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Abstract

This paper studies long-run inflation targets and stability in an imperfect infor-
mation environment. When central banks set an inflation target that is not fully
communicated, agents draw inferences about inflation from recent data and remain
alert to structural change in their econometric model by forming expectations from a
forecasting model that is estimated via discounted least squares. Inflation targets can
lead agents’ beliefs to depart from rational expectations through two channels. First,
implementing a higher inflation target can lead to overshooting of the target. Second,
there can be nearly self-fulfilling inflation, disinflation, or deflation that arises as an
endogenous response to shocks. Policy implications for implementing a higher target

without de-anchoring expectations are discussed.
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Policy makers have generally chosen a 2 % (inflation rate target). But there was
no very good reason to use 2 % rather than 4 %. Two percent doesn’t mean price
stability. Between 2 % and 4 %, there isn’t much cost from inflation. If I were
to choose an inflation target today, I'd strongly argue for 4%.

— Interview with Olivier Blanchard in WSJ 2/11/2010

In this context, raising the inflation objective would likely entail much greater
costs than benefits. Inflation would be higher and probably more volatile under
such a policy, undermining confidence and the ability of firms and households to
make longer-term plans, while squandering the Fed’s hard-won inflation credibil-
ity. Inflation expectations would also likely become significantly less stable, and

risk premiums in asset markets—including inflation risk premiums—would rise.

—Chairman Ben S. Bernanke, remarks at the 2010 Jackson Hole Symposium

Since the economic crisis erupted, statistical properties of UK core CPI have
swung markedly. From 2008 onwards, UK core inflation cannot be modelled as
a stationary process. This shift may indicate that the MPC has become more
tolerant of inflation deviating from target as a pragmatic reaction to the recession.
However, it would also be consistent with the tolerance of persistently higher
inflation — effectively raising the inflation target. We believe the former is the
more accurate description of reality, but the danger is that wage and price setters

take the latter view, and higher inflation expectations become self-fulfilling.

— Barclays Capital, Global Economics Weekly 10/15/2010

1 Introduction

The recent global economic crisis has renewed debate over the appropriate long-run inflation
rate that monetary policymakers should target. Some have argued (see Krugman (1998),
Summers (1991), Ball (2013)) that in “normal” times monetary authorities should pursue
a higher average inflation rate in order to provide a cushion that facilitates a lowering of
nominal interest rates so as to avoid a liquidity trap due to a binding zero-lower-bound
constraint on interest rates. Subsequent analyses, that are typically based in models with

explicit micro-foundations, find little support for higher average inflation rates. For example,



Woodford (2003), Schmitt-Grohe and Uribe (2011), Eggertsson and Woodford (2003) and
Coibion, Gorodnichenko, and Wieland (2012) find that the optimal inflation rate in New
Keynesian models are close to zero, even after accounting for the protection that higher
inflation rates provide in avoiding the zero lower bound. Ascari and Ropele (2007) find that
higher target rates of inflation can destabilize economies. (See, also, Ascari and Sbordone
(2014) for a recent review.) Nevertheless, among many economists there is the view that the
added stability that might be achieved from a higher inflation target outweighs any of the
distortionary losses associated with inflation.

Policymakers, though, are reticent to depart from a commitment to low and stable rates
of inflation. Chairman Bernanke, in the quote above, expresses the view that higher average
inflation rates will lead to more volatile inflation and “inflation expectations would also
likely become significantly less stable.” Most research into optimal long-run inflation rates
and optimal policy in the presence of a zero lower bound constraint do not have a channel
through which higher average inflation leads to the de-anchoring of inflation expectations.
Conventional models assume perfect information (and rational expectations) which have the
feature that, away from the zero lower bound, inflation will be a stationary process around
the long-run target.

This paper re-examines the stability of long-run inflation targets in an environment with
imperfect information and adaptive learning. As a benchmark, the paper takes as its eco-
nomic framework a simple dynamic Fisherian model in which nominal interest rates are ad-
justed, in accordance with a Taylor rule, whenever inflation deviates from its long-run target
rate. Private-sector agents in the economy know the form of the Taylor rule. However, they
do not know — or harbor some doubt about — the precise values for the response coefficient
or the value and/or timing of the long-run inflation target. Instead, agents draw inferences
about the inflation process from recent data by adopting an econometric forecasting model
whose reduced-form nests the full class of rational expectations equilibria. These agents are
Bayesian and, because of their uncertainty about the inflation target, they place a prior on
structural change in their econometric model. This imperfect information framework implies
that private sector agents adopt a simple AR(1) forecasting model, the parameters of which
are updated in real time with a form of discounted least squares (“constant gain learning”).
The priors of this model are specified in such a way that beliefs are, on average, close to

rational expectations.

!An important exception is Williams (2006) who examines whether higher inflation targets can make
liquidity traps occur less often when rational expectations are replaced with a constant gain, or perpetual,

learning rule.



The primary results of this paper are as follows. First, although over time beliefs tend
to converge toward rational expectations, the combination of constant gain learning and a
positive inflation target can lead agents in the economy to temporarily believe that infla-
tion follows a random walk without drift. Under these beliefs, agents will interpret recent
innovations to inflation as permanent shifts in the mean inflation rate. Random walk beliefs
arise for a very intuitive reason. The long-run inflation target, and imperfect information
about that target, lead agents to estimate the mean inflation rate from historical data. As a
thought experiment, suppose there is a slight (temporary) upward drift in the inflation rate.
Agents’ econometric models will pick up that drift, leading to higher inflation expectations
that feed back into higher inflation rates. This process is self-reinforcing and in some cases
can lead agents to believe that inflation follows a random walk.

Second, random-walk beliefs, as we will show below, are nearly self-fulfilling, and con-
sequently such beliefs tend to persist for a substantial period of time. Furthermore these
beliefs tend to generate considerable economic volatility, characterized by significant bursts
of inflation, disinflation, and even deflation. We find these dynamics arise across a broad
range of model parameters, policy rules, and trend inflation rates. Third, implementing a
higher target — say by moving the target from 2% to 4% — will introduce just the type of
drift in inflation that can lead to random-walk beliefs and cause a substantial overshooting
of the inflation target.

An important feature of our analysis is that imperfect information of inflation targets can
generate instability in inflation rates even though the departure, on average, from rational
expectations is small. The framework employed here is related to an extensive literature
that employs adaptive learning in macroeconomics. Most closely related are papers that
incorporate constant gain learning in studies of monetary policy and asset pricing (see, for
example, Branch and Evans (2011); Sargent (1999); Orphanides and Williams (2005a); Cho,
Williams, and Sargent (2002); Williams (2004); Cho and Kasa (2008); Eusepi and Preston
(2011)). Branch and Evans (2011), in particular, find that when risk-averse agents in an
asset pricing model forecast both the risk and return of stock prices using a forecasting
model whose parameters are updated with constant gain least squares then traders may also
come to temporarily believe that stocks follow a random walk. These nearly self-fulfilling
random walk beliefs lead to recurrent bubbles and crashes in stock prices. The intuition for
why inflation targets are destabilizing in an adaptive learning environment is similar to the
existence of bubbles and crashes in stock markets.

Is it reasonable to assume that the private-sector might have imperfect information, or

doubts, about the long-run inflation target? The answer is yes, for a variety of reasons. First,



the Federal Reserve Bank only recently adopted a stated inflation target and, in fact, it faces
a dual mandate legislated by congress. In recent FOMC meetings, there has been debate
about whether the Summary of Economic Projections (reported once each quarter by the
FOMC) conveys the central bank’s target. However, there is considerable uncertainty about
that target value due to diverse views in the composition of the FOMC. In the Summary
of Economic Projections, the central tendency ranges from 1.5-2% (though recently more
concentrated at 2%). In the Survey of Professional Forecasters, there is considerable dis-
agreement about average annual inflation over a 10 year period. SPF participants expect a
2.5% long-run inflation rate and the dispersion across forecasters ranges from 0.4% to 0.8%

2 Even in countries with an explicit target, such as England, the

in each survey quarter.
Barclays quote above shows that sophisticated market participants might hold doubts about
the long-run target.

The results in the current paper provide a caution to proposals for higher long-run in-
flation targets as a safeguard against hitting the zero lower bound. In an extension of our
basic analysis, we show that the likelihood of destabilizing random-walk beliefs arising in-
creases with the long-run inflation target in a New Keynesian model, closed with a standard
Taylor rule and subject to imperfect information about the long-run target. Moreover, the
benchmark New Keynesian model may exhibit endogenous crashes in the inflation rate that
bump up against the zero lower bound in nominal interest rates. These self-fulfilling paths
exhibit rapid deflation and large negative output gaps. These liquidity traps only last for a
finite period of time as the global stability of the rational expectations equilibrium eventu-
ally prevails. Conversely, we show that if policy rules are more aggressive in responding to
inflation deviations from target, or if the target is implemented gradually, then destabilizing
random-walk beliefs are less likely to arise.?

There are important policy implications from these results. Only credibly and completely
informing the private-sector about the long-run inflation target and the timing of when that
target will be implemented can avoid the unstable dynamics associated with positive inflation
targets. When agents know the mean inflation rate, and need only forecast its persistence,
random-walk beliefs do not arise. This result is related to a finding by Eusepi and Preston
(2010), who show that central bank communication about the policy-setting process can af-

fect the stability of rational expectations equilibria, and Orphanides and Williams (2005b),

2Guraynak, Levin, and Swanson (2010) provide evidence that these long-run inflation expectations drift

in response to surprise components of data announcements.
3This latter finding is in line with Cogley, Matthes, and Sbordone (2015) who show that the optimal

coefficients in a Taylor rule should be set to higher values when implementing a disinflation in an economy

where there is imperfect knowledge about the policy rule.



who emphasize the importance of a credible inflation target.* The analysis below also con-
siders other popular policy proposals, such as price-level targeting and optimal discretionary
policy rules, and demonstrates that these policies are not immune to instability. The key
message is that environments with imperfect information that cause agents to forecast both
the mean and persistence of inflation can lead to unstable inflation dynamics.?

We also present results from policy experiments that implement a higher target without
triggering unstable inflation dynamics. For instance, implementing the higher target gradu-
ally, or with sufficient inertia in the policy rule, can prevent the kind of unstable feedback
loops that lead to random-walk beliefs. Similarly, we show that combining a higher target
with a stronger inflation reaction coefficient in the policy rule can also prevent the onset of
unstable dynamics. Thus, another take-away is that a policymaker may want to consider
carefully other aspects of the policy rule (e.g. the policy coefficients) when implementing a
higher inflation target. We leave, however, the optimal design of the policy rule and target,
to future research.

This paper proceeds as follows. Section 2 presents the main results in a simple Fishe-
rian model. Although, the basic result is far more general, and likely to arise in any linear,
forward-looking model, the Fisherian model can illustrate the mechanics of the learning pro-
cess in a transparent manner. Section 3 focuses on the New Keynesian model and demon-
strates that the main qualitative results from Section 2 carry over to the New Keynesian
environment. This section also discusses the range of policy and model parameters for which
our results hold. Section 4 considers a number of extensions including policy communication,

optimal discretionary policy and price-level targeting. Finally, Section 5 concludes.

2 A Simple Model of Inflation Targets and Imperfect

Information

This paper begins by considering a simple Fisherian model, which can emerge as a special
case from richer models that incorporate real and nominal frictions. The Fisherian model
illustrates the main points and provides analytic results. As will be seen below, our results

can arise in more practical models, such as the New Keynesian model.

4Neither of these papers looks at the impact under learning of a change in an imperfectly communicated

inflation target.
5Also related to this paper is a literature on central bank transparency that has a long and venerable

history (see Geraats (2002)). In contrast to this literature, the present paper focuses on econometric learning

instead of strategic interactions between the central bank and the public sector.



2.1 Fisherian Model and Imperfect Information

The Fisherian model emerges from a flexible price economy that abstracts from frictions. The
Fisher relation arises, e.g. in a constant endowment economy or a model with risk-neutral
agents, from the household’s first-order condition that prices one period nominal bonds.
Monetary policy adjusts nominal interest rates according to a Taylor rule. In this simple
(log-linearized) environment, interest rates and inflation are determined by the following two

equations

i = F, (g1 — ) + 1y (1)
iw = o(m—m) (2)

where a > 0,7, = i; — ¢ is the nominal interest rate in deviation from steady-state form,
741 is the inflation rate, 7 is the central bank’s long-run inflation target, and ¢ = 7 + 7 is
the steady-state nominal interest rate and ¥ > 0 is the steady-state real interest rate.® For
simplicity the exogenous shock 7, is assumed to be white noise with variance 2. Equation
(1) is the Fisherian relation and (2) is the Taylor rule. The operator E is the (possibly)
non-rational expectations operator, highlighting that imperfect information can affect the
economy through the self-referential nature of the asset pricing equation (1).

Combining (1) with (2) leads to an expectational difference equation that determines the

path for inflation:

T+ a_lEtWt+1 + O[_lrt (3)

A rational expectations equilibrium is any (non-explosive) solution to (3). Under rational
expectations, E=FE , there are two classes of equilibria that satisfy (3), the minimum state
variable (MSV) solution

T =T+ oz_lrt

and a non-fundamentals solution
m=1—-a)f+am 1 —r1+&

where & is a martingale difference sequence, i.e. FE; 1& = 0. Provided that @ > 1, the
non-fundamentals solution is explosive, and the MSV is the unique (non-explosive) rational
expectations equilibrium. The condition o > 1 is often referred to as the “Taylor principle”

as it prescribes nominal interest rates to be adjusted more than one-for-one when inflation

6In deriving these equations, households are assumed to satisfy their Euler equations, and these equations

provide an adequate (linear) approximation of economic behavior near the steady-state.



deviates from target, and in many models it is a key condition ensuring equilibrium deter-
minacy. Throughout this paper, we focus on policy rules that satisfy the Taylor principle.

Households must have full information about the distribution of the endogenous variables
in order to form rational expectations. This includes knowing the details of the policy rule,
such as the long-run target 7 as well as the reaction coefficient . An alternative to rational
expectations is to assume that agents behave like econometricians who hold a (correctly)
specified model of the economy but who must recover the parameters, in real time, from
data. An extensive literature studies the conditions under which an economy with adaptive
learning will converge to a rational expectations equilibrium (see Marcet and Sargent (1989)
and Evans and Honkapohja (2001)). The imperfect information approach adopted in this
paper builds on this approach.

When there is imperfect information about the economy, it is reasonable to expect house-
holds to form forecasts in the same way as an econometrician. Following this logic, agents
are assumed to form expectations based on a perceived forecasting model that in effect nests

the full class of rational expectations equilibria:
T =a -+ bﬂ't_l + & (4)

where ¢; is a (perceived) white noise error. Notice that for suitable parameter values (a,b)
this perceived model of the economy coincides with either the REE steady state (in which
case b = 0) or with a serially correlated non-fundamental equilibrium. Under real-time
adaptive learning the agents’ estimates of the forecast parameters (a,b) evolve slowly over
time, e.g. via least-squares updating as discussed below in Section 2.2. Here we focus on
the E-stability dynamics that are known to characterize the mean paths under least-squares
learning.

Using the forecasting model (4), with given parameters (a,b), conditional expectations
are formed as

By = a(l+0b) + b*m_4 (5)

To calculate these expectations it is assumed that time t-dated variables are not observed

contemporaneously.” With expectations in hand, inflation is determined by plugging expec-
tations (5) into the temporary equilibrium equation (3), yielding

7 = o (a—D7+a ta(l+0b)+a WPy +a (6)

= T(a,b) X, +a 'r, (7)

7A frequently-used timing convention in adaptive learning models is that agents do not observe contem-
poraneous endogenous variables. This timing protocol eliminates the simultaneity of inflation and expected

inflation.



where T'(a,b) = (%7’? +ata(l + b),ofll)Z) and X' = (1,7). It is straightforward to
verify that a fixed point to T'(a,b) is a rational expectations equilibrium.

The map T, which takes perceived coefficients (a,b) to the actual coefficients in (6),
plays a prominent role in analyses of the expectational stability (“E-stability”) of rational
expectations equilibria. The T-map can be interpreted in the following way. If agents held
beliefs in the form of the perceived law of motion (4), with parameters (a,b) held constant
over time at (possibly) non-RE values, then their forecast rule would be (5). The stochastic
process for inflation (6) takes the same form as the perceived process, but with the coefficients
T'(a,b) replacing (a,b) in (4). Since a rational expectations equilibrium aligns perceptions
with outcomes, it is not surprising that a rational expectations equilibrium is a fixed point
of the T-map.

Under real-time learning the parameters (a,b) are updated over time, e.g. with least
squares, in response to new data. Evans and Honkapohja (2001) has shown, first, that one
can easily compute from the T-map a stability condition, E-stability, that governs whether
the rational expectations equilibrium is locally stable under learning; and second, that the
ordinary differential equation, used to define E-stability, also provides information on the
global learning dynamics. More formally, the E-stability Principle states that Lyapunov
stable rest points of the E-stability ordinary differential equation

W00 (2(0,) - (@) ®)

are locally stable under least squares learning and other closely related learning algorithms.®
Here 7 denotes “notional” time, which can, however, be linked to real time .

That the E-stability condition governs stability of an equilibrium under learning is intu-
itive, since (8) states that the estimated coefficients (a, b) should be adjusted in the direction
of the actual law of motion parameters that generate the data. Local stability of (8) thus
addresses whether a small perturbation in the perceived coefficients (a, b) will tend to return
to their rational expectations equilibrium values.

In the Fisherian model, it is fairly simple to compute the E-stability of the rational
expectations equilibrium. A rational expectations equilibrium will be E-stable provided the
roots of DT'(a,b), evaluated at their equilibrium values, have real parts less than one. In the
current case, it is straightforward to verify that provided the Taylor principle is satisfied,

i,e. a > 1, the unique rational expectations equilibrium is E-stable. Figure 1 illustrates

80ther examples include constant gain (discounted least squares) learning, suitable generalized stochastic
gradient learning schemes and related Bayesian updating methods. See Evans and Honkapohja (2001) and
Evans, Honkapohja, and Williams (2010) for details.



the intuition by plotting the rest points of the E-stability ODE and the associated vector
field. The solid lines indicate the values for which a = 0, b = 0 and the arrows indicate the
direction of adjustment in (8). The figure illustrates the two rational expectations equilibria.
The b = « equilibrium is explosive and is also unstable under the E-stability dynamics. In
contrast, the unique non-explosive rational expectations equilibrium is a sink under learning.

Figure 1 illustrates two further features. First, the fundamentals equilibrium at 7 is
E-stable and its basin of attraction includes all initial conditions with b < «a. Second,
most analyses of policy under learning focus on the E-stability properties of a particular
equilibrium. The figure also suggests that the transitional dynamics might be of independent
interest. The vector field indicates that some transitional paths may include non-linear paths

to the rational expectations equilibrium.

2.2 Inflation Targets and the Dynamics of Imperfect Information

The E-stability dynamics govern the stability of the rational expectations equilibrium. How-
ever, they do not give the full picture of global learning dynamics. This subsection details
the learning dynamics and illustrates how long-run inflation targets can alter the qualitative
nature of learning dynamics. The central idea is the following: private sector agents are
aware of the form of the policy rule but the specifics, such as the size of the reaction coeffi-
cient and/or the value and timing of the long-run inflation target, are unknown. An agent
in this setting would be wise to remain alert to potential changes in the size and timing of
the implementation of the long-run inflation target. Such an agent will then place a prior
probability on drifting coefficients in their forecasting model. There are two central ingredi-
ents to the results that come below: a positive long-run inflation target that is imperfectly
known by agents, and a prior belief of possible structural change.

Let 0 = (a,b), X’ = (1,7). Agents are assumed to update their parameter estimates

according to the following recursive algorithm

0 = 01 +vSi1 X (7Tt - 62_1Xt—1)/ 9)
St = St—l + Yy (XtXé — St—l) (10)

The equations in (9)-(10) are the updating equations for recursive least squares where past
data are discounted by a constant “gain” 7. Here S; is an estimate of EX,;X/, the second
moment matrix of the regressors. Least-squares updating arises when the constant gain ~ is
replaced by a decreasing sequence v, = t~1 .

Sargent and Williams (2005) demonstrate that constant gain least squares can arise

from an (approximate) Kalman Filter when agents believe that the process for the drift-

10



ing coefficients 6, follows a random walk, a standard assumption in applied econometric
work. Specifically, the constant gain learning equations (9)-(10) arise from an approximate
Bayesian learning process in which the prior on parameter drift is proportional to the ratio
of observation noise variance to the second moment matrix of the regressors, with the speed
of drift controlled by the constant gain 7. An alternative interpretation of (9)-(10) is that
agents use least squares modified to discount past data due to a concern about possible
structural change of an unknown form.’

The asymptotic behavior of #; is a non-trivial issue because the model is self-referential.
It turns out, though, that for small gains ~ it is possible to obtain results on the asymptotics
by studying a continuous time approximation to the recursive algorithm. More specifically,
results from stochastic approximation theory show that asymptotically the dynamics are

governed by the “mean dynamics” ordinary differential equation (ODE)

D~ s (1) ) (1)
2;3 — M) -S (12)

where 7 = ~t, and M(0) is the unconditional covariance matrix of the regressors holding 6
fixed. The ordinary differential equation governing the evolution of ¢ is identical to the E-
stability differential equation with the exception that it includes weighting terms that depend
on estimates of the regressors covariance matrix. See the Appendix for further details on the
derivation of the ODE. It is straightforward to see that the fundamentals REE (a, b) = (7, 0)
is a locally stable rest point of (11)-(12) provided o > 1, in accordance with the earlier
E-stability results.

Under decreasing gain learning -« is replaced with 1/t and, provided o > 1 so that
the fundamentals REE is E-stable, then locally the learning dynamics converge to it with
probability one as t — co. This paper focuses on constant gain learning, in which parameter
estimates weight recent data more heavily than past. We next summarize the analytical

results for constant gain learning.

2.3 Analytic Results

The first result establishes that for a sufficiently small constant gain the perceived coeffi-

cients #; will be an approximately normal random variable with a mean equal to its rational

9The possibility of a changing or drifting inflation target has implications for the mean and persistence of
inflation (Cogley and Sbordone (2008)). Thus, agents should use a model that can track structural change

in all coefficients.
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expectations values and a variance that depends on both the constant gain and the long-run
inflation target 7.'° The second result shows that from a given initial condition (6, Sy) the
solution to the “mean dynamics” of the ODE (11)-(12) gives the expected transition path

to the rational expectations values.

Proposition 1 Let o > 1. The belief parameters 0, are approximately distributed as 0; ~
N (6,7V) for small v > 0 and large t, where § = (7,0)" and

V= ( (a = 1)7*+ ac? —7/2 )
—7/2 1/2

Proposition 2 Let a > 1 and define ¢, = (0;,vec(Sy)"). For any ¢o within a suitable
neighborhood of the unique, non-explosive rational expectations equilibrium, define é(T, ¢o) as
the solution to the differential equation (11 )-(12), with initial condition ¢o. Fiz T > 0. The
mean dynamics of (9)-(10) satisfy Ed, = d(t, do) for v sufficiently small and 0 < t < T'/7.

There are several important consequences from Proposition 1. First, the rational expec-
tations equilibrium provides a benchmark solution in the sense that the coefficients for the
forecast rule under learning are centered on the rational expectations values. Second, for
a constant gain v — 0, the learning dynamics are close to the rational expectations equi-
librium with high probability. Third, to gain insight into the global learning dynamics, for
finite periods of time, one can study the solution paths to the mean dynamics differential
equation, given initial conditions. The remainder of the paper uses these tools to study the

implications for learning dynamics of inflation targets.

2.4 Learning Dynamics and Random-Walk Beliefs

Under constant gain learning there can be significant, temporary departures from RE. These
departures can arise either as a result of a (imperfectly announced) change in the long-run
target or as an endogenous response to exogenous shocks. This section illustrates these
possibilities in the Fisherian model with constant gain learning.

Proposition 1 shows that the real-time estimates 6, are approximately normal with a mean
equal to the rational expectations equilibrium and a standard deviation that is increasing in
the constant gain «. To illustrate the implications this has for learning dynamics, Figure 2

plots the 95% confidence ellipses around the REE of the constant gain learning coefficients

10 A5 discussed in the Appendix, Proposition 1 requires that the learning algorithm be supplemented with

a suitable “projection facility” that restricts estimates to an appropriate compact set.
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for various values of the long-run inflation target 7. This figure was generated by setting
a = 1.05,02 = 0.02 and a constant gain v = 0.05, though the qualitative results hold for
alternative parameterizations. In particular, in the New Keynesian example, the qualitative
results arise for a broad range of policy coefficients and rules.

Figure 2 demonstrates the finding in Proposition 1 that the constant gain parameter
estimates are distributed around the rational expectations equilibrium, which is (a,b) =
(m,0). For small long-run inflation targets, the principal axis of the confidence ellipse is
close to horizontal. For higher inflation targets, the confidence ellipses feature a decreasing
principal axis. The slope of the principal axis is important since one can expect many
trajectories moving in the direction of the axis. Note that even for high inflation targets, the
ellipses are pointed in the direction of a random walk without drift, with larger values of b
associated with smaller values of a. The relative size of these ellipses depends on the sizes of
the constant gain. The confidence ellipses pointing toward a random walk without drift does
not imply that actual learning dynamics will converge to a random walk model. However,
the slope of the principal axes suggest that one can expect many trajectories moving in the
direction of a random walk. Then the mean dynamics can help illustrate what happens
subsequently for trajectories that move along the principal axis. As shown by Proposition
1, the variance of inflation in the Fisherian model is independent of 7 which suggests an
endogenous route to random walk beliefs that is independent of the inflation target. We
show later that this is not true in the New Keynesian model where, like Ascari and Ropele
(2007), we find that long-run inflation targets can alter the qualitative nature of economic
dynamics.

Proposition 2 shows that for any initial condition, and finite period of time, the expected
transition path to the rational expectations equilibrium will be the solution path to the
mean dynamics. One can think of constant gain learning dynamics as re-initializing the
mean dynamics. The mean dynamics have the interpretation that, for given initial values,
the average path for beliefs will follow the mean dynamics trajectory. Figure 3 plots repre-
sentative mean dynamics where the initial values a = 3.2,b = 0.33 are on the principal axis
of the 95% confidence ellipse in Figure 2 for a 4% inflation target.!! Thus, along a stochastic
equilibrium path we would expect to observe many finite stretches of time with properties
similar to Figure 3. These initial values correspond to an increase in the perceived mean
and perceived serial correlation in inflation. The top panel plots the perceived value for the
mean of inflation, a, while the bottom panel plots the perceived lag coefficient b.

The fundamental rational expectations equilibrium is a stable rest point of the mean

1 The sample second moment matrix of the regressors, R, are initialized at their REE values.
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dynamics, implying that along a learning path the mean dynamics will converge to the
rational expectations equilibrium. Additionally, as anticipated in Figure 2, the transition
path for the mean dynamics is interesting in its own right. At first the estimate for b moves
toward the rational expectations equilibrium, slightly overshooting b = 0, but then reverses
course and increases to a value of b = 0.993, where it remains for some time before returning
to its rational expectations equilibrium value. At the same time, the value of a increases
before abruptly decreasing to near zero (0.03) and then converging to its equilibrium value as
b converges to zero. Note, in particular, that a =~ 0 at the same time that b ~ 1. Therefore,
the mean dynamics show that private-sector agents come to believe temporarily that the
inflation process is approximately a random walk. Paths to temporary random walks also
exist for a lower 2% inflation target. However, for the New Keynesian model presented in the
next section, we find that trend inflation (a positive target) changes the linearized inflation
equation in a way that makes the system less stable under learning for higher targets in the
sense that random-walk beliefs are more likely to arise.

Random-walk beliefs play a key role in the learning dynamics. In essence, agents come
to believe that recent innovations in inflation are permanent shifts and not mean-reverting
fluctuations. These random-walk beliefs are nearly self-fulfilling. A detailed argument is
presented in Branch and Evans (2011), but an overview of the argument is useful. Suppose

that agents hold random walk beliefs in terms of a forecasting model of the form
T = -1+ E¢

which will arise in the learning model when a = 0,b = 1. Given these beliefs, actual inflation
outcomes will be

m=a Ya—1)T+a m+aln

If @« > 1 is close to @ = 1, then the actual law of motion for inflation is a stationary but
highly persistent process that is difficult to distinguish from a random walk.!'? Also, the
mean inflation rate is the same under random walk beliefs as it is in the unique REE. That
random-walk beliefs are nearly self-fulfilling has been pointed out in other settings by Sargent
(1999) and Lansing (2009). Random walk beliefs introduce serial correlation into a model

that is not serially correlated under rational expectations, as the random walk model uses

12For larger values of «, the random-walk model provides a progressively worse approximation to actual
inflation dynamics. Thus, for a sufficiently, large random-walk beliefs will not emerge from the learning
dynamics. A somewhat related point has been made by Orphanides and Williams (2005b). However, in the
New Keynesian model below, inflation persistence is increasing in the target rate of inflation and random-walk

beliefs will arise for a much greater range of policy coeflicients.
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higher order moments to track low frequency drift in inflation. An increase in 7, combined
with adaptive learning, provides the low frequency drift that is approximated well by a
random walk model.

The mean dynamics show that random walk beliefs only can last for finite stretches
of time. However, because the random walk beliefs are nearly self-fulfilling, it is difficult to
detect the misspecification except using a long history of data. Most importantly, the random
walk model provides a robust way to capture a time-varying conditional mean. When this
drift is large enough then random-walk beliefs will fit the data well. Thus, random-walk
beliefs can be long-lasting and, as will be seen below, they have important implications for

the dynamics of inflation.

2.5 Implications of Inflation Targets

Having established the possibility of random-walk beliefs emerging under learning, we turn
briefly to real-time simulations.

Consider the following experiment. The central bank is going to implement an increase
in its long-run annual target from 2% to 4%. Assume that the economy is initially in a
rational expectations equilibrium, but the private-sector has imperfect information about
when the central bank will implement its new target and is unsure about the central bank’s
commitment to the new target, i.e. the central bank provides imperfect information about
the new target so that private sector agents must infer its value from observable data.
Figure 4 plots the resulting dynamics from constant gain learning. '3 At time 0, the central
bank’s target 7 increases, leading to an increase in inflation without a corresponding increase
in inflation expectations (which are determined by the adaptive learning rule). Initially
inflation is below target and the central bank begins reducing nominal interest rates in order
to bring inflation up to target. The increase in the inflation rate is tracked by agents’
econometric model as an increase in the persistence of inflation. As the mean dynamics
predict, eventually agents’ beliefs are that inflation follows a random walk. At this point,
there is a burst as inflation increases to nearly 8% before returning to its new long-run value.
Thus, implementing a higher target, as many observers have recommended, can lead to an
overshooting of the new target. This overshooting arises because the initial upward drift in
inflation, as the central bank implements its new target, leads to a nearly self-fulfilling belief

that inflation follows a random walk.'*

13This figure was generated as the average time-path across 1000 stochastic simulations of length 1000.

Beliefs are initialized at their REE values for when the target is 2%.
These results are reminiscent of McGough (2006) who examines changes to the natural rate of unem-
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Even without a change in the long-run target, inflation may deviate substantially from its
rational expectations equilibrium value as an endogenous response to fundamental shocks.
For example, Figure 5 plots two real-time simulations of inflation dynamics in the Fisherian
model with a 4% inflation target.!> As before, the figure is computed setting a = 1.1, 02 = .1,
and as in Figure 2 the constant gain is set v = .05. To generate this figure the model is
initialized at the REE, expectations are generated according to (5) with parameters updated
via constant gain least-squares, and inflation is determined by (3). Figure 5 plots the results
for two different typical simulations. The top two panels plots a;, b;, respectively, and the
bottom panel plots inflation. The left panels are for the case where the deviation from
equilibrium results in a burst of inflation, while the right panels show a rapid disinflation.

Under constant gain learning the economy hovers around its rational expectations equi-
librium value. Then there is an abrupt qualitative change in the dynamics with bursts
of inflation or disinflation before returning to a neighborhood of the rational expectations
equilibrium. The pattern of beliefs correspond with what was observed in Figure 3, and
Proposition 2, in that for finite stretches of time private-sector agents believe inflation fol-
lows a random walk. In simulations, these large deviations from rational expectations are
recurrent.

Unlike Figure 4, the deviations away from the rational expectations equilibrium in Figure
5 are an endogenous response to fundamentals rather than to a change in the long-run
inflation target of the central bank. Using techniques employed by Cho, Williams, and
Sargent (2002), it is possible to examine which “escape paths” are most likely to drive the
system away from the REE and to generate random walk beliefs by looking for the “most
likely unlikely sequences” of shocks that move the system a given distance away from the
equilibrium. In principle one can compute these escape paths analytically in special cases,
but more typically it is necessary to resort to simulations.

However, it is intuitive that random walk beliefs can arise for the right sequence of shocks.
Take the case of positive inflationary shocks. These shocks place inflation on an upward path
leading agents’ econometric model to pick up this trend with higher estimated values of b,
and lower values of a;. In turn, inflation expectations will increase leading to a further
upward drift in inflation, higher estimated values of b;, until the estimated coefficients arrive
at a random walk model which, as argued above, is nearly self-confirming. Moreover, the

mean dynamics predict that even if beliefs are, on average, close to rational expectations this

ployment in the model of policymaker learning developed in Sargent (1999).
15GQimilar qualitative results arise from stochastic simulations with a 2% target in the Fisherian model.

However, in the New Keynesian model these unstable dynamics do depend on the size of the target.
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is the expected transition path following a series of these “most likely unlikely” sequences of
shocks.

There is one strong conclusion to draw from Figures 4-5: in the Fisherian model, when the
central bank implements a long-run inflation target with imperfect information, then inflation
will deviate significantly from its equilibrium values (i) when the target is first implemented
and (ii) as an endogenous response to certain sequences of shocks. The remainder of the
paper demonstrates that these results are found in standard New Keynesian models under
a wide range of policy rules. In particular, it is demonstrated that higher inflation targets

increase the likelihood of observing these large, temporary deviations in inflation.

2.6 Further Discussion

The results presented in this section illustrate that, in a flexible price model, with imperfect
knowledge about the inflation target there can be unstable inflation dynamics that arise from
changes in the target or as an endogenous response to the exogenous shocks. In subsequent
sections, it is shown that in a New Keynesian model with nominal rigidities, a higher target
also makes it more likely that destabilizing random-walk beliefs can arise.

Another natural question is whether there are alternative ways for the central bank to
implement a higher target without destabilizing expectations. To address this issue, we
briefly consider two alternative experiments. The first implements the target gradually over
a longer horizon than just one time period. The second experiment considers a central
bank that initially targets an inflation rate greater than the desired 4% target and then
gradually lowers the target to its desired level. Figure 6 illustrates how these alternatives
for implementing a higher target affect the over-shooting result that was seen in Figure 4.1°

The left panel of Figure 6 plots the dynamics when the inflation target is increased
gradually over a 1,8,16,32,64,128, and 256 period horizon. A very gradual implementation
of the target can avoid the destabilizing random-walk beliefs by not creating considerable
positive autocorrelation in the actual inflation process. However, for this parameterization,
the implementation of the target needs to take place over a very long horizon. The right
panel considers an experiment where the central bank initially over-shoots its 4% target and
then gradually lowers its target to the desired 4%. This implementation induces a smaller
over-shooting of the 4% target since over-shooting and then bringing inflation down avoids
the strong degree of positive autocorrelation that can lead to destabilizing random-walk
beliefs.

16Note that Figure 6 plots the mean paths across 1000 stochastic simulations.
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3 Application to the New Keynesian Model

The previous section adopted a simple Fisherian model of inflation to illustrate that setting
policy to implement a long-run inflation target in an imperfect information environment can
lead to substantial deviations of inflation from its rational expectations equilibrium value.
We now show that similar results obtain in the New Keynesian model with trend inflation
(see Ascari and Ropele (2007)). The richer setting of the New Keynesian model facilitates a

wider exploration of the generality of the results as well as policy implications.

3.1 A New Keynesian Model with Imperfect Information

Ascari and Ropele (2007) take a standard New Keynesian setting log-linearized around a
non-zero steady-state rate of inflation.!” (See Appendix for details.) They show that this

leads to the following equations that determine aggregate output and inflation

QAZ't = Et-@t—i-l — U_l <,Zt — Etﬁt+1 — Tg) (13)
T = i+ QQEtﬁ'tJrl + Z 5% (93Et$%t+1+j + 94Etﬁt+2+j> + uy (14)
Jj=0

where the reduced-form parameters 0,k = 1,...,4 and & are complicated expressions that
depend on the underlying structural parameters. (See the Appendix for details). Here 7
is the deviation of interest rate from its steady state value and z;, 7; are log deviations of
the output gap and the inflation rate, respectively, from steady-state. The shocks r}, u; are
assumed for simplicity to be zero-mean iid with variance 02, 02. Here, as in Section 2, E
denotes the subjective expectation of the agents, which need not be identical to “rational
expectations.”

The model is closed by assuming that monetary policy sets nominal interest rates ac-

cording to the Taylor rule, iy = o (m — @) + a (2 — T) , 1.e.
it = Oéﬂ-'/?['t -+ Oélajjt
Stacking these equations, it is possible to represent the economy in vector form

Y,=H+FEY, 1 +M ngEtY;JrlJrj + Gz

j=1

1"This paper adopts the version of Ascari-Ropele without price indexation. We omit indexation for two
reasons. First, indexation does not seem to be empirically relevant in a model that includes trend inflation
(see Ascari and Sbordone (2014)). Second, including indexation in an environment with imperfect knowledge

about the trend inflation rate raises interesting theoretical issues that are beyond the scope of the present

paper.
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with Y = (z,7)’, now written in (log) levels, and z = (r",u)’. When the inflation factor
IT =1, i.e. when there is zero steady-state inflation, these equations reduce to the benchmark

New Keynesian model:

.fi’t = EA'ti‘tJrl - 0'71 (”Zt - Etﬁ't+1 - T:L) (15)
’ﬁ't = BEtﬁ-t-l—l + :‘ﬂi’t + Uy (16)

Ascari and Ropele demonstrate that, under most parameterizations, steady-state inflation
lowers steady-state output and it alters the determinacy conditions when monetary policy
follows a Taylor rule. Kobayashi and Muto (2013) show that E-stability properties of the
model can also differ from the New Keynesian model linearized around a zero steady-state
inflation rate. Throughout, monetary policy will be assumed to guarantee the model is
determinate and E-stable.

As in the previous section, it is assumed that there is imperfect information about the
economy, and so private-sector agents base forecasts on a perceived law of motion whose
reduced-form is consistent with a rational expectations equilibrium. In the bivariate New

Keynesian model, agents are assumed to forecast based on a simple VAR(1) model:
Yi=A+BY 1+ (17)

where ¢; is a perceived white noise error. From this perceived law of motion, conditional
expectations can be computed. As before, expectations conditional on the forecast model
(17) are

E\Y;1 = (I + B)A+ B*,_,. (18)

As in the Fisherian model, the actual law of motion can be found by substituting the forecasts

(18) into the expectational difference equation:

Y, = H+FUI+BA+(1-&) "M [I+(I-&B)"'BJ A
+ [F+M(I-&B) ] B, + Gz

T(A—1,Bi—y) + Gz

t—1

Is this learning rule reasonable in this economic environment? We think the answer is
clearly yes. The possibility of an imperfectly understood change in the inflation target can
lead forecasters to be uncertain about both the mean and persistence of inflation (e.g. Cogley

and Sbordone (2008)). An econometric model that did not allow for structural change in both
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the constant and slope coefficients would not track a change in the inflation target. Finally,
the learning rule assumes agents forecast based on a parsimonious VAR(1), a commonly
employed practice by professional forecasters.

Analytic results on E-stability, and convergence of constant gain learning, are unavailable
in the New Keynesian model with trend inflation. Instead, the following sections focus on a
calibrated version of the model and present numerical results that illustrate the theoretical
possibilities. The model’s parameters are calibrated in Table 1. The parameter values are
chosen so that a time period corresponds to a quarter. The value of ¢ implies a mark-up of
11%, the policy coefficients are equivalent to the Taylor (1993) original policy prescription,

the frequency of price adjustment « is in line with most empirical studies, while the values

2
u

of 02,02 come from Smets and Wouters (2007). The gain parameter is calibrated to 0.05,
within the range found to be consistent with professional forecasters in Branch and Evans
(2006). The basic qualitative results do not hinge on the specifics of the calibration. The
necessary ingredients are a non-zero inflation target, imperfect information, and a sufficiently

strong feedback from expectations.!®

3.2 Inflation Dynamics in the New Keynesian Model with Learn-
ing
The “mean dynamics” for the New Keynesian model take the same form as in the Fisherian
model with the exception that the multivariate model complicates the expressions. Never-
theless, as in the Fisherian model a great deal can be learned about learning dynamics by
examining the mean dynamics for the calibrated New Keynesian model. The mean dynamics
are the solution path to the ordinary differential equation (11)-(12) where ¢’ = (A, B).
Figure 8 plots the mean dynamics, with the parameters calibrated as in Table 1, and
a 4% inflation target. The initial values for all coefficients, except the constant and the
own lag coefficient in the inflation component of the forecasting model, are set to their REE
values. The remaining initial conditions were chosen to lie on the principal axis from the

95% confidence ellipse, see Figure 7.1 There are 6 coefficients in #, the two constants and

18In the Fisherian model, for sufficiently large values of «, a random-walk forecasting model provides a
poor approximation to the implied inflation dynamics. In the New Keynesian model with trend inflation,
similar results obtain for sufficiently large values of «, and small inflation targets. Random-walk beliefs still

arise, however, for empirically plausible values of ..
198pecifically, Figure 8 sets the coefficients in the output gap forecasting equation at their REE values.

The results are robust to most positive initial values for the constant and when the own lag coefficient in the

inflation equation were between 0.6 and .71. The 95% confidence ellipse were generated from monte-carlo
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the four coefficients in the lag matrix B. Each panel plots a different component of 8, while
the bottom two panels plot the roots of the matrix B along the mean learning path. The key
result to notice in Figure 8 are the first two panels on the right hand side of the figure. These
plots are equivalent to the mean dynamics plots in the Fisherian model. Notice that agents
come to believe that the process for inflation, but not the output gap, is a random-walk
without drift. Private-sector agents can hold these beliefs temporarily before they converge
to the rational expectations equilibrium. The bottom panel on the right shows that along
the mean path there is, in fact, a unit root in the perceived coefficient matrix B.

Figure 9 solves the mean dynamics just as in Figure 8 for long-run targets of 0%, 1%, 2%
and 4%.2° The figure plots just the constant and the own lag coefficient from the inflation
forecasting equation, while suppressing the other coefficient paths. As can be seen in the
figure, when there is a zero inflation target the beliefs converge monotonically and rapidly to
the rational expectations equilibrium. For successively larger values of the inflation target,
the estimates for B(2,2) begin to move towards the REE value and then reverses course and
approaches B(2,2) ~ 1 when the target 7 = 4%. At the same time, the estimated A(2)
moves towards zero before converging to the mean value. When the inflation target is 4%
random walk beliefs emerge.

In Section 2.4, random-walk beliefs could arise when a =~ 1 so that a random-walk
provides a good approximation to the actual inflation process. A similar intuition holds
in the New Keynesian model, though, now the coefficient on expectations in equation (14)

1'in the Fisherian model — depends on the long-run inflation target,

— the analogue to a~
the policy rule coefficients, and other structural parameters. Figure 10 demonstrates that
in the New Keynesian model higher inflation targets make random-walk beliefs more likely
as the largest root of B approaches a unit root as the inflation target nears 4%. Thus, in
the NK model higher targets, combined with adaptive learning, give the low frequency drift
that is well-approximated by a random walk model. This result is related to Ascari and
Ropele (2007) who show that higher targets make indeterminacy more likely. The random-
walk beliefs arising in cases of higher targets are a different form of (nearly) self-confirming
expectations. The next subsection shows how altering the policy coefficients affect these

results.

The US Federal Reserve Bank has an explicit inflation target of 2%. One popular argu-

stochastic simulations of the model with a constant gain of 0.05, assuming a Gaussian asymptotic distribution

for the coefficients.
20As before, in Figures 9 and 10, the coefficients A, B, S were initialized at their REE values except the

coefficients A(2) and B(2,2) are drawn from the 95% confidence interval in Figure 7.
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ment to avoid the possibility that in the future the zero lower bound will again bind, is to
increase the target to 4%. Figure 11 conducts this experiment in the New Keynesian model
with imperfect information. The model is calibrated according to Table 1, initialized in the
unique REE when @ = 2%. The central bank then increases its target to 4% and the private-
sector must learn in real time about the new higher average rate of inflation. The figure plots
the time-series averaged across 1000 stochastic simulations. The figure demonstrates that,
as in the Fisherian model, there is a significant overshooting of inflation as agents come to
believe that inflation follows a random walk. In this experiment inflation increases to above
10% per annum before returning to the new targeted value of 4%.

Many of those who advocate higher inflation targets do so in order to avoid abrupt
disinflationary episodes. The results from the Fisherian model suggest that this may not be
the case with imperfect information. Figure 12 plots two separate simulations of the real-
time learning of the calibrated New Keynesian model with a 4% inflation target. In each
panel, the model is initialized in a rational expectations equilibrium, within which inflation
will always remain bounded in a small neighborhood of the inflation target. Under constant
gain learning, however, there is an abrupt qualitative change as agents come to believe that
inflation follows a random walk and there is a rapid disinflation, in the left panel, and an
abrupt inflationary episode in the right panel. These types of destabilizing dynamics are
typical and recurrent in the model when the central bank sets a sufficiently large inflation
target. In this case, sufficiently large is 4%. The onset of destabilizing dynamics occurs, on
average, once every 92 years. Larger constant gains will, however, increase the frequency.

One might also wonder whether these inflation dynamics are consistent with the Volcker
era, a period where the Federal Reserve lowered the inflation target in an imperfectly com-
municated manner. Since the inflation dynamics for a drop in inflation in the model are
symmetric, the model predicts a disinflation will lead to inflation and inflation expectations
below the target value. While a serious study of this episode is beyond the scope of the
present paper, it is worth noting that inflation expectations in the Michigan survey and the
Survey of Professional Forecasters fell below the 10 year expected inflation rate in the Blue
Chip survey and the Survey of Professional Forecasters for much of the mid to late 1980s,

consistent with the model’s predictions.?!

2!Nunes (2009) shows that a heterogeneous expectations model, where a fraction have rational expectations
and the remaining form beliefs with an adaptive learning rule of the MSV form, generates time paths for
inflation that fit well the Volker disinflation.
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3.3 Robustness

One reasonable question is to what extent the benchmark results presented so far depend
on relatively weak responses to inflation and the output gap in the policy coefficients o, a,.
Though the values a,, = 1.5, a, = .125 are the values recommended by Taylor (1993), some
empirical and optimal Taylor rules have values for «, higher, for example Rudebusch (2001)
estimates a, = 1.78,a, = .82. Moreover, the discussion in Section 2.4 seems to suggest
that random-walk beliefs only arise for values of a, sufficiently close to 1. This subsection
demonstrates that random-walk beliefs can arise for a broad range of policy coefficients and
other parameters thereby demonstrating that the main insights are not fragile to a particular
model calibration.

We first illustrate the robustness to alternative policy coefficients in Figure 13 by com-
puting the pairs of (a,, ) for which random-walk beliefs will arise in the mean dynamics
with a target of 4% and the parameters in Table 1.2 The figure demonstrates that random-
walk beliefs can arise for many empirically plausible policy coefficients and initial coefficients
picked from plausible points based on the 95% confidence ellipse.

Figure 13 suggests that a policymaker seeking to implement a higher inflation target
should also adjust the coefficients in the policy rule so that the new policy rule lies above the
frontier. We consider these issues in Section 4.2 which discusses ways in which policymakers
can alter the policy rule to implement a higher target without triggering unstable inflation
expectations.

The robustness also extends to alternative parameterizations. In particular, random-
walk beliefs were found to arise for the following range of parameter values: 7 < ¢ < 17;
6 < a<1;00 <o0?<1;.000 <02 <01 Finally, one might prefer a medium-scale
New Keynesian model known to fit the data better, under rational expectations, than the
purely forward-looking model. However, random-walk beliefs are even more likely to arise
in a model with inertia as this paper shows they can arise in a model with no intrinsic serial
correlation. The self-fulfilling serial correlation that arises from the learning dynamics is

even more prevalent in models with inertia or other forms of intrinsic serial correlation.

22Figure 13 was generated by setting all initial learning coefficients, including the constant, to their equilib-
rium value except B(2,2), the own inflation lag coefficient, is initialized at values in [0.6, 0.8]. As mentioned
earlier, the results are not sensitive to the initial values for the constant. If any value of the own inflation
lag coefficient crosses 0.98 — for at least one initial value in [0.6,0.8] — then the pair (o, o) is recorded as

leading to random-walk beliefs.
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3.4 Zero Lower Bound

One of the primary reasons that some economists and policymakers advocate a higher long-
run inflation target is the belief that this would reduce the likelihood of a binding zero lower
bound on interest rates. In New Keynesian models, e.g. Eggertsson and Woodford (2003),
Eggertsson (2008), the zero lower bound on nominal interest rates can bind when there are
sufficiently large and persistent negative shocks. A liquidity trap with deflation can arise,
under rational expectations, since the persistent shocks generate expectations of deflation.
Under learning, Williams (2006) and Williams and Reifschneider (2000), shows that the zero
lower bound may be reached even more often. In both cases, increasing the inflation target
makes it less likely that the zero lower bound will bind.

Within the New Keynesian model, we have so far not analyzed the issue of the zero
lower bound, since the main message of this paper is the destabilizing learning dynamics
that can arise under long-run inflation targets. However, it is straightforward to extend
the framework to incorporate a zero lower bound and examine whether a higher inflation
target can rule out a binding zero lower bound on nominal interest rates. To a certain
extent, this is not a fair comparison: in our model, under rational expectations, the zero
lower bound will almost never bind since all shocks are iid with small variances. However,
if there can be deflationary spirals under learning when there is no liquidity trap under
rational expectations, there is even greater reason to suspect that inflation targets can lead
to destabilizing economic dynamics.

To study this issue it is convenient to use the “benchmark” version of the New Keynesian

model:
A oA —1 (- _ - n
Ty = Et$t+1 — 0 (Zt - T — Etﬂ-t-i-l — T >
T = BEm + KT+ g,

where the central bank employs the Taylor rule subject to the zero lower bound:
iy = max{t+ a, (m; — ) + a, (T — ), 0}

and where = (1 — 3)7/k ensures the steady-state inflation rate equals the central bank’s
target. This is the framework adopted in Eggertsson and Woodford (2003), though here it
is assumed 7} are iid shocks, and can be derived from the New Keynesian model above by
setting the steady-state inflation equal to zero. Woodford (2003) argues that these equations
are valid approximations in a low inflation environment so long as the central bank’s inflation

target is not too large.
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Calibrating the model as above which implies a value for k ~ 0.16, with a 4% inflation
target, and simulating it under constant gain learning leads to occasional departures from a
neighborhood of the rational expectations equilibrium and a deflationary spiral: see Figure
14.% At first, the economy fluctuates around the long-run inflation target. Then a qualitative
change in the dynamics arises as agents come to believe inflation follows a random walk and
inflation (and expected inflation) rapidly disinflates as was seen earlier. However now, when
the zero lower bound binds, rapid deflation sets in, resulting in a severe recession, with
output gaps approaching —10%. The spiral does not persist forever as the mean dynamics
take over and the economy returns to a neighborhood of the steady-state.?*

The deflation episode in Figure 14 suggests that a higher inflation target cannot rule
out paths that collapse to the zero lower bound. In the benchmark New Keynesian model,
where the coefficients in the IS and AS equations are independent of the inflation target, a
higher target will decrease the frequency of collapses to the zero lower bound. Nevertheless,

a higher target cannot rule out destabilizing dynamics that hit the target under learning.

4 Extensions

The paper concludes with several important extensions to the New Keynesian model with

learning.

4.1 Implications for Policy Communication

The previous results assumed that monetary policy is set to satisfy the Taylor rule. The
results do not hinge on this assumption: the key is that the target is not perfectly communi-
cated. This section considers implications for policy communication of the present learning
framework with long-run inflation targets.

The assumption maintained in this paper is that the central bank cannot completely
communicate the long-run inflation target. The private-sector has imperfect information
about the economic environment and the policy target. It suffices that they do not know the
timing of when the central bank will implement its target. If there is imperfect information

about the economy, but perfect information about the long-run inflation target then the

2These deflationary spirals are similar to the paths in Evans, Guse, and Honkapohja (2008).
24To prevent deflationary paths that fall without bound, we impose the following restrictions on the

learning and economic dynamics: (i) agents’ only update their parameter estimates of B if the roots lie
inside the unit circle, and (ii) the deflation rate and the output gap have ceilings of 8% and 10% per annum,

respectively. The latter restriction is consistent with Evans (2013) and Bullard and Cho (2005).
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random-walk beliefs will not arise and the instability witnessed in the previous sections will
not exist.

To illustrate this point, assume that agents know the mean values for inflation and the
output gap. Thus, their perceived law of motion does not require them to estimate the
mean rates of inflation and the output gap, but just the lag coefficients. That is, assume a

perceived law of motion of the form:
Y, = BYi +¢

where the perceived law of motion is written in deviation from mean form, V. It is straight-
forward to verify that the actual law of motion will be of a similar form, except written in
deviation from mean form. Thus, the B component of the T-map is unchanged. Figure 15
plots the mean dynamics path for the calibrated model and various long-run inflation tar-
gets when the long-run average inflation rate is credibly and perfectly communicated. The
figure clearly demonstrates that in this case the long-run inflation target does not have much

impact on the learning dynamics and that random-walk beliefs do not arise.

4.2 Altering the Policy Rule

The results just presented clearly demonstrate that a perfectly communicated inflation target
can avoid the destabilizing learning dynamics associated with imperfect information about
the target. But, Figure 13 also suggests that if the central bank responds more aggressively
to inflation deviations from target, via the response coefficient o, it may be possible to rule
out the destabilizing random-walk beliefs.

This subsection now demonstrates that a central bank can minimize the possibility of
destabilizing inflation expectations by simultaneously increasing the inflation response coef-
ficient. Figure 16 again considers the experiment of a central bank increasing its long-run
inflation target from 2% to 4% while, at the same time, increasing its inflation response
coefficient to o, = 3 from a,, = 1.5. Figure 16 shows that such a policy can prevent random-
walk beliefs and bring the economy to the long-run target relatively quickly. Although, such
a policy can be effective at implementing a higher target it is worth remarking that a, = 3
is outside of the range most studies consider reasonable.

Moreover, a stronger inflation reaction coefficient a,; will also dampen the extent to which
inflation overshoots the higher target. For instance, when the central bank raises the target
from 2% to 4% and simultaneously increases «, from 1.5 to 2.0, inflation over-shoots the
target with a peak inflation rate of 7%, less than when the target is changed alone. Thus,

when the policy coefficients are chosen to lie in the “stable” region of Figure 12, a central
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bank can implement the target without the potential for instability. Thus, one take-away
from the findings in this paper is that the optimal choice of inflation target can not be
isolated from the optimal choice of policy instrument.?’

Similarly, a policy rule that responds aggressively to changes in the inflation rate, as
well as contemporaneous inflation and the output gap, can also help stabilize the economy
while implementing a higher target. Such a policy rule would behave like a Taylor rule in
‘normal’ times and then respond aggressively in the beginning of one of the destabilizing

spirals described in this paper.

4.3 Optimal Discretionary Policy

The interest-rate rules so far considered in this Section dictate that nominal interest rates
should be adjusted to deviations of inflation and output, from their long-run target val-
ues, using rule-of-thumb adjustment parameters. One might instead imagine a central bank
facing a dual mandate of stabilizing both inflation and output, with the costs of devia-
tions from long-run targets made explicit according to an optimal policy problem. This
subsection demonstrates that random-walk beliefs also arise in such a setting under optimal
discretionary policy, i.e. optimal policy without commitment. The next subsection will show
that even with commitment it is possible for random-walk beliefs to arise.

For simplicity, assume the economy can be represented by the benchmark New Keynesian

equations (15)-(16). The objective function of the central bank is

max —(1/2)Ey Y 8" [May — 2)* + (m — 7)?]

ot >0
where Z is the long-run output gap consistent with the inflation target 7. The central bank
takes the New Keynesian Phillips Curve (16) as its constraint. Without commitment, the

central bank will set policy to satisfy its first order condition

T — T = —%(:r;t—j;) (19)

Combining (19) with (16) gives an expectational difference equation that generates the

stochastic process for inflation

T = Qg + @1Etﬂt+1 + (20)

25This is related to the finding of Cogley, Matthes, and Sbordone (2015) that an optimal disinflation
policy with Taylor-type rules, and where private-sector agents learning about the policy rule, involves a

more aggressive response coefficient.
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R2HA1-f) - _ B
A2 T, 01 = A w2

The reduced form (20) is identical to the Fisherian model of section 2 with a; determined

where oy = and v, is an appropriately defined white-noise shock.
by B, A, k. Proceeding in the same manner as in section 2, agents form their expectations
from an AR(1) model of inflation. Figure 17 plots the resulting mean dynamics.

Figure 17 was created by solving the mean dynamics under the following parameteri-
zation: = 0.99,x = .14, A = .15,0, = .05. As before, the learning coefficient for b was
initialized above its rational expectations equilibrium value, and then the mean dynamics are
solved to find the transition path back to the unique rational expectations equilibrium. The
transition path leads temporarily to random-walk beliefs despite the fact that policy is now
set optimally.?® We remark, however, that small values of A\ — for instance, where X is equal
to its micro-founded calibrated value — yield small values of a;, which will make random-walk
beliefs less likely. In practice, policymakers are often modeled as using a higher value of A
than the micro-calibrated value. For example, Orphanides and Williams (2007) use as their
benchmark equal weights on inflation and output volatility. Our finding that small A, i.e.
a strong weight on inflation stabilization, make random-walk beliefs less likely is consistent
with Orphanides and Williams (2005b) , who show that it is needed when agents are learning

even if policymakers would otherwise place a higher weight on output stabilization.

4.4 Price-level Targeting

The results in this paper demonstrate that, in addition to the other consequences of having
a higher long-run inflation target, the target will be destabilizing in an imperfect informa-
tion environment. One popular alternative to inflation targeting is price-level targeting.
Woodford (2003) and Vestin (2006) shows that a policy to target a price-level path can im-
plement the optimal policy with commitment. Eggertsson and Woodford (2003) show that a
price-level target can be an effective policy for pulling an economy away from the zero-lower

bound.?”

26Evans and Honkapohja (2003) show that the “fundamentals-based” nominal interest-rate rule, which
aims to implement the optimal discretionary equilibrium using a rule that assumes rational expectations,
will lead to indeterminacy and instability under learning. They also show that if policymakers use a suitable
“expectations-based” rule consistent with optimal policy, then the optimal rational expectations equilibrium
will be determinate and stable under learning. However, random-walk beliefs can still sometimes arise under

their policy rule if agents use constant-gain learning and include lagged inflation as a regressor.
2"Woodford (2003) shows that price-level targeting rules are robustly optimal when policymakers can

commit. An alternative form of the optimal commitment rules is 7, = — (A\/k) (¢ — ¢1—1). We considered
this policy rule, as well, though to implement learning is cumbersome as the system is three-dimensional.

However, following Evans and Honkapohja (2006), who formulate an “expectations-based” reaction function,
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However, what if, as with the inflation target, the central bank is unable to perfectly
communicate the precise value or timing for the price-level target? Can price-level targeting
lead to temporarily unstable learning dynamics just as in the case of long-run inflation
targets? To address this issue, this section considers a central bank that acts in accordance

with the following price-targeting rule:
KDt + )\mt = p* (21)

where p; is the (log) price-level and p* is the target value for the (log) price-level. This policy
rule will implement the optimal policy under commitment for a zero long-run inflation target.
The qualitative results below carry over to the case where the central bank targets a price-
level path consistent with a non-zero long-run inflation target.

Using the identity m, = p; — p,—1, plugging (21) into the benchmark NK aggregate supply

equation (16) leads to the following equation for the price-level

Pt = o + a B, (Pes1 — po) + Qa1 + 14 (22)

where ag = (k2/(A + £2))T, a1 = BN/ (A + k%), a0 = A\/(A + k?). Notice that p; depends
on E’tpt under imperfect information because we assume that p; is not contemporaneously
observable. Again, suppose that private-sector agents forecast the price level according to

the forecasting model
pe=a+bp_1+e = Ep =a+bp_1, B =a(l+b)+b*p,_1.
The actual price-level process is found by plugging these expectations into (22), yielding
pe=T(a,b) Xy 1 + v

where T'(a,b) = (g + cyab, a1b(b — 1) + as).

Figure 18 plots the mean dynamics for the price-level targeting rule case under the same
calibrated parameter values as the previous subsection (Figure 17) and p* = 10. A key differ-
ence with the price-target rule, compared to the rules considered earlier, is that the rational
expectations equilibrium exhibits non-zero serial correlation. For the chosen parameter val-
ues the REE value of b is approximately 0.7. Figure 18 initializes the learning coefficients
at 0.77. The transition path first leads away from the rational expectations equilibrium,

and then abruptly changes course heading towards a random-walk model for the price-level

it is straightforward to derive a bivariate system of expectational difference equations similar, in form, to
the price-level targeting expression. As in the case of discretion, random-walk beliefs arise in this case for

values of X\ that are not too small.
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before finally converging to the rational expectations equilibrium. Thus, the results of this
section demonstrate that if there is imperfect information about the price-level target, then

price-level targeting policy rules can also lead to temporarily unstable inflation dynamics.

5 Conclusion

Long-run inflation targets, on the order of 4% per annum, have sometimes been recommended
to guard against liquidity traps and binding zero constraints on nominal interest rates. These
recommendations persist even though many welfare analyses caution against this approach
since the distortions resulting from higher average inflation are often found to outweigh
any gains from stabilizing inflation. Both the arguments for and against higher inflation
targets have typically been made under the rational expectations assumption. This paper
has revisited the issue of raising the inflation target, focusing on the question of whether
higher targets do, in fact, lead to greater stability.

The primary results of this paper are as follows. First, although over time beliefs converge
toward rational expectations, the combination of constant gain learning and a positive infla-
tion target can lead agents in the economy to temporarily believe that the inflation process
follows a random walk without drift. Such beliefs are temporarily (almost) self-confirming.
When agents perceive the inflation process to be a random walk they will interpret recent
innovations to inflation as permanent shifts in the mean inflation rate. These random walk
beliefs arise for a very intuitive reason. The long-run inflation target, and imperfect infor-
mation about that target, lead agents to estimate the mean inflation rate from real-time
data. If data lead to a slight upward drift in the inflation rate, agents’ econometric model
will pick up that drift, leading to higher inflation expectations that feed back into higher
inflation rates. This process is self-reinforcing and in some cases agents eventually come to
believe that inflation follows a random walk. Crucially, we have shown that these beliefs are
nearly self-fulfilling.

Implementing a higher target — say by moving the target from 2% to 4% — will introduce
just the type of drift in inflation that can lead to random walk beliefs for standard policy
coefficients in the Taylor rule. These random walk beliefs lead to a substantial overshooting
of the inflation target. In addition, with a fixed target, occasional “unlikely” sequences of
shocks can introduce drift to the inflation process that triggers random-walk beliefs and
large deviations from the rational expectations equilibrium. Such departures from rational
expectations can generate significant bursts of inflation, disinflation, and even deflation. In

the New Keynesian model we find that such paths are more frequent with a higher level of
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the inflation target.

In summary, in an imperfect information environment, increases in the inflation target,
and also higher inflation targets, increase the chances of unstable inflation dynamics. We
obtain these results for a wide range of Taylor rule parameters, and these findings also arise
with some well-known forms of optimal monetary policy when there is imperfect knowledge
of the inflation or price-level target. Unstable dynamics associated with increasing inflation
targets can in principle be avoided by credibly and completely informing the private sector
about the long-run inflation target and the timing of when that target will be implemented:
we have seen that when agents know the mean inflation rate, and need only forecast its
persistence, destabilizing inflation expectations do not arise. We are doubtful about success
of this policy strategy for the reasons expressed by Ben Bernanke and by Barclays Capital in
the quotations at the start of our paper. However, we have also seen that the risk of unstable
dynamics is reduced if the inflation coefficient in the Taylor rule is increased substantially.
Thus, an alternative way to view our results is that if a central bank does decide to increase
its inflation target then it is essential to alter its interest rate rule, at least temporarily, to
place a very high weight on achieving this target, e.g. by increasing the magnitude of the
coefficient on inflation in the Taylor rule to values greatly in excess of those recommended

by Taylor (1993) or found in most empirical studies.

31



Appendix
Proof to Propositions 1-2.

Propositions 1 and 2 provide asymptotic approximations to the learning algorithm

0 = 01+ 951X (7Tt — 9£_1Xt—1)/
St = Stfl + 7y (Xth — Stfl)

and where m; = T'(0;—1)' X1 + a~'r,. It is possible to re-write the equations for real-time
learning in the form

¢ = ¢ +YH(9 4, Xt)
where X, = (1,7, m_1,7¢). Verifying many of the technical conditions required for con-
vergence of the learning algorithm is simplified by the fact that the state dynamics, in a

neighborhood of the equilibrium of interest, are conditionally linear and can be written as

X, Alpi—1) 0 0 B 0
X, =| x| = I 00|Xea+] 0 0|W,
r 0 00 0 1

where 1,0 are conformable matrices, and
Xy = A(p4—1)X4—1 + BW,

Here X; = (1,m) and W; = (1, ;)" when dynamics are restricted to a neighborhood of the
fundamentals REE or W; = (1, 14)" when restricted to a set near the deflationary trap. The
superscript 7 highlights the dependence of the parameter estimates on 7. The stochastic
approximation approach is to compare the solutions to the continuous time ODE and the
discrete time algorithm, and then study the convergence of the continuous time approxi-
mating ODE. Thus, define the corresponding continuous time sequence for ¢; as ¢; = ¢; if
7 <71 <7, where 7, = ~t.

This Appendix sketches the proof to the propositions by making use of Propositions
7.8 and 7.9 of Evans and Honkapohja, and using arguments in Chapter 14 of Evans and
Honkapohja and Branch and Evans (2011). The “mean dynamics” are the solution to the
ODE

L~ ho)
where h(¢) = EH(¢, X;). Notice, in particular, that this is the mean dynamics ODE given

in the text:

D~ §M) T(0) -0
@ = M)~ 5
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where T(0) = (a " (a — )7 4+ o 'a(1 + b),a~'b?)" in a subset of the fundamentals REE and
T(0) = (7,0)" near the deflationary equilibrium.

Let ¢(7, ¢) be the solution to the mean dynamics differential equation ¢ = h(¢) from
an initial condition ¢y. Define U7(1) = y~1/2 <¢7(T) — o(r, ¢0)>. The two propositions in
the text are based on U” converging to a Gaussian variable, in a sense made precise below.
In particular, for small v the probability distribution of U7(7) converges to the probability
distribution of the solution U(t) to the differential equation

dU(7) = Dyh((r, ¢0))U(r)dr + RY*((7, ¢))dW ()

The results below establish that FU(7) = 0 so that, as v — 0, E¢?(17) = ¢(7,¢0) and
lim, é(T, ¢o) = ¢*. Thus, key properties of the learning dynamics arise from a study of
(i.) the asymptotic distribution for §; around the rational expectations equilibrium and (ii.)
the mean dynamic path gzNS(T, ¢o) where ¢y are drawn from the asymptotic distribution.

The validity of the propositions in the text depend on verifying a set of technical condi-
tions. The conditions required for Proposition 2 can be verified by using the arguments in
Branch and Evans (2011), and so they are omitted here.

Proposition 2 uses the following result from Evans and Honkapohja (2001):

Proposition 3 (EH(2001)) Consider the normalized random variables:
U(7) =72 (67(7) = d(r,60))

As v — 0, the process UV(1), 0 < 7 < T, converges weakly to the solution U(T) of the

stochastic differential equation
dU(7) = Dyh((7. ¢0))U(7)dr + RY*((7, ¢))dW (7)

with initial condition U(0) = 0, where W (7) is a standard vector Wiener process, and R is

a covariance matriz whose i, jth elements are

RI(6) = > Cov | (6, X)), 1 (6, X{)
k=—o00
Moreover, the solution to the stochastic differential equation has the following properties

EU(T) = 0

dvm;g_m) = Dyh(o(T, 00))Vau(T) + VuDgh((T, do)) + R(d(T, o)),
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where V,, = Var(U(7)). This result indicates that, for finite periods of time, the learning
dynamics weakly converge to the solution of the ODE = h(#), thus establishing Proposition
2.

Proposition 1 relies on the stochastic differential equation in the above result to have a
stationary distribution asymptotically. Establishing this result requires stronger conditions.

In particular,

Al ¢* is a globally asymptotically stable rest point of the ODE ¢ = h(¢).

A2 D,h(¢) is Lipschitz and all of the eigenvalues of D,h(¢*) have strictly negative real
parts.

A3 There exist ¢i,¢o,q3 > 0 such that, for all ¢ > 0 and all compact sets @), there is a
constant u(g, Q) such that for all z € R4, a € Q,

i supy, By a1+ [Xa|?) < p(1 +[2]?),
ii. sup, Bpo([H (07, Xor1)?) < p(l+ [2|®),

iii. sup,, ooV (Xns1)?) < p(1 4 [2]%), where vy = 37, (TIgHy — 1(¢))(y), and
I14 is the stationary transition probability associated to the stationary Markov

process X,

iiii. sup,, Feo(|o7?) < (1 + |z]%).

As noted in the text, there are three rest points to the ODE ¢ = h(¢), corresponding to
the two REE with b = 0,i.e. a = 7 or a = 7, and the other with b = o,a = 7. The b = a REE
is unstable under learning, and for some values of ¢ the dynamics are explosive. For initial
conditions sufficiently close to b = 0, and sufficiently small gain parameters ~, then the MSV
REE is a stable rest point to the learning dynamics. However, to apply the approximation
theorem below, the algorithm needs to rule out trajectories in the explosive region. Thus,
the learning algorithm is supplemented with a “projection facility” that projects the iterates
¢] into a confined set (see Evans and Honkapohja (2001) and Kushner and Yin (1997)). As
a result of these assumptions the RE solution (a,b) = (7, 0) is a globally stable rest point of
the ODE that satisfies (A1)-(A2).

It remains to verify (A3). Write X,, = A(¢,_1)X,_1 + BW,, where the expressions for
A, B are given above. The eigenvalues of A are zero and A, and the projection facility along
with the conditional linearity ensures that X,, remains in a compact subset of D, an open

set around the REE (7,0) or the REE (7, 0), which in each case has a unique rest point to
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¢ = h(¢). Thus (A3.i) is immediate. Verifying conditions (A.ii)-(A.iv) is tedious, but given a
projection facility that constrains ¢; to lie in a compact subset of D, it is straightforward to
extend the arguments in Evans and Honkapohja (2001) (pg.335-336) for the Cobweb model
to the present setting.

Proposition 1 arises from the following result in Evans and Honkapohja:

Proposition 4 (EH(2001)) Consider the normalized random variables UV (1) = 7,;1/2 (@7 (1) — 9*).
For any sequences 1, — 00, v, — 0, the sequence of random variables (U (7y))r>0 converges

in distribution to a normal random variable with zero mean and covariance matriz
C = / e*PR(6%)e*P ds,
0
where B = Dyh(¢*).

It follows then that 6, ~ N(6*,~vC) for small v and large ¢. Using arguments in Evans
and Honkapohja (2001), Chapter 14.4, C'is the solution to the matrix Riccati equation

Dgh(¢*)C + C (Dgh(¢*))" = —Rg(¢")

where R = EH(¢*, X)H(¢*, X)'. Straightforward calculations then lead to the expression
for V' in the text.
Overview of the New Keynesian Model with Trend Inflation.

The reduced-form equations (13)-(14) were derived by Ascari and Ropele (2007) from
a standard New Keynesian framework and log-linearized around a non-zero steady-state
inflation rate. This Appendix provides a brief overview of the model in Ascari and Ropele
(2007).

There are a continuum of (identical) households whose flow utility is given by

1-0o

U(C,N) = G

l1—0

— XVt
Households maximize lifetime utility subject to the constraint,
PGy + By < PawyNy + (1 4d41) By 1 + 11 + T,

where P, is the price of the final good, B; are risk-free one period bonds with nominal
net return i,_1, II; are profits returned to households and 7T; are lump-sum transfers. This
formulation assumes the “cashless limit” that abstracts from money balances in the house-
hold’s problem. The household will select sequences of consumption, labor hours, and bond

holdings to satisfy the first-order conditions

cre = B (Otflu Ly ) (23)

P
XCf = w; (24)
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When E = E, i.e. agents hold rational expectations, the conditions (23)-(24) have the usual
interpretation.

When E # F, the equation (23) can be justified in several ways. Our preference is to
posit (23) as a behavioral relation that dictates that boundedly rational households choose
their consumption to equate their expected marginal rate of substitution with the marginal
rate of transformation. This is called Euler-equation learning and is another benchmark
approach in the learning literature. See, for example Evans and Honkapohja (2013). In the
current setting, the Euler-equation learning interpretation of (23) is completed by imagining
a representative agent with a long history of data who observed a strong positive correlation
between their own consumption and aggregate consumption. Euler-equation learning is a
bounded-optimality approach closely related to the more general “shadow price” learning
approach of Evans and McGough (2014).2

The final good Y; is produced by perfectly competitive firms using intermediate goods
Y;(i) produced using a CES production function Y; = (fol Yt(i)(c_l)/gdi) C/(C_l), ¢ > 1. The
final goods firms choose their inputs to maximize profits, taking prices as given, resulting
in the demand for input ¢ Y;(i) = (Pi(i)/P,)~°Y;. Intermediate goods are produced by a
continuum of firms with technology Y;(i) = Ny(7).Intermediate goods producers take the
demand for their good as given when setting prices optimally. However, they also face the
Calvo risk where with probability « the firm’s price will remain unchanged each period. This
leads to an expression for price setting that is identical to that of Woodford, except that the
optimal re-set price also depends on the cumulative gross inflation rates over the period that
a price might remain fixed.

Ascari and Ropele (2007) show that the steady-state properties depend on the trend
inflation rate and, in particular, under most plausible parameterizations positive trend in-
flation leads to a lower steady-state output. Ascari and Ropele then demonstrate that a

log-linearization, around a steady-state with gross inflation II, of the equilibrium conditions

28 An alternative approach has been advanced by Preston (2006) in which boundedly rational agents solve
their perceived dynamic programming problem, assuming that their beliefs will not change over time. This
“anticipated utility” approach is typically implemented, e.g., by obtaining an IS equation that depends on
expectations of interest rates and inflation over all future horizons. It would also be possible to develop
Bayesian approaches that do not rely on a large exogenous component to consumption. However, as is
evident from Cogley and Sargent (2008), this approach would be technically difficult to implement. We

hypothesize that our results will be robust to these alternative non-RE approaches.
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lead to the following reduced-form equations:

~

B = B — o (i — Efier — )
Fio= Kdt BB F + (= 1)B(1 = ol E, ((C = Vv + i1 )
o = (1—afN(1 —0)d + afE, ((g — Dy + ¢3t+1)
where z, 7,7 are log deviations from a steady-state with gross inflation factor II. Iterating
forward on the ¢ equation leads to the equations in the text. Ascari and Ropele show that
k=—1)(c—1)3(1 —all*"t) + oA(II), \(IT) = (1 — aIIs~H) (1 — aBII1%) /alls L,
By setting Il = 1, i.e. linearizing around a zero inflation steady-state, these equations

reduce to the benchmark New Keynesian model

~ 1 /A ~
T = By, —o (lt — By — Tt)

T = BET + KTy
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Table 1: Calibration. Note: For definitions of parameters, see Appendix.

B 1 0.995
¢ 10
O 1.5
a, | 0.125
a | 0.67
o | 1.00
x | 1.00
o | 0.1
o2 | 0.003
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Figure 1: T-map dynamics in the Fisherian model with o = 1.1, 7 = 4%.
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Figure 2: Confidence Ellipses around REE for constant gain learning. Each ellipse corre-
sponds to a different inflation target. The targets are .5%, 1%, 2%, 3%, 4%, 5%, expressed in

annualized rates.

Figure 3: Mean Dynamics in the Fisherian Model. Initial conditions are drawn from the

confidence ellipse.
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Figure 4: Change in inflation target from 2% to 4%. Economy begins in the REE. a =

1.1,02 = .003, v = .02.
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Figure 5: Fisherian inflation dynamics with a 4% target.

episode, right panel plots a disinflationary episode.
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Figure 6: Alternative implementations of new target. Left panel implements target incre-

mentally over horizons of 1,8,16,32,64,128,256 quarters. Right panel initially sets a higher

inflation target then lowers the target each quarter until reaching the desired 4% target.
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Figure 7: Confidence Ellipse for 2% and 4% targets. Computed via monte-carlo simulations

assuming an asymptotic normal distribution for the coefficients. The coefficients are centered

around (0,0) by de-meaning the simulated series.
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Figure 8: Mean dynamics in NK Model with a 4% target.
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Figure 9: Mean dynamics in NK Model with alternative inflation targets.
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Figure 10: Random-walk beliefs for various inflation targets. Figure plots the largest root

of agents” VAR matrix B in the New Keynesian model with the baseline calibration.
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Figure 11: Increasing the Inflation target from 2% to 4%.

4
3k =
o il
g
s il
0 \ | \ \ \ \ \
[0] 100 200 300 400 500 600 700 800 900 1000
1.5 T T T T T T T T T
i il
<
o 051 4
o
o 7
_05 \ \ \ \ \ \ \ \ \
0 100 200 300 400 500 600 700 800 900 1000
15
10+ B
-
sk il
o \ \ \ \ \ \ \ \ \
(0] 100 200 300 400 500 600 700 800 900 1000

48



Figure 12:

Inflation dynamics in NK Model

with a 4% target.
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Figure 13: A Policy Frontier for Random-walk beliefs. All pairs of policy coefficients (., o)

below the line can lead to random-walk beliefs in the mean dynamics for the NK model with

the baseline calibration, and policy coefficients above the line do not exhibit random-walk

beliefs. Circle corresponds to the Taylor rule.
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Figure 14: Inflation dynamics in NK Model with a 4% target and a zero lower bound.
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Figure 15: Policy target communication.
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Figure 16: Increasing the target from 2% to 4% and increasing «, from 1.5 to 3.0.
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Figure 17: Mean dynamics in NK Model with a 4% target and optimal policy without

commitment.
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