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Summary

Adaptive learning is a boundedly-rational alternative to rational expectations that has
been increasingly used in macroeconomics, monetary economics and financial eco-
nomics. The key ideas and techniques are presented in a companion contribution titled
“Adaptive Learning in Macroeconomics,” which focuses on the benchmark “reduced-
form learning” approach. The agent-level approach can be used to provide microfoun-
dations for adaptive learning in macroeconomics.

Two central issues of bounded rationality are simultaneously addressed at the agent
level: replacing fully-rational expectations of key variables with econometric fore-
casts, and boundedly optimal decisions-making based on those forecasts. The Real
Business Cycle (RBC) model provides a useful laboratory for exhibiting alternative
implementations of the agent-level approach. Specific implementations include shadow-
price learning (and its anticipated-utility counterpart, iterated shadow-price learning),
Euler-equation learning, and long-horizon learning. For each implementation the path
of the economy is obtained by aggregating the boundedly-rational agent-level deci-
sions.

A linearized RBC can be used to illustrate the impacts of fiscal policy. For example,
simulations can be used to illustrate the impact of a permanent increase in government
spending, as well as highlight the similarities and differences among the various imple-
ments of agent-level learning. These results also can be used to expose the differences
among agent-level learning, reduced-form learning, and rational expectations.

The different implementations of agent-level adaptive learning have differing advan-
tages. A major advantage of shadow-price learning is its ease of implementation within
the nonlinear RBC model. Compared to reduced-form learning, which is widely use
because of its ease of application, agent-level learning both provides microfounda-
tions, which ensure robustness to the Lucas critique, and provides the natural frame-
work for applications of adaptive learning in heterogeneous-agent models.
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Introduction

The benchmark implementation of adaptive learning in linear or linearized macroeconomic models
is the reduced-form (RF) approach. Under this approach, the model’s reduced-form expectational
difference equations are modified by replacing the rational expectations operator with a boundedly
rational alternative. Via this method of modeling adaptive learning, stability of rational expecta-
tions equilibria (REE) can be assessed, complex learning dynamics can be introduced, and empiri-
cal and policy analysis can be conducted. The reduced-form implementation of learning, which is
covered in detail in our companion Encyclopedia article, Evans and McGough (2020) (EM2020),
provides a natural and efficient mechanism through which rational expectations can be replaced by
adaptive learning counterparts. However, some care must be taken when introducing bounded ra-
tionality and adaptive learning into micro-founded dynamic stochastic general equilibrium (DSGE)
models, especially when the invariance of the micro-foundations is central, e.g. when conducting
policy analysis. After all, reduced-form learning incorporates bounded rationality after agent-level
decisions, market clearing and aggregation are imposed, yet surely boundedly rational agents make
boundedly rational decisions that are reflected in market-clearing and aggregation outcomes. Are
these outcomes the same as, or even related to the outcomes obtained under reduced-form learn-
ing? And how, exactly, do boundedly rational agents make boundedly rational decisions? These
are the questions addressed by agent-level learning.

The introduction of adaptive learning at the agent level requires the specification of the learn-
ing implementation’s behavioral primitives, equilibrium notions and stability concepts. The cogni-
tive consistency principle – that the sophistication of a model’s agents should be comparable to the
sophistication of the modeler – guides the behavioral assumptions. These assumptions identify how
boundedly rational agents make forecasts and how they make decisions based on these forecasts.
The equilibrium notions clarify the details of how coordination of per-period decisions is achieved
and, when possible, specify the appropriate notions of boundedly optimal beliefs and behaviors.
The stability concepts characterize whether the per-period, temporary equilibrium outcomes are
achievable, and how and whether the induced economic dynamics result in the convergence of
beliefs and behaviors to their optimal counterparts. Careful focus is directed to the discussion and
development of the behavioral primitives and equilibrium notions, leaving the stability concepts to
passively present themselves. See Evans and McGough (2018c) for a more nuanced discussion of
stability.1

A useful platform for the development of agent-level learning is the benchmark Real Business
Cycle (RBC) model, with public spending used to induce policy dynamics. Rational agents in

1For an application of boundedly optimal decision making based on value function learning, when agents face a
discrete choice decision, see Evans, Evans, and McGough (2020).
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the RBC model make optimal forecasts based on their beliefs and make optimal decisions based
on their forecasts; the associated equilibrium concept – specifically, a restricted perceptions equi-
librium (RPE) – guarantees that their decisions result in aggregates that evolve under stochastic
laws consistent with their beliefs. This characterization of agent behavior emphasizes that, when
introducing bounded rationality at the agent level, two closely-related stands must now be taken
by the modeler: the specifications of how boundedly-rational agents form forecasts and how they
make decisions given these forecasts. This latter stand, sometimes referred as boundedly-optimal
decision-making, discriminates among implementations of agent-level learning.

There is a variety of behavioral primitives characterizing bounded optimality in the literature,
with almost all of them applied to linearized models. Early contributions to this literature include
Bray and Savin (1986), Marcet and Sargent (1989a) and Marcet and Sargent (1989b): see EM2020
for discussion of these important works. More recent implementations include the Euler-equation
approach and long-horizon learning. Briefly, under the Euler-equation approach agents make one-
period-ahead forecasts and form per-period decision schedules based on their corresponding first-
order conditions (FOC) and flow constraints; under long-horizon learning, agents make forecasts
at all forward leads and form per-period schedules based on their corresponding lifetime budget
constraint. In each case these schedules are then coordinated each period in temporary equilibrium
to generate the economy’s aggregate outcomes.2

There are modifications to the standard rational expectations model of agent-level decision-
making that are not encompassed by the approach taken here. For example, Mankiw and Reis
(2002) develop a model of sticky information in which agents make fully optimal decisions based
on information that they receive randomly at an exogenously given arrival rate. The rational inat-
tention approached developed by Sims (2003) adopts the view that agents optimally choose how
much information to receive when faced with band-width constraints: see Mackowiak and Wieder-
holt (2009) for an application of this approach. Gabaix (2014) has developed the sparcity approach,
which assumes that optimizing agents use coarse approximations to the state space when formu-
lating their dynamic program. Sargent (1993) discussed additional alternatives, including neural
networks, classifier systems, and genetic algorithms. More recently, Hansen and Sargent (2007)
use robust optimal control to analyze decision-making by agents who account for model misspec-
ification.

A natural way to implement bounded optimality is the shadow-price (SP) approach, which
posits that agents make per-period marginal decisions using estimates of the shadow price of sav-
ings to capture the requisite inter-temporal trade offs. Within the context of the non-linear model,
under SP learning agents make forecasts using estimated linear models, while the attendant con-
trol decisions and market clearing involve no approximations. The model is in an RPE if agents’
forecasting models are optimal among linear models with the same regressors. Simulations show
that the shadow-price approach provides tractable access to equilibrium dynamics, all the while

2Euler-equation learning, which has been implicitly assumed in many adaptive learning models with long-lived
agents, is discussed in in the context of a linearized New-Keynesian model in Evans and Honkapohja (2006). Long-
horizon learning was introduced in New-Keynesian models in Preston (2005) and employed, for example, in Eusepi
and Preston (2010) and Eusepi and Preston (2012).
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allowing for retention of the RBC model’s intrinsic non-linearities.

Much of the macro literature focuses on linearized versions of dynamic stochastic general
equilibrium models, and implementations of agent-level learning can also be applied in these set-
tings. The RBC model can provide a benchmark illustration of the differences between the model’s
REE, the reduced-form learning dynamics, and the dynamics induced by alternative agent-level
implementations, including SP-learning, Euler-equation learning, and the long-horizon approach.
In the simple, linearized RBC setting, SP learning and Euler equation are equivalent, though they
differ subtly from reduced-form learning, and more strikingly from long-horizon learning. This
difference, which reflects the close association of long-horizon learning and the anticipated-utility
approach, is discussed in detail; further, an iterated version of SP learning nests Euler-equation
learning and anticipated utility.

Overview

The analysis begins with a review of commonly used agent-level approaches within the context
of the linearized Ramsey model. With this background as motivation, the non-linear RBC model
is developed with considerable care, which will serve as a general modeling environment. First,
the rational expectations hypothesis is adopted, and the model’s REE is characterized as a fixed
point to a T-map that acts on plausible transition dynamics. Agent-level learning is then introduced
by considering the anticipated-utility approach within the context of the non-linear model. Here
agents perceive the model’s transition dynamics to be linear, and they make decisions fully opti-
mally against these perceptions by solving the corresponding Bellman systems. The model’s RPE
is characterized as a fixed point of a T-map that takes linear perceptions to linear projections.

The anticipated-utility model is used to motivate and develop the shadow-price approach. The
shadow price of the state is naturally interpreted as the derivative of Bellman’s value function,
and this interpretation provides the link to anticipated utility. Instead of assuming agents uncover
the value function implied by their linear perceptions, the SP approach posits that agents estimate
dependence of the derivative of the value function – the shadow price – on observables, and use
these estimates to forecast shadow prices and take decisions. Again, the model’s RPE is charac-
terized as a fixed point of a T-map that takes linear perceptions to linear projections, but this time
the projections include the forecast model for the shadow price. The computational tractability of
the shadow-price approach is demonstrated by conducting a policy experiment in the non-linear
modeling environment. Issues related to the implementation of agent-level implementations of
adaptive learning are then discussed.

It is common in both the RE and adaptive learning literature to focus attention on linearized
versions of DSGE model, and so the linearized RBC model is also analyzed in detail. The model’s
REE is characterized and the standard reduced-form learning analysis, as well as various im-
plementations of agent-level learning, including shadow-price, Euler-equation and long-horizon
learning, are developed. The results obtained from the different approaches are compared with
those obtained under reduced form learning and from agent-level learning in the non-linear model.
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The lessons from the analyses of the linearized model complement both the work on the nonlinear
model, as well as the developments presented in EM2020: the SP-approach allows for a tractable
implementation of agent-level learning in non-linear environments; at the same time, reduced-form
and agent-level analyses conducted in linear or linearized models do provide substantive insights.

The linearized Ramsey model

To motivate the analysis presented here, it is helpful to begin by reviewing the standard agent-level
approaches using a special case of the benchmark RBC model. The representative household’s
problem is given as

max E∗t ∑
s≥0

β
s (u(ct+s)−χ(nt+s))

ct+s +at+s = (1+ rt+s)at+s−1 +wt+snt+s

Here β is the discount factor, c is consumption, n is labor hours, a is savings in the form of capital,
r the net real interest rate, and w is the real wage. The operator E∗t represents the subjective
expectations of the agent given period t information. The problem has additional constraints,
including that c≥ 0 and a no-Ponzi-game condition. The first order conditions may be written

u′(ct+s) = βE∗t+sλt+s+1 (1)
u′(ct+s)wt = χ

′(nt+s) (2)
λt+s = (1+ rt+s)u′(ct+s), (3)

where λt+s is the shadow price of at+s−1. Letting χ ′′→ ∞ induces inelastic labor supply, which
yields the Ramsey model. Equations (1) and (3) combine to give the Euler equation

u′(ct+s) = βE∗t+s(1+ rt+s+1)u′(ct+s+1).

Let Rt
s = ∏

s
n=1(1+ rt+s)

−1, with Rt
0 ≡ 1, be the time t, s-period discount factor. Imposing

NPG and assuming the TVC holds yields the LTBC

∑
s≥0

Rt
t+sct+s = (1+ rt)at−1 + ∑

s≥0
Rt

t+swt+s,

where the inelastic labor supply is normalized to one.

Turning to the linearization of the model’s behavioral equations around the non-stochastic
steady state, and using the notation dx to indicate the deviation of x from its steady-state value, the
flow budget constraint becomes

dct +dat = β
−1dat−1 +adrt +dwt , (4)

where a is the steady-state level of savings. The FOCs (1) and (3) become

dct = ζλ dλ
e
t+1 (5)

dλt = ζr drt +ζc dct , (6)
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where xe
t+s is the point expectation of xt+s made in period t, and for appropriate constants ζr,ζλ ,ζc.

The Euler equation becomes
dct = dce

t+1 +ξ dre
t+1 (7)

where ξ is the appropriate constant. Finally, the lifetime budget constraint becomes

∑
s≥0

β
sdct+s = β

−1dat−1 +adrt +dwt +ηr ∑
s≥1

β
sdrt+s +ηw ∑

s≥1
β

sdwt+s, (8)

for appropriate constants ηr,ηw.

These linearized equations can be used to characterize agent-level decision-making under
three different learning implementations: SP learning, Euler-equation learning and long-horizon
(LH) learning. SP learning is specified by combining equations (4), (5) and (6), which yields the
agent’s period t decisions dct and dat in terms of expectations dλ e

t+1, savings dat−1, and contem-
poraneous prices drt and dwt . Euler equation learning combines equations (4) and (7) to yield
the agent’s t decisions in terms of expectations dce

t+1,dre
t+1, savings dat−1, and contemporaneous

prices drt and dwt . Finally, LH learning first requires joining equation (8) with Euler equation (7)
at all iterations to produce

dct = β
−1(1−β )dat−1 +ϕrdrt +ϕwdwt +ϕ

e
r PVt(dre)+ϕ

e
wPVt(dwe), (9)

where ϕr,ϕ
e
r ,ϕw and ϕe

w are appropriate constants, and PVt(xe) = ∑s≥1 β sxe
t+s is the discounted

value of expected future x. The associated decisions are obtained by combining (4) and (9) to yield
the agent’s period t decisions in terms of expectations dre

t+n,dwe
t+n at all horizons n ≥ 1, as well

as savings dat−1, and contemporaneous prices drt and dwt .

Each of these learning implementations, when coupled with forecast rules specifying how ex-
pectations are formed, fully characterizes household behavior in the Ramsey model. This behavior
is then coordinated with the standard, static optimizing behavior of firms through competitive
markets, resulting in temporary equilibrium outcomes that determine the evolution of the econ-
omy’s aggregates. In the homogeneous agent case, temporary equilibrium implies dat = dKt+1
and dct = dCt , where K and C are aggregate levels of capital and consumption, respectively.

It still remains to describe the way expectations are formed. The standard adaptive learning
approach is to assume agents use linear forecasting models that are updated over time as new data
become available. In the linear setting it common to adopt a functional form for the forecasting
model that nests the rational expectations equilibrium.

An advantage of the shadow price approach is that it extends naturally to non-linear settings
and to environments with heterogeneous agents. It is therefore important to begin by considering
the benchmark RBC model in a non-linear, stochastic setting.

The non-linear real business cycle model

In this section the shadow-price implementation of agent-level learning is presented within the
context of a canonical RBC-type modeling environment. Rational behavior and the model’s ra-
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tional expectations equilibrium is characterized; however, because the focus involves agent-level
bounded rationality and its aggregate implications, the economic environment is developed in a
manner that is flexible enough to accommodate boundedly rational forecasting and decision mak-
ing.

The modeling environment

There are many identical firms, each producing a homogeneous good that can be used for consump-
tion or investment. The representative firm owns constant-returns-to-scale technology y = z f (k,n),
where k is the quantity of installed capital, n is the quantity of labor hired, and z is total-factor pro-
ductivity, which is assumed to follow

zt− z̄ = ρ(zt−1− z̄)+ vt . (10)

Here |ρ|< 1 and vt
iid∼U(−ε,ε), with ε > 0 small enough to guarantee zt > 0. Firms are profit max-

imizers who rent capital, hire labor and sell goods in competitive markets. There are no installation
costs, so the representative firm’s problem is static: in this simple framework, firm behavior is in-
dependent of the assumptions governing whether agents are rational. Solving the representative
firm’s period t decision problem yields the following demand schedules for capital and labor:

kt = kd (qt ,wt ,zt)

nt = nd (qt ,wt ,zt) ,

where qt is the real rental rate of capital and wt is the real wage. These schedules characterize the
period t behavior of the representative firm.

There is a unit mass of households (agents) indexed as i∈I . Even though agent homogeneity
will be assumed, the distinction between individual and aggregate variables is paramount when
considering agent-level behaviors; therefore it is important to track agents’ indices even while
acknowledging the attendant introduction of tedious notation.

Agent i∈I owns capital and is endowed with labor, and faces per-period consumption/savings
and labor/leisure decisions. The agent’s flow utility is given by

u(ct(i))−χ(nt(i)), (11)

where ct(i) and nt(i) is the quantity of goods consumed and the quantity of labor supplied by agent
i in period t. Here, as usual, u′,χ ′,χ ′′ > 0 and u′′ < 0. The flow constraint of agent i is given by

at(i) = (1+ rt)at−1(i)+wtnt(i)− ct(i)− τ, (12)

where at−1(i) are the real assets held by agent i at the beginning of period t, τ is government
spending financed by lump-sum taxes, which is taken for simplicity as constant, and which will
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be used for comparative dynamics experiments.3 Also, rt = qt − δt is the real interest rate, and
δt = δ + ιt is the stochastic depreciation rate. Here it is assumed that ιt

iid∼U(−ῑ , ῑ), with 0 < ῑ < δ .

Turning now to a general description of agent behavior, this description begins with a dis-
cussion of forecasts. The flow utility (11) captures how an agent “thinks about” today; and, by
determining at(i), the flow constraint (12) predicts, in part, how an agent’s decisions today affect
his future. There are, however, additional considerations: an agent’s future will also depends on
the evolution of variables that are exogenous to him, e.g. future prices, as well as on how his fu-
ture self will behave, e.g, in response to these future prices. A behavioral model that involves the
consideration of tradeoffs between today and the future must, therefore, provide mechanisms by
which an agent forecasts the future, including the behavior of his own future self.

Within the context of rational decision making, forecasting future behavior is conceptually
straightforward: an agent simply assumes that his future self will make decisions optimally. In fact,
it is precisely this assumption that is leveraged by the principal of optimality to transform complex
sequential decision problems into the more tractable Bellman formulations. When considerations
of boundedly rational decision making are in play, alternative assumptions about future behaviors
are required, and become of central importance.

With the discussion of forecasts in mind, one can proceed to provide a general description of
agent behavior. Agent i makes per-period decisions to maximize the weighted sum of the flow
utility and some measure of the discounted value of future flow utility. Period t decisions are
made subject to the flow constraint, as well as with respect to whatever forecasting mechanism
is adopted. The notation ψt−1(i) is used to denote this forecasting mechanism, which implicitly
includes the information set available to the agent when making forecasts.4 It may be helpful to
think of ψt−1(i) as representing the forecasting models used by agent i in period t, together with the
data on which these models condition; alternatively, in a rational expectations equilibrium, ψt−1(i)
may be taken as the model-consistent conditional distribution of all variables.

Consider now the decision problem of agent i in period t. He “wakes up in the morning”
holding assets at−1(i) and facing exogenous taxes τ . He then contemplates consumption/savings
and labor/leisure decisions given his flow utility, his flow constraint, his measure of the future (still
neither defined nor notated), and his forecasting mechanism ψt−1(i). These contemplations yield
the following demand and supply schedules for goods, capital and labor:

ct(i) = cd (rt ,wt ,at−1(i),ψt−1(i))

at(i) = ad (rt ,wt ,at−1(i),ψt−1(i))
nt(i) = ns (rt ,wt ,at−1(i),ψt−1(i)) ,

(13)

where, due to the timing assumptions of the RBC model, at(i) is the quantity of savings in the
form of capital demanded by agent i in period t, and therefore, the quantity of capital supplied
(inelastically) in period t +1. These schedules characterize the period t behavior of agent i.

3Careful modeling of heterogeneity requires the inclusions of a borrowing constraint. Because focus is on the
homogeneous-agent case, this constraint is suppressed.

4The reason for the timing convention used here will be made clear below.
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The behaviors of the representative firm and the agents are coordinated through the com-
petitive markets for goods, capital and labor. This per-period temporary equilibrium, a concept
emphasized by Hicks (1946), determines contemporary prices as functions of exogenous shocks
and predetermined agent-level variables. Capital and labor market clearing may be written

kd (rt +δt ,wt ,zt) =
∫
I

at−1(i)di

nd (rt +δt ,wt ,zt) =
∫
I

ns (rt ,wt ,at−1(i),ψt−1(i))di.

Solving for rt and wt provides the temporary equilibrium maps

rt =T E r
(
zt ,δt ,{at−1(i),ψt−1(i)}i∈I

)
wt =T E w

(
zt ,δt ,{at−1(i),ψt−1(i)}i∈I

)
.

(14)

These maps, together with the agents’ schedules, can then be used to determine the period t values
of all other variables. In particular, T E r(t) and T E w(t) be the period t temporary equilibrium
maps for r and w, with the attendant arguments suppressed for notational ease, gives

ct =
∫
I

cd (T E r(t),T E w(t),at−1(i),ψt−1(i))di

kt+1 =
∫
I

ad (T E r(t),T E w(t),at−1(i),ψt−1(i))di.
(15)

It is worth observing that these maps suggest a dependence of equilibrium outcomes on the entire
distribution of assets and beliefs rather than only on aggregates or other sufficient statistics.

The flexible modeling environment just developed provides a conceptual relationship between
the behaviors of individual agents and the implied, per period equilibrium outcomes. To make
further progress and thereby produce a useful model, a stand must be taken on the precise manner
in which agents form forecasts and take decisions. The shadow-price approach will be emphasized,
but it is helpful to begin with an examination of the benchmark behavioral model of rationality and
a development of Kreps’ model of anticipated utility.

Rational expectations

All agents are taken to have the same information set, which, in period t, includes all variables
dated t and earlier. To aid notation, let xt = (kt ,zt ,δt).5 The common beliefs of agents are summa-
rized by a map ψ , which acts as

(xt ,vt+1, ιt+1)
ψ−→ (rt+1,wt+1,xt+1) .

5Throughout the paper, all vectors should be interpreted as columns, even when expressed horizontally (which is
done to save space). Thus xt is a 3×1 vector.

9



Thus ψ :R3⊕R⊕R→R⊕R⊕R3 captures agents’ perception of the evolution of the relevant eco-
nomic aggregates, (rt+1,wt+1,xt+1), resulting from the current state xt and next period’s random
shocks (vt+1, ιt+1).

To make his time t decisions regarding consumption, savings, labor and leisure, agent i ∈I
solves the following program:

V (at−1(i),rt ,wt ,xt) = maxu(ct(i))−χ(nt(i))+βEψ

t V (at(i),rt+1,wt+1,xt+1)

at(i) =(1+ rt)at−1(i)+wtnt(i)− ct(i)− τ

(rt+1,wt+1,xt+1) =ψ (xt ,vt+1, ιt+1)

(16)

Here, as usual, β ∈ (0,1) is the discount factor and V measures the continuation value of the
state. The operator Eψ

t emphasizes that expectations condition on the perceived transition dynamic
ψ . The objective (u− χ)+βEV captures the weighted sum of flow utility and some measure of
discounted value of the future flow utility mentioned in the previous section. With ψt−1(i) = ψ , the
solution to this program gives policy functions corresponding to the schedules (13).

It is worth noting a redundancy in the state vector that will become more evident when ho-
mogeneity is imposed: in an REE contemporaneous prices (rt and wt) are determined by xt , and
therefore they could be omitted from the agent’s state. However, this determination is an equi-
librium outcome that results from the coordination of agent behaviors through market clearing.
Before market clearing is imposed prices should be taken as independent variables against which
agents form schedules. It is precisely this independence, i.e. flexibility of prices, that allows these
schedules to be coordinated in temporary equilibrium.

By imposing homogeneity one can identify at−1(i) with kt ; and, remembering that xt includes
kt , market clearing may be written as

kd (rt +δt ,wt ,zt) = kt

nd (rt +δt ,wt ,zt) = ns (rt ,wt ,xt ,ψ) .
(17)

Solving these equations for prices and combining with agents’ schedules yields the temporary
equilibrium maps ?t = T E ? (xt ,ψ) for ? ∈ {r,w,a,c,n}. Since at = kt+1, the map T E a, together
with the exogenous processes zt and δt , completely determine the evolution of the economy for
fixed beliefs ψ .

For the economy to be in a rational expectations equilibrium, agents beliefs ψ must align with
the implied data generating process as determined by the temporary-equilibrium coordination of
agents’ actions given their beliefs. To make this explicit, first note that given beliefs ψ , one can
write

xt+1 = Tx(ψ)(xt ,vt+1, ιt+1)≡

 T E a (xt ,ψ)
(1−ρ)z̄+ρzt + vt+1

δ + ιt+1

 . (18)

Thus the realized data-generating process (DGP) is given by the map T (ψ) : R3⊕R⊕R→ R⊕
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R⊕R3, where

(rt+1,wt+1,xt+1) = T (ψ)(xt ,vt+1, ιt+1)≡

T E r (Tx(ψ)(xt ,vt+1, ιt+1),ψ)
T E w (Tx(ψ)(xt ,vt+1, ιt+1),ψ)

Tx(ψ)(xt ,vt+1, ιt+1)

 . (19)

A beliefs function ψ that satisfies T (ψ) = ψ characterizes a rational expectations equilibrium:
given beliefs ψ , agents are making optimal forecasts and decisions which themselves induce a
data generating process that confirms the agents beliefs.

Before turning to anticipated utility, it is worthwhile pausing here to make a connection be-
tween the above development of rational expectation behavior and equilibrium and related con-
cerns when bounded rationality is assumed. Let F be an “appropriate” collection of continuously
differentiable functions acting on R5, where the vague notation of “appropriateness” used here is
meant to restrict attention to plausible perceived transition dynamics ψ . Then T : F →F , and
may be interpreted as taking the agents’ perceived law of motion (PLM) to the corresponding ac-
tual law of motion (ALM). A fixed point of this T-map aligns perceived and realized dynamics and
thus identifies an equilibrium. Exactly the same notion of a T-map is used when analyzing models
of bounded rationality, and in fact comes to play a central role both in the establishment of equilib-
rium existence, and, through the E-stability principle, the assessment of equilibrium stability. See
EM2020 for a thorough discussion of the E-stability principle.

Anticipated utility

The behavioral assumption of rational expectations requires that agents have a full understand-
ing of the stochastic dynamics of the model’s endogenous and exogenous variables; and even in
this simple, homogeneous-agent framework, these stochastic dynamics are characterized by a non-
linear transition function in five variables. We may look to the cognitive consistency principle,
discussed in the introduction, for guidance, and it suggests a simpler alternative: assume agents
approximate the transition dynamics using linear models and then make optimal decisions condi-
tional on these linear beliefs. In these types of behavioral models, the agents’ linear models are
commonly assumed to be updated as new data become available; however, importantly, in each
period, agents take decisions as if their estimated forecasting models are, and will continue to be
correct. This is the anticipated-utility approach developed in Kreps (1998).

There are also Bayesian approaches that adopt the view that agents make fully optimal deci-
sions given their beliefs, though they require more sophistication of agents. For example, Cog-
ley and Sargent (2008) examine a permanent-income model in which income follows a two-state
Markov process with unknown transition probabilities, which takes the agent’s problem outside the
usual dynamic programming framework. Bayesian decision-makers follow a fully optimal deci-
sion rule within an expanded state space, which requires considerable sophistication and expertise
for the agent.6 Adam, Marcet, and Beutel (2017) implement a Bayesian approach in an asset-

6Cogley and Sargent (2008) compare the dynamics under Bayesian learning with those obtained via the anticipated
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pricing environment. In their set-up agents are “internally rational,” in the sense that they have a
prior over variables exogenous to their decision-making, which they update over time using Bayes
Law. These beliefs may not be externally rational in the sense of fully agreeing with the actual law
of motion for these variables. By imposing simple natural forms of beliefs, it is possible to solve
the agents’ dynamic programming problem, though considerable sophistication is still required.

It is clear from these works as well as others that in many environments the Bayesian approach
to decision-making is much more cognitively demanding than is the anticipated utility. However,
the view stressed in Evans and McGough (2018c) is that in most environments even the anticipated
utility approach is unrealistically demanding for agents to implement. For this reason, and others,
Evans and McGough (2018c) and Evans and McGough (2018a) emphasize the much simpler – and
cognitively less demanding – shadow-price approach, which is discussed at length below.

The first focus is the anticipated utility approach, which is operationalized within the context
of the current model as follows. Let xt = (1,kt ,zt ,δt) and assume that current and lagged x, as well
as lags of prices and agent-i-specific variables, are in agent i’s information set. For the purposes
of forecasting aggregates, it is assumed that agent i holds the following forecasting models, which
summarize his beliefs:

kt+1 = ψ
′
k(i) · xt , rt+1 = ψ

′
r(i) · xt+1, and wt+1 = ψ

′
w(i) · xt+1. (20)

Note that, in contrast to the rational case, beliefs here are captured by a finite list of parameters.
We further assume, without loss of generality, that all agents know the processes governing the
productivity shock and the depreciation shock.7 Coupling this with (20) gives the PLM

(rt+1,wt+1,xt+1) = ψ(i) · (xt ,vt+1, ιt+1) , (21)

where ψ(i) = (ψk(i),ψr(i),ψw(i)). The expression (21) gives the perceived linear transition dy-
namics for agent i, and is analogous to the perceived transition function ψ in the previous section.

Taking the perceived transition dynamics (21) as given, under the anticipated-utility approach,
agent i makes time t decisions by solving following program:

V (at−1(i),rt ,wt ,xt) = maxu(ct(i))−χ(nt(i))+βEψ(i)
t V (at(i),rt+1,wt+1,xt+1)

subject to at(i) =(1+ rt)at−1(i)+wtnt(i)− ct(i)− τ, and the transition (21).
(22)

Now the expectations operator Eψ(i)
t emphasizes conditioning on the perceived transition dynamic

ψ(i). For given beliefs ψ(i), the solution to the program (22) gives policy functions corresponding
to the schedules (13).

As in the rational case, homogeneity is now imposed, so that ψ(i) = ψ and at−1(i) = kt ,
and then use capital and labor market clearing to obtain the temporary equilibrium maps ?t =

utility approach.
7Since these processes are observed and exogenous, agents can use standard procedures to estimate them without

having material impact on the model’s aggregate dynamics.
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T E ? (xt ,ψ) for ? ∈ {r,w,a,c,n}. Finally, as in the rational case, since at = kt+1 the map T E a
together with the exogenous processes zt and δt completely determine the evolution of the economy
for fixed beliefs ψ .

It remains to discipline the allowable beliefs of agents. Although adaptive learning is con-
cerned with how agents’ beliefs evolve over time, it is helpful and natural to first focus on an
appropriate notion of equilibrium. A rational expectations equilibrium requires that agents form
beliefs optimally in the sense that their perceived transition dynamic corresponds to the transition
dynamic implied by their perceptions. A similar equilibrium concept can be applied here and in
other models of bounded rationality. We say that the economy is in a restricted perceptions equi-
librium if agents forecasting models are optimal among those under consideration: see EM2020
for further discussion of RPEs. For the case at hand, the forecast models (21) are required to be
optimal among all linear models conditioning on the same regressors.

This can be made explicit. Just as in the rational case, the temporary equilibrium maps deter-
mine the DGP:

(rt+1,wt+1,kt+1) = T (ψ)(xt ,vt+1, ιt+1) .

Define the vectors T?(ψ) ∈ R4, for ? ∈ {r,w,k}, as follows:

0 =ET (ψ)
(
rt+1−Tr (ψ)′ · xt+1

)
· xt+1

0 =ET (ψ)
(
wt+1−Tw (ψ)′ · xt+1

)
· xt+1

0 =ET (ψ)
(
kt+1−Tk (ψ)′ · xt

)
· xt ,

where ET (ψ) is the expectation is taken against the stationary distribution of the DGP implied by
beliefs ψ . Thus T?(ψ) is the orthogonal projection of the variable ? on the relevant regressors.

Now, admittedly abusing notation, let T (ψ) be the matrix with columns Tk(ψ),Tr(ψ), and
Tw(ψ) respectively. Thus, depending on context, T (ψ) may be the DGP implied by beliefs ψ or
the projection of this process onto a collection of regressors. In the former case the map T can
be thought of as taking the perceived transition dynamic to the implied transition dynamic, just as
in the rational model. In the latter case, it takes the perceived forecast-model coefficients to the
realized, or actual coefficients implied by the beliefs.

Because agents’ forecast models are necessarily misspecified – after all they have linear be-
liefs in a non-linear world – it is the latter interpretation of the T-map that provides the needed
concept for equilibrium characterization and assessment; and thus this interpretation is maintained
going forward. Recall that an REE is characterized by the transition dynamic determined as a fixed
point of that model’s T-map. The same is true here: a fixed point of this model’s T-map determines
the linear forecasting models, and thus determines the perceived linear transition dynamics, cor-
responding to and subsequently characterizing an RPE of the model. In an REE agents use the
optimal non-linear forecasting model; in an RPE agents use the optimal linear forecasting model
conditional on the allowed set of regressors.

Among the concerns directed against reliance on REE as the natural equilibrium notion are
the unrealistic level of sophistication required of, and unreasonable amount of knowledge held by,
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rational agents. The latter concern speaks to the assumed understanding of the transition dynamic:
how are agents suppose to have gained this understanding? The anticipated-utility approach, when
coupled with the assumption of linear forecasting models, can be augmented with adaptive learn-
ing algorithms and thereby address this concern. In this augmented model, agents use recursive
least squares to estimate their forecasting models based on past data; they then behave as if their
estimated models are correct and thus solve their programming problems; markets clear and new
aggregate data become available which are then used by agents to update their forecasting models
in real time. If, over time, agents beliefs converge to RPE beliefs then the question of how agents
might obtain optimal beliefs is answered.

The former concern, that the sophistication needed to make optimal decisions in a dynamic
stochastic environment is unrealistically high, remains unresolved in the approach just described,
and indeed the only manner in which the decision problem under the anticipated-utility approach is
simpler than under rational expectations is that some of the transition dynamics that are non-linear
under RE are linear under anticipated utility. The agent is still required to solve a sophisticated
dynamic program that is analytically intractable, and even in this very simple model already has
six states and is therefore computationally burdensome.

Thus the anticipated-utility approach, coupled with linear forecasts, addresses the knowledge
problem but does not fully address the sophistication problem. Furthermore, when coupled with
adaptive learning, the anticipated-utility approach raises a new concern about decision making
with misspecified models: it is not obvious that solving for the fully optimal policy functions is
advisable if the agents’ forecast models are inaccurate. For these reasons, it is appealing to use
an approach that at once simplifies the agents’ decision problem and avoids the potential pitfalls
of indefinitely extrapolating poorly estimated models, all the while maintaining reliance on linear
forecasting rules and preserving RPE as the equilibrium concept. This behavioral model is called
the shadow-price approach.

The shadow-price approach

Under the anticipated-utility approach, agent i makes per period control decisions by balancing
their impacts on his flow utility and on the continuation value implied by his beliefs. The com-
putation of this continuation value in practice presents as an analytically intractable solution to a
functional equation, a technical feat that should not be taken as necessarily achievable by economic
agents. One can again look to the cognitive consistency principle for guidance, and it suggests a
simpler alternative: agents are assumed to estimate their continuation values and then make deci-
sions based on these estimates.

A behavioral model along these lines, anchored to estimated value functions, is quite feasible,
and in some cases quite natural: see section 3.6.3 below. However, for many models, including the
model at hand, an estimate of the derivative of the value function, i.e. the shadow price, more nat-
urally facilitates per period decision making. The shadow-price approach to agent-level learning,
which leverages this facilitation, was developed in detail within a linear-quadratic framework in
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Evans and McGough (2018c); applications to DSGE models can be found in Evans and McGough
(2018a). We pursue a shadow-price implementation of agent-level learning here.

The narrative underlying the behavioral primitives is quite simple: each period each agent
makes marginal decisions, that is, they weigh perceived marginal impacts on today and tomorrow
of variations in their controls decisions. What distinguishes the shadow-price approach is that the
perceived change in the value of tomorrow is measured by perceived prices, specifically, by the
product of the perceived shadow price with the forecasted change in the state.

To operationalize this approach, let xt = (1,kt ,zt ,δt) and adopt the same assumptions about
information sets and forecasting models, i.e. agent i holds the following beliefs:

kt+1 = ψ
′
k(i) · xt , rt+1 = ψ

′
r(i) · xt+1, and wt+1 = ψ

′
w(i) · xt+1, (23)

where agents are again assumed to know the processes governing zt and δt . The first-order condi-
tions (FOCs) for the problem (22) motivate the behavioral assumptions. Let λt(i) be the period t
shadow price of at−1(i). The FOCs may be written

Euler: u′ (ct(i)) = βλ
e
t+1(i)

Labor: χ
′ (nt(i)) = u′ (ct(i)) ·wt

Envelope: λt(i) = (1+ rt)u′ (ct(i))
Budget: at(i) = (1+ rt)at−1(i)+wt ·nt(i)− ct(i)− τ,

(24)

where λ e
t+1(i) is the perception made by agent i in period t of the value of an additional unit of

savings in period t +1.8

The above equations determine period t control decisions conditional λ e
t+1(i). Under rational

expectations λ e
t+1(i) = Et(1+ rt+1)u′ (ct+1(i)) where the expectation is taken against the equilib-

rium distribution of future aggregates as well as against the distribution of the agent’s own future
decisions, which themselves optimally condition on future aggregates. Under anticipated utility
λ e

t+1(i) = Eψ(i)
t (1+ rt+1)u′(ct+1(i)) where the expectation is taken against the perceived distribu-

tion of future aggregates, as summarized by ψ(i), as well as against the distribution of the agent’s
own future decisions, which themselves condition on future aggregates in a manner that is optimal
given the agents perceptions. Under the shadow-price approach, agents use a linear model to esti-
mate the dependence of the shadow price on state variables, and then use this estimated model to
form λ e

t+1(i).

The shadow price of a state variable is the partial derivative of the value function against that
state variable. Thus the shadow price in principle depends on the entire state vector, and so it
would seem natural for the linear model used by the agent to estimate the shadow price to include
all state variables. However, as noted above, in equilibrium there are redundancies in the state
vector, and these redundancies will result in multi-collinearity if all state variables are included as

8As is demonstrated in Evans and McGough (2018c), only state variables that are endogenous to the agent require
associated estimates for shadow prices.
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regressors.9 With this in mind, assume agents think that the shadow price of savings depends on
their own savings stock as well as prices, resulting in the following PLM for shadow prices:

λt(i) = ψ
′
λ
(i) · (1,at−1(i),rt ,wt) (25)

λ
e
t+1(i) = ψ

′
λ
(i) ·

(
1,at(i),re

t+1,w
e
t+1
)
= Ψλ (ψ(i)) · (1,at(i),xt) , (26)

where equation (26), which is equation (25) stepped forward, emphasizes a linear dependence of
λ e

t+1(i) on at(i). Also, this equation further emphasizes that, given beliefs ψ(i), which now include
ψλ (i), and given the PLMs (23), λ e

t+1(i) is a linear function Ψλ (ψ(i)) of the time t control at(i)
and the time t states kt ,zt and δt .

Given beliefs, the first-order conditions (24) and the forecast model (26) comprise the be-
havioral model for the shadow-price approach: the supply and demand schedules for agent i cor-
responding to (13), as well the agent’s realized shadow price, are computed in terms of beliefs,
prices and states by solving (24) and (26) for ct(i),nt(i),at+1(i),λt(i). As above, homogeneity is
now imposed, so that ψ(i) = ψ and at−1(i) = kt , and then capital and labor market clearing are
used to obtain the temporary equilibrium maps

?t = T E ? (xt ,ψ) for ? ∈ {r,w,a,c,n,λ} .

Since at = kt+1, the map T E a, together with the exogenous processes zt and δt , completely de-
termine the evolution of the economy for fixed beliefs ψ . Additionally, the equilibrium notation
appropriate for the shadow-price approach is the same as under anticipated utility, with the added
requirement that the beliefs ψλ are optimal among similarly conditioned linear models.

This can be made explicit. As in the section on Anticipated Utility, the temporary equilibrium
maps determine the DGP T (ψ) implied by beliefs ψ:

(rt+1,wt+1,kt+1) = T (ψ)(xt ,vt+1, ιt+1) .

Letting x̂t = (1,rt ,wt ,kt), define the vectors T?(ψ), for ? ∈ {r,w,k,λ}, as follows:

0 =ET (ψ)
(
rt+1−Tr (ψ)′ · xt+1

)
· xt+1

0 =ET (ψ)
(
wt+1−Tw (ψ)′ · xt+1

)
· xt+1

0 =ET (ψ)
(
kt+1−Tk (ψ)′ · xt

)
· xt ,

0 =ET (ψ)
(
λt−Tλ (ψ)′ · x̂t

)
· x̂t ,

where the expectation is taken against the stationary distribution of the DGP implied by beliefs ψ .
Thus, just as before, T?(ψ) is the orthogonal projection of the variable ? on the relevant regressors.

Again abusing notation, let T (ψ) be the matrix with columns Tk(ψ),Tr(ψ),Tw(ψ) and Tλ (ψ)
respectively. The map T takes linear perceptions ψ to the implied linear projections T (ψ). A fixed
point of this map is an RPE of the model.

9Issues of multicollinearity are greatly mitigated in heterogeneous agent models: see the section on Heterogeneous
agents models for discussion.
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Shadow-price learning

The rational expectations model and the anticipated-utility approach have associated with them
significant technical impediments for both the agents in the models and for the modelers trying to
analyze them. The shadow-price approach, on the other hand, is quite tractable, particularly when
augmented with adaptive learning, and this exercise is pursued here.

Assume agents use (constant-gain) recursive least squares (RLS) to estimate their linear fore-
cast models: see EM2020 for details on RLS and real-time adaptive learning. The recursive im-
plementation of least-squares requires specification of the gain sequence γt , which measures the
weight given to the most recent data point. To count all past data points equally one sets γt = t−1,
in which case RLS recovers ordinary least-squares. An alternative that is widely used in practice,
and is particularly natural with the possibility of structural change, is to use a (typically small)
constant gain, γt = γ ∈ (0,1), which downweights past data points geometrically.

Returning to the specific modeling framework, assume agents use RLS with a constant gain
to estimate the parameters ψ? for ? ∈ {k,r,w,λ} of their PLMs (23) and (25). The recursive
formulation of this estimation procedure may be combined with the temporary equilibrium map
and other aspects of the model’s dynamics to fully specify the economy’s time path.

The state of the economy at the beginning of period t may be taken as

(kt ,zt−1,ψk,t−1,ψr,t−1,ψw,t−1,ψλ ,t−1,Rx̂,t−1,Rx,t−1),

where R? is the estimated second moment matrix of the relevant regressors, which is required for
recursive updating of least squares. The economy’s dynamics are then given by

zt = z̄(1−ρ)+ρzt−1 + vt

δt = δ + ιt

xt = (1,kt ,zt ,δt)
′

(rt ,wt ,kt+1,ct ,nt ,λt) = TE (xt ,ψt−1)

x̂t = (1,kt ,rt ,wt)
′

Rx,t = Rx,t−1 + γ
(
xt⊗ x′t−Rx,t−1

)
Rx̂,t = Rx̂,t−1 + γ

(
x̂t⊗ x̂′t−Rx̂,t−1

)
ψ?,t = ψ?,t−1 + γR−1

x,t xt
(
?t−ψ

′
?,t−1xt

)
for ? ∈ {r,w}

ψk,t = ψk,t−1 + γR−1
x,t xt

(
kt+1−ψ

′
k,t−1xt

)
ψλ ,t = ψλ ,t−1 + γR−1

x̂,t xt

(
λt−ψ

′
λ ,t−1x̂t

)

(27)

Here, γ ∈ (0,1) represents the RLS gain, which measures the responsiveness of estimates to new
data: see EM2020 for more details on alternative gain sequences.10 Given initial beliefs, capital

10It is worth observing that the appropriate choice of the gain reflects a tradeoff between filtering and tracking.
Smaller gains reduce the impact on estimates of noise in the data, whereas larger gains facilitate quicker adaptation to
structural change.
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stock and productivity shock, the system (27) completely determines the evolution of the economy,
and may be easily simulated.

As an application, consider the following policy experiment: spending τ is unexpectedly and
permanently raised. This experiment is conducted as a calibration exercise based on the following
parametric forms:

Flow utility: u(c)−χ(n) = log(c)+ξ log(1−n)

Production: f (k,n) = kαn1−α
(28)

The model is calibrated as β = .985,ξ = 4.0,ρ = 0.9,α = 1/3,δ = .025, τ̄ = 0.2, z̄ = 1.359,ε =
.005,γ = 0.04.11 Unless otherwise stated, this calibration is used for all of the numerical work
in this paper. The economy is initialized with beliefs corresponding to the RPE of the econ-
omy. Spending is then raised by 5% and the model is simulated 50,000 times. Figure 1 presents
the cross-sectional means of the corresponding consumption and capital time-paths, expressed as
proportional deviation from the pre-policy change steady-state, with the horizontal dashed lines
corresponding to the post-policy change steady-state. Intuition for the figure is postponed until the
section titled Shadow Price Learning in the Linear Model.
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Figure 1: shadow-price learning in a non-linear model

Discussion

Before turning to the linearized models that provide more familiar environments for the assessment
of bounded rationality and adaptive learning, there are some additional considerations that merit
discussion. A comprehensive treatment of any of these matters would be lengthy and distracting,
and thus only brief introductions and references to the literature are provided.

11This choice for the gain γ is within the range that Branch and Evans (2006) found optimal for quarterly forecasts
of GDP and inflation, and also for fitting the Survey of Professional Forecasters.
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Restricted perceptions equilibria

If each agent is using a forecasting model that is invariant over time and optimal among the models
considered, then the economy is said to be in a restricted perception equilibrium; and if the models
under consideration are linear in parameters then the RPE can be characterized as a solution to
a system of orthogonality conditions. Focusing on this latter case, two points are worth noting.
First, even though agents’ forecasts in an RPE correspond to optimal linear projections, there is no
a priori relationship between the RPE and the REE of the linearized model. While in many models
an RPE will closely align with the linear approximation of the REE, there exist non-linear models
with a unique REE that have multiple RPE associated with the same class of forecasting models,
and some of these RPE may be nowhere near the REE (as measured by an appropriate metric).

Second, there are limited existence results for RPE in non-linear environments, and no general
results for models with lags. The technical impediment involves the computation of the orthogonal-
ity conditions, which requires taking expectations against the asymptotic stationary distributions
associated with a given collection of beliefs. These asymptotic distributions are difficult to char-
acterize and control outside of highly stylized dynamic environments. Progress has been made in
forward-looking models. See EM2020 further discussion and links to the literature.

Misspecified forecast models

In both the anticipated-utility and shadow-price implementations of agent-level learning discussed
above, the forecasting models used are linear and thus necessarily misspecified. The agents’ linear
forecast-model misspecification then led us to the concept of a restricted perceptions equilibrium,
which, as just discussed, is itself defined in terms of linear projections. The important point to
emphasize here is the considerable flexibility afforded by the requirements that agents’ forecast
models are linear and that the attendant equilibrium is characterized in terms of this linearity. The
only requirement is that the forecast models be linear in coefficients: agents are welcome to regress
on whatever non-linear functions and combinations of observables they like. Thus, for example,
agents acting in a regime switching environment might have regime dependent forecast models; or
if the economy’s intrinsic non-linearity relative to shock size is strong enough, agents and modelers
may find it reasonable to condition on higher-order terms to account for curvature. In fact, through
the specification of the forecast model, agents’ sophistication can be quite finely tuned, allowing
them to be modeled anywhere from naive to fully rational.

Value-function learning

The method developed in section titled The Shadow-price Approach above is predicated upon
marginal decision making, with the future’s margin captured by the estimated shadow price of the
state. A natural alternative is to have agents estimate the continuation value itself, rather than its
derivative, the shadow price, and then make decisions based on the estimated value function. This
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implementation of boundedly optimal decision making is termed value function learning (VF-
learning). In Evans and McGough (2018c) develops the complete theory of VF-learning within the
linear-quadratic environment, and compare it to shadow-price learning and other implementations.

While in many environments VF-learning is qualitatively equivalent to SP learning, its im-
plementation often introduces additional complexity: after all, in most models decisions are char-
acterized in terms of the value function’s derivative, which is what makes SP learning so natural.
On the other hand, certain environments – particularly those involving discrete choice considera-
tions – are particularly well-suited for VF-learning. For example, Branch and McGough (2016)
use a version of VF-learning to assess the impact of bounded rationality on trade efficiencies in
a money-search model; and Evans, Evans, and McGough (2020) use VF-learning to examine the
McCall model of labor search by having agents learn the optimal reservation wage.

Heterogeneous agent models

For simplicity focus here has been placed on the homogeneous agent version of the real business
cycle model; however, the above modeling environment explicitly allows for agent-level hetero-
geneity. Indeed, as indicated by (14) and (15), given the collections of beliefs, the economy’s
path can be recursively simulated. These same equations emphasize the computational challenge
of assessing the REE even numerically: the time path of aggregates depends on the entire distri-
bution of agents’ savings, as well as on any other idiosyncratic shocks that are incorporated into
the heterogeneous agent version of the model (e.g. income shocks). These distributions become
infinite-dimensional states whose evolution must be correctly tracked by both agent and modeler,
and the computation of the model consistent transition dynamic governing the evolution of these
distributions is a serious technical impediment.

The shadow-price approach offers an alternative that is computationally attractive. In partic-
ular, neither the modeler nor the agents need be assumed to know the model-consistent transition
dynamics – they need only be able to learn about them. Furthermore, there is no requirement that
agents track the distributions required to perfectly forecast prices; instead, and much more natu-
rally, the agents can be provided simple forecasting models – perhaps vector auto-regressions in
some collection of aggregate observables – which they update over time.12 Thus to simulate a
heterogeneous agent model, simply specify the forecast models agents will use, and provide them
with an associated recursive estimation procedure. The only limitation is the number of agents
your computer can reasonably handle, and on modern clusters simulations with millions of agents
is feasible.

Heterogeneity also mitigates multicollinearity concerns that commonly arise in homogeneous
models with learning agents. Mechanically, it can be the case that the natural set of regressors used
by boundedly rational agents when estimating forecast models exhibits multicollinearity. This
issue arises as an artifact of the homogeneity assumption: the representative agent’s individual-

12It’s worth noting that the associated RPE is essentially the approximation to the REE used by Krusell and Smith
(1998) and others. See Giusto (2014) for adaptive learning results in the Krusell-Smith model.
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specific variables, e.g. savings, correspond also to aggregate variables, e.g. capital stock. With
agent-level heterogeneity, these types of correspondences, and hence the multicollinearity issues
they induce, are mitigated.

Equilibrium stability

Within the context of agent-level learning, stability concerns remain paramount but also become
more nuanced, as three closely related but distinct stability principles organically emerge: mar-
ket stability, behavioral stability, and expectational stability. These principles reflect the view that
only self-reinforcing patterns will be evidenced in actual economic outcomes. Behavioral stability
requires that agents update their decision rules in such a way that, provided the environment is
stationary, their behavior is asymptotically approximately optimal, where the notion of approxi-
mate is context dependent. Thus, asymptotically, agents would not have an incentive to change
their decision rule. Market stability concerns how the temporary equilibrium is achieved each pe-
riod. When expectations are predetermined, this concept is well-established and well-understood,
e.g. Hahn (1982). If instead expectations are determined simultaneously with market outcomes,
then additional related condition, called temporary equilibrium (TE) stability may be required: see
Evans and McGough (2018b). Finally, expectational stability governs whether and how the adap-
tive learning process leads the implied temporary equilibrium path to converge to the restricted
perceptions equilibrium.

The linearized real business cycle model

DSGE models are commonly analyzed by computing linear approximations to the model’s be-
havioral equations and then solving the resulting linearized model. Moreover, almost all of the
research on agent-level learning already in the literature has been conducted based on these lin-
earized models. This section shows how the shadow-price approach can be developed in linearized
environments, and how it relates to other implementations of agent-level learning. A conceptual
point is worth emphasizing here: in this section the linearized RBC model is treated as governing
the dynamics of the economy, and not as an approximation to these dynamics.

The linearized model

Development of the agent-level approach in non-linear models starts quite abstractly before turn
to the particulars of different behavioral assumptions. Development of the linearized model must
be specific about the nature of the linearization, including the point about which the linearization
is taken. For this reason it is most convenient to, in effect, reverse the order of presentation,
and instead begin with the rational model under the assumption of homogeneity and attend to its
linearization before turning to associated models of boundedly rational decision making.
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The system of non-linear expectational difference equations, which, together with boundary
conditions, characterize the REE of the RBC model, can be written

Euler: u′ (ct) = βEt(1+ rt+1)u′ (ct+1)

Labor: χ
′ (nt) = u′ (ct) ·wt

Capital accumulation: kt+1 = zt f (kt ,nt)+(1−δt)kt− ct− τ

Real rate: rt = zt fk(kt ,nt)−δt

Real wage: wt = zt fn(kt ,nt)

Productivity: zt = z̄+ρ(zt−1− z̄)+ vt

Depreciation: δt = δ + ιt .

(29)

Using d? to denote the deviation of the variable ? from its non-stochastic steady state, the
first-order approximation of these equations can be written

Euler: dct = Etdct+1−βcσ
−1Etdrt+1

Labor: χ
′′dnt = u′dwt +wu′dct

Capital accumulation: dkt+1 = z̄ fkdkt + z̄ fndnt + f dzt +(1−δ )dkt + kιt−dct−dτ

Real rate: drt = z̄ fkkdkt + z̄ fkndnt + fkdzt− ιt

Real wage: dwt = z̄ fnkdkt + z̄ fnndnt + fndzt

Productivity: dzt = ρdzt−1 + vt ,

where all derivatives are evaluated at the non-stochastic steady state, c here denotes steady-state
consumption, and σ =−cu′′(c)/u′(c) is the relative risk aversion. It is straightforward to find con-
formable matrices F and G, and reduced-form parameters (θc,θk,θz,θδ ), so that the equilibrium of
the linearized model satisfies the following reduced-form system of linear expectational difference
equations:

dct = F ·Et

(
dct+1
dkt+1

)
+G ·dzt (30)

dkt+1 = θc ·dct +θk ·dkt +θz ·dzt +θδ · ιt−dτ (31)
dzt+1 = ρdzt + vt . (32)

Equation (31) captures that capital is predetermined. Using standard techniques to identify the
unique, appropriately bounded solution to (30) - (32), equilibrium consumption dct can be ex-
pressed as linear in dkt ,dzt and ιt . Equations (31), (32) and the government spending policy then
determine the equilibrium time paths of the linearized economy.

Figure 2 reproduces the policy experiment of Figure 1 in the linear model, and for the same
calibration. The dark bands provide cross-sectional quartiles and the lighter bands identify outer
deciles, giving indication of the cross-sectional variation induced by productivity and depreciation
innovations.13

13As noted, the mean, quartiles and deciles are cross-sectional: at each in time they are computed across simulations.
In particular, the reader should not conclude, e.g, that 50% of the simulations resulted in paths contained in the darker
band.
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Figure 2: Rational expectations in the linear model

The RE dynamics resulting from a surprise, permanent spending rise are familiar. The policy
change raises the present value of the tax burden and thus reduces expected lifetime income. Since
consumption and leisure are normal goods, less of each is chosen in the long-run; thus the new
long-run steady state of consumption is lower and of labor is higher. The increase in (long-run)
labor ceteris paribus raises the real interest rate, inducing an increase in savings and thus resulting
in an increase in the long-run level of capital. Consider now the transition to the new long-run
steady state. Consumption over-shoots its new (lower) long-run level as agents immediately raise
their savings in response to the higher real interest rates. Capital, which is a stock and therefore
does not undergo an immediate change, converges monotonically to its new, higher steady state.

Reduced-form learning

Before discussing shadow-price learning within the context of the RBC model, first consider
reduced-form learning (RFL) – so-named because the rational expectations operator Et in the
model’s reduced-form system (30) is simply replaced with an adaptive learning counterpart. RFL
is the simplest implementation of adaptive learning in models such as the one under examination
here. See EM2020 for an extensive discussion of reduced-form learning.14

The learning model becomes

dct = F ·E∗t
(

dct+1
dkt+1

)
+G ·dzt

where E∗t denotes the as yet unspecified boundedly-rational expectations operator. To close the
learning model, a stand must be taken on the forecasting rules, or PLMs, used by learning agents
when forming expectations. Under reduced-form learning, it is conventional (though not neces-
sary) to assume that the agents’ PLMs are consistent with the functional dependences present in

14Giannitsarou (2006) provides an example of a reduced-form learning approach to analyzing a change in tax policy
in an RBC model.
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the REE, and we adopt this convention here. Thus assume that, for the purposes of forecasting,
agents believe dkt+1 and dct depend linearly on dkt , dzt and ιt . Letting dxt = (1,dkt ,dzt , ιt)

′, one
may write the agents’ PLMs as

E∗t dkt+1 = ψ
′
k ·dxt and dct = ψ

′
c ·dxt ,

and thus the pair ψ = (ψc,ψk) capture agents’ beliefs. Also, continue to assume that agents know
the process governing the productivity shock.

To obtain the implied data-generating process the agents’ PLM is used to write dxe
t+1 = ψx ·

dxt , where ψx = ψx (ψk) is a 4×4 matrix function of beliefs, and thus

E∗t dct+1 = ψ
′
c ·ψx ·dxt .

Letting ek be the kth-coordinate vector, and using (30) - (31), it follows that

dct =

(
F
(

ψ ′c ·ψx
ψ ′k

)
+G · e′3

)
dxt ≡ Tc(ψ)′dxt

dkt+1 =
(
θc ·Tc(ψ)′+(−dτ,θk,θz,θδ )

)
dxt ≡ Tk(ψ)′dxt .

(33)

Letting T (ψ) = (Tk(ψ),Tc(ψ)), one obtains (dkt+1,dct)
′ = T (ψ)′dxt . As always, T-map takes the

perceived parameters to the implied, or actual parameters. The fixed point of this T-map will align
with the model’s REE.

Equations (33) can be coupled with the RLS updating equations for the agents’ forecasting
rules to provide the economy’s dynamic path. Let ψt represent the beliefs of agents determined
using data through period t, and let Rt be the agents’ corresponding estimate of the second-
moment matrix of dxt . The state of the economy at the beginning of period t may be taken as
(dkt ,dzt−1,ψt−1,Rt−1). The economy’s dynamics are then given by

dzt = ρdzt−1 + vt

dxt = (1,dkt ,dzt , ιt)
′

dct = Tc(ψt−1)
′dxt

dkt+1 = Tk(ψt−1)
′dxt

Rt = Rt−1 + γ
(
dxt⊗dx′t−Rt−1

)
ψc,t = ψc,t−1 + γR−1

t dxt
(
dct−ψ

′
c,t−1dxt

)
ψk,t = ψk,t−1 + γR−1

t dxt
(
dkt+1−ψ

′
k,t−1dxt

)
.

(34)

Given initial beliefs, capital stock and productivity shock, the system (34) fully determines the
evolution of the economy under reduced-form learning.

The system (34) is easily simulated, which is a very important property for applied and
empirically-minded researchers and policy makers. The asymptotic properties of (34) are also
reachable via the theory of stochastic recursive algorithms (SRAs). The application of this theory
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to learning models similar in form to (34) has been studied extensively – see EM2020 for details.
Importantly, whether the asymptotic behavior of (34) leads to a (possibly degenerate) stationary
distribution centered on the model’s REE, can be easily assessed using the E-stability principle – a
principle that arises from the careful study of SRAs.

The idea behind the principle is to associate with the algorithm the differential equation

ψ̇ = T (ψ)−ψ, (35)

and note that an REE corresponds to a rest point ψ∗ of (35).15 If this rest point is Lyapunov stable
then the associated REE is said to be E-stable. The E-stability principle says that E-stable REE
are locally stable under least-squares learning. It is important to emphasize the simplicity this
principle affords stability analysis: if the real parts of eigenvalues of DT (ψ∗) are less than one the
dynamic system (34) can be expected to converge, in an appropriate sense, to the REE. Of course
there are many details omitted in this brief discussion: see EM2020 for an overview and Evans and
Honkapohja (2001) for complete details. Finally, it is known that standard calibrations of the RBC
model result in unique E-stable REE.

Figure 3 reproduces the policy experiment of Figure 1 in the linear model under real-time
learning, and for the same calibration. The dark bands provide cross-sectional quartiles and the
lighter bands give the outer deciles. Details of the learning paths are given for agent-level imple-
mentations as they are more amendable to useful interpretation. It is worth noting here, though,
some differences between this figure and its rational counterpart. First observe that the time scale
is almost an order-of-magnitude larger for the learning model; second, whereas the post-shock
REE mean time paths rise monotonically to their new long-run values, the mean learning paths
display more complex, hump-shaped behavior; indeed, their initial post-shock behaviors comprise
monotonic declines, which provide an empirically testable distinction between rational expecta-
tions and adaptive learning. Finally, the cross-sectional variation is roughly the same for the REE
and adaptive learning outcomes.
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Figure 3: Reduced-form learning in the linear model

15Here ψ̇ represents the derivative of ψ with respect to “notional time.” See Section 2 of EM2020.
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Shadow-price learning in the linear model

Reduced-form learning, as implemented above in the RBC model, provides practical access to sta-
bility analysis and adaptive-learning dynamics, and this practicality is a principal and appropriate
reason for the popularity of the approach; however, the validity of its use rests on several unexam-
ined assumptions. After all, RF-learning introduces bounded rationality only after the collective
behavior of agents has been aggregated, simplified (i.e. reduced), and then approximated to first
order. Agent-level learning reverses this order-of-operations by introducing bounded rationality at
the agent-level and only then aggregating and simplifying, and through this process thus examines
the unexamined assumptions.

As emphasized in the previous section, agent-level learning requires that careful attention be
paid to the relationships between agents’ decisions and the subsequent economic aggregates. In
RE models, the alignment of expectations plays a fundamental role in the coordination of agents’
behavior; under bounded rationality, expectations are no longer necessarily model consistent, and
an explicit modeling of price determination and market clearing – i.e. temporary equilibrium
analysis – is needed to understand how actions are coordinated.

The discussion begins with developing the decision-making process of agents under shadow-
price learning in the linearized model. Intuitively, just as in the non-linear environment, each
period, agents are assumed to make control decisions by balancing estimated measures of the im-
pacts these decisions have on today and tomorrow. This intuition is operationalized by considering
the linearizations of agent i’s behavioral equations (24):

Euler: dct(i) =
(

β

u′′

)
dλ

e
t+1(i)

Labor: dnt(i) =
(

u′

χ ′′

)
dwt +

(
wu′

χ ′′

)
dct(i)

Envelope: dλt(i) = β
−1u′′dct(i)+u′drt

Budget: dat(i) = β
−1dat−1(i)+ k ·drt +n ·dwt +w ·dnt(i)−dct(i)−dτ.

(36)

To form forecasts of prices, let dxt = (1,dkt ,dzt , ιt) and adopt the same forecasting models used in
the non-linear environment of the section titled The Shadow Price Approach, i.e. agent i holds the
following beliefs:

dkt+1 = ψ
′
k(i) ·dxt , drt+1 = ψ

′
r(i) ·dxt+1, and dwt+1 = ψ

′
w(i) ·dxt+1, (37)

where again agents are assumed know the processes governing dzt and ιt . Consistent with the non-
linear model, assume agents think that the shadow price of savings depends on their own savings
stock as well as on prices. It is then natural to adopt the following PLM for shadow prices:

dλt(i) = ψ
′
λ
(i) · (1,dat−1(i),drt ,dwt)

dλ
e
t+1(i) = ψ

′
λ
(i) ·

(
1,dat(i),dre

t+1,dwe
t+1
)
≡ ψ (i) · (1,dat(i),dxt) . (38)

26



Equation (38) emphasizes that λ e
t+1(i) is the product of a beliefs’ matrix ψ (i), which itself depends

on the agent’s beliefs ψ?(i) for ? ∈ {k,r,w,λ}, and a vector comprised of the time t control dat(i)
and the time t prices and states dkt ,dzt and ιt , which are taken as observable.

Equations (36) - (38) comprise the behavioral primitives of shadow-price learning in the linear
model and operationalize boundedly optimal decision-making in this framework. In particular,
these equations may be solved for period t decisions to obtain the following schedules:

dct(i) = dc(dat−1(i),dwt ,drt ,dxt ,ψ(i))
dnt(i) = dn(dat−1(i),dwt ,drt ,dxt ,ψ(i))
dat(i) = da(dat−1(i),dwt ,drt ,dxt ,ψ(i))
dλt(i) = dλ (dat−1(i),dwt ,drt ,dxt ,ψ(i)) .

(39)

Thus, given last period’s savings and current prices and states, and given beliefs, these equations
determine agent i’s period t decisions.

Now let
dnd

t = dnd(dkt ,dwt ,drt ,dzt) and dkd
t = dkd(dnt ,dwt ,drt ,dzt)

be the linearized labor and capital demands of the representative firm. Prices drt and dwt are then
determined in temporary equilibrium via market clearing:

dkd(dnd
t ,dwt ,drt ,dzt) =

∫
I dat−1(i)di

dnd(dkd
t ,dwt ,drt ,dzt) =

∫
I dn(dat−1(i),dwt ,drt ,dxt ,ψ(i))di.

(40)

Equations (40) may be used in conjunction with equations (39) to determine the period t temporary-
equilibrium decisions of each agent.

Proceeding as before, impose homogeneity so that ψ(i) = ψ and dat−1(i) = dkt , and then use
capital and labor market clearing to obtain the temporary equilibrium vectors TE ?(ψ) such that

?t = TE ?(ψ) ·dxt for ? ∈ {dr,dw,da,dc,dn,dλ} . (41)

Since dat = dkt+1, the vector TE da(ψ), which is also denoted T E dk(ψ) to simplify later nota-
tion, together with the exogenous processes dzt and ιt , completely determine the evolution of the
economy for given beliefs ψ .

The temporary equilibrium vectors may be used to write dzt and ιt as linear functions of
dx̂t ≡ (1,dkt ,drt ,dwt), and thus dλt = Tdλ (ψ) ·dx̂t . Letting T?(ψ) =TE ?(ψ) for ? ∈ {dr,dw,dk}
completes the definition of the T map associated with shadow-price learning in the linear model.
A fixed point of this T-map will correspond to the REE of the linearized model, and the T-map can
be used to assess E-stability.

Real time learning within this environment may be examined by assuming agents use RLS to
estimate their forecast models. The state of the economy at the beginning of period t may be taken
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as (dkt ,dzt−1,ψt−1,Rx̂,t−1,Rx,t−1). The economy’s dynamics are then given by

dzt = ρdzt−1 + vt

dxt = (1,dkt ,dzt , ι)
′

d?t = T?(ψt−1)
′dxt for ? ∈ {c,r,w,a}, and dkt+1 = dat

dx̂t = (1,dkt ,drt ,dwt)
′

dλt = Tλ (ψt−1)
′dx̂t

Rx,t = Rx,t−1 + γ
(
dxt⊗dx′t−Rx,t−1

)
Rx̂,t = Rx̂,t−1 + γ

(
dx̂t⊗dx̂′t−Rx̂,t−1

)
ψλ ,t = ψλ ,t−1 + γR−1

x̂,t dx̂t
(
λt−ψ

′
t−1dx̂t

)
ψ?,t = ψ?,t−1 + γR−1

x,t dxt
(
?t−ψ

′
?,t−1dxt

)
for ? ∈ {r,w,a}.

(42)

Given initial beliefs, capital stock and productivity shock, the system (42) fully determines the
evolution of the economy under shadow-price learning.

Figure 4 reproduces the policy experiment of Figure 1 in the linear model, and for the same
calibration: see red curves. As expected, convergence of the mean paths of consumption and capi-
tal to their new long-run values obtains. There are a number of comments to make regarding Figure
4, and its comparison to the figures produced under non-linear SP-learning and RF-learning. Begin
with a discussion of the economics underlying the witnessed behavior before turning to compar-
isons. Under SP learning, the long-run behavior of the economy is the same as in REE: this is to
be expected as it is well-known that in the RBC model the REE is stable under reasonable forms of
adaptive learning, and direct computation of the T-map’s derivative shows that the implementation
retains this stability. The transition dynamics under SP learning, however, are markedly different
from the REE counterparts.

To explain this difference it is helpful to first recall the REE model and its underlying mech-
anisms: rational agents fully and immediately incorporate the present value of their increased tax
burden as well as the current and future economy-wide impact this policy change will have on
aggregate dynamics; this causes agents to sharply decrease consumption – overshooting the long-
run steady state – in order to increase savings while interest rates are high, before converging to
the new, lower, long-run steady state. Correspondingly, capital monotonically rises to its long-run
steady state.

Consider next the consumption and capital paths under SP learning (in either the linear or non-
linear setting). Initially, capital falls for a number of periods as a direct consequence of the rise in
public spending. This fall in capital takes the form of a decrease in savings from the perspective of
the agents, thereby raising saving’s shadow price; further, the fall in capital increases the expected
real interest rate. Both effects induce agents to slowly shift consumption towards savings, with
the inertial response reflecting the gradual adjustment of agents’ forecast parameters ψ . Only
over time do the beliefs of agents adjust to the permanent policy change, allowing the economy to
converge to its new long-run steady state.

Now compare the dynamics of SP learning in the linear and non-linear settings. Note that
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Figure 4: shadow-price learning in the linear- and non-linear models

the black curves in Figure 4 reproduce the mean paths obtains from the non-linear simulations
of Figure 1. The mean paths obtained under SP-learning are quite similar in the linear and the
non-linear models, which is not surprising in a model with small shocks and the modest curvature
induced by log utility and Cobb-Douglass production. However, there some differences: for both
capital and consumption the magnitudes of the troughs and the speed of mean reversion are smaller
in the linear model.

Turning to comparisons of models of learning, the mean paths obtained under SP-learning and
RF-learning in the linear model are almost identical, which reflects that the representative agent’s
FOCs are almost exactly the reduced-form equations characterizing the REE. This feature will be
expanded upon in the next section on Euler-equation learning. There is, however, an important
difference between the time paths, even in this simple modeling environment: under RF-learning
there is no immediate impact on consumption, which reflects the omission of the effect, at the
agent level, of a rise in public spending.

Euler-equation learning

As mentioned in the introduction, a number of agent-level implementations have been proposed
within the linearized model framework, and among them, the two most prominent are Euler-
equation learning and Long-horizon learning. This section develops Euler-equation learning, and
shows that in this simple environment it is equivalent to shadow-price learning. The next section
develops long-horizon learning, discusses its relationship with the anticipated-utility approach,
and finally shows that it is analogous to an iterated version of shadow-price learning that itself
replicates anticipated utility in the linear model.

Under shadow-price learning, agents use estimated shadow prices to measure tradeoffs and in-
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form decisions. Under Euler-equation learning agents make decisions in a manner consistent with
their Euler equation, modified to include their boundedly rational forecasts, as well as consistent
with their intra-temporal FOC. To operationalize this proposal, algebraically eliminate the shadow
price from the linearized behavioral equations (36) of agent i, to obtain

Euler: dct(i) = dce
t+1(i)−βcσ

−1dre
t+1

Labor: dnt(i) =
(

u′

χ ′′

)
dwt +

(
wu′

χ ′′

)
dct(i)

Budget: dat(i) = β
−1dat−1(i)+ k ·drt +n ·dwt +w ·dnt(i)−dct(i)−dτ,

(43)

where σ =−cu′′/u′. To form forecasts of prices, again let dxt = (1,dkt ,dzt , ιt) and adopt the same
forecasting models as with linearized SP learning (repeated and renumbered here for clarity): agent
i holds the following beliefs:

dkt+1 = ψ
′
k(i) ·dxt , drt+1 = ψ

′
r(i) ·dxt+1, and dwt+1 = ψ

′
w(i) ·dxt+1, (44)

where it is again assumed that agents know the processes governing dzt and ιt . As is evident from
the Euler equation, agent i must forecast his own future consumption. Analogous to shadow-price
learning, assume the agent uses a linear forecast model of the form

dct(i) = ψ
′
c(i) · (1,dat−1(i),drt ,dwt),

dce
t+1(i) = ψ

′
c(i) · (1,dat(i),dre

t+1,dwe
t+1). (45)

Using these forecasting models, we may write ce
t+1(i) as a linear function of the time t control

dat(i) and the time t states dkt ,dzt and ι , which are taken as observable.

Equations (43) - (44) comprise the behavioral primitives of Euler-equation learning in the lin-
ear model and operationalize boundedly optimal decision-making in this framework. In particular,
these equations may be solved for period t decisions to obtain the following schedules:

dct(i) = dc(dat−1(i),drt ,dwt ,dxt ,ψ(i))
dnt(i) = dn(dat−1(i),drt ,dwt ,dxt ,ψ(i))
dat(i) = da(dat−1(i),drt ,dwt ,dxt ,ψ(i)) .

(46)

Thus, given last period’s savings and current prices and states, and given belief parameters, these
equations determine agent i’s period t decisions. Note that dce

t+1(i) is simultaneously determined
with the agent’s controls.

Continuing as before, impose homogeneity, so that ψ(i) = ψ and dat−1(i) = dkt , and use
capital and labor market clearing to obtain the temporary equilibrium vectors TE ?(ψ) such that

?t = TE ?(ψ) ·dxt for ? ∈ {dr,dw,da,dc,dn} .

Since dat = dkt+1, the vector T E da(ψ), which is also denoted TE dk(ψ) to simplify later nota-
tion, together with the exogenous processes dzt and ιt , completely determine the evolution of the
economy for fixed beliefs ψ .
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The temporary equilibrium vectors may be used to write dzt and ιt as linear functions of
dx̂t ≡ (1,dkt ,drt ,dwt), and thus dc = Tdc(ψ) ·dx̂t . Letting T?(ψ) = T E ?(ψ) for ? ∈ {dr,dw,dk}
completes the definition of the T -map associated with Euler-equation learning in the linear model.
A fixed point of this T-map will correspond to the REE of the linearized model, and the T-map can
be used to assess E-stability.

The policy experiment under Euler-equation learning results in mean paths that are indistin-
guishable from their shadow-price counterparts; hence an associated figure is not imcluded. This
tight relationship reflects that the shadow price measures the interest-rate adjusted marginal util-
ity of consumption, whence acting to meet the Euler equation is qualitatively equivalent to acting
optimally against a shadow-price forecast. Minor quantitative differences reflect asymmetries in
the way different shock realizations impact specific estimates. In more complex models, particu-
larly in models with more endogenous states than controls, e.g. habit persistence, shadow-price
learning and Euler-equation learning are both quantitatively and qualitatively distinct. The precise
conditions under, and manner in which, shadow-price learning and Euler-equation learning are
equivalent is detailed in Evans and McGough (2018c).

Finally, return to the observation that the paths of consumption and capital – indeed the paths
of all aggregates – under reduced-form learning are almost identical to the those obtained under
shadow-price learning, and thus under Euler-equation learning. As noted by Evans and Honkapo-
hja (2006) and Honkapohja, Mitra, and Evans (2013) in their exposition of Euler-equation learning,
this close association is commonly used as a justification for adopting the comparatively simple
implementation of reduced-form learning.

Long-horizon learning

The implementation of Euler-equation learning took the per-period linearized FOCs as behavioral
primitives: agents made decisions based on trade-offs measured via one-period-ahead forecasts.
Long-horizon learning adopts a more sophisticated behavioral view of decision-making: agents
are assumed to take their estimated forecast rules as indefinitely valid, and to make fully optimal
decisions, at least to first order, given their validity.16 In this way, long-horizon learning can be
viewed as a first-order implementation of the anticipated-utility approach.17

For the environment under consideration, this plays out as follows: by combining their lin-
earized life-time budget constraint (LTBC) with their linearized Euler equations at all iterations,
households determine consumption, labor supply and savings schedules conditional on last pe-
riod’s savings and the expected time paths of interest rates, wages and taxes.18

16In models with infinitely-lived agents, decision-making based on planning horizons H, where 1 < H < ∞, are
developed in Branch, Evans, and McGough (2013). See Woodford (2019) for an application of finite planning-horizons
to monetary policy.

17Note that long-horizon learning allows for the analysis of anticipated policy changes. See Evans, Honkapohja,
and Mitra (2009).

18Our treatment here of the long-horizon version of the RBC model corresponds to that given in Mitra, Evans, and
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A detailed development of the agent-level schedules is somewhat tedious, and the steps are
omitted, but with the intention of providing enough details that the reader, with reasonable effort,
could reproduce the needed formulae. To make matters easier, the parametric functional forms
(28) used in the simulation examples are imposed straight-away.

Let Rn
t be the expected n-step-ahead discount rate at time t:

Rn
t =

n

∏
k=1

(1+ re
t+k)

−1, with R0
t = 1.

Agent i’s iterated Euler equations may be written β nct(i) = Rn
t (i)c

e
t+n(i), and his intra-temporal

FOC implies
we

t+i(i)n
e
t+i(i) = we

t+i(i)−ξ ce
t+i(i).

His expected LTBC is

∑
i≥0

Ri
t(i)c

e
t+i(i) = (1+ rt)at−1(i)+∑

i≥0
Ri

t(i)
(
we

t+i(i)n
e
t+i(i)− τ

e
t+i(i)

)
, or(

1+ξ

1−β

)
ct(i) = (1+ rt)at−1(i)+wt− τt +PVe

t (w, i)−PVe
t (τ, i), (47)

where the second equation simplifies the LTBC using the iterated Euler equations and intra-
temporal FOC, and where PVe

t (?, i) is the expected present value of the variable ? against the
discount rates Rn

t (i).

Using dRn
t (i) = β n+1

∑
n
i=1 dre

t+i(i), linearize (47) and then join it with linearized versions of
the intra-temporal constraint and flow budget constraint to get the following schedules

dct(i) = dc

(
dat−1(i),dwt ,drt ,∑

i≥1
β

idre
t+i(i),∑

i≥1
β

idwe
t+i(i)

)

dnt(i) = dn

(
dat−1(i),dwt ,drt ,∑

i≥1
β

idre
t+i(i),∑

i≥1
β

idwe
t+i(i)

)

dat(i) = da

(
dat−1(i),dwt ,drt ,∑

i≥1
β

idre
t+i(i),∑

i≥1
β

idwe
t+i(i)

)
.

(48)

Because only surprise permanent shocks to a constant tax policy are considered, equation (48)
suppresses the dependence of the agents’ schedules on the expected present value of the tax burden.
These behavioral rules are first-order approximations to the fully optimal decision plans associated
with the expected future path of prices; said differently, they are linear approximations to optimal
decisions conditional on current beliefs. In this way, long-horizon learning can be viewed as an
anticipated-utility approach applied to a linearized model.

Honkapohja (2013) and Mitra, Evans, and Honkapohja (2019). See also Evans, Honkapohja, and Mitra (2009).
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To form forecasts of prices, again let dxt = (1,dkt ,dzt , ιt) and adopt the same forecasting
models as above: agent i holds the following beliefs:

dkt+1 = ψ
′
k(i) ·dxt , drt+1 = ψ

′
r(i) ·dxt+1, and dwt+1 = ψ

′
w(i) ·dxt+1, (49)

where agents are assumed to know the processes governing dzt and ιt . Using these forecasting
models, write ∑i≥1 β id?e

t+i (i) for ?= r,w as linear functions of dxt .

Equations (48) - (49) comprise the behavioral primitives of long-horizon learning in the linear
model and operationalize boundedly optimal decision-making in this framework. In particular,
these equations may be solved for period t decisions to obtain the following schedules:

dct(i) = dc(dat−1(i),dwt ,drt ,dxt ,ψ(i))
dnt(i) = dn(dat−1(i),dwt ,drt ,dxt ,ψ(i))
dat(i) = da(dat−1(i),dwt ,drt ,dxt ,ψ(i)) .

(50)

Continuing as before, impose homogeneity, so that ψ(i) = ψ and dat−1(i) = dkt , and then use
capital and labor market clearing to obtain the temporary equilibrium vectors TE ?(ψ) such that

?t = TE ?(ψ) ·dxt for ? ∈ {dr,dw,da,dc,dn} .

Since dat = dkt+1, the vector TE da(ψ), which is also denoted TE dk(ψ) to simplify later notation,
together with the exogenous processes dzt and ιt , completely determine the evolution of the econ-
omy for fixed beliefs ψ . Letting T?(ψ) = TE ?(ψ) for ? ∈ {dr,dw,dk} provides the definition of
the T map associated with long-horizon learning in the linear model. A fixed point of this T-map
will correspond to the REE of the linearized model, and the T-map can be used to assess E-stability.
The associated development of the the real-time learning dynamics is routine.

Figure 5 considers the policy experiment in the linear model under long-horizon (LH) learning.
A practical issue that is particularly important within the context of LH-learning is the choice of
the gain parameter. The dependence of agents’s decisions on long-horizon forecasts often induces
very strong negative expectational feedback, which can be destabilizing unless the gain is quite
small. This is in contrast to shadow-price, Euler-equation, and reduced-form learning, where the
induced expectational feedback is typically positive.19 For example, in the model at hand, under
Euler-equation learning, the dominant eigenvalue has real part equal to 0.9167 whereas under
long-horizon learning the dominant non-zero eigenvalue is less than −4.0.20 Following Eusepi
and Preston (2011), the gain is set at 0.002 for the LH-learning experiment.

The behavior witnessed here is somewhat different from the time paths associated with shadow-
price and Euler-equation learning. Three comments are warranted here. First, in contrast to SP-
learning, the impact-effect of the spending increase results in over-shooting of consumption, which

19The analytical results underlying this phenomenon is provided in Evans, Guesnerie, and McGough (2019).
20This large negative eigenavlue results in more frequent unstable paths under learning, an instability that is further

magnified by larger gains. For the calibrated gain of 0.002 unstable paths rarely arise; however, for example, with the
gain set to 0.1, of 50,000 LH-learning simulations 1.44% were unstable; the corresponding proportion for SP-learning
was 0.006%.
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in part reflects that the agent’s behavioral rule (48) does explicitly incorporate the true present value
of the increased tax burden. This distinction from behavior implied by shadow-price learning is
empirically testable.21 Second, the agent still has to learn how the policy change will alter the
dynamics of aggregate capital, and here his behavior is analogous to his SP learner counterpart:
as capital initially falls the agent becomes overly pessimistic, resulting in the sharp decline in
consumption; as his beliefs adjust to mitigate the pessimism the economy returns to the REE.
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Figure 5: long-horizon learning in the linear model, with gain γ = 0.002

Under long-horizon learning, agents move somewhat more quickly toward the new equilib-
rium, which reflects that through their long-horizon impacts, changes in beliefs result in larger
changes in behaviors than would be induced in the analogous SP-learner. At a mechanical level,
this difference reflects the eigenvalues mentioned above. Intuitively, eigenvalues with real part
near one correspond to beliefs that are almost self-fulfilling; thus they result in smaller forecast
errors and slower adjustment. Analogously, large negative eigenvalues correspond to beliefs that
are contradicted by outcomes and thus result in larger forecast errors and more rapid adjustment.
That such eigenvalues arise under long-horizon learning reflects that estimated forecast models are
used to form expectations far into the future, thus compounding the impact of poorly estimated
forecast-model parameters.

Shadow-price learning and anticipated utility

The shadow-price approach can be modified to accord fully with the paradigm of anticipated utility.
Under the standard implementation of SP learning agents choose to neglect that the realized depen-
dence of their shadow price on savings and prices differs from the estimated dependence that they
used to form forecasts. There are many reasons why the agents might make this choice, including
cognitive abilities and costs, and that the discrepancy might reflect errors in their state-variable
forecast models, and therefore correcting the discrepancy might result in poorer decisions. On the
other hand, if one adopts the anticipated-utility perspective that agents view their state-variable

21The analysis of empirically testable distinctions between learning implementations is of considerable interest and
merits future research.
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forecast models as accurate and that they are cognitively unconstrained then it makes sense to
assume agents do note and correct the discrepancy.

The corrective behavior induced by the anticipated-utility approach may be implemented by
finding a fixed point of the T-map associated with shadow-price perceptions. More specifically,
using the notation of the section titled Shadow Price Learning in the Linear Model, and considering
only the homogeneous case, let ψ̂ = (ψk,ψr,ψw) denote the agent’s transition beliefs, and define
ψ∗

λ
(ψ̂) as the solution to

ψ
∗
λ
(ψ̂) = Tdλ

(
ψ
∗
λ
(ψ̂) , ψ̂

)
.

Then ψ∗
λ
(ψ̂) corresponds to the time-invariant shadow price forecasting model consistent with the

savings behavior it induces, given the fixed transition beliefs ψ̂ . If agents use ψ∗
λ
(ψ̂) to forecast

shadow prices, this, in effect, assumes agents act as if their transition beliefs for states exogenous
to their behavior are correct and will hold indefinitely, and so they take the time (and have the
sophistication) to compute the implied the time-invariant forecast model for shadow prices.
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Figure 6: Iterated shadow-price learning in the linear model

Adopting the assumption that agents use ψ∗
λ

to forecast shadow prices removes the explicit
dependence of the model’s temporary equilibrium maps on ψλ (because it is now determined by
ψ̂), and so the maps may be written

?t = TE ? (ψ̂) ·dxt for ? ∈ {dr,dw,da,dc,dn,dλ} .

With this modification, the remainder of the modeling and analysis proceeds just as it has in previ-
ous treatments.

Figure 6 compares the outcomes of the policy experiment under long-horizon and iterated
shadow-price learning.22 Focusing on the consumption panel, the impact effect of the spending
increase is qualitatively and quantitatively the same for both implementations: similar to RE and in

22For the graphs in Figure 6, the gain used for simulating iterated SP learning is γ = 0.04 as above, while for
comparison purposes the gain used for simulating LH learning is γ = 0.004.
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contrast to SP-learning, both consumption paths over-shoot the new steady-state level. In contrast
to RE and similar to SP-learning, in the periods following the impact effect, both consumption
paths continue to decline as agents’ forecasting models are updated to asymptotically align with
the new public spending level. Finally, after reaching similar troughs, both consumption paths
converge monotonically to the new steady-state level, and at a rate that is faster than the standard
implementation of SP learning.

Conclusions

EM2020 surveys the central ideas of adaptive learning, focusing on the standard reduced-form
analysis, within a range of macroeconomic models. In contrast, the current focus has been on im-
plementation of the agent-level approach to adaptive learning, emphasizing the interaction between
boundedly optimal decision-making and boundedly rational forecasting, as well as its aggregate
implications. The SP approach to agent-level learning has a major advantage in its ability to be
implemented in non-linear environments. Though not addressed, SP-learning is also able to ac-
commodate complex heterogeneity.

A linearized RBC model was used to examine several alternative implementations of the
agent-level approach: SP-learning, Euler-equation learning, long-horizon learning, and iterated
SP-learning. These approaches were compared and contrasted using a simple policy change in-
volving a permanent increase in government spending.

Within the context of linearized representative-agent models, reduced-form learning provides
tractable access to many central considerations of adaptive learning including asymptotic stability,
transition dynamics and empirical analysis. Furthermore, it is often possible to justify reduced-
form learning using a particular implementation of the agent-level approach. Agent-level learning
may be more appropriate for questions of policy analysis, particularly when the Lucas critique
is a concern, and is likely to be of increasing importance because of its ease of applicability to
heterogeneous-agent models.
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