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A Derivations of model equations, section 2

Consumption decisions: The consumption Euler equation is

(ct,i + ξgt)
−1 = βRtÊt,i

!
π−1t+1(ct+1,i + ξgt+1)

−1"(16)

= βÊt,i
!
rt+1(ct+1,i + ξgt+1)

−1" ,

provided ct,i > 0. The household’s consumption decision rule is obtained by com-

bining iterations of this with the household intertemporal budget constraint and its

perceived intertemporal budget constraint for the government.

Ricardian households are assumed to internalize the intertemporal budget con-

straint (IBC) of the government. The flow budget constraint of the government

is

(17) bt +mt +Υt = gt +mt−1π
−1
t + rtbt−1,
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where we now write rt = Rt−1π−1t . Setting ∆t = gt −Υt −mt +mt−1π
−1
t we have

bt = ∆t + rtbt−1.

Note that Υt + mt − mt−1π
−1
t is total tax revenue, equal to the sum of lump-sum

taxes and seigniorage.

Substituting in recursively we obtain

0 = rtbt−1 +
#s

j=1
D−1
t,t+j∆t+j +∆t −D−1

t,t+sbt+s where Dt,t+j =
$j

i=1
rt+i.

Imposing lims→∞D
−1
t,t+sbt+s = 0 gives the IBC of the government,

0 = rtbt−1 +
#∞

j=0
D−1
t,t+j∆t+j,

where for convenience we set Dt,t = 1.

For households the flow budget constraint

ct,i +mt,i + bt,i +Υt,i = mt−1,iπ
−1
t +Rt−1π

−1
t bt−1,i + (Pt,i/Pt)yt,i

can be written as

bt,i = Λt,i + rtbt−1,i, where Λt,i =
Pt,i
Pt
yt,i −Υt,i − ct,i −mt,i +mt−1,iπ

−1
t .

Hence 0 = rtbt−1,i+
%s

j=0D
−1
t,t+jΛt+j,i−D

−1
t,t+sbt+s,i and imposing lims→∞D

−1
t,t+sbt+s,i =
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0 gives the household IBC

(18) 0 = rtbt−1,i +
#∞

j=0
D−1
t,t+jΛt+j,i.

We have representative agents and assume they believe future lump-sum taxes and

seigniorage revenue provided to the government will be identical across agents, so that

Υt,i−mt,i+mt−1,iπ
−1
t = Υt−mt+mt−1π

−1
t and Λt,i =

Pt,i
Pt
yt,i−Υt−ct,i−mt+mt−1π

−1
t .

It follows that

(19) Λt+j,i =
Pt+j,i
Pt+j

yt+j,i − ct+j,i − gt+j +∆t+j .

Incorporating the government IBC into the household IBC yields the Ricardian

household IBC, which we assume holds in expectation, and with point expectations

becomes

0 =
#∞

j=0
De−1

t,t+j,i

&
P et+j,i
P et+j

yet+j,i − c
e
t+j,i − g

e
t+j

'
.

Finally, to obtain the household consumption function we make use of their con-

sumption Euler equation

(ct,i + ξgt)
−1 = βÊt,i

!
rt+1(ct+1,i + ξgt+1)

−1" .

Iterating and assuming point expectations gives

cet+j,i = −ξg
e
t+j,i + β

s
!
De
t,t+j,i

"
(ct,i + ξgt).
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Substituting for cet+j,i in the household IBC and solving for ct gives the consumption

function

ct,i = (1− β)
(
Pt,i
Pt
yt,i − gt

&
1 +

ξβ

1− β

')
+

(1− β)
∞#

s=1

!
De
t,t+s,i

"−1
(&
Pt+s,i
Pt+s

'e
yet+s,i − g

e
t+s,i(1− ξ)

)
.

Imposing the non-negativity constraint ct,i ≥ 0 gives (3) in the main text.

Impose now the representative agent assumption, ct,i = ct, yt,i = yt, Ξt,i =

Pt,i/Pt = 1, De
t,t+s,i = D

e
t,t+s, y

e
t+s,i = y

e
t+s and g

e
t+s,i = g

e
t+s. Assuming also agents

have learned that Ξt,i = 1 we have Ξet+s,i = (Pt+s,i/Pt+s)
e = 1. The market clearing

equation yt = ct + gt then yields

yt = max

*
gt, β(1− ξ)gt + (1− β)

+
yt +

∞#

s=1

!
De
t,t+s

"−1 !
yet+s − (1− ξ)g

e
t+s

"
,-

.

Solving for yt gives the temporary equilibrium output equation (5) in the main text.

Remark: In the Ricardian case, with monetary policy specified as an interest-

rate rule, it is unnecessary to track money supply and demand. However, it is

straightforward to show that with our utility function real money demand satisfies

mt,i = χβ
!
1−R−1t

"−1
ct,i. The cashless limit corresponds to χ→ 0.

Production decisions: The adjustment cost function Φ( Pt,j
Pt−1,j

) is the Linex

function (see Kim and Ruge-Murcia (2009)) , centered on π∗, given by

(20) Φ (Pt,i/Pt−1,i) ≡ (φ/ψ2) [exp(−ψ(Pt,i/Pt−1,i − π∗)) + ψ(Pt,i/Pt−1,i − π∗)− 1] ,
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where φ > 0, and we assume the case ψ > 0, consistent with asymmetric adjustment

costs. The function Φ′(π)π = (φ/ψ)π(− exp(−ψ(π − π∗)) + 1) is monotonically

increasing above a critical value π̌, given by the condition d
dπ
Φ′(π)π = 0. We restrict

attention to regions for which π > π̌. We compute the derivative

d

dPt,i

(
Φ

&
Pt,i
Pt−1,i

')
=
φ

ψ
P−1t−1,i [− exp(−ψ(Pt,i/Pt−1,i − π

∗)) + 1] .

Note that Φ′(πi) =
φ
ψ
(− exp(−ψ(πi − π∗)) + 1), so

d

dPt,i

(
Φ

&
Pt,i
Pt−1,i

')
= P−1t−1,iΦ

′
&
Pt,i
Pt−1,i

'
.

The agent’s period utility is

Ut,i = log(ct,i + ξgt) + κ log
&
Mt−1,i

Pt

'
− (1 + ε)−1h1+εt,i − Φ

&
Pt,i
Pt−1,i

'
,

and the first-order condition for optimal price setting is

0 =
∂Ut,i
∂Pt,i

+ βEt,i
∂Ut+1,i
∂Pt,i

=
νt
α
hε+1t,i

1

Pt,i
− Φ′(πt,i)

1

Pt−1,i
(21)

+(ct,i + ξgt)
−1 (1− νt) yt

&
Pt,i
Pt

'−νt 1
Pt
+ βΦ′(πet+1,i)

&
Pt+1,i
P 2t,i

'e
,

where again we have used point expectations and here πt,i = Pt,i/Pt−1,i. Multiplying

the right-hand side by Pt,i we can write this equation as

(22) Φ′(πt,i)πt,i =
νt
α
hε+1t,i + (ct,i + ξgt)

−1 (1− νt) yt
&
Pt,i
Pt

'1−νt
+ βΦ′(πet+1,i)π

e
t+1,i.
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We now discuss the properties of

Φ′(π)π =
φ

ψ
π(− exp(−ψ(π − π∗)) + 1).

The function Φ′(π)π is monotonically increasing above a critical value π̌ which is

given by the condition

(23)
d

dπ
Φ′(π)π = 0.

We compute the derivative

d

dπ
Φ′(π)π =

φ

ψ
(1− (1− φπ) exp(−ψ(π − π∗)),

so the condition giving π̌ can be written as

1 = (1− φπ) exp(−ψ(π − π∗)).

This equation has a unique solution π̌ < φ−1. It is easily seen that (i) π̌ is increasing

in ψ with limψ→∞ π̌ = 1/φ
−1 and (ii) π̌ is decreasing in φ with limφ→∞ π̌ = 0 ceteris

paribus. Throughout the paper we restrict attention to regions for which π > π̌. In

the calibrated model we will compute π̌ to check and impose the inequality π > π̌

when solving for the temporary equilibrium.
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Using the production function, ζt,i in the main text is

ζt,i =
νt
α
hε+1t,i − (νt − 1) (ct,i + ξgt)

−1yt

&
Pt,i
Pt

'1−νt

=
νt
α

&
yt,i
At

'(1+ε)/α
− (νt − 1) (ct,i + ξgt)−1yt

&
Pt,i
Pt

'1−νt
.

Here
yt,i
At
=

. 1
0
ct,j(i)dj + gt(i)

At
=
ct(i) + gt(i)

At

is the total demand for variety i.

Note that the term yt
/
Pt,i
Pt

01−νt
combines yt, which is exogenous to the firm, with

the relative price Pt,i
Pt
, in which the aggregate price level is exogenous while Pt,i is a

decision variable of the firm. Iterating forward we get the expression (4)

Φ′(πt,i)πt,i = ζt,i +
∞#

s=1

βsζet+s,i,

which is our infinite-horizon pricing decision rule. Here ζet+s,i is the point expectation

of

ζt+s,i =
νt+s
α

&
yt+s,i
At+s

'(1+ε)/α
− (νt+s − 1) yt+s

&
Pt+s,i
Pt+s

'1−νt
× (ct+s,i + ξgt+s)−1,

where

yt+s,i = ct+s(i) + gt+s(i)

is the future market demand for variety i.
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B Implementation of stochastic model

From Section 2 we have the representative agent NK PC temporary equilibrium

(TE) equation

(24) Q (πt) = ζt +

∞#

s=1

βsζet+s, where Q (πt) = Φ
′(πt)πt,

with Q (πt) > 0 for πt > π̌, and where

ζt =
νt
α

&
yt
At

'(1+ε)/α
− (νt − 1) yt × (yt − (1− ξ)gt)−1

and

(25) ζet+s =
νt
α

&
yet+s
Aet+s

'(1+ε)/α
−
!
νet+s − 1

"
yet+s × (y

e
t+s − (1− ξ)gt+s)

−1,

for s = 1, 2, 3, . . . , T. As we discuss below, we will set ζet+s at its perceived mean

value after T + 1 periods, for some (suitably large) period T . It is assumed that

Ξet ≡ 1 as discussed in Section 2. Note that νt is stochastic and we assume that,

faced with stochastic shocks in a nonlinear setting, agents use point expectations.

We also assume that the future path of government spending is credibly announced

and implemented; hence get+s = gt+s.

Also from Section 2, the aggregate demand temporary equilibrium equation (5) is

obtained by combining the IH consumption function, market clearing, i.e. yt = ct+gt,
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and Ξet ≡ 1. This yields the TE equation for output

(26) yt = (1− ξ) gt +
!
β−1 − 1

" ∞#

s=1

!
De
t,t+s

"−1 !
yet+s − (1− ξ) g

e
t+s

"
,

where

De
t,t+s =

s$

j=1

ret+j and r
e
t+j =

Ret+j−1
πet+j

.

Here for j = 1 we have Ret = Rt.
47 The interest-rate rule is assumed known and is

given by a forward-looking rule (8). As before, point expectations for forecasting all

unknown future values is assumed.

We turn next to the data-generating process for the stochastic shocks. As as-

sumed in Section 4, lnAt and ln νt are independent stationary exogenous AR(1)

processes

ln
!
At+1/Ā

"
= ρA ln

!
At/Ā

"
+ ln εA,t+1

where 0 ≤ ρA < 1, ln εA,t
iid∼ N (0, σ2A) , and

ln (νt+1/ν̄) = ρν ln (νt/ν̄) + ln εν,t+1

where 0 ≤ ρν < 1, ln εν,t
iid∼ N (0, σ2ν) .

It follows that

νt+1/ν̄ = (νt/ν̄)
ρν εν,t+1 and At+1/Ā =

!
At/Ā

"ρA εA,t+1,

47As we explain below we need to replace ret+j = Ret+j−1/π
e
t+j by r

e
t+j = β−1 for j ≥ T1 for

some positive T1.
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and that

νt+s/ν̄ = (νt/ν̄)
ρsν
$s−1

j=0
ερ

j
ν
ν,t+j .

Under point expectations ln εeν,t+j = 0 and ε
e
ν,t+j = 1 so that

νet+s = ν̄ (νt/ν̄)
ρsν ,

and analogously we have

Aet+s = Ā
!
At/Ā

"ρsA .

In Section 4, the PLMs for output and inflation use a linear forecasting rule based

of the observed exogenous variables. To first-order these correspond to a stochastic

REE at a steady state. Thus the perceived laws of motion are

ln (yt) = fy + dyA ln
!
At/Ā

"
+ dyν ln (νt/ν̄) + ηyt

ln (πt) = fπ + dπA ln
!
At/Ā

"
+ dπν ln (νt/ν̄) + ηπt,

where ηyt, ηπt are perceived white noise shocks.

Under recursive least squares (RLS) learning the coefficient vectors, φy, φπ where

φ′y = (fy, dyA, dyν) and φ
′
π = (fπ, dπA, dπν), are time-varying and updated over time

using recursive least squares regressions of (ln (yt) , ln (πt)) on x′t = (1, Ãt, ν̃t). The
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recursive updating equations, which are standard,48 are

φyt = φy,t−1 + ωtR
−1
t xt−1

!
yt−1 − φ′y,t−1xt−1

"

φπt = φπ,t−1 + ωtR
−1
t xt−1

!
πt−1 − φ′π,t−1xt−1

"
(27)

Rt = Rt−1 + ωt(xt−1x
′
t−1 −Rt−1).

Note that φyt, φπt are updated based on their most recent forecast errors. Here Rt

is an estimate of the second-moment matrix of regressors. RLS updating equations

allow for a time-varying gain ωt. We focus on the constant gain case ωt = ω for

0 < ω < 1. In the decreasing gain case, ω is replaced by 0 < ωt < 1 with ωt → 0 at

an appropriate rate, for instance at rate t−1.

Under constant gain RLS learning the coefficients φ = (fy, dyA, dyν, fπ, dπA, dπν)

are time-varying and updated over time using recursive least squares regressions of

(ln (yt) , ln (πt)) on (1, Ãt, ν̃t).

Letting fy, dyA, dyν, fπ, dπA, dπν now denote the time t values of their estimates,

expectations of output s steps ahead are given by

yet+s = e
fyÃ

ρsAdyA
t ν̃

ρsνdyν
t for s = 1, . . . , T,

where as usual point expectations are assumed. Here T denotes the period after

which agents believe that all relevant processes will have reverted to their mean

48See, for example, Chapter 2 of Evans and Honkapohja (2001) or Evans and Honkapohja (2009).
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steady-state values. Thus

yet+s = e
fy , νet+s = ν̄, A

e
t+s = Ā and gt+s = ḡ for s ≥ T + 1.

Here ḡ is the original level of g to which gt reverts after the fiscal stimulus, and we

assume t + T + 1 > Tp, where Tp is the length of the fiscal stimulus. Similarly for

ζet+s with s ≥ T + 1 we replace (25) with

ζet+s = ζ̄ ≡
ν̄

α

&
efy

Ā

'(1+ε)/α
− (ν̄ − 1) efy × (efy − (1− ξ)ḡ)−1 for s ≥ T .

Using these expectations πt is determined by the temporary equilibrium equation

(28) Q (πt) = ζt +

T#

s=1

βsζet+s +
βT+1

1− β
ζ̄.

We now turn to the aggregate demand temporary equilibrium equation (5). Expec-

tations yet+s and π
e
t+j are given as above. For the discount factors we have

De
t,t+s =

s$

j=1

Ret+j−1
πet+j

.

where Ret+j−1 is given by the forward-looking R-rule (8). Here Rt = R(πet+1, y
e
t+1)

with Ret+j−1 = R(π
e
t+j, y

e
t+j), so that

De
t,t+s =

s$

j=1

R(πet+j, y
e
t+j)

πet+j
, for s ≤ T1 − 1.
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The restriction s ≤ T1 − 1 is included because in order to ensure that consumption

and output is positive and finite we need discount factors De
t,t+s to be bounded above

1. This can be an issue because the interest rate R(πe, ye) can be less than πe for

some πe between πL and π∗ and for a range of ye if the rule also depends on ye. This

difficulty is avoided by assuming that after T1 periods the expected real interest rate

factor is the steady-state value β−1. Thus we assume ret+j = β
−1 for j ≥ T1 implying

De
t,t+s =

T1−1$

j=1

R(πet+j , y
e
t+j)

πet+j
β−(s−(T1−1)), for s ≥ T1.

We assume that the “truncation” parameter T > T1, Tp.

Incorporating the assumption that expectations ye, πe return to their perceived

steady-state values after T periods, we arrive at the the aggregate demand temporary

equilibrium equation

yt = (1− ξ) gt +
!
β−1 − 1

" T#

s=1

!
De
t,t+s

"−1 !
yet+s − (1− ξ) g

e
t+s

"
+(29)

!
β−1 − 1

" !
efy − ḡ (1− ξ)

" ∞#

s=T+1

!
De
t,t+s

"−1
, where

∞#

s=T+1

!
De
t,t+s

"−1
= (De

t,t+T1−1)
−1 (1− β)−1 βT−T1+2.

The latter equation is obtained from

∞#

s=T+1

!
De
t,t+s

"−1
= (De

t,t+T1−1)
−1

∞#

s=T+1

βs−T1+1.
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The forward-looking R-rule has the advantage that πt, yt can be solved explicitly

using the above equations (28) and (29). As already noted, the results for the

contemporaneous rule are similar.

Next, we discuss the interpretation of the numerical magnitudes pointed out at

the end of Section 4. To understand the magnitude of the expectation shocks given in

Table 1, it is helpful to consider a reinterpretation of the role of ye in the temporary

equilibrium model. For the consumption function (3), assuming the representative

agent case with Ξet ≡ 1, it can be seen that consumption, and hence temporary

equilibrium output yt, depend to first-order on {yet+s}∞s=1 through its present value

PV
!
{yet+s}

∞
s=1

"
=

∞#

s=1

!
De
t,t+s

"−1
yet+s ≈

∞#

s=1

βsyet+s.

We have interpreted steady state learning as agents acting as if yet+s = y
e
t for all hori-

zons s = 1, 2, 3 . . .. However this is behaviorally equivalent to assuming that agents

have an expected output profile with the same present value as PV
!
{yet+s = yet}∞s=1

"
.

In particular suppose that agents believe yet+s = ŷ < y
∗ for s = 1, . . . , L periods,

interpreted as quarters, followed by yet+s = y
∗ for s > L, i.e. a recession of L periods

followed by a return to targeted steady state. Then the PV of the L-period recession

output expectation sequence equals the PV of a constant sequence ỹe < y∗ when

(30)
∞#

s=1

βsỹe =

L#

s=1

βsŷ +

∞#

s=L+1

βsy∗ or ỹe = ŷ + βL(y∗ − ŷ).

As an example assume β = 0.99 and consider an expectations shock ŷ lasting two

years i.e. L = 8. Then compute ŷ that is equivalent to permanent shock at ỹe =
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0.99745 which in Table 1 is slightly above the boundary of the stochastic domain

of attraction at πe = π∗ for the targeted steady state.49 Then (30) yields ŷ =

0.96663 which corresponds to an expected recession approximately equal to over

3.34% reduction of expected GDP relative to target y∗ during two years, followed by

a return to normal value.

C Calibration details

The parameter values are π∗ = 1.005, β = 0.99, α = 0.7, ξ = 0.4, Ā = 1.113,

ν = 13.5, φ = 75, ψ = 20, ε = 1, ḡ = 0.2, B = 1.5/R∗, φy = 8.25. We set φ = 75,

ψ = 20 based on comparing Linex-type functions to a quadratic adjustment cost

function at the most common range for π. Here are some comments about these

values.

The parameter values in the main text are chosen as follows. α = 0.7, β = 0.99

and ε = 1 are standard. There are various suggestions for ξ and we set ξ = 0.4. The

frequency of price change is that 1/3 (= 1−η) of firms change prices per quarter. This

is consistent with Nakamura and Steinsson (2008) and Kehoe and Midrigan (2015).

Various estimates of ν or of the markup ν/(ν − 1) have been used with estimates

of ν ranging from 21 to 3.5. Keen and Wang (2007) give the relation between these

49The computation assumes unchanged fiscal policy and unchanged monetary policy given by

the specified Taylor-rule.
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parameters and the Rotemberg quadratic adjustment cost parameter

γ =
(ν − 1) η

(1− η) (1− βη)
.

We choose ν = 13.5, a markup of about 8%, and η = 0.67 which gives γ = 75.

For Linex adjustment cost functions the parameter estimates for φ, ψ vary widely.

Note that φ → γ as ψ −→ 0. In most papers adjustment costs are assumed to be

proportional to output or profit, whereas we use a non-proportional setup to avoid

multiplicities. However as we normalize steady-state target output to y = 1 then the

parameters are comparable. Also near the steady state marginal utilities drop out to

first order. We choose φ = 75 and ψ = 20, which gives a fairly close approximation

to the quadratic in the range π = 1.00 to π = 1.01, i.e. 0 to 4% annual inflation.

For technology we set Ā = 1.113. A high steady state is ȳ ≈ 1.00003 ≈ 1 with

ḡ = 0.2. For productivity and mark-up shock calibrations we set first-order autocor-

relation parameters to ρA = ρv = 0.5 and standard deviations for the log innovations,

in decimal form, to σA = 0.0015 and σν = 0.0001. Both the serial correlation and au-

tocorrelation parameters are smaller than those found by Smets and Wouters (2007),

but their estimates are for models under RE and with additional frictions. Adap-

tive learning dynamics add additional volatility relative to RE, particularly in purely

forward-looking models.
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D Calibrating the Taylor rule

To calibrate the interest rate rule

(31) Rt = R(π
e
t+1, y

e
t+1) = 1 + (R

∗ − 1)
&
πet+1
π∗

'BR∗/(R∗−1)&yet+1
y∗

'φy
,

where y∗ is output level at the target steady state, we relate (31) to the usual Taylor

rule. Rearranging and taking logs we get

log(Rt − 1)− log(R∗ − 1)

=
BR∗

R∗ − 1
(log πet+1 − log π

∗) + φy(log y
e
t+1 − log y

∗).

Multiplying by (R∗−1) and approximating log differences by percentage changes we

get

Rt − R∗ = BR∗
&
πet+1 − π∗

π∗

'
+ (R∗ − 1)φy

&
yet+1 − y∗

y∗

'
.

Thus BR∗ is the inflation coefficient and (R∗ − 1)φy is the output coefficient in the

usual linear Taylor rule. Assuming a quarterly calibration one should have

BR∗ = 1.5

(R∗ − 1)φy =
0.5

4
.

At the target steady state R∗ = β−1π∗ we get

φy =
0.5

4
/(0.01515) ≈ 8.25
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when β = 0.99 and π∗ = 1.005.

E Proof of Proposition 1

We start by computing the partial derivatives of the right-hand sides of differential

equations (12)-(13):

∂Fπ
∂πe

= DyG1DπeG2 − 1,
∂Fπ
∂ye

= DyeG1 +DyG1DyeG2

and
∂Fy
∂πe

= DπeG2,
∂Fy
∂ye

= DyeG2 − 1.

The E-stability differential equations in vector form are




∂πe

∂τ

∂ye

∂τ



 =




Fπ(π

e, ye)

Fy(π
e, ye)



 ,

where Fy(.) and Fπ(.) are given in (12) and (13). We get the Jacobian

DFI =




DyG1DπeG2 − 1 DyeG1 +DyG1DyeG2

DπeG2 DyeG2 − 1



 .

Proof of Proposition 1: (a) (i) Consider the case φy = 0. Calculating the
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derivatives of the Jacobian at the target steady state we get

(Q−1)′ = (Φ′′π + Φ′)−1 = (φπ∗)−1 > 0 so

DyG1 = (Q−1)′
&
ν(1 + ε)

α2
(y∗/A)(1+ε)/α−1 +

(ν − 1) (1− ξ)g
(y∗ − (1− ξ)g)2

'
> 0.

DπeG2 = (β
−1 − 1)(y∗ − g(1− ξ))

&
R(πet , y

e
t )− πetDπR(πet , yet )

(R(πet , y
e
t )− πet)

2

'
< 0.

As

DπR(π, y) =
BR∗

π∗

/ π
π∗

0(R∗(B−1)+1)/(R∗−1)& y
y∗

'φy

we have DπR(π, y) = BR∗

π∗
and so R(π∗, y∗)− π∗DπR(π∗, y∗) = β−1π∗(1− B) < 0 at

the target steady state. Also

DyeG1 = (Q−1)′
β

1− β

(
ν(1 + ε)

α2
(y∗/A)(1+ε−α)/α +

(ν − 1) (1− ξ)g
(y∗ − (1− ξ)g)2

)
> 0

DyeG2 = 1

if φy = 0. So in this case we get

DFI =




− +

− 0





which has negative trace and positive determinant and is thus a stable matrix. The

result follows by continuity of eigenvalues.
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If φy is not zero, we have

DyeG2 = 1 + (β
−1 − 1)

(
(1− g(1− ξ))

&
π

DyR(π, y)− π

')
.

For the interest rate rule we get

DyR(π, y) = (R
∗ − 1)

/ π
π∗

0(R∗B/(R∗−1) φy
y∗

&
y

y∗

'φy−1
,

so

DyR(π
∗, y∗) = (R∗ − 1)φy/y

∗

at the target steady state and thus

DyeG2 = 1 + (β
−1 − 1)

(
(1− g(1− ξ))

&
π∗

(R∗ − 1)φy/y∗ − π∗

')
.

Now R∗ − 1 ! 0 is small, something like 0.02, while φy ≈ 8 and y∗ ≈ 1, whereas

π∗ ! 1. Then DyeG2 < 1 and the targeted steady state is E-stable.

(ii) Doing calculations similar to above, set first φy = 0 and we get

(Q−1)′ = (
φ(1− (1− ψπL) exp(πL − π∗))

ψ
)−1 > 0 normally so

DyG1 = (Q−1)′
&
ν(1 + ε)

α2
(yL/A)

1+ε−α)/α +
(ν − 1) (1− ξ)g
(yL − (1− ξ)g)2

'
> 0.

DπeG2 = (β
−1 − 1)(yL − g(1− ξ))

&
R(πL, yL)− πLDπR(πL, yL)

(R(πL, yL)− πL)
2

'
< 0,
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as

1 + (R∗ − 1)
/πL
π∗

0BR∗/(R∗−1)&yL
y∗

'φy
< Bβ−1π∗

/πL
π∗

0BR∗/(R∗−1)&yL
y∗

'φy
normally.

Also

DyeG1 = (Q−1)′
β

1− β

(
ν(1 + ε)

α2
(yL/A)

(1+ε−α)/α +
(ν − 1) (1− ξ)g
(yL − (1− ξ)g)2

)
> 0

DyeG2 = 1−
φy(yL/y

∗)(β−1πL − 1)
(β−1 − 1)πL

.

Normally, DyeG1 +DyG1DyeG2 > 0 and considering the case φy = 0, we get

DFI =




? +

+ 0



 .

It is seen that the determinant of DFI is negative, so the (πL, yL) is not E-stable.

The case φy > 0 but not too large also leads to instability depending on the

parameter values. This is true in numerical analyses where φy = 8.25.

(iii) At the stagnation steady state yt = G2(πet , y
e
t ) has to be locally constant, so

DπeG2 = DyeG2 = 0. Then the Jacobian matrix becomes

DFI =




−1 DyeG1

0 −1



 =




−1 +

0 −1





as

DyeG1 = (Q
−1)′

β

1− β

(
ν(1 + ε)

α2
(g)1+ε−α)/α +

(ν − 1) (1− ξ)g
(ξg)2

)
> 0.
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Given the sign pattern for DFI, local stability is evident.

(b). In non-stochastic models, with constant-gain, steady-state learning is locally

stable for sufficiently small gains if and only if E-stability holds. We provide a sketch

of the proof. Consider a linear(-ized) model yt = Tyet , assuming zero intercept

without loss of generality, and the constant-gain rule at = at−1+ γ(yt− at−1), where

0 < γ < 1. The PLM is yet = at−1. Then at = at−1+γ(Tat−1−at−1) and the system is

convergent if matrix γT+(1−γ)I has eigenvalues ti inside the unit circle; equivalently

T + γ−1(1− γ)I has eigenvalues inside the circle with radius γ−1. Eigenvalues of the

latter matrix are equal to ti + γ−1(1− γ), so the ti values must lie inside unit circle

with origin at (1 − γ−1, 0) and radius γ−1. Letting γ → 0 yields the E-stability

condition that real parts of ti must be less than 1. "

F Figure 1 and Figure 7 Details

Figure 1 data details:

Figure 1, left panel: The interest-rate rule curve takes the form I = A∗exp(BΠ),

where Π denotes net inflation and I denotes the net interest rate. Japan switched

the policy target in 2013 to monetary base.

Figure 1, right panel: Macrobond data base which in turn utilizes standard data

sources. GDP data is volume data with 2010 as reference year and in local currency.

GDP data is annualized. This was specifically done for the Euro area by multiplying

quarterly data by 4. Population data is total population and it is interpolated for

quarters.
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Figure 7 simulation details:

In the simulations used for Figure 7, the pricing friction Φ is modified so that

Q(π) ≡ Φ′(π)π is replaced by QQ(π). Over πLc1 < 1 < πRc1 Q is unchanged, i.e.

QQ(π) = Q(π). For πLc2 < πLc1 and for πRc1 < πRc2 the function QQ(π) modifies

Q(π) using logit-type asymptotes that give elastic effective bounds on inflation and

deflation. Because πLc1 < πL < π∗ < πRc1, the targeted and unintended steady

states (π∗, y∗) and (πL, yL) are unchanged, as are their local dynamics under adaptive

learning. The stagnation steady state remains locally stable under learning but has

a deflation rate corresponding to πLc2.

The Figure 7 scatterplots combine simulated data from three stochastic simula-

tions, each of 80 periods length. These correspond to three expectations starting

points: (i) (πe, ye) close to (πL, yL) but with πe < πL and ye < yL; (ii) initial (πe, ye)

close to (π∗, y∗), but with initial ye slightly below y∗, (iii) initial (πe, ye) close to

(π∗, y∗), but with initial πe slightly below π∗. In Figure 7 simulations we set T1 = 8,

which also acts to moderate the response of output and inflation to expectations.

For simulations (ii) and (iii) normal policy is followed. For simulation (i) stimula-

tive monetary and fiscal policies are followed after delays. Specifically, in simulation

(i) normal policies are initially followed for 12 quarters. During this period infla-

tion and output, and their expectations, gradually fall, with the negative output

gap reaching 3%. After this delay monetary policy drops the net interest rate to

an “effective lower bound” of 0.8% per year and, using forward guidance, holds it

there for 14 quarters. (If a credit friction were included a similar outcome would

arise with a policy net interest rate at zero). This policy is not enough to begin a
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sustained recovery, and in period 26 policy adds a large fiscal stimulus (increasing

g from 0.20 to 0.34 for 18 quarters). These measures together increase output and

inflation substantially, eventually returning the economy to the targeted steady state.

G Further Numerical Results, Section 5

A systematic analysis of the case ye0 = 0.997× y∗ of Section 5 is now conducted.

The magnitude and length of fiscal policy are varied and the estimated probability

of the economy going back to target steady state is computed. The expectation

shock is ye0 = 0.997× y∗, πe0 = π∗ and Table A.1 gives the estimated probabilities of

convergence to the targeted steady state (vs. eventual convergence to the stagnation

steady state) for alternative values of the length Tp and the magnitude ḡ′ of fiscal

policy.
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Tp\ḡ′ 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4

1 0 0 0 0 94 100 100 100 100

2 0 0 97 100 100 100 100 100 100

3 0 0 100 100 100 100 100 100 100

4 0 95 100 100 100 100 100 67 1

5 0 99 100 100 100 100 5 0 0

6 0 100 100 100 100 2 0 0 0

7 0 100 100 100 4 0 0 0 0

8 0 100 100 44 0 0 0 0 0

9 0 100 100 3 0 0 0 0 0

10 0 100 96 1 0 0 0 0 0

11 0 100 30 1 0 0 0 0 0

12 0 100 5 0 0 0 0 0 0

Table A.1: Percentage of simulations in which fiscal policy successfully results in

convergence to the targeted steady state starting from pessimistic output expectations

ye0 = 0.997× y∗. Based on 100 replications with length 500.

Table A.1 shows that the sequence of serially correlated random productivity

and mark-up shocks can matter: for a fiscal policy that is usually successful, a

particularly unfavorable sequence of shocks can adversely affect expectations enough

to prevent the policy from working. However, for a substantial range of policies,

with ḡ′ between 0.25 and 0.35 with Tp between 2 and 4 quarters, a fiscal stimulus is

successful approximately 100% of the time.
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In these cases the cumulative fiscal spending multipliers would of course be huge,

reflecting the fact that a temporary fiscal stimulus prevents the economy from de-

scending into stagnation and pushes it back toward convergence to the targeted

steady state.

It can also be seen that in many cases a fiscal stimulus that is too long can be

counterproductive. For example, for g = 0.30 the effectiveness of the stimulus de-

creases greatly if Tp is increased to Tp = 7 quarters or longer. This is a reflection of

the negative effect on consumption of the tax burden associated with higher govern-

ment spending, which we assume is correctly foreseen by households. In particular,

the impact on aggregate output is largest in the first period when a fiscal policy

of a given magnitude ∆g for Tp periods is initiated. In this case the present value

of the tax burden is simply ∆g and the direct impact of this on consumption is

−(1 − (1 − ξ)β)∆g, which is small compared to the increase in aggregate demand

for output from government spending ∆g. For larger Tp the present value of the

tax burden is larger; consequently the reduction in consumption in the initial period

is greater, leading to a smaller initial increase in aggregate output and inflation.

Against this, of course, a larger Tp means that the increase in demand continues for

a longer period of time.

H Convergence probabilities for ye0 = 0.985

Each table gives the probabilities for the specified value of Tm and ranges of values

for ḡ′ and Tp based on 100 replications.
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Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 7 57

5 0 0 0 0 0 0 0 36 60 32 4

6 0 0 0 0 0 0 54 35 2 0 0

7 0 0 0 0 0 57 5 1 0 0 0

8 0 0 0 0 55 5 1 0 0 0 0

ye0 = 0.985, gain = 0.01, Tm = 1

Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 1 51 61 62

5 0 0 0 0 0 0 62 66 17 4 0

6 0 0 0 0 0 0 1 56 27 1 0

7 0 0 0 0 50 12 0 0 0 0 0

8 0 0 0 46 15 1 0 0 0 0 0

ye0 = 0.985,gain=0.01, Tm = 2
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Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 27 55

4 0 0 0 0 0 0 35 54 66 44 10

5 0 0 0 0 0 59 62 13 1 0 0

6 0 0 0 3 55 21 2 0 0 0 0

7 0 0 0 57 19 1 1 0 0 0 0

8 0 0 21 30 0 0 0 0 0 0 0

ye0 = 0.985,gain=0.01, Tm = 3

Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 4

3 0 0 0 0 0 0 6 46 55 64 71

4 0 0 0 0 6 57 60 66 28 6 0

5 0 0 0 32 61 58 10 0 1 0 0

6 0 0 0 3 56 25 1 0 0 0 0

7 0 0 55 26 0 0 0 0 0 0 0

8 0 0 38 1 1 0 0 0 0 0 0

ye0 = 0.985,gain=0.01, Tm = 4
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Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 12 43 58 62

3 0 0 0 0 15 55 61 69 52 24 8

4 0 0 0 41 65 73 27 6 0 0 0

5 0 0 34 65 43 8 1 0 0 0 0

6 0 0 58 34 3 1 0 0 0 0 0

7 0 38 48 2 1 0 0 0 0 0 0

8 0 53 0 0 0 0 0 0 0 0 0

ye0 = 0.985,gain= 0.01, Tm = 5

Tp\ḡ1 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 37 64 60 69 67 41

3 0 0 0 45 62 73 36 12 3 1 0

4 0 0 60 69 37 6 0 1 0 0 0

5 0 32 65 30 4 0 0 0 0 0 0

6 0 64 48 4 0 0 0 0 0 0 0

7 0 57 7 1 0 0 0 0 0 0 0

8 31 36 0 0 0 0 0 0 0 0 0

ye0 = 0.985,gain=0.01, Tm = 6
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Tp\ḡ1 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 14 39 49 58

2 0 0 0 42 61 65 67 34 14 8 2

3 0 12 61 62 33 9 2 0 0 0 0

4 0 63 65 21 0 0 0 0 0 0 0

5 25 65 22 0 0 0 0 0 0 0 0

6 49 46 4 0 0 0 0 0 0 0 0

7 50 21 1 0 0 0 0 0 0 0 0

8 59 3 1 0 0 0 0 0 0 0 0

ye0 = 0.985,gain = 0.01, Tm = 7

Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 32 45 53 63 60 61 50

2 0 32 55 58 41 19 8 1 1 1 0

3 21 64 46 17 1 1 1 0 0 0 0

4 58 53 11 0 0 0 0 0 0 0 0

5 66 20 0 0 0 0 0 0 0 0 0

6 53 3 1 0 0 0 0 0 0 0 0

7 30 0 0 0 0 0 0 0 0 0 0

8 30 0 0 0 0 0 0 0 0 0 0

ye0 = 0.985, gain = 0.01, Tm = 8
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I Convergence probabilities for ye0 = 0.98

Each table gives the probabilities for the specified value of Tm and ranges of values

for ḡ′ and Tp with 100 replications.

Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 38

7 0 0 0 0 0 0 0 0 29 19 2

8 0 0 0 0 0 0 0 31 4 0 0

ye0 = 0.98, gain=0.01, Tm = 1

Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 31 22

7 0 0 0 0 0 0 0 22 20 3 0

8 0 0 0 0 0 0 25 8 0 0 0
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ye0 = 0.98, gain=0.01, Tm = 2

Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 1 37

6 0 0 0 0 0 0 0 0 43 23 3

7 0 0 0 0 0 0 6 24 3 0 0

8 0 0 0 0 0 0 19 3 0 0 0

ye0 = 0.98, gain=0.01, Tm = 3

Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 2 40 35

6 0 0 0 0 0 0 0 20 42 2 0

7 0 0 0 0 0 0 31 7 0 0 0

8 0 0 0 0 0 23 2 0 0 0 0

ye0 = 0.98, gain=0.01, Tm = 4
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Tp\ḡ1 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 1 30

5 0 0 0 0 0 0 0 2 40 38 12

6 0 0 0 0 0 0 29 28 6 0 0

7 0 0 0 0 0 41 18 1 0 0 0

8 0 0 0 0 24 15 1 0 0 0 0

ye0 = 0.98, gain=0.01, Tm = 5

Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 7 41 45

5 0 0 0 0 0 0 3 40 35 6 1

6 0 0 0 0 2 1 37 12 4 0 0

7 0 0 0 0 12 21 2 0 0 0 0

8 0 0 0 0 19 2 0 0 0 0 0

ye0 = 0.98, gain = 0.01, Tm = 6
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Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 17

4 0 0 0 0 0 0 0 21 40 29 14

5 0 0 0 0 0 0 45 25 6 0 0

6 0 0 0 0 0 41 15 0 0 0 0

7 0 0 0 0 37 11 1 0 0 0 0

8 0 0 0 22 11 1 1 0 0 0 0

ye0 = 0.98, gain = 0.01, Tm = 7

Tp\ḡ′ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 28 39

4 0 0 0 0 0 0 10 42 21 6 1

5 0 0 0 0 0 40 24 6 0 0 0

6 0 0 0 0 42 16 2 0 0 0 0

7 0 0 0 19 15 2 0 0 0 0 0

8 0 0 0 29 0 0 0 0 0 0 0

ye0 = 0.98, gain = 0.01, Tm = 8
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J Additional results with higher values for ḡ′

The next three tables show the additional rows and columns (with at least one

non-zero value) to the corresponding table above with results continued to be based

on 100 replications. Note: column for ḡ′ = 0.8 is included to see continuity to the

earlier table.

Tp\ḡ′ 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2 1.25

3 0 0 0 1 21 34 44 44 49 24

4 30 41 52 18 5 3 0 0 0 0

5 12 2 0 0 0 0 0 0 0 0

ye0 = 0.98, gain = 0.01, Tm = 5

Tp\ḡ′ 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2

3 0 1 24 39 44 47 25 17 10

4 45 28 4 3 0 0 0 0 0

5 1 0 0 0 0 0 0 0 0

ye0 = 0.98, gain = 0.01, Tm = 6

Tp\ḡ′ 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15 1.2

3 17 35 42 36 20 8 2 0 1

4 14 3 0 0 1 0 0 0 0

ye0 = 0.98, gain = 0.01, Tm = 7
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K Numerical Computation of Size of the Domain

of Attraction

In this model it is possible to compute an approximation of the area of the

domain of attraction (DOA). The figure below which is like Figure 3 shows the

DOA in the basic NK model as the area which is inside the global stable manifold

(blue curve). The global stable manifold (GSM) can be numerically computed by

solving two boundary value problems for the E-stability differential equation as the

unstable steady state is a saddle point. The unstable steady state is the end point

for the two curves that form the GSM. The numerical solutions of these curves can

be obtained by solving the end-point problems where the trajectory approaches the

unstable steady state from South-East or North-West direction as τ →∞.
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Figure A.1: Numerical computation of the area of domain of attraction.

To compute the area of the DOA, the GSM is divided into three segments which

are determined using the intersections of the vertical straight lines with GSM as

follows. Segment I is the "top" curve between the intersections of GSM with AA

and CC. Segment II is the "bottom" curve between the intersections of GSM with

BB and CC. Segment III is the "bottom" curve between the intersections of GSM

with AA and BB.

Using standard formula for determining the area below a curve in parametric
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form, one computes the line integral of each curve

7 τ2

τ1

ye(τ)Fπ(π
e(τ ), ye(τ ))dτ

when bounds for the independent variable τ are implicitly obtained from the relevant

intersection points. Denote these integrals by Num(i), where i = I, II and III. It is

seen from the Figure that an approximation for the area of the domain of attraction

is then given by

Num(I)−Num(II)−Num(III).

When applying the formula, the numerical integration is made difficult by the fact

that each curve is given implicitly by the solution to a differential equation and the

solution is obtained from solving end-point problems for the E-stability differential

equation. Some of the values for τ1 and τ 2 in the integral must be obtained by trial

and error method.
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