## Learning and Expectations in Macroeconomics

## Problems for Chapter 3

1. Consider the variation of the cobweb model in which  $p_t$  depends on the observable exogenous variable  $w_t$  rather than  $w_{t-1}$ :

$$p_t = \mu + \alpha p_t^e + \delta w_t + \eta_t$$
, where  $\alpha \neq 1$ ,  
 $w_t = k + \lambda w_{t-1} + \varepsilon_t$ , where  $|\lambda| < 1$ ,

where  $\varepsilon_t$  and  $\eta_t$  are independent white noise processes. This model was considered earlier in a Chapter 2 problem. Suppose now that agents forecast according to

$$p_t^e = a_{t-1}$$
 where  $a_t = a_{t-1} + t^{-1}(p_t - a_{t-1}),$ 

i.e. they ignore the dependence of  $p_t$  on the  $w_t$  variable. Using the stochastic approximation technique, show that  $a_t \to \hat{a}$  (for an appropriate sense of convergence) for some  $\hat{a}$ , provided a stability condition holds. What can you say if the stability condition fails?

2. Consider the model

$$y_t = \alpha + \beta_0 E_{t-1}^* y_t + \beta_1 E_{t-1}^* y_{t+1} + v_t + \kappa w_{t-1},$$

where  $v_t$  is a white noise disturbance and  $w_t$  is an observable *iid* random variable with mean  $E(w_t) = \mu$ . Consider an adaptive learning rule in which agents neglect the influence of  $w_{t-1}$  and use a PLM of the form

$$y_t = a + v_t$$
.

Assume they estimate a by

$$a_t = a_{t-1} + t^{-1}(y_t - a_{t-1}),$$

and form their forecasts as  $E_{t-1}^*y_t = E_{t-1}^*y_{t+1} = a_{t-1}$ . Using the stochastic approximation approach, write this as an SRA (stochastic recursive algorithm) and obtain the corresponding ODE (ordinary differential equation). Find the equilibrium point of the ODE, a corresponding stability condition, and state a result concerning convergence of  $a_t$ .

3. Consider the nonstochastic model with a lag

$$y_t = \delta y_{t-1} + \beta E_{t-1}^* y_{t+1}.$$

(a) Show that there are RE solutions of the form

$$y_t = \lambda y_{t-1},$$

where  $\lambda$  must satisfy the quadratic equation

$$\lambda = \delta + \beta \lambda^2 \equiv T(\lambda).$$

(b) Suppose agents have a PLM of the same form, so that the ALM is

$$y_t = T(\lambda_{t-1})y_{t-1}$$

and they use the constant gain algorithm

$$\lambda_t = \lambda_{t-1} + \gamma [(y_t/y_{t-1}) - \lambda_{t-1}].$$

Obtain the convergence condition for the RE solutions.

4. Suppose that in a coordination game the utility of any agent i depends on his own action  $x_i$  and the median action M(x), where  $x = (x_1, ..., x_n)$ , so that the best response of any agent is quadratic in the median

$$b(M) = \omega M(1 - M).$$

Assume  $\omega > 1$ . Consider the adaptive learning dynamics

$$M_t = b(M_t^e)$$
  

$$M_t^e = M_{t-1}^e + \gamma_{t-1}(M_{t-1} - M_{t-1}^e).$$

- (a) Show that there are two Nash equilibria to this game and that one of them is zero and the other one is interior.
- (b) Show that this learning dynamics converges to the interior Nash equilibrium.
- 5. Consider the multivariate Muth model

$$y_t = \mu + Ay_t^e + Cw_t$$
  
$$w_t = Bw_{t-1} + v_t,$$

where  $y_t$  is an  $m \times 1$  vector,  $w_t$  is a  $p \times 1$  vector.  $y_t^e$  denotes the average expectation of  $y_t$ , formed at time t-1. The eigenvalues of B are inside the unit cirle, so that  $w_t$  is a stationary process. Let

$$z_t = \begin{pmatrix} 1 \\ w_t \end{pmatrix}, \varphi' = \begin{pmatrix} a & b \end{pmatrix},$$

where a is  $m \times 1$  and b is  $m \times p$ .

(a) Show that the unique REE is

$$y_t = \bar{\varphi}' z_{t-1} + \eta_t,$$

where

$$\overline{\varphi}' = ((I-A)^{-1}\mu (I-A)^{-1}CB)$$

$$\eta_t = Cv_t.$$

(b) Suppose outside REE the expectations can be heterogenous, so that

$$y_t^e = N^{-1} \sum_{i=1}^N y_{i,t}^e,$$

where each group i = 1, ..., N forms expectations by least squares learning as follows. Agent i forecasts according to

$$y_t^e = \varphi'_{i,t-1} z_{t-1}$$

and the estimates  $\varphi'_{i,t-1}$  are formed by least squares regressions based on different amounts of past data, so that

$$\varphi_{i,t} = \varphi_{i,t-1} + (t+T_i)^{-1} R_{i,t}^{-1} z_{t-1} (y_t - \varphi'_{i,t-1} z_{t-1})$$

$$R_{i,t} = R_{i,t-1} + (t+T_i)^{-1} (z_{t-1} z'_{t-1} - R_{i,t-1}).$$

Derive the SRA and the associated ODE.

(c) Show that the asymptotic behavior of the associated ODE is governed by the "small" differential equation

$$d\Phi/d\tau = \left\{ N^{-1} \left[ \begin{array}{ccc} A & \cdots & A \\ \vdots & \vdots & \vdots \\ A & \cdots & A \end{array} \right] - I \right\} (\Phi - \bar{\Phi}),$$

where  $\Phi = (\varphi'_1, \dots, \varphi'_N)$  and  $\bar{\Phi} = (\bar{\varphi}'_1, \dots, \bar{\varphi}'_N)$ . Prove that this differential equation is globally stable if and only if all the eigenvalues of A have real parts less than one.

6. Consider the Cagan model

$$y_t = \alpha + \beta E_t^* y_{t+1} + \delta' w_t + v_t$$

and assume that agents use the forecast rule

$$E_t^* y_{t+1} = a_{t-1} + b'_{t-1} w_t = \phi'_{t-1} z_t,$$

where  $\phi_{t-1} = (a_{t-1}, b'_{t-1})$  and  $z'_t = (1, w'_t)$ . The REE values of the parameters are  $a = (1 - \beta)^{-1} \alpha$  and  $b = (1 - \beta)^{-1} \delta$ .

(a) Parameters are updated by the stochastic gradient algorithm

$$\phi_t = \phi_{t-1} + \gamma_t z_{t-1} (y_t - \phi'_{t-1} z_t).$$

Show that this learning rule can be formally represented as an SRA and derive the associated ODE.

(b) Prove that the convergence condition is given by the E-stability condition of the REE of interest.