from the fundamental price.737

5. Conclusions738

We have investigated the impact of forecast horizons on price dynamics in a self-739

referential asset market. We developed a model with BR agents and heterogeneous plan-740

ning horizons, and derived theoretical predictions for the effects of the planning horizon741

on the dynamic and asymptotic behavior of market price. We then tested our predictions742

by implementing our asset market in a lab experiment, eliciting price forecasts at different743

horizons from human subjects and trading accordingly.744

The central finding of this paper is that key features of price dynamics are governed745

by the forecast horizons of agents. This was demonstrated analytically in a simple asset-746

pricing model, and then tested in a laboratory experiment. Our experimental design, which747

holds everything fixed except for the proportions of long-horizon and short-horizon sub-748

jects, finds dramatically different pricing patterns in the different treatments.749

Prices in markets populated by only short-horizon forecasters fail to converge to the750

REE, with large and prolonged deviations from fundamentals. By contrast, in line with751

our theoretical predictions, we find that even a relatively modest share of long-horizon752

forecasters is sufficient to induce convergence toward the REE.753

In our design, payoffs are determined in part by discounted consumption utility, as754

reflected in our forecast-based trading mechanism. This eliminates incentives to obtain755

capital gains arising from speculation about future crowd behavior, which is the focus of756

models like (De Long et al., 1990). Because dividends are known to be constant, we rule757

out the possibility that heterogeneous beliefs about future dividends cause price deviations758

from fundamentals. Nor do fluctuations arise from confusion about how the market works,759
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as the vast majority of participants reported to understand their experimental task. We can760

exclude the role of liquidity in mispricing, as this is kept constant across all treatments.761

Our finding that even a modest proportion of long-horizon subjects tends to guide the762

economy to the REE can be related both to the magnitude of the model’s expectational763

feedback and to the systematically different forecasting behaviors identified for short and764

long horizons. Trend-chasing behavior is widely observed among short-horizon forecast-765

ers while adaptive expectations better describes long-run predictions. Hence, long-horizon766

forecasts induce stability around the REE, whereas coordination of forecasts on trend-767

following beliefs, and anchoring of individual expectations on non-fundamental factors,768

are largely responsible for mispricing in short-horizon markets. Instability of this type has769

been noted in the adaptive learning literature. Our experiment shows that this theoretical770

outcome constitutes an empirical concern as well.771

Our study employs a framing that does not use the vocabulary of speculative asset772

markets; we emulate a stationary and infinite environment that induces discounting with a773

stochastic ending; and our payoff scheme incentivizes participants to smooth consumption.774

Despite these features, we obtain systematic mispricing when only short-horizon subjects775

are present, which implies an expectational feedback parameter close to one. We also iden-776

tify systematic variations in the behaviors of short-horizon and long-horizon forecasters777

that are consistent with the distinct price patterns across horizons.778

Long-horizon forecasting is more challenging than short-horizon forecasting: partici-779

pants must average over a number of future periods; further, the observability of the forecast780

errors and the resulting feedback from the experimental environment is delayed to the end781

of the forecast horizon, when the average price is realized. Long-horizon forecasters also782

display more disagreements. Despite these obstacles, their presence stabilizes the market.783

An interesting insight from our findings is that heterogeneity in behavior need not be784

detrimental to market stabilization. In our setup, when short-horizon agents are present,785

introducing long-horizon agents contributes to breaking the coordination of participants’786

beliefs on non-fundamental factors. We also find that the type of forecast rule used by a787

given subject depends on the exogenously imposed planning horizon. This suggests that788

BR agents are not characterized by invariant behavioral types.789

Our study has implications for macro-finance models with heterogeneous, BR agents.790

Our findings that agents’ forecast horizons play a central role in the determination of asset791

prices clearly suggest that the forecasting horizon of agents must be taken into account792

when assessing economic models and designing policy. For example, in new-Keynesian793
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models a key issue is how to design the interest rate policy rule. Currently there is dis-794

cussion about the possibility of targeting the average inflation rate over a stated interval795

of time. Over how many periods remains an open question, and our findings suggest that796

forecast horizon should be taken into consideration when designing such a policy.797

We have assumed a stationary setup, but policy in macro models often is concerned798

with announced temporary changes. Examples include forward guidance in monetary pol-799

icy and fiscal stimulus with announced durations. Clearly the efficacy of these policies800

depends on the expectations of agents, and thus on their forecast horizons. There are well-801

known puzzles related to announced policy under rational expectations, which can be ame-802

liorated when RE is replaced by adaptive learning. A fruitful area for research would be to803

extend the approach in this paper to study how the forecast horizon affects theoretical and804

experimental results in the context of announced policy changes.805
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t + 1

Summing the J
demand schedules
Eq. (A.11) over
all subjects with∑

i dqi,t = 0,∀t
gives market

clearing price pt
(Eq. A12).

Compute individual
trade (qi,t − qi,t−1),
consumption c per

the budget
constraint in Eq.(1)
and utility level per
the payoff function

u(c).

Compute
individual asset

holdings qj,t from
Eq. (A.11) given
pt, the previous
asset holdings
qj,t−1 and their

forecast pej,t.

t + 0
4 t + 1

4
t + 2

4 t + 3
4

Subjects
submit their
price forecast

pej,t of the
average price

over
[t + 1, t + T ].

Subjects
submit their
price forecast
pej,t+1 of the
average price

over
[t + 2, t + T + 1].

... ...

Note: in the experiment, we use a two-type version of the model with Ti = {1,10}, i = 1,2 and J = 10
subjects. The share α of short-horizon forecasters is a treatment variable; see Table 2. The steady state
values of the price p, the chicken endowment q and the egg dividend y vary in each market; see Table 1.

Figure 1: Timing of events within one period of an experimental market
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Figure 3: Overview of the realized price levels in all experimental markets
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Note: upper panel: distribution of estimated initial (b̂1,g,m) and final (b̂2,g,m) price values in relative deviation
from fundamental per treatment. Lower panel: number of markets exhibiting weak and strong convergence,
as defined in the main text, over the total number of markets in each treatment, and corresponding fractions
of converging markets.

Figure 4: Results of the convergence assessment
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Figure 5: Contribution to the variance of the estimated final values b̂2,g,m
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Note: The blue dashed line is the fundamental price, the dotted lines represent the prices in the experimental
markets, the dots and the solid lines are the simulated forecasts and prices. The forecasts in the first two
periods are taken from the experiment. An idiosyncratic shock distributed as N (0,2) is added then in each
subsequent period to the forecasts. Fig. (a): Tr. S, Gp. 1, Market 1, trend-chasing forecasting model
with β1 = 1.3 (see Eq. (5) below); Fig. (b): Tr. L, Gp. 2, Market 1, convergence with adaptive learning,
δ1 = 0.3; Fig. (c): Tr. M50, Gp. 6, Market 1, overpricing with static short-horizon forecasters (β1 = 1) and
adaptive long-horizon forecasters (δ1 = 0.1); Fig. (d): Tr. M50, Gp. 1, Market 2, trend-chasing short-horizon
forecasters (β1 = 1.3) and adaptive long-horizon forecasters (δ1 = 0.1); Fig. (e): Tr. M70, Gp. 6, Market 1,
trend-chasing short-horizon forecasters (β1 = 1.75), adaptive long-horizon forecasters (δ1 = 0.1).

Figure 6: Simulated versus experimental time series for selected price patterns
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(d) Adaptive expectations (Trs. M50 and M70 only)

Figure 7: Distribution of the estimated coefficients of Eq. (5)
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Markets

Market 1 Market 2 Market 3 Market 4 Market 5

Dividend y 2 4 1 5 3
Fundamental price p 38 76 19 95 57
Endowment q 4100 2100 8200 1700 2700

Table 1: Calibration of the markets, all groups, all treatments
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Treatments

Tr. L Tr. M50 Tr. M70 Tr. S

Share α with horizon T = 1 0 0.5 0.7 1
(and number of forecasters) (0 subject) (5 subjects) (7 subjects) (10 subjects)

Share 1−α with horizon T = 10 1 0.5 0.3 0
(and number of forecasters) (10 subjects) (5 subjects) (3 subjects) (0 subject)

Values of {ξs,ξl} {0,0.746} {0.338,0.481} {0.534,0.326} {0.95,0}

Number of independent observations 6 6 6 6
(number of participants) (60) (60) (60) (60)

Notes: {ξs,ξl} refer to the feedback parameters in equation (3) associated with the average forecast among,
respectively, the short-horizon and the long-horizon subjects.

Table 2: Summary of the four experimental treatments
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Diff-diff treatments

L-S L-M70 L-M50 M70-S M50-S M50-M70

Price deviationa -0.564 -0.111 0.012 -0.453 -0.576 -0.123
(p-value) (0.000) (0.000) (0.205) (0.000) (0.000) (0.000)

Price volatilityb -2.123 -0.111 -0.029 -2.013 -2.094 -0.082
(p-value) (0.000) (0.000) (0.315) (0.000) (0.000) (0.000)

Trade volumec 0.088 0.061 0.140 0.027 -0.052 -0.079
(p-value) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Forecast dispersiond 0.161 0.080 0.115 0.081 0.046 -0.035
(p-value) (0.030) (0.970) (0.094) (0.010) (0.968) (0.049)

EER (forecasts)e -0.071 -0.026 -0.083 -0.045 0.012 0.057
(p-value) (0.231) (0.924) (0.452) (0.304) (0.990) (0.622)

EER (utility)e 0.010 -0.003 0.002 0.013 0.008 -0.005
(p-value) (0.965) (0.984) (0.614) (0.663) (0.754) (0.414)

Note: The table reports the differences between treatments, and the associated p-values of the two-
sided Wilcoxon rank-sum tests (except to compare the cross-treatment price volatility where we use
a Levene test). In bold are the significant differences between treatments. K-S tests give the same
predictions, except between treatments M50 and L regarding the price deviation, in which case the
pair-difference becomes insignificant.

a Average of the absolute price deviation from its fundamental value pm, over all periods t ≥ 1 of
each market m, computed as (pm)

−1 | pm,t − pm |.
b Variance of the price normalized by the fundamental value computed as Var

(
pm,t
pm

)
.

c Sum over all periods t and all markets m of exchanged assets among subjects in proportion of the
steady-state endowment qm, i.e. ∑

10
j=1 |

q j,t−q j,t−1
qm

|.

d Relative standard deviation between subjects’ forecasts

√
Var(pe

j,t ) j∈J

mean(pe
j,t ) j∈J

, t ≥ 1, averaged over all peri-

ods of each market.
e Earnings Efficiency Ratio (EER) computed over all periods of each market, averaged over the

10 subjects as follows: (i) for the forecasting task, it is the average number of forecasting points
earned in each market over the total amount of points possible in the market (1100 per period in
case of perfect prediction); (ii) for the consumption task, it is the average number of utility points
earned in each market over the total utility points earned at equilibrium (1081 per period).

Table 3: Cross-treatment statistical comparisons
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