Astronomy 121 – Course Information

(http://www.uoregon.edu/~haydock/Astr121Info.htm)

Planetary Systems                                        CRN 20934                                       January 4, 2016

 

This first term of introductory astronomy covers the early history of astronomy, the origin of the solar system, and what is known about the Sun, Earth, Moon, and other Solar as well as extra-Solar planets.  This course requires minimal mathematics – some arithmetic and a little algebra.

In this course students learn the basic facts and theories about planetary systems, and how to solve simple, related arithmetic problems.   The homework teaches students to extract answers to simple questions from technical material, and the project teaches how to take data, extract information from it, and evaluate the significance of that information.

Classes:      Mondays, Wednesdays, and Fridays 09:00 to 09:50 in Room 207 Chapman Hall.

Instructor:   Roger Haydock(haydock@uoregon.edu), 172 Willamette Hall, 346-5221, Office hours – Tuesdays 08:00 to 09:00, Thursdays 08:00 to 9:00, or by appointment.

Required TextThe Essential Cosmic Perspective by J. Bennett, M. Donahue, N. Schneider, and M. Voit, (Addison-Wesley) 7th edition.

Homework:  Prepare for each class by reading the assigned material in the text and trying some of the homework questions.  After class reread the material and write out the answers to all the Exercises and Problems assigned in the Course Plan on the back of this page.  You should be spending about 6 hours per week, outside of class, studying the text, answering questions, and solving problems.  This homework will not be collected, but the examinations will consist of questions from the homework.

Midterms:    Wednesday, January 27, and Wednesday, February 17 there will be midterms in class.  Each midterm will consist of ten questions similar to the homework.  The purpose of the midterms is to tell you how you are progressing with the course.  Only your midterms which are better than your final examination will be averaged into your final grade.

Final Exam: Tuesday, March 15, at 10:15 in Room 207 Chapman is required for a pass or a grade.  This examination will consist of twenty questions similar to the homeworkNote that this exam is on the Tuesday of exam week and cannot be given early!

Project:        Because this is a four credit course meeting three hours per week, each student is required to plan, conduct and report on a quantitative determination of some astronomical quantity relevant to the course.  Examples of the kind of observations appropriate for this project are measurement of positions at various times for the sun, moon, satellites, or planets.  Other kinds of observations are possible, but should be discussed in advance with the Instructor.  Examples of quantities to be determined in these projects are rotational tilt, orbital periods, or orbital inclination of the Earth, Moon, other planets, satellites, and so forth.  Again, other ideas are encouraged but should be discussed in advance with the Instructor.  Data obtained other than by direct observation, for example data downloaded from the internet, is not acceptable.

The grade for each project will be based on a written report which is due at the final exam.  The report is limited to 1,000 words, but may contain sketches, graphs, photographs, equations, and so forth.  Reports should be written so as to be understandable to other members of the class and should include an introduction to the project, a thorough description of how the observations were made, the data obtained, analysis of the data, and a discussion of whether or not the results agree with accepted values.

The total effort on the project should be about 3 hours per week, or a total of 30 hours for the course.

 

Grading:      The Final grade is 75% Exams + 25% Project. The exam grade is the average (weighting individual questions equally) of the Final Exam and any Midterms which were better than the Final.  The principle for grading exams is that demonstration of understanding of 2/3 or more of the material is at least an A-, ½ or more at least a B-, and 1/3 or more at least a C-.  The project is graded on the principle that a report reflecting 30 hours of coherent effort earns a B (A if the project is outstanding in some respect).

Reading:      If you have time, visit the Science Library and read about what is new in science and astronomy.  Some interesting magazines are The New Scientist, Science, Science News, The Scientific American, Astronomy, and Sky and Telescope.  Also there are many great websites about observing and astronomical news.

Weather:         If the weather becomes too bad for the class to meet (very unlikely), there will be a message to this effect on 346-5221.  If the telephone system is down, there will be no class.

 

Course Plan                    

 

Date                                  Class Topic                            Assigned Chapter, Exercises, and Problems*

 

4 January                           Introduction to the Solar System            Chapter 1:  2, 3, 9, 42

6                                        The Universe

8                                        Basic Astronomy I                                  Chapter 2:  4-16, 47-8

11                                      Basic Astronomy II                                

13                                      Projects                            

15                                      Ancient and Greek Astronomy               Chapter 3:  1-10

18                                      Martin Luther King, Jr. Day - No Class

20                                      Renaissance Astronomy

22                                      Modern Astronomy                                Chapter 4:  1-14, 43, 45

25                                      Conservation Laws                                

27                 First Midterm covering Chapters 1, 2, 3, and 4

29                                      Formation of the Solar System               Chapter 6:  1-14

 

1 February                        The Solar System Now                          

3                                        Exoplanets                                             Chapter 10:  1, 2, 7, 15

5                                        Earth I                                                    Chapter 7:  1-18

8                                        Earth II                                                  

10                                      Moon and Mercury

12                                      Mars

15                                      Venus

17                 Second Midterm covering Chapters 6, 7 and 10

19                                      Jupiter                                                   Chapter 8:  1-13

22                                      Moons of Jupiter                                   

24                                      Saturn

26                                      Uranus and Neptune

29                                      Comets and Plutinos                              Chapter 9:  1-12

 

2 March                             Asteroids

4                                        Collisions

7                                        Review I

9                                        Review II

11                                      Review III - Mock Third Midterm

15                 Final Exam at 10:15 in Room 207 Chapman covering Chapters 1-4 and 6-10.

 

 

*  6th Edition Assignments