Learning and Expectations in Macroeconomics

Problems for Chapter 2

1. Consider the standard least squares formula

$$c = (\sum_{i=1}^{T} x_i x_i')^{-1} (\sum_{i=1}^{T} x_i y_i).$$

This formula arises in fitting the regression equation $y_i = c'x_i + e_i$ using data i = 1, ..., T on the $k \times 1$ independent vector x_i and the dependent variable y_i , so that c minimizes $\sum_{i=1}^{T} e_i^2$. Writing

$$R_{t} = t^{-1} \sum_{i=1}^{t} x_{i} x_{i}'$$

$$c_{t} = t^{-1} R_{t}^{-1} \sum_{i=1}^{t} x_{i} y_{i}$$

for the moment matrix and the coefficient vector show by mathematical induction on the number of data points that c can instead be computed using the *recursive least* squares (RLS) formulae

$$c_t = c_{t-1} + t^{-1} R_t^{-1} x_t (y_t - x_t' c_{t-1})$$

$$R_t = R_{t-1} + t^{-1} (x_t x_t' - R_{t-1}).$$

2. Consider the model

$$p_t = f(p_{t+1}^e).$$

Suppose that $p_{t+1}^e = a_t$, where $a_t = a_{t-1} + \gamma_t (p_{t-1} - a_{t-1})$, so that

$$a_t = a_{t-1} + \gamma_t (f(a_{t-1}) - a_{t-1}).$$

- (a) For the decreasing gain case $\gamma_t \to 0$, apply the stochastic approximation technique to obtain the condition for stability under learning of a steady state $\bar{a} = f(\bar{a})$. That is, treating the above equation as an SRA, show how to obtain the associated ODE and find the correspoding stability condition.
- (b) For the constant gain case $\gamma_t = \gamma$ for $0 < \gamma \le 1$, derive the local stability condition for a steady state $\bar{a} = f(\bar{a})$ using the standard results on the local stability of difference equations.
- 3. Consider a variation of the cobweb model in which p_t depends on the observable exogenous variable w_t rather than w_{t-1} :

$$p_t = \mu + \alpha p_t^e + \delta w_t + \eta_t$$
, where $\alpha \neq 1$,
 $w_t = k + \lambda w_{t-1} + \varepsilon_t$, where $|\lambda| < 1$,

1

where ε_t and η_t are independent white noise processes. (Here w_t is univariate and η_t is unobserved).

(a) Obtain the unique REE and show that it can be written in the form

$$p_t = \bar{a} + \bar{b}w_{t-1} + u_t,$$

for suitable \bar{a}, \bar{b} and u_t white noise.

(b) Suppose agents forecast according to

$$p_t^e = a_{t-1} + b_{t-1} w_{t-1},$$

where a_{t-1}, b_{t-1} are estimated in the usual way by RLS ("least squares learning").

- (i) For the PLM $p_t = a + bw_{t-1} + u_t$, obtain the T-mapping from the PLM to the ALM and find the E-stability condition for the REE
- (ii) Outline the steps of the stochastic approximation argument used to obtain the stability condition for the REE under least squares learning and show that the condition is identical to the E-stability condition.
- 4. Consider the Cagan model

$$y_t = \mu + \beta E_t^* y_{t+1} + \delta w_t$$

$$w_t = \lambda w_{t-1} + v_t.$$

The parameter λ is assumed to be known.

(a) Show that generically there exists a unique REE of the form

$$y_t = \bar{a} + \bar{b}w_t.$$

- (b) Suppose agents have a PLM of the form $y_t = a + bw_t$ and forecast accordingly. Derive the T-mapping and the E-stability conditions.
- 5. Continuing on Problem 4, suppose agents update the parameters of their PLM

$$y_t = a_{t-1} + b_{t-1} w_t$$

using the RLS algorithm. Write down the details of the algorithm. Using numerical parameter values $\mu = 5$, $\beta = 0.8$ and $\delta = 1$, write a Matlab routine to simulate the RLS learning and show the results for a_t , b_t and y_t .