Learning and Expectations in Macroeconomics

Problems for Chapter 11

1. Consider the Overlapping Generations model with a multiplicative productivity shock, i.e. output is

$$Q_t = n_t v_t$$
 where $v_t \stackrel{iid}{\sim} U \left[1 - \alpha, 1 + \alpha \right], \ 0 < \alpha < 1.$

Here $U[1-\alpha,1+\alpha]$ denotes the uniform distribution over $[1-\alpha,1+\alpha]$. Agents maximize

$$E_t(U(c_{t+1}) - V(n_t))$$
 subject to $p_t n_t v_t = p_{t+1} c_{t+1}$.

Let

$$U(c) = c^{1-\sigma}/(1-\sigma)$$
 and $V(n) = n^{1+\varepsilon}/(1+\varepsilon)$ where $\sigma, \varepsilon > 0$.

(a) Show that with constant money stock the equilibrium equation satisfies

$$n_t = (E_t(Q_{t+1}^{1-\sigma}))^{1/(1+\varepsilon)}$$
.

(b) Under adaptive learning we assume that

$$n_t = (X_{t+1}^e)^{1/(1+\varepsilon)}$$

$$Q_t = n_t v_t,$$

where X_{t+1}^e is the agents' forecast of $q_{t+1}^{1-\sigma}$, given by

$$X_{t+1}^e = X_t^e + t^{-1} \left(Q_{t-1}^{1-\sigma} - X_t^e \right).$$

Using Matlab or another programing language, simulate the system for T=10,000 periods. Set $\sigma=0.5$, $\varepsilon=0.1$ and $\alpha=0.5$. Choose initial $X_1^e=0.5$.

- (i) Plot X_t^e and Q_t over the first 150 periods.
- (ii) Calculate the sample mean and standard deviation of q_t and X_t^e over the last 1000 periods.
- 2. Suppose

$$y_t = E_t F(y_{t+1}) + v_t,$$

where v_t is *iid* with bounded support and mean 0. Restrict attention to solutions with $y_t > 0$ and suppose that F is continuous with a unique positive fixed point $\bar{y} = F(\bar{y})$. Assume also that (i) F is concave and (ii) F(y) - y > 0 for $y < \bar{y}$ and F(y) - y < 0 for $y > \bar{y}$. Suppose that there exists a noisy steady state of the form

$$y_t = \bar{\theta} + v_t.$$

Using Jensen's inequality, show that $\bar{\theta} \leq \bar{y}$.

- 3. Consider the OG model with additive productivity shocks (Example 2 of Section 11.3.1), with the the utility specification given in Example 3, i.e. $U(c) = c^{1-\sigma}/(1-\sigma)$ and $V(n) = n^{1+\varepsilon}/(1+\varepsilon)$ where $\sigma, \varepsilon > 0$, and where $\lambda_t = \beta + v_t$ with v_t iid uniform over $[-\alpha, \alpha]$.
 - (a) Show that

$$(n_t + \lambda_t)n_t^{\varepsilon} = E_t^*(n_{t+1} + \lambda_{t+1})^{1-\sigma}.$$

(b) Show that when $\varepsilon = 1$ the model can be written in the form $n_t = H(E_t^*G(y_{t+1}, v_{t+1}), v_t)$, where

$$G(n,v) = (n+\beta+v)^{1-\sigma} H(\theta,v) = 0.5 (-\beta-v+((\beta+v)^2+4\theta)^{0.5}).$$

(c) Recall that a noisy steady state satisfies $y_t = H(\bar{\theta}, v_t)$ where $\bar{\theta}$ satisfies

$$\bar{\theta} = T(\bar{\theta})$$
 where $T(\theta) \equiv EG(H(\theta, v), v)$.

Write a program, using for example Matlab, that numerically computes the noisy steady state $\bar{\theta}$. Assuming $\sigma = 4.0$, find the values of $\bar{\theta}$ for $\alpha = 0.001$, $\alpha = 0.1$ and $\alpha = 0.3$. (This can be done using a numerical integration comand to compute the required expectation and a grid search to find the equilibrium value $\bar{\theta}$).

- (d) For each value of α in (c), compute the derivative $T'(\bar{\theta})$ numerically. In which cases is the RE steady state stable under the adaptive learning rule given in Section 11.4?
- (e) Anticipating Chapter 12, we say that a nosity steady state $\bar{\theta}$ is strongly stable under adaptive learning if it remains locally stable even when agents overparameterize it as a 2-cycle. The corresponding strong E-stability condition is $|T'(\bar{\theta})| < 1$. For each value of α in (c) determine whether $\bar{\theta}$ is strongly E-stable.
- 4. Consider the hyperinflation model with linear savings function, so that inflation in period t is given by

$$\pi_t = \frac{a - b\pi_t^e}{a - b\pi_{t+1}^e - g}.$$

The agents are assumed to use the learning rule with constant gain

$$\pi_{t+1}^e = \pi_t^e + \gamma (\pi_{t-1} - \pi_t^e).$$

(a) Introducing the notation $x_t = \pi_{t-1}^e$, show that the dynamics can be written in the form

$$\Delta \pi_{t+1}^{e} \equiv \pi_{t+1}^{e} - \pi_{t}^{e} = f(\pi_{t}^{e}, x_{t})$$

$$\Delta x_{t+1} = x_{t+1} - x_{t} = g(\pi_{t}^{e}, x_{t}).$$

Derive the forms of the two functions. Note that we have the restrictions $0 \le \pi_t^e, x_t \le a/b$.

- (b) Construct a phase diagram in the (x_t, π_t^e) -space by drawing the loci $\Delta \pi_{t+1}^e = 0$ and $\Delta x_{t+1} = 0$. Illustrate the dynamics in the usual way and show that there are divergent paths in this dynamics.
- (c) The model has usually two steady states. Derive the condition for local stability of the learning dynamics.

(Note: since these are difference equations, the phase diagram does not fully describe the dynamic possibilities since there could be jumps over the equilibrium loci.)

- 5. In the monetary inflation model it is assumed that nominal money growth is constant $M_t = \theta M_{t-1}$ and that government expenditure is determined endogenously by from the seignorage equation.
 - (a) Denote the savings function as $M_t/P_t = S(\pi_{t+1}^e)$. Show that the temporary equilibrium is given by

$$\pi_t = \frac{\theta S(\pi_t^e)}{S(\pi_{t+1}^e)}.$$

Determine the possible steady states of this model.

- (b) Derive the condition for E-stability of the steady state, when the PLM of the agents takes the form $\pi_t^e = a$, constant.
- (c) Assume that agents have the learning rule

$$\pi_{t+1}^e = \pi_t^e + \gamma_{t+1}(\pi_{t-1} - \pi_t^e).$$

Study it under both decreasing gain and constant gain $(\gamma_{t+1} = \gamma)$ and determine the convergence condition for a steady state.