
1.  Introduction
Magma reservoirs represent a fundamental link between mantle melting and volcanic activity seen at the surface. 
Eruptions that drain these reservoirs are the most dramatic example of magma chamber mechanics, and a wide 
spectrum of time-varying surface deformation and other unrest seen in volcanic regions likely has an origin 
within crustal storage zones (Anderson & Segall,  2011; Cianetti et  al.,  2012; Henderson & Pritchard,  2017; 
Walwer et al., 2021). As a result, understanding controls on time-dependent magma chamber deformation and 
stress is a long-standing research topic in volcanology (Gudmundsson, 1988; Segall, 2019; Sparks et al., 2017). 
However, modeling magma reservoir evolution is a challenging problem because time-dependence may arise 
from a variety of physical processes occurring both internal and external to the magma transport system, many of 
which leave non-unique signatures in ground deformation patterns.

Abstract  Time-dependent ground deformation is a key observable in active magmatic systems, but is 
challenging to characterize. Here we present a numerical framework for modeling transient deformation and 
stress around a subsurface, spheroidal pressurized magma reservoir within a viscoelastic half-space with 
variable material coefficients, utilizing a high-order finite-element method and explicit time-stepping. We 
derive numerically stable time steps and verify convergence, then explore the frequency dependence of surface 
displacement associated with cyclic pressure applied to a spherical reservoir beneath a stress-free surface. 
We consider a Maxwell rheology and a steady geothermal gradient, which gives rise to spatially variable 
viscoelastic material properties. The temporal response of the system is quantified with a transfer function 
that connects peak surface deformation to reservoir pressurization in the frequency domain. The amplitude 
and phase of this transfer function characterize the viscoelastic response of the system, and imply a framework 
for characterizing general deformation time series through superposition. Transfer function components vary 
with the frequency of pressure forcing and are modulated strongly by the background temperature field. The 
dominantly viscous region around the reservoir is also frequency dependent, through a local Deborah number 
that measures pressurization period against a spatially varying Maxwell relaxation time. This near-reservoir 
region defines a spatially complex viscous/elastic transition whose volume depends on the frequency of 
forcing. Our computational and transfer function analysis framework represents a general approach for studying 
transient viscoelastic crustal responses to magmatic forcing through spectral decomposition of deformation time 
series, such as long-duration geodetic observations.

Plain Language Summary  Ground motions associated with subsurface magma reservoirs are the 
result both of magma movement and time-dependent deformation of crustal rocks. We have developed a new 
computational framework to help interpret surface deformations associated with magmatic systems embedded 
within viscoelastic rocks as expected in volcanic regions. This framework is general in the sense that a broad 
range of scientific studies can be explored by specifying particular conditions at domain boundaries or magma 
reservoir geometries, and we perform rigorous numerical tests to ensure credible solutions. We then apply 
the model to study a simple but highly generalizable type of transient behavior—the cyclic pressurization 
and depressurization of a spherical reservoir. We develop a theoretical approach to simply analyze the 
time-dependent output, and find that temporal lag and amplification of surface deformation with respect to the 
reservoir pressure is explained by an aureole of material surrounding the chamber with a dominantly viscous 
response, whose size is frequency-dependent. Our results can be extended to many transient deformation 
scenarios because a sinusoidal response forms the basic element of general pressure time-series.
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On sufficiently short time scales, it is appropriate to assume an elastic/brittle rheology of host rocks. Elastic models 
have been widely used to interpret geodetic data gathered at volcanoes (Berrino et al., 1984; McTigue, 1987; 
Mogi, 1958). Such models predict that time-dependent behavior comes only from reservoir magma mass balance/
state variable changes (Cianetti et al., 2012) or boundary forcing, although poroelastic effects can also lead to 
time-dependence (Mittal & Richards, 2019). Time dependent deformation and stressing of the reservoir at times-
cales longer than the onset of viscous creep likely involves ductile response of host rocks (e.g., Gottsmann & 
Odbert, 2014; Novoa et al., 2019; Yamasaki et al., 2018), suggesting an overall viscoelastic rheology.

Viscoelastic effects have been identified as defining a notion of magma chamber stability, providing a mech-
anism for modulating stresses and deformation associated with pressurization of the chamber (Dragoni & 
Magnanensi, 1989; Gregg et al., 2013; Karlstrom et al., 2010; Liao et al., 2021). Viscoelastic effects may play 
a role in the development of large silicic reservoirs (Jellinek & DePaolo, 2003) as well as eruption sequences 
from long-lived magma reservoirs (Degruyter & Huber,  2014) and time-dependent ground deformation at 
active volcanoes in diverse settings (Le Mével et al., 2016; Masterlark et al., 2010; Morales Rivera et al., 2019; 
Newman et al., 2001; Sigmundsson et al., 2010). On tectonic timescales, transitions in the efficacy of viscous 
deformation within the transcrustal system may manifest as state shifts in magma transport, such as increasing 
intrusive-extrusive ratios and spatial organization of volcanism around long-lived centers (Karlstrom et al., 2017).

Deformation style is strongly tied to the thermal state of the magmatic system, because both rock and magma 
rheology are temperature dependent. Thus it is to be expected that a viscoelastic response varies spatially, and 
evolves in time with the transcrustal magma transport system. Such unsteady effects, both spatial and temporal, 
are poorly constrained. Instead it is typically assumed that magma reservoirs reside in a steady state geotherm 
(Del Negro et al., 2009; Gregg et al., 2012; Head et al., 2021), or that the mechanical response is well-approximated 
by a pre-specified shell of viscous material in an elastic host (Bonafede et al., 1986; Degruyter & Huber, 2014; 
Karlstrom et al., 2010; Segall, 2016; Townsend et al., 2019). Time evolution is often either imposed kinemat-
ically through stress boundary conditions (e.g., to model an eruptive event, Dragoni & Magnanensi, 1989) or 
arises dynamically through mass and energy balance (e.g., Karlstrom et al., 2010). Viscous creep independent 
of time-variable forcing has also been invoked to explain deformation signals (Head et al., 2019; Segall, 2016). 
Time variation is often idealized due a lack of unique constraints on the source-time function of deformation 
in magmatic systems, especially on timescales longer than individual unrest or eruptive episodes. General time 
dependent deformation that does not make inherent assumptions about deep source characteristics has not been 
widely studied.

Viscoelastic deformation of volcanoes has been studied numerically by numerous authors (e.g., Del Negro 
et al., 2009; Gregg et al., 2013; Head et al., 2022; Hickey & Gottsmann, 2014; Segall, 2019). However, we are 
unaware of a systematic analysis of the numerical and computational issues associated with this problem. As 
volcanic deformation datasets become better resolved in space and time, and as magma reservoir models are 
generalized to include more physical processes over an increasing range of timescales, neglecting these numer-
ical and computational considerations is likely to be a major factor limiting scientific progress. In this work, 
we address two aspects of viscoelastic deformation in magmatic systems. First, we derive and implement a 
high order numerical modeling framework for simulating transient thermo-mechanical behavior of a subsur-
face magma reservoir in an isotropic, heterogeneous, viscoelastic domain. Second, we study stress and crustal 
deformation associated with periodic pressure variation at the chamber wall. This represents a different sort of 
idealization than previous studies: we consider a spatially resolved mechanical response, but treat time evolution 
as harmonic. In this way we isolate the frequency dependence of the viscoelastic rheology, and develop a transfer 
function approach using analytic functions to predict material response. This idealization might approximate 
some magmatic forcing scenarios, such as cyclic stress from seismic waves, periodic magma injection, or glacial 
cycles, and we note that quasi-periodic deformation at multiple frequencies has been observed in long-term 
geodetic timeseries (Crozier & Karlstrom, 2022). Our approach also implies a superposition framework for stud-
ying much more general time evolution.

Our model is developed to handle general axisymmetric geometries in the subsurface and surface, includ-
ing lateral loads and topographically complex material interfaces. However, we focus on the relatively 
simple and well-studied case of a sphere in a half-space without remote loading to explore transient effects, 
deriving material properties from a steady state temperature distribution within the medium. After detail-
ing the numerical framework we verify convergence using the method of manufactured solutions (MMS) 

 21699356, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024506 by U
niversity O

f O
regon L

ibraries, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

RUCKER ET AL.

10.1029/2022JB024506

3 of 29

(Roache, 1998). Finally we use the verified framework to characterize the 
system's response to spatially variable viscoelastic material properties. 
We develop a transfer function between chamber pressure and maximum 
vertical surface deformation to demonstrate that two parameters—the 
phase lag between pressurization and surface deformation, and their rela-
tive amplitude—imply a frequency-dependent viscoelastic response that 
depends on chamber temperature and geothermal gradient magnitude. 
We demonstrate that this transfer function permits the reconstruction of 
complex deformation histories, and show that the spatial thermo-rheologic 
structure beneath the chamber influences frequency domain expression of 
surface deformation.

The paper is organized with mathematical and computational details 
provided first, followed by the spectral (and transfer function) analysis 
and example calculations. In Section 2 we introduce the governing equa-
tions and generic physical problem of interest. In Section  3 we discuss 
the computational framework, and develop the specific non-dimensional 
time-dependent problem of interest. Readers wishing to skip such technical 
details can go directly to Section 4, which introduces the transfer function 
approach that represents our primary analysis tool. Section 5 then discusses 
results of computations and Section 6 discusses implications for magmatic 
systems.

2.  Mathematical Framework
2.1.  Problem Formulation and Geometry

We consider a subsurface magma reservoir in an isotropic, viscoelastic space, 
see Figure  1. In general the system evolves in time in response to mass, 
momentum, and energy balance associated with magma transport in and out 
of the reservoir. We focus here on the host response to one particular state 
variable, a uniform but time-evolving pressure on the reservoir wall.

We employ a cylindrical coordinate system (r, z, θ) with the origin at the reservoir center. The assumption of 
axisymmetry means the problem shows no variation along the θ − coordinate enabling solutions in the one-sided 
(r, z) − plane. Figure 1 illustrates the geometry which defines the computational region surrounding a reservoir. 
The magma cavity has horizontal axis a > 0 and vertical axis b > 0, with center at the origin, and Earth's free 
surface at z = D + b (z positive upwards). Maximum depth of the computational domain is denoted by Lz and the 
maximum lateral distance from the center of radial symmetry is denoted by Lr.

We construct the region outside of the cavity by intersecting a closed, rectangular region 

𝐴𝐴  =
{
(𝑟𝑟𝑟 𝑟𝑟) ∈ ℝ

2 | 0 < 𝑟𝑟 𝑟 𝑟𝑟𝑟𝑟, −𝐿𝐿𝑧𝑧 < 𝑧𝑧𝑧  𝑧𝑧 + 𝑏𝑏
}
 and a punctured domain 𝐴𝐴  =

{
(𝑟𝑟𝑟 𝑟𝑟) ∈ ℝ

2 | 𝑟𝑟2

𝑎𝑎2
+

𝑧𝑧2

𝑏𝑏2
> 1

}
 . 

The region Ω outside of the cavity, defined by 𝐴𝐴 Ω =  ∩  forms our two-dimensional computational domain. 
The physical three-dimensional problem is posed on the revolution of Ω, the three-dimensional domain we denote 
by 𝐴𝐴 Ω̆ .

2.2.  Governing Equations

We assume sufficiently slow deformation so that quasi-static viscoelasticity is a valid description of the momentum 
balance. We assume the medium deforms according to the Maxwell constitutive law (Muki & Sternberg, 1961). 
This material model is chosen for its simplicity and flexibility. A variety of linear and nonlinear viscoelastic 
models have been proposed for crustal rocks at high temperature; the Maxwell model is a useful and easily gener-
alizable reference case for understanding the phenomenology of viscoelastic deformation (Head et al., 2021; Lau 
et al., 2020; Lau & Holtzman, 2019).

Figure 1.  The region Ω outside a subsurface, spheroidal magma reservoir 
centered at the origin is discretized with a high-order finite element method. 
The reservoir has a horizontal axis a > 0 and vertical axis b > 0. The distance 
from the top of the reservoir to the surface is D > b. The region is bounded by a 
maximal depth Lz and maximal distance from the radial center Lr. Note that our 
simulations are performed on a finer triangulation of points than is shown here.

 21699356, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024506 by U
niversity O

f O
regon L

ibraries, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

RUCKER ET AL.

10.1029/2022JB024506

4 of 29

Let 𝐴𝐴 𝐮𝐮, 𝜺𝜺, 𝜸𝜸,𝝈𝝈 be, respectively, the displacement vector, the total strain tensor, the viscous strain tensor, and the 
stress tensor. The time derivative of 𝐴𝐴 𝜸𝜸 is denoted by 𝐴𝐴 𝜸̇𝜸 . The relevant governing equations are:

div𝝈𝝈 = 𝐟𝐟 in Ω̆,� (1a)

𝜸̇𝜸 = 𝑨𝑨𝑨𝑨 in Ω̆,� (1b)

𝝈𝝈 = 𝑬𝑬

(
𝜺𝜺(𝐮𝐮) − 𝜸𝜸

)
in Ω̆,� (1c)

where �(�) =
(

∇� + ∇�� )∕2 , E is the fourth-order, isotropic elastic stiffness tensor whose (i, j, k, l)-component 
in Cartesian coordinates is given by

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜆𝜆𝜆𝜆𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝜇𝜇 (𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗) .� (2)

Here, μ denotes the shear modulus, λ denotes Lamé’s first parameter, and δ denotes the components of the identity 
tensor. The fourth-order tensor A relates viscous strain to stress, and is derived from the Maxwell constitutive law 
(Muki & Sternberg, 1961) to produce the form

𝑨𝑨𝑨𝑨 =
1

2𝜂𝜂

(
𝜎𝜎𝑖𝑖𝑖𝑖 −

1

3
𝜎𝜎𝑘𝑘𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖

)
,� (3)

where η denotes the viscosity and repeated indices indicate summation over that index.

Equation 1a is the static equilibrium equation where f represents body forces. Equation 1b is the aging law for 
a Maxwell material and Equation 1c is Hooke's Law. When supplemented by initial and boundary conditions, 
system (Equation 1a) can be solved in any coordinate system.

We use the cylindrical coordinate system (r, z, θ), writing the displacement vector field as u = urer + uzez + uθeθ 
where er, eθ, and ez denote the unit vectors of the cylindrical coordinate system. The source f can also be similarly 
expressed. We assume that uθ and fθ are zero. Furthermore, by the assumption of axial symmetry, ur and uz are 
independent of θ. Hence, employing the cylindrical components of the strain tensor, displacements in the Earth 
are related to strains by

𝜺𝜺(𝐮𝐮) =
𝑢𝑢𝑟𝑟

𝑟𝑟
𝒆𝒆𝜃𝜃 ⊗ 𝒆𝒆𝜃𝜃 +

∑

𝑖𝑖𝑖𝑖𝑖∈{𝑟𝑟𝑟𝑟𝑟}

1

2
(𝜕𝜕𝑖𝑖𝑢𝑢𝑗𝑗 + 𝜕𝜕𝑗𝑗𝑢𝑢𝑖𝑖) 𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑗𝑗 .� (4)

The stress tensor can be expressed, omitting its zero components, as

𝝈𝝈 = 𝜎𝜎𝜃𝜃𝜃𝜃𝒆𝒆𝜃𝜃 ⊗ 𝒆𝒆𝜃𝜃 +
∑

𝑖𝑖𝑖𝑖𝑖∈{𝑟𝑟𝑟𝑟𝑟}

𝜎𝜎𝑖𝑖𝑖𝑖𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑗𝑗 .� (5)

The equilibrium Equation 1a then takes the form
(
𝜕𝜕𝑟𝑟𝜎𝜎𝑟𝑟𝑟𝑟 + 𝜕𝜕𝑧𝑧𝜎𝜎𝑟𝑟𝑟𝑟 +

1

𝑟𝑟
(𝜎𝜎𝑟𝑟𝑟𝑟 − 𝜎𝜎𝜃𝜃𝜃𝜃)

)
𝒆𝒆𝑟𝑟 +

(
𝜕𝜕𝑟𝑟𝜎𝜎𝑟𝑟𝑟𝑟 + 𝜕𝜕𝑧𝑧𝜎𝜎𝑧𝑧𝑧𝑧 +

1

𝑟𝑟
𝜎𝜎𝑟𝑟𝑟𝑟

)
𝒆𝒆𝑧𝑧 = 𝐟𝐟 .� (6)

Using Equations 4 and 1c to obtain expressions for the cylindrical components of the stress tensor, the equilibrium 
Equation 6 can be solved for the components of the displacement in the two-dimensional meridian (rz) plane.

To reduce the problem to the meridian half-plane where r > 0, we need to impose the following boundary condi-
tions on the axial boundary Γ0 = {(r, z) ∈ ∂Ω: r = 0}, namely.

𝑢𝑢𝑟𝑟 = 0, onΓ0� (7a)

𝜎𝜎𝑟𝑟𝑟𝑟 = 0, onΓ0.� (7b)

The first follows from a “no-opening” condition at r = 0. The second comes from requiring continuity of stresses 
in the ez direction at r = 0. Other boundary conditions are imposed by partitioning the remaining boundary ∂Ω\Γ0. 
We let Γdisp ⊆ ∂Ω and Γtrac = ∂Ω\Γdisp denote a general partitioning of ∂Ω into subdomains where either displace-
ment or traction boundary conditions are imposed, respectively. Explicitly, these conditions are.
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𝐮𝐮 = 𝐠𝐠disp(𝑡𝑡) onΓdisp,� (7c)

𝝈𝝈 ⋅ 𝐧𝐧 = 𝐠𝐠trac(𝑡𝑡) onΓtrac,� (7d)

where n is the outward unit normal to the domain Ω, and gdisp, gtrac(t) are given, time-varying boundary data. 
This general model enables the study of reservoir pressure, lateral loads and topography, among other studies in 
axisymmetric geometries.

In addition to boundary conditions, we must also supplement the aging law, Equation 1b, with an initial condition 
on viscous strain, namely

𝜸𝜸(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟 = 0) = 𝜸𝜸
0
(𝑟𝑟𝑟 𝑟𝑟), (𝑟𝑟𝑟 𝑟𝑟) ∈ Ω.� (8)

3.  Computational Framework
We solve initial-boundary-value problem (Equation 1a, Equations 4–8) numerically by pairing a finite difference 
discretization in time with a high-order finite element method (FEM) in space. As described in this section, 
at each time step the spatial problem is governed by static equilibrium, with viscous effects manifested as a 
time-dependent source term. Simulations are done using Python code developed on top of the free and open source 
multi-physics library NGSolve (Schöberl, 2010–2022) and the accompanying mesh generator (Schöberl, 1997). 
The Python code is available in a public repository (Bitbucket: magmaxisym, 2022). We use a two-dimensional 
mesh of triangles. To capture the magma chamber boundary accurately, we use nonlinear mappings for those 
elements with edges on the curved boundary to improve geometrical conformity (Ern & Guermond, 2021). The 
following subsections outline the static problem, the temporal discretization, and the details of the specific prob-
lem considered in this work.

3.1.  Solving the Static Equilibrium Equation

We solve the equilibrium Equation 1a subject to boundary conditions (Equation 7) using a FEM, which requires 
the weak form of the problem. To construct the weak form, we perform the following steps: (a) multiply Equa-
tion 6 by r and take the dot product of both sides with a test function v = vrer + vzez, (b) integrate by parts on Ω, (c) 
replace σij by functions of ui using Equations 4 and 1c, and (d) incorporate the boundary conditions of Equation 7, 
letting v take on homogeneous displacement boundary conditions on Γdisp. The result is the equation

∫
Ω

𝑬𝑬

(
𝜺𝜺(𝐮𝐮) − 𝜸𝜸

)
∶ 𝜺𝜺(𝐯𝐯) 𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −

∫
Γ

trac

𝐠𝐠trac ⋅ 𝐯𝐯 𝑟𝑟 𝑟𝑟𝑟𝑟 = −
∫
Ω

𝐟𝐟 ⋅ 𝐯𝐯 𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� (9)

Here the colon denotes the Frobenius inner product. To simplify notation, we let 𝐴𝐴 (⋅, ⋅)𝑟𝑟 and 〈⋅,⋅〉r respectively 
denote the integrals over Ω and Γtrac of r multiplied by the appropriate (dot or Frobenius) inner product of the 
arguments. Then the above equation may be rewritten as

(
𝑬𝑬𝑬𝑬(𝐮𝐮), 𝜺𝜺(𝐯𝐯)

)
𝑟𝑟
= −(𝐟𝐟 , 𝐯𝐯)𝑟𝑟 + ⟨𝐠𝐠trac, 𝐯𝐯⟩𝑟𝑟 + (𝑬𝑬𝑬𝑬, 𝐯𝐯)𝑟𝑟.� (10)

The Lagrange FEM is derived by imposing the above equation on a space of piecewise polynomials. Given a 
triangulation of Ω, denoted by Ωh, the Lagrange finite element space of order p, denoted by Vh consists of all 
functions which are continuous on Ω whose restriction to each element K of Ωh is a polynomial of degree at most 
p in r and z. The method is high-order, meaning that polynomials of high degree can be used within each mesh 
element to approximate the solution. When degree p is used within an element of diameter h, a smooth solution 
on that element can be approximated at the rate O(h p+1) (in the L 2-norm). Thus, the difference between p = 1 
and p = 2 case, for example, is that as h → 0, under a uniform mesh refinement halving element diameters, while 
we expect the error to be halved in the first case per O(h), in the second case, it reduces by a fourth due to O(h 2) 
convergence. In the FEM, the data f and gtrac are integrated while the data gdisp is interpolated. Assuming the latter 
interpolation is done, let

𝑽𝑽
𝐠𝐠disp

ℎ
=
{
𝐯𝐯 = 𝑣𝑣𝑟𝑟𝒆𝒆𝑟𝑟 + 𝑣𝑣𝑧𝑧𝒆𝒆𝑧𝑧 ∶ 𝑣𝑣𝑟𝑟 ∈ 𝑉𝑉ℎ, 𝑣𝑣𝑧𝑧 ∈ 𝑉𝑉ℎ, and 𝐯𝐯|Γdisp

= 𝐠𝐠disp

}
.�
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Also let

𝑽𝑽
0

ℎ
=
{
𝐯𝐯 = 𝑣𝑣𝑟𝑟𝒆𝒆𝑟𝑟 + 𝑣𝑣𝑧𝑧𝒆𝒆𝑧𝑧 ∶ 𝑣𝑣𝑟𝑟 ∈ 𝑉𝑉ℎ, 𝑣𝑣𝑧𝑧 ∈ 𝑉𝑉ℎ, and 𝐯𝐯|Γdisp

= 𝟎𝟎

}
.�

Then, the FEM computes 𝐴𝐴 𝐮𝐮ℎ ∈ 𝑽𝑽
𝐠𝐠disp

ℎ
 satisfying

(

�� (�ℎ) , �(�)
)

� = −(� , �)� + ⟨�trac, �⟩� + (��, �)�, for all � ∈ � 0
ℎ,� (11)

provided f, gdisp, gtrac, and γ are given. Equation 11 leads to a linear system of equations once a finite element basis 
of shape functions (which are basis functions determining one degree of freedom in the finite element system) 
is used.

3.2.  Temporal Discretization

Our time-stepping method is inspired by that of Allison and Dunham (2018) where viscous strains appear as a 
time-dependent source term on the equilibrium equation, namely, once γ is computed at a specific time, it appears 
as a known term in Equation 11 which can then be solved for a displacement approximation. However, to compute 
γ, we need to apply a time integrator to the aging law, Equation 1b. We now illustrate this time-stepping method in 
general terms so that it could be implemented in a variety of computational settings. We then specifically detail it 
for our FEM framework. First, assume all fields are known at time t n. The procedure to integrate to t n+1 over step 
size Δt = t n+1 − t n is as follows:

1.	 �Use the current solution at time t n to integrate viscous strain one time step (e.g., with the aging law [Equa-
tion 1b]) and obtain γ n+1.

2.	 �Compute all the known data (e.g., source terms, boundary data) at time t n+1 and use these (together with γ n+1) 
to solve the equilibrium equation to obtain the remaining fields at time t n+1.

For our specific FEM framework the above time-stepping method is implemented as follows: For computational 
purposes only it is convenient to let 𝐴𝐴 𝑪𝑪 = 𝑬𝑬𝑬𝑬 , since the use of 𝐴𝐴 𝑪𝑪  allows us to skip the assembly and inver-
sion of a mass matrix made of inhomogeneous material coefficients. Since E is time independent, simplifying 

𝐴𝐴 𝑬𝑬𝑬𝑬𝑬𝑬 = (𝜇𝜇∕𝜂𝜂)dev

(
𝝈𝝈
)
 , Equation 1b implies

𝑪̇𝑪 =
𝜇𝜇

𝜂𝜂
dev𝝈𝝈.� (12)

Here 𝐴𝐴 dev

(
𝝈𝝈
)
 denotes deviatoric tensor 𝐴𝐴 𝝈𝝈 − tr

(
𝝈𝝈
)
 . Time integration of Equation  12 is carried out using the 

first-order accurate forward Euler method (chosen for its simplicity as we lay the computational groundwork; 
higher order methods will be incorporated in future developments). At each time step, we solve the weak form of 
equilibrium equation (Equation 11) and use the computed displacement to obtain 𝐴𝐴 𝑪𝑪  at the next time step. Again 
assuming all fields are known at time t n, we specifically implement steps 1 and 2 above as:

1.	 �Use 𝐴𝐴 𝐮𝐮
𝑛𝑛

ℎ
 to update 𝐴𝐴 𝑪𝑪  via forward Euler

𝑪𝑪
𝑛𝑛+1

= 𝑪𝑪
𝑛𝑛
+ Δ𝑡𝑡

𝜇𝜇

𝜂𝜂
dev

(
𝑬𝑬𝑬𝑬

(
𝐮𝐮
𝑛𝑛

ℎ

)
− 𝑪𝑪

𝑛𝑛
)
.� (13)

2.	 �Compute data f n+1, 𝐴𝐴 𝐠𝐠
𝑛𝑛+1

disp
 , 𝐴𝐴 𝐠𝐠

𝑛𝑛+1
trac

 at time t n+1 and use them, together with the output of the previous step, to solve 

the static equation: compute 𝐴𝐴 𝐮𝐮
𝑛𝑛+1

ℎ
∈ 𝑽𝑽

𝐠𝐠
𝑛𝑛+1
disp

ℎ
 satisfying

(
𝑬𝑬𝑬𝑬

(
𝐮𝐮
𝑛𝑛+1
𝑛𝑛

)
, 𝜺𝜺(𝐯𝐯)

)
𝑟𝑟
= −

(
𝐟𝐟
𝑛𝑛+1

, 𝐯𝐯
)
𝑟𝑟
+ ⟨𝐠𝐠𝑛𝑛+1

trac
, 𝐯𝐯⟩𝑟𝑟 +

(
𝑪𝑪

𝑛𝑛+1
, 𝐯𝐯
)
𝑟𝑟

� (14)

for all 𝐴𝐴 𝐯𝐯 ∈ 𝑽𝑽
0

ℎ
 .

Stable time steps for our problem are derived in Appendix  A. Appendix  A also contains details of rigorous 
convergence tests in both space and time (to verify correctness) via the MMS (Roache, 1998). Code verification 
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could also be done via benchmarking against simple analytic models (Hickey & Gottsmann, 2014) or community 
verification exercises (e.g., Erickson et al., 2020).

3.3.  Model Specifics and Non-Dimensionalization

The majority of analysis in this work will examine how a spatial distribution of viscoelastic properties impacts 
deformation around magma reservoirs subject to cyclic loading. We proceed by idealizing the boundary pressure 
as a sinusoid, which approximates a canonical problem in viscoelasticity (Golden & Graham, 1988), and provides 
a framework for studying arbitrary time dependent signals through superposition. For example, consider a forcing 
function S(t) (which might be applied to any domain boundary) of duration ℓ, consisting of a linear-ramp until 
t = ℓc ≤ ℓ, after which is remains constant at S0. S(t) can be expressed as a superposition of sinusoids via its 
Fourier-sine series expansion

�(�) =
∞
∑

�=1

�� sin(���) ,� (15)

where bn = 2S0(−1) n+1/(nπ) + 2S0ℓ sin (nπℓc/ℓ)/(ℓcn 2π 2) and ωn = nπ/ℓ. We discuss the representation of such 
general time-varying functions further in Appendix B, but restrict our analysis to particular components of Equa-
tion 15 in what follows.

We assume a specific boundary partition where Γtrac encompasses the reservoir wall, Earth's free surface, and the 
computational boundary at depth (z = −Lz). Γdisp is the lateral boundary r = Lr. We then set specific boundary data

𝐠𝐠disp(𝑡𝑡) = 0,� (16)

so that displacements vanish at r = Lr. At Earth's free surface and at depth we take

𝐠𝐠trac(𝑡𝑡) = 0.� (17)

At the reservoir wall we set.

−𝐧𝐧 ⋅ 𝐠𝐠trac(𝑡𝑡) = 𝑃𝑃 (𝑡𝑡),� (18a)

𝐦𝐦 ⋅ 𝐠𝐠trac(𝑡𝑡) = 0,� (18b)

Where

𝑃𝑃 (𝑡𝑡) = 𝑃𝑃0 sin(𝜔𝜔𝜔𝜔).� (19)

Equation 18a sets the normal component of the traction vector (the pressure) equal to a sinusoidal time-varying 
condition with amplitude P0 and frequency ω. In what follows we will often refer to forcing period

𝜏𝜏 = 2𝜋𝜋∕𝜔𝜔� (20)

rather than frequency. Equation 18b imposes that the shear component of traction be equal to 0, where vector 
m = n × ez is tangent to the reservoir wall.

Non-dimensionalization of the governing equations reveals important physical parameters and re-scales 
the problem to help reduce round-off errors. We begin by handling the scaling of the spatial domain before 
addressing governing equations. Tildes in what follows indicate non-dimensional variables. Let 𝐴𝐴 𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎 , 𝐴𝐴 𝐴𝐴 = 𝑎𝑎 𝑎𝑎𝑎 , 

𝐴𝐴 ̃ =

{
(𝑟𝑟𝑟 𝑟𝑟𝑟) ∈ ℝ

2 | 0 ≤ 𝑟𝑟 ≤
𝐿𝐿𝑟𝑟

𝑎𝑎
,−

𝐿𝐿𝑧𝑧

𝑎𝑎
≤ 𝑧̃𝑧 ≤

𝐷𝐷+𝑏𝑏

𝑎𝑎

}
 and 𝐴𝐴 ̃ =

{
(𝑟𝑟𝑟 𝑟𝑟𝑟) ∈ ℝ

2 | 𝑟𝑟2 + 𝑎𝑎2

𝑏𝑏2
𝑧̃𝑧 ≥ 1

}
 . Then our resulting 

scaled domain is given by

Ω̃ = ̃ ∩ ̃,� (21)

with scaled boundaries 𝐴𝐴 Γ̃disp still representing the (scaled) lateral boundary and 𝐴𝐴 Γ̃trac the (scaled) reservoir wall, 
Earth's free surface, and computational boundary at depth. We also scale displacements by a, namely 𝐴𝐴 𝐴𝐴𝒖̃𝒖 = 𝒖𝒖 , 
which effectively means that total strain 𝐴𝐴 𝝐𝝐 is not scaled. We scale stress and time by the amplitude and frequency 
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of the sinusoidal pressure, E by characteristic shear modulus μ and body force by its magnitude F0 (e.g., magni-
tude of gravitational force), giving.

𝝈𝝈 = 𝑃𝑃0𝝈̃𝝈,� (22)

𝑬𝑬 = 𝜇𝜇𝑬̃𝑬,� (23)

𝐟𝐟 = 𝐹𝐹0𝐟𝐟 ,� (24)

𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡� (25)

Which implies a scaling of 𝐴𝐴 𝑪𝑪 = 𝑃𝑃0𝑪̃𝑪  . The scaled form of the equilibrium Equation 1a is thus

div 𝝈̃𝝈 =
𝑎𝑎𝑎𝑎0

𝑃𝑃0

𝐟𝐟 ,� (26)

and Hooke's law Equation 1c becomes

𝝈̃𝝈 =
𝜇𝜇

𝑃𝑃0

𝑬̃𝑬

(
𝜺𝜺 − 𝜸𝜸

)
.� (27)

The two dimensionless parameters in Equations 26 and 27 physically represent the ratio of body force to reservoir 
boundary tractions, and a scaled reservoir pressure, respectively.

The modified aging law (Equation 12) becomes

𝜕𝜕𝑡𝑡𝑪̃𝑪 =
1

𝐷𝐷𝐷𝐷
dev 𝜎̃𝜎𝜎� (28)

where

𝐷𝐷𝐷𝐷 =
𝜂𝜂𝜂𝜂

𝜇𝜇
=

2𝜋𝜋𝜋𝜋

𝜏𝜏𝜏𝜏
� (29)

is the non-dimensional Deborah number, a ratio of elastic pressurization timescale τ/2π to Maxwell viscous 
relaxation timescale η/μ. Viscosity η, shear modulus μ and pressurization time τ are understood to be charac-
teristic scales if spatially or time variable. De commonly appears as a control parameter in models for magma 
chamber mechanics (Hickey et al., 2015; Jellinek & DePaolo, 2003), cycles of eruptions (Black & Manga, 2017; 
Degruyter & Huber, 2014), and the spatial structure of transcrustal magma systems (Huber et al., 2019; Karlstrom 
et al., 2017). It will play an important role in our results.

Computationally, all problems considered in this work are solved in this non-dimensional form. The specific 
non-dimensional boundary conditions we thus take are.

𝒖̃𝒖 = 0 on Γ̃disp,� (30a)

�̃� = �̃trac
(

�̃
)

on Γ̃trac,� (30b)

and at the reservoir wall.

−� ⋅ �̃disp
(

�̃
)

= �̃
(

�̃
)

� (31)

� ⋅ �̃trac
(

�̃
)

= 0.� (32)

Where �̃
(

�̃
)

= sin
(

�̃
)

 . For all our applications we assume negligible body forces, so aF0/P0 ≪ 1.

3.4.  Temperature-Dependent Material Parameters

We assume that viscosity of crustal rocks is described by a temperature-dependent Arrhenius relation, an 
assumption common to many thermomechanical models of magmatic systems (e.g., Del Negro et al., 2009). This 
neglects grain-size and stress-dependent effects (Bürgmann & Dresen, 2008), but parameterizes our assumption 
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that temperature is the dominant factor controlling crustal rheology during crustal magma transport. In general, 
temperature evolves in time in response to magmatism (e.g., Karakas et al., 2017), but we assume a steady state 
geotherm here as our goal is simply to explore the role of realistic spatial structure of material parameters.

Accordingly, we solve the stationary heat equation

∇2
𝑇𝑇 = 0 in Ω̆,� (33)

where T(r, z) is the temperature field, which we assume to be axisymmetric. At the top, bottom and lateral parts 
of the boundary, we enforce a steady-state geothermal profile given by

𝑇𝑇 (𝑧𝑧) = 𝑇𝑇𝑠𝑠 − 𝛼𝛼 (𝑧𝑧 − (𝐷𝐷 + 𝑏𝑏)) ,� (34)

where Ts is the surface temperature constant and α is a parameter specifying the temperature gradient. At the 
chamber wall we set T = Tc, a constant temperature. We use a finite element space of order p to solve the heat 
equation. Here, p is the same order as is used in the finite element solution of the equilibrium equation. The 
formulation uses radial weighting to reduce the problem to the two-dimensional domain Ω and as usual–see for 
example, Gopalakrishnan and Pasciak (2006)—set zero temperature flux ∇T = 0 at Γ0, the r = 0 boundary, to 
maintain our consideration of a one-sided problem. The solution of this BVP for the heat equation informs the 
temperature field throughout the domain, from which the viscosity is deduced according to the Arrhenius formula

𝜂𝜂 = 𝐴𝐴𝐷𝐷exp

(
𝐸𝐸𝑎𝑎

𝑅𝑅𝑅𝑅

)
� (35)

where AD is the Dorn parameter, Ea is the activation energy, and R is the Boltzmann constant. For numerical 
computation, we prefer to use the equivalent formula

𝜂𝜂 = 𝜂𝜂0exp

(
𝐸𝐸𝑎𝑎

𝑅𝑅

[
1

𝑇𝑇
−

1

𝑇𝑇𝑠𝑠

])
,� (36)

where 𝐴𝐴 𝐴𝐴0 = 𝐴𝐴𝐷𝐷exp

(
𝐸𝐸𝑎𝑎

𝑅𝑅𝑅𝑅𝑠𝑠

)
 , to avoid numerical issues associated with very large viscosities predicted by low 

temperatures in the near surface. In Equation 36 we use absolute temperature, so both T and Ts should be converted 
from degrees Celsius to Kelvin.

As shown in Appendix A, numerically stable time steps depend on Deborah number, thus the exponential depend-
ence of viscosity leads to prohibitively small time steps at high temperatures. This limits the degree to which we 
can exactly explore high magma temperatures without artificially thresholding model temperature.

Elastic parameters are also considered to be temperature dependent. Bakker et al. (2016) provide smooth and 
continuous forms for temperature-dependent Young's modulus E(T) and Poisson's ratio ν(T) as.

𝐸𝐸(𝑇𝑇 ) = 𝑐𝑐1

[
1 − erf

(
𝑇𝑇 − 𝑇̄𝑇

𝑠𝑠

)]
+ 𝑐𝑐2𝑇𝑇 + 𝑐𝑐3,� (37)

𝜈𝜈(𝑇𝑇 ) =

[
1 −

𝐸𝐸

𝐸𝐸max

]
⋅ [𝜈𝜈max − 𝜈𝜈min] + 𝜈𝜈min� (38)

Where νmin = 0.25, νmax = 0.49 define the range of possible Poisson's ratios and Emax is the max value Young's 
modulus achieves for a given temperature profile. 𝐴𝐴 𝑇̄𝑇  is a temperature threshold for which Young's modulus 
decreases by an order of magnitude and c1, c2, c3, s are empirical parameters. To convert E and ν to λ, μ (elas-
tic moduli used in our framework), we use 𝐴𝐴 𝐴𝐴 =

𝐸𝐸𝐸𝐸

(1+𝜈𝜈)(1−2𝜈𝜈)
 , 𝐴𝐴 𝐴𝐴 =

𝐸𝐸

2(1+𝜈𝜈)
 . Figure 2 demonstrates the spatial pattern 

exhibited by the material parameters for a temperature profile characterized by 800°C reservoir temperature, 0°C 
surface temperature and a geothermal gradient of 20°C/km.

4.  Analysis of Time-Dependent Viscoelastic Deformation
We now develop tools to analyze the time evolution of viscoelastic deformation predicted from our numerical 
calculations. Toward our goal of examining how a realistic distribution of viscoelastic properties impacts defor-
mation around magma reservoirs subject to cyclic loading, we begin with a 1D analysis of the Maxwell model 
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to illustrate inherent properties of the system which may be generalized in the 2D problem. This analysis is 
generalizable to other viscoelastic models, and leads to concrete implications for inferring viscoelastic behavior 
in magmatic systems from ground deformation.

4.1.  Insights From the 1D Maxwell Model

Given the spatial domain x ∈ [0, L], the 1D strain-displacement relation is given by

𝜀𝜀 = 𝑢𝑢𝑥𝑥� (39)

Figure 2.  Material parameters used in our reference variable coefficients parameter study, with finite element mesh overlaid. 
(a) Temperature, obtained by solving Equation 33 with Tc = 800°C, surface temperature Ts = 0°C, and geothermal gradient 
α = 20°C/km. (b) Viscosity from Equation 36. (c) Young's Modulus from Equation 37. (d) Poisson's ratio from Equation 38.
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and the 1D governing equations (equilibrium, viscous strain evolution and Hooke's law, respectively) are.

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0,� (40a)

𝛾̇𝛾 =
1

𝜂𝜂
𝜎𝜎𝜎� (40b)

𝜎𝜎 = 𝜇𝜇(𝜀𝜀 − 𝛾𝛾),� (40c)

Where σ, ɛ, γ, and u are, respectively, the 1D stress, total strain, viscous strain, and displacement. Boundary 
conditions are chosen to reflect the conditions for the 2D problem. The origin experiences the sinusoidal pressure 
condition (representing the reservoir) and displacements vanish at the far boundary, namely.

�(� = 0, �) = sin(��),� (41a)

�(� = �, �) = 0.� (41b)

We consider t > 0; the aging law Equation 40b thus requires an initial viscous strain to be specified, which we 
express in general terms

�(�, � = 0) = �0(�),� (42)

where γ0 as a given function. The Maxwell model thus gives rise to an initial-boundary value problem defined 
by Equations 39–42.

We are interested in the response between stress and strain at the reservoir boundary, with the expectation that 
viscous relaxation will lead to a phase difference. To do this analysis it is useful to work with Hooke's law in rate 
form, namely,

𝜀̇𝜀 =
1

𝜇𝜇
𝜎̇𝜎 +

1

𝜂𝜂
𝜎𝜎𝜎� (43)

Following Golden and Graham (1988), application of the Fourier transform to Equation 43 yields the constitutive 
law in frequency space

𝜎̂𝜎(𝜔𝜔) = 𝜇̂𝜇(𝜔𝜔)𝜀̂𝜀(𝜔𝜔),� (44)

which gives the usual relationship where stress is expressed as a function of strain through a complex shear 
modulus 𝐴𝐴 𝐴𝐴𝐴 defined by

𝜇̂𝜇(𝜔𝜔) =

(
1

𝜇𝜇
− 𝑖𝑖

1

𝜂𝜂𝜂𝜂

)−1

.� (45)

The decomposition 𝐴𝐴 𝐴𝐴𝐴(𝜔𝜔) = ̂𝜇𝜇1(𝜔𝜔) + 𝑖𝑖 𝑖𝑖𝑖2(𝜔𝜔) into storage and loss moduli allows us to express 𝐴𝐴 𝐴𝐴𝐴 as

𝜇̂𝜇(𝜔𝜔) = |𝜇̂𝜇(𝜔𝜔)|𝑒𝑒−𝑖𝑖𝑖𝑖� (46)

where 𝐴𝐴 𝐴𝐴 = −tan−1
(

𝜇̂𝜇2

𝜇̂𝜇1

)
 .

In our applications, however, we are interested in the strain response to an applied (sinusoidal) stress, thus we 
must consider the constitutive relation Equation 44 in the form

𝜀̂𝜀(𝜔𝜔) = 𝑑𝑑(𝜔𝜔)𝜎̂𝜎(𝜔𝜔),� (47)

where 𝐴𝐴 𝑑𝑑(𝜔𝜔) = 1∕𝜇̂𝜇(𝜔𝜔) is the complex creep modulus given by

𝑑𝑑(𝜔𝜔) =
1

𝜇𝜇
− 𝑖𝑖

1

𝜂𝜂𝜂𝜂
,� (48)

which can be decomposed into 𝐴𝐴 𝑑𝑑(𝜔𝜔) = 𝑑𝑑1(𝜔𝜔) + 𝑖𝑖𝑑𝑑2(𝜔𝜔) as before, and gives rise to the similar form
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𝑑𝑑(𝜔𝜔) = |𝑑𝑑(𝜔𝜔)|𝑒𝑒−𝑖𝑖𝑖𝑖 ,� (49)

for 𝐴𝐴 𝐴𝐴 = −tan−1
(

𝑑𝑑2(𝜔𝜔)

𝑑𝑑1(𝜔𝜔)

)
 . Applying the inverse Fourier transform to Equation 47 and using Equation 41a yields

�(�) = [� ∗ �](�),

= �̂1(�)sin�� + �̂2(�)cos��,

= sin(�� − �),

� (50)

which gives strain as an explicit function of stress, delayed by phase lag β. Since 𝐴𝐴 𝑑𝑑  is chosen as the multiplicative 
inverse of 𝐴𝐴 𝐴𝐴𝐴 note that.

|𝑑𝑑(𝜔𝜔)| = 1

|𝜇̂𝜇(𝜔𝜔)|
,� (51a)

𝛽𝛽 = −𝛿𝛿𝛿� (51b)

therefore the phase lag that strain experiences in response to an applied stress will be equal and opposite when 
reversing roles and considering stress in response to an applied strain. Note that we have used the sign convention 
for the phase lag such that positive values of β correspond to strain lagging behind stress.

To summarize, the strain response to a sinusoidal stress is also sinusoidal with a phase lag β, which can be 
simplified in terms of the Deborah number De by substituting in the real and imaginary parts of 𝐴𝐴 𝑑𝑑(𝜔𝜔) , resulting in

𝛽𝛽 = tan−1
(

1

𝐷𝐷𝐷𝐷

)
.� (52)

This analytic result provides insight into the physics of the viscoelastic model, as two limiting cases of the Debo-
rah number (namely De → ∞ and De → 0) yield phase lags of 0 and π/2 (respectively) corresponding to the elas-
tic and viscous limits (respectively). In addition, these analytic results can be generalized to higher dimensions 
which we do in the next section, providing useful code verification metrics as well as providing insight into the 
frequency response of more physically realistic scenarios.

4.2.  Transfer Function and Analytic Signals

The phase lag analysis for the 1D problem of the previous section can be generalized using the theory of Linear 
Time-Invariant (LTI) systems such as the viscoelastic problem we consider here. For general LTI systems, one 
can characterize some output signal y(t) as the linear transformation of a system input x(t), where we consider 
one-sided signals (i.e., they are 0 for t < 0) (Schetzen, 2003). The response y can be determined as a convolution 
of the input x with the system impulse response h, namely

�(�) = (� ∗ ℎ)(�)

= ∫ �
0 � (�

′)ℎ (� − �′) ��′.
� (53)

The transfer function connecting the output signal y(t) given the input signal x(t) we denote H{y(t) | x(t)}(iω), 
however we drop the argument within curly braces or functional dependence within parenthesis when these are 
implied via context. The transfer function is defined as

�(��) =  {ℎ} (��)

=
 {�}
 {�}

(��),� (54)

where 𝐴𝐴  denotes the Laplace transform (a function of the complex variable s) and we have evaluated at s = iω. 
The transfer function thus provides the amplitude of the system output as a function of frequency of the input 
signal. As an example, Equation 47 illustrates how 𝐴𝐴 𝑑𝑑 = 𝐻𝐻 {𝜀𝜀(𝑡𝑡) | 𝜎𝜎(𝑡𝑡)} , that is, the transfer function when stress 
is the input signal and strain is the output.
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If we consider specific input and output signals x(t) = Ain sin (ωt) and y(t) = Aout sin (ωt − ϕ), then we can use the 
Laplace transform to calculate the transfer function, namely,

�(��) = �out

�in

(−� sin(�) + � cos(�))∕
(

�2 + �2
)

�∕(�2 + �2)

|

|

|

|

|�=��

= �out

�in
�−��,

� (55)

that is, a constant, independent of ω. Performing an inverse Laplace transform indicates that the corresponding 
system impulse response is a delta function, namely, h(t) = (Aout/Ain)δ(t − ϕ/ω).

Equation 55 illustrates the important point that evaluation at s = iω must take place after the ratio is computed, 
so that the poles in the Laplace transforms of the sinusoids x and y are removed. In numerical studies making use 
of the discrete Fourier transform, this evaluation cannot be done after the ratio is computed, which can lead to 
division by zero. An alternative means for defining the transfer function therefore is via the concept of analytic 
signals, which have straight-forward numerical approximations and avoid potential division by zero.

Analytic signals are defined in the following manner. Consider the real valued signal z(t) and denote its Fourier 
transform by 𝐴𝐴 𝐴𝐴𝐴(𝜉𝜉) . Define the function

𝑧̂𝑧𝑎𝑎(𝜉𝜉) = 2(𝜉𝜉) 𝑧̂𝑧(𝜉𝜉)� (56)

(where 𝐴𝐴  is the Heaviside step function), which contains only the non-negative frequency components of 𝐴𝐴 𝐴𝐴𝐴(𝜉𝜉) . 
The analytic signal corresponding to z, denoted za(t), is a complex-valued function obtained by transforming 𝐴𝐴 𝐴𝐴𝐴𝑎𝑎 
back to the time domain using the inverse Fourier transform, yielding

𝑧𝑧𝑎𝑎(𝑡𝑡) = 𝑧𝑧(𝑡𝑡) + 𝑖𝑖ℍ {𝑧𝑧} (𝑡𝑡),� (57)

where 𝐴𝐴 ℍ is the Hilbert transform. Properties of Hilbert transforms mean that for input signal x(t) and response 
signal y(t) of an LTI system, we have that

𝑦𝑦𝑎𝑎(𝑡𝑡) = (ℎ ∗ 𝑥𝑥𝑎𝑎) (𝑡𝑡).� (58)

Considering the analytic signals xa(t) = −iAine iωt and ya(t) = −iAoute i(ωt−ϕ) associated with the input and output 
signals under consideration, plugging these into (Equation 58) yields

𝐴𝐴out𝑒𝑒
𝑖𝑖(𝜔𝜔𝜔𝜔−𝜙𝜙) = 𝐴𝐴in𝑒𝑒

𝑖𝑖𝑖𝑖𝑖𝑖
𝐻𝐻(𝑖𝑖𝑖𝑖).� (59)

Equation 59 illustrates the fact that for an input signals of form e iωt (called a characteristic function), the response 
signal is given by e iωtH (iω), indicating that the output signal is simply a scaling of the input by H (iω).

We can solve Equation 59 for the transfer function, namely,

𝐻𝐻(𝑖𝑖𝑖𝑖) =
𝐴𝐴out

𝐴𝐴in

𝑒𝑒
−𝑖𝑖𝑖𝑖

,� (60)

previously obtained using Laplace transforms. The amplitude 𝐴𝐴 |𝐻𝐻| = |||
𝐴𝐴

out

𝐴𝐴
in

||| is often referred to as the gain because 
it describes how the frequency content in the output signal is amplified in response to the input. Finally ϕ =  
−arg(H) is the phase lag, which agrees with that of the 1D Maxwell model considered in the previous section.

As a corollary, if the transfer function is known, we may directly relate the input and output signals. For example, 
let x(t) = A sin(ωt − ψ), with phase ψ, be an input signal and let H(iω) = |H(iω)|e −iϕ be the transfer function. 
The analytic input signal is then xa(t) = −iAe i(ωt−ψ) and (Equation 58) implies that the analytic output signal is 
ya(t) = H(iω)xa(t). The desired output signal y(t) can be recovered by taking the real part of its analytic signal, 
namely

𝑦𝑦(𝑡𝑡) = |𝐻𝐻(𝑖𝑖𝑖𝑖)|𝐴𝐴 sin(𝜔𝜔𝜔𝜔 − 𝜓𝜓 − 𝜙𝜙).� (61)

In other words, a sinusoidal input function implies a sinusoidal output function, modulated by a phase lag ϕ and 
amplitude gain |H|.
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If 𝐴𝐴 {𝐴𝐴𝑘𝑘}
𝑛𝑛

𝑘𝑘=1
, {𝜔𝜔𝑘𝑘}

𝑛𝑛

𝑘𝑘=1
, {𝜓𝜓𝑘𝑘}

𝑛𝑛

𝑘𝑘=1
 are sequences of amplitudes, frequencies, and phases, respectively, then a compos-

ite input signal can be expressed

�(�) =
�
∑

�=1

�� sin(��� − ��) .� (62)

Note that each component is associated with a period τk = 2π/ωk. By superposition, if 𝐴𝐴 {𝐻𝐻 (𝑖𝑖𝑖𝑖𝑘𝑘)}
𝑛𝑛

𝑘𝑘=1
 are (known) 

associated transfer functions with phase lags 𝐴𝐴 {𝜙𝜙𝑘𝑘}
𝑛𝑛

𝑘𝑘=1
 , then the corresponding output signal is given by

�(�) =
�
∑

�=1

|�(���) |��sin(��� − �� − ��) .� (63)

In discussion Section 6, we illustrate this result for a specific composite input function defining magma reservoir 
pressure through time and numerically calculated transfer function for resulting surface displacements.

In the sections that follow, we explore numerically how the transfer function links reservoir pressure to surface 
displacements and strains. Following the notation for the transfer function, we let ϕ{y(t) | x(t)} denote the phase 
lag between the output signal y(t) given the input signal x(t), but drop the argument in curly braces when it is 
implied via context.

4.3.  Numerical Calculations of the Transfer Function

The analytic signal corresponding to a real, discrete time-series is implemented in the Python SciPy library via 
the scipy.signal.hilbert () function. The transfer function connecting an input signal x(t) to output 
signal y(t) is computed via the ratio of corresponding analytic signals, from which we can compute phase and 
amplitude. All scripts are available in the code repository. In practice, there exists an initial spin-up period (∼4 
cycles) before solutions settle into a sinusoidal response and it is necessary to compute the transfer function once 
out of this phase.

In addition to the spin-up phase, the output signal can be shifted to oscillate around a non-zero value, which 
can complicate the calculation of the phase lag using our numerical techniques. The 1D analysis of the previous 
section illustrates why this occurs. Specifying the initial condition Equation  42 impacts the evolution of the 
displacement and stress fields in the following way: suppose γ0(x) = 0 for each x ∈ [0, L]. We can simplify the 
boundary condition Equation 41 by taking P0 = ω = 1. The sinusoidal pressure imposed at the left boundary 
along with Equation 40a imply a uniform stress field

𝜎𝜎(𝑡𝑡𝑡 𝑡𝑡) = sin 𝑡𝑡𝑡� (64)

Integrating Equation 40b yields the viscous strain

𝛾𝛾(𝑡𝑡) = −
1

𝜂𝜂
cos 𝑡𝑡 +

1

𝜂𝜂
,� (65)

and solving Equation 40c for total strain gives the solution

𝜀𝜀(𝑡𝑡) =
1

𝜇𝜇
sin 𝑡𝑡 −

1

𝜂𝜂
cos 𝑡𝑡 +

1

𝜂𝜂
,� (66)

which illustrates how the strain response is sinusoidal with a shift of 1/η. Although strain starts initially at 0, it 
fluctuates around the non-zero value 1/η, corresponding to a volume change (length change in 1D). To avoid this 
situation, one could specify a different initial viscous strain, that is, γ0(x) = −1/η which would yield a strain response 
fluctuating around zero. In the 2D problems considered in this work, it is difficult to know a priori the initial viscous 
strain that would preclude a volume change. Thus to compare the phase-lag response, fields that do not fluctuate 
around zero must first be shifted to do so. The spin-up phase contributes an exponentially decaying component in the 
output signal, therefore we calculate approximate phase and amplitude after 4 pressurization cycles.

The sinusoidal pressure forcing we impose at the reservoir wall given by Equation 18a is considered the input 
signal P(t) for all of our studies. To verify correctness of our numerical methods, we first consider as the output 
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signal the normal component of strain at a single spatial point on the wall, namely ɛrr (r = a, z = 0, t). Because at 
the reservoir wall the stress-strain relation effectively reduces to a 1D problem at a point, our numeric calculations 
are verified by comparing our numerical calculations of transfer function amplitude and phase lag against the 
theoretical stress-strain relationship for a Maxwell material for different forcing periods τ (see Equation 20), as 
evidenced in Figure 3. In addition we compute the phase lag observed in the vertical component of displacement 
at Earth's surface uz(r = 0, z = D + b, t) as well as the transfer function amplitude (gain).

5.  Computational Results
Viscoelastic behavior of magma reservoirs is often characterized in terms of deformation of a flat free surface 
induced by pressurization of a spheroidal reservoir (e.g., Head et  al.,  2019; Segall,  2016; Townsend,  2022). 
Even in this relatively simple case, the problem is complex because a large number of control parameters matter 
and trade off in non-unique ways to generate surface deformation patterns. An additional challenge is that the 
problem is generally not amenable to analytic analysis such as has been conducted in simplified limits (Bonafede 
et al., 1986; Dragoni & Magnanensi, 1989; Karlstrom et al., 2010).

Having established our computational framework, we will now focus on a specific and relatively unexplored part 
of this problem here, the frequency dependence of surface deformation. All fixed parameters used in this study 
are listed in Table 1, unless otherwise noted. In the constant coefficient case studied in Figure 3 (a spherical reser-
voir in a uniform viscoelastic halfspace), sinusoidal forcing at the reservoir wall results in surface deformation 
patterns that are simply parameterized in terms of the Deborah number (Equation 52). De ≈ 10 signifies the onset 
of viscous response in host rocks, while for De < 1 the host rock response is dominantly viscous in the sense that 
phase lag ϕ between surface deformation is more than halfway to the viscous limit.

We construct constant coefficient models by choosing constant values of elastic parameters μ and λ through 
spatially averaging the non-constant coefficient calculations (Figure 3, bottom axis). For viscosity we suppose 

Figure 3.  Phase lag ϕ of the transfer function between reservoir pressure and radial strain at the reservoir wall (𝐴𝐴 𝐴𝐴 {𝜖𝜖𝑟𝑟𝑟𝑟 (𝑟𝑟 = 𝑎𝑎𝑎 𝑎𝑎 = 0, 𝑡𝑡|𝑃𝑃 (𝑡𝑡)} , red dashed curve) 
and vertical displacement at the surface overlying the reservoir (ϕ{uz(r = 0, z = D + b, t)|P(t)}, solid red curve). Crosses come from the 1D analytic prediction 
(Equation 52). Right axis and blue curve plot the amplitude of the transfer function 𝐴𝐴 |𝐻𝐻 {𝑢𝑢𝑧𝑧 (𝑟𝑟 = 0, 𝑧𝑧 = 𝐷𝐷 + 𝑏𝑏𝑏 𝑏𝑏|𝑃𝑃 (𝑡𝑡)} | normalized by the transfer function amplitude in 
a purely elastic limit (which uses the same averaged elastic coefficients but with η = 1 × 1 34 making viscous effects negligible). Upper x axis is the Deborah number, 
lower x-axis dimensionalizes into period of sinusoidal pressure forcing using η = 2.20 × 10 17 Pas, λ = 16.7, and μ = 16.0 GPa. Vertical dashed lines correspond to 
threshold Deborah numbers associated with onset of viscous response in host rocks.
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that a forcing period of 1 year yields a surface phase lag of 0.3 rad. From this 
phase lag we compute the associated Deborah number and solve Equation 29 
for viscosity. The resulting constant material parameters are: μ = 16.0 GPa, 
λ = 16.7 GPa, η = 2.20 × 10 17 Pa s. We can then associate a Deborah number 
De with a forcing period τ via Equation 29 and examine the transition to a 
viscous response as a function of forcing period. In this example τ = 1 year 
corresponds to maximum surface displacement that lags behind maximum 
chamber pressure by ∼16 days at similar amplitude to the elastic limit, while 
τ = 10 years corresponds to a phase lag of ∼1.9 years with ∼3× amplitude 
to the elastic limit.

However, uniform viscosity is a poor approximation to crustal rheology 
in magmatic regions. To understand what changes with more realistic 
temperature-dependent viscosity and elastic constants, we also study how 
pressure forcing period affects ground deformation in the variable coefficient 
problem outlined in Section 3.3.

Figure 4 left axes show time series of maximum vertical surface displace-
ment and radial strain at the reservoir wall (plotted vs. dimensionless time) 
for several representative forcing periods τ associated with forcing by cyclic 
pressurization of the chamber (right axes). All quantities are normalized to 
facilitate comparison of phase lag as a function of forcing period, with ampli-
tudes given in the legend. We see that phase lag differs in magnitude between 
surface and chamber wall.

Figure 5 plots the spatial variation in vertical and horizontal components of 
surface displacements uz, ur as well as the scalar von Mises stress 𝐴𝐴 𝐴𝐴𝑣𝑣 =

√
3𝐽𝐽2 

with J2 the second deviatoric stress invariant for four positions in the pressure 
cycle (ω = 0, π/2, π, 3π/2 radians) and three forcing periods. Black and white 
contours represent level curves of the spatially dependent Deborah number.

Finally, Figure 6 shows the transfer function phase ϕ{uz (r = 0, z = D + b, t) 
| P(t)} and normalized amplitude |H{uz (r = 0, z = D + b, t) | P(t)}|/|Helastic{uz 
(r = 0, z = D + b) | P0}| for a sweep through pressure forcing period τ. The 

elastic normalization Helastic is computed for each temperature separately, due to temperature dependence of elastic 
parameters E and ν (non-constant coefficient corrections to the known spherical cavity in half space elastic solution 
(Zhong et al., 2019)). Transfer function results are computed for three choices of reservoir temperature Tc = 800, 
900, 1,000°C in Figure 6. The simulations are carried out at 37 logarithmically spaced forcing periods between 
0.01 and 100 years. For each forcing period and reservoir temperature, we compute the transfer function phase and 
amplitude over 10 complete pressurization cycles. Because of computational burden associated with the highest 
reservoir temperature of 1,000°C (see Appendix A) that lead to very small Deborah numbers, we set a maximal 
effective temperature of 900°C for computing material parameters in this case. We also perform an additional mesh 
refinement in space to mitigate poor resolution at longer forcing periods for the 1,000°C reservoir.

In contrast to the constant coefficient case, Figures 4–6 demonstrate that temperature dependent material param-
eters strongly impact the frequency dependence of system viscoelastic response. Most pronounced is a saturation 
of phase lag at ∼0.3 radians and muted amplification of displacements relative to the constant coefficient case. As 
evidenced by the large σv (which measures deviatoric shear stress magnitude), viscous effects are confined near the 
reservoir wall. This results in more pronounced mechanical lag at the reservoir wall than at the surface (Figure 4) 
and concentration of shear stress σv through the cycle in a narrow aureole around the chamber (Figure 5).

The strong spatial variability in material parameters now implies a spectrum of Maxwell relaxation times as has 
been noted in other studies (e.g., Head et al., 2021), and hence spatially variable Deborah number. Nonetheless, 
we see that a local value of De still characterizes the region experiencing significant viscous strain for each forc-
ing period. Figure 5 shows that De ≈ 10 effectively bounds the region experiencing significant von Mises stress, 
and hence viscous strain, in excess of chamber overpressure P0, with De = 1 once again a measure of the viscous 
region centroid. For small forcing periods the viscous region is significantly reduced (De = 1 does not appear 

Symbol Explanation Value

a Ellipse semi-major axis 1,500 m

b Ellipse semi-minor axis 1,500 m

D Reservoir depth beneath Earth's surface 3,500 m

Lr Domain length in radial direction 20,000 m

Lz Domain length in vertical direction 20,000 m

p Degree of FE basis polynomials 4

P0 Reservoir pressure amplitude 10 MPa

AD Dorn parameter 10 9 Pa s

A Material-dependent constant for viscosity 4.25 × 10 7 Pa s

Ea Activation energy 141 kJ/(mol)

R Boltzmann's molar gas constant 8.314 J/(mol K)

Tc Reservoir temperature 800°C

Ts Surface temperature 0 ◦C

α Geothermal gradient 20°C/km

νmin Min Poisson's ratio 0.25

νmax Max Poisson's ratio 0.49

Emax Max Young's modulus 4.0 × 10 10 Pa

c1 Parameter in model for E 1.8 × 10 10 Pa

c2 Parameter in model for E −3.5 × 10 6 Pa/°C

c3 Parameter in model for E 4.3 × 10 9 Pa

s Parameter in model for E 120°C

𝐴𝐴 𝑇̄𝑇   Temperature threshold 924°C

Table 1 
Parameters Used in Applications (Unless Otherwise Noted)
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for τ = 0.1 year forcing period). Both contours are asymmetric with depth due to the geothermal gradient. To 
isolate viscous effects, the transfer amplitudes for Figure 6 are normalized using the variable coefficient elastic 
limit. That is, elastic parameters are computed using a thermal profile but viscosity η = 1 × 10 34 Pa · s. Then 
this variable coefficient elastic problem is simulated and a transfer function Helastic is computed from the output.

The transfer function curves in Figure 6 have more complex structure than their constant coefficient counterpart 
in Figure 3. First, the phase lag ϕ{uz(r = 0, z = D + b, t) | P(t)} is non-monotonic, with two local maxima super-
imposed on a sigmoidal increase from 0 to ∼0.3 radians over three orders of magnitude in forcing period. The 
larger of these is a global maximum for the range of forcing periods we explored (100 years maximum), likely 
reflecting the spatially variable temperature field and resulting finite region around the chamber in which viscous 
strains occur. Increasing the reservoir temperature from 800 to 1,000°C shifts this global maximum as well as 
the sigmoidal uptick in phase lag to shorter periods, which suggests that the local maxima are due in part to an 
expanded viscous shell around the reservoir (i.e., larger region where De < 10). We expect that the shape of this 
phase lag curve as metric of viscoelastic response likely depends on spatial rheologic structure, boundary condi-
tions, and chamber geometry, although a parameter exploration is out of the scope of this study.

The apparent global maximum seen in the phase lag in Figure 6 is not mirrored by the amplitude of displacements. 
Relative to the elastic limit transfer function amplitude show a continuous increase in maximum displacements at 
increasing τ, mirrored by the spatial pattern of uz and ur in Figure 5. There is an inflection point that corresponds 
to the local minimum in ϕ for the lower reservoir temperatures, but viscous amplification is otherwise a mono-
tonically increasing function of τ, with amplification factors at 100 years forcing period ∼3.8×, ∼5× and ∼6.3× 
for 800, 900, and 1,000°C chamber temperatures. At small τ the amplification factor is asymptotic to the variable 
coefficient elastic limit (dashed line) in all cases.

Figure 4.  Temporal evolution (time non-dimensionalized by τ) associated with non-constant coefficient simulations at select forcing periods. Colored curves 
correspond to different forcing periods and normalization amplitudes u0, ϵ0, dashed curves show pressure normalized by P0. (a) Normalized maximum vertical surface 
displacement. In dimensional time, peak vertical surface displacement for τ = 0.01, 0.1, 1, 10 years occurs 10.0 min, 12.7 hr, 17.6 days, and 6.3 months after peak 
reservoir pressure, respectively, associated with phase lags 𝐴𝐴 𝐴𝐴 {𝑢𝑢𝑧𝑧 (𝑟𝑟 = 0, 𝑧𝑧 = 𝐷𝐷 + 𝑏𝑏𝑏 𝑏𝑏|𝑃𝑃 (𝑡𝑡)} = 0.012, 0.091, 0.303 and 0.331 radians. (b) Normalized radial strain at the 
cavity wall, illustrating that phase offset of deformation from pressure forcing varies spatially through the domain.
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Figure 5.  Spatial pattern of surface displacements uz, ur (top lines) and subsurface distribution of von Mises stress σv (bottom colors, normalized by P0 = 10 MPa) 
for dimensionless times 0, π/4, π/2, 3π/4 during a pressure cycle. Black contour is De = 1, white contour is De = 10, illustrating that a local Deborah number contour 
approximates the spatial region of elevated deviatoric stress and viscous strain around the chamber. (a) Forcing period τ = 0.1 yr, max σv = 20.9 MPa. (b) Forcing 
period τ = 1 year, max σv = 42.2 MPa. (c) Forcing period τ = 10 years, max σv = 100.7 MPa. Movies S1–S3 show time evolution of these simulations in more detail.
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6.  Discussion
This work makes two primary contributions. First, we develop a rigorous numerical framework based on a 
high-order FEM for the computation of viscoelastic deformation and stress around axisymmetric magma reser-
voirs. Second, we study a particular problem—sinusoidal pressurization/depressurization of a spherical reservoir 
in a half-space—and demonstrate how surface deformation patterns are frequency dependent. This section is 
organized into a discussion associated with each contribution as they relate to the phenomenology of viscoelastic 
deformation around volcanoes.

6.1.  Computational Considerations for Time-Evolving Magmatic Systems

Numerical modeling of viscoelastic deformation over long timescales requires careful consideration of compu-
tational issues. We derived conditions on the time step, which guarantees stability of the aging law when using 
the Maxwell model and showed that the numerical solution converges to the exact solution at the theoretical 
rates of convergence in both space and time. However, in practice, even these 2D simulations are computation-
ally expensive because a system of equations (the discretized equilibrium equation) must be solved at each time 
step, and this constitutes the bulk of the computational load. We perform a direct solve of the system while it is 
still possible to hold the matrix factorization in system memory. For larger problems (e.g., in 3D or with larger 
domains sizes or if a finer spatial resolution is required), matrix-free iterative methods on parallel machines 
would be necessary (Chen et al., 2022). Furthermore, if the relevant time scale of interest is the forcing period 
τ, which can be much longer than the minimum viscous relaxation time η/μ (so that De ≪ 1), the problem can 
become arbitrarily numerically stiff: very small time steps are required for numerical stability, much smaller than 
that required to accurately resolve the sinusoidal pressure forcing.

To address this corresponding computational burden, an implicit time stepping scheme (such as backward Euler) 
would need to be applied, or alternative schemes such as splitting algorithms (Carcione & Quiroga-Goode, 1995). 
For problems in which total strains are large (e.g., dominated by viscous flow) it may also be advantageous to 
reformulate the governing equations in terms of split viscous and elastic strain rates (rather than strains), as is 
commonly done in mantle dynamics models (e.g., Moresi et al., 2002). A disadvantage of this approach is that elas-
tic stresses are less explicitly resolved, which is not acceptable for the magmatic application. Still, one drawback 
of our method is that it is not robust in the incompressible limit (ν = 0.5). More sophisticated locking-free mixed 
finite element techniques (e.g., Gopalakrishnan and Guzmán. (2012)) could be employed to solve the equilibrium 

Figure 6.  Transfer function between reservoir pressure and maximum vertical surface displacement H{uz(r = 0, z = D + b, t)|P(t)} as a function of sinusoidal pressure 
forcing period τ. Colored curves correspond to different reservoir temperatures, each case assumes surface temperature Ts = 0°C and background geothermal gradient 
α = 20 C/km. (a) Phase lag ϕ{uz(r = 0, z = D + b, t)|P(t)}. (b) Amplitude |H{uz(r = 0, z = D + b, t)|P(t)}| normalized by the corresponding variable coefficient elastic 
case at each temperature. For the three reservoir temperatures explored here, |Helastic{uz (r = 0, z = D + b)|P0}| = 6.509 × 10 −9, 6.822 × 10 −9, 7.163 × 10 −9 m/Pa for 
Tc = 800, 900, 1,000°C respectively.
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equations stably in the incompressible limit, a potential necessity in fully coupled fluid-solid magmatic models. 
Codes developed for large-scale geodynamic applications commonly include compressible fluid but incompress-
ible solid mechanics (e.g., Heister et al., 2017). This difference in approach implies that extensions of our compu-
tational framework to a broader range of problems might require further numerical developments.

The inclusion of boundary tractions (to represent background tectonic stress, e.g.,) can be explored here directly 
by setting specific values of the boundary data. Axisymmetric topography at the surface or at depth can be 
included by modifying the axisymmetric domain geometry. Complex time-evolving forcing can be included so 
long as the highest frequency is resolved by the timestep, as we demonstrate in the next section. But highly multi-
scale time evolution, such as might be expected for pressure at the reservoir wall over eruption cycles (Cianetti 
et al., 2012), may require adaptive time-stepping techniques to integrate efficiently through regions of both slow 
and fast evolution. Similar challenges arise in the modeling of long-term earthquake cycles (e.g., Erickson & 
Dunham, 2014), and similar timestepping approaches could be leveraged for simulating volcanic activity.

6.2.  Frequency-Dependent Magmatic Deformation

We have studied here a magma chamber problem that, while simplified in some respects, has a strong basis in 
past observations and represents a template for future advances. In the elastic limit, corrections for less idealized 
geometry and material heterogeneity are known (e.g., Segall, 2010), and elastic parameter trade-offs have been 
explored to some extent (e.g., Currenti & Williams, 2014; Rivalta et al., 2019). But viscoelastic behavior is far 
less well understood. Case studies have demonstrated important trade-offs in geometry, constitutive law, and ther-
mal state, as well as complications associated with time-dependent rheology (e.g., Grapenthin et al., 2010; Head 
et al., 2019, 2021; Segall, 2019). But general time-dependence introduces significant complexities.

The cyclic forcing studied here represents a powerful framework to explore phenomenology of transient magma 
chamber deformation. While magma pressure histories are not generally sinusoidal, linear viscoelasticity (in any 
form, not just the Maxwell model) implies that arbitrary forcing histories may be constructed through appropriate 
superposition. Our initial example (Equation 15) and analysis in Section 4.2 details how the transfer function 
can be used to model general signals. We illustrate this approach with three examples below, with additional 
comments in Appendix B.

First, consider a reservoir pressure history (the input signal) defined by the ramp function of Section 3.3 whose 
Fourier series is given by Equation 15. Then if the transfer function for each component is �(���) = |�(���) |�−��� 
then the output signal y(t) can be expressed in terms of its Fourier series

�(�) =
∞
∑

�=1

�� sin(��� − ��)� (67)

with coefficients

�� = |� (���)|��,� (68)

that is, the coefficients of the input signal, scaled by the transfer function amplitude |H|. This example demonstrates 
that sequences of impulsive pressure changes (such as eruptions or magma injections) that are non-harmonic 
in  time can still be characterized with the framework developed here.

As a second example, if the pressure history is given by a unit impulse at t = t0, namely

� (�) = �0�(� − �0) ,� (69)

Then (Equation 53) implies that the output signal is simply

�(�) = ℎ(� − �0) ,� (70)

that is, the system impulse response. This pressure history represents a simple model for sudden pressure pertur-
bation (e.g., Segall, 2016). The implied ground deformation in this case is the impulse response function of the 
magma chamber/host rock system.
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These examples demonstrate the transfer function approach in a forward modeling framework. Inversion of 
magmatic pressure histories from ground motions, a common scenario since reservoir pressure is generally 
unknown, by extension involves seeking weights in the frequency domain for forcing periods represented in 
Figure 6 to match general time-dependent deformation data. To demonstrate this explicitly, we present a third 
example in which we construct a non-harmonic input pressure signal by summing sinusoids at a subset of forcing 
frequencies explored in Figure 6 with random phase and amplitude (assuming an 800°C chamber representing 
a lower bound to the viscoelastic response) corresponding to Equation 62. Weights and phases are displayed 
in Figure 7a. We compute the output signal from Equation 63 and show that the predicted surface deformation 
matches the numerically computed output (Figure 7b). Numerical displacements shown here are after a spin-up 
to make sure the output is in steady state with the input.

Outputs of interest are thus found given knowledge of the transfer function. Of course, in reality this transfer 
function is unknown and would need to be computed as part of an inversion. Further studies will be needed to 
quantify the variability of the transfer function as control parameters are varied. This will determine the sensi-
tivity of phase lag and amplitude spectrum to rheologic model, chamber geometry, and temperature structure.

Figure 7b also demonstrates the non-trivial impact of frequency-dependent phase lag and amplitude on ground 
deformation. Even though a relatively narrow range of frequencies is present in the forcing function (2π/ωk = τk 
∼0.2–2 years in Equation 62), we see that shorter period forcing generates in-phase ground displacements, while 
longer period ground motions are out of phase with chamber pressure. These effects would be amplified for 
warmer (more viscous) host rocks and longer forcing periods, and should be observable in geodetic timeseries 
with several day resolution (phase lag associated with 1 year forcing period from Figure 6 is ∼18 days). We also 
see that the ground displacement amplitude is a function of frequency as predicted from the transfer function. It 
is not simply proportional to the pressure as expected from linear elasticity (Mogi, 1958), and reflects the ampli-
tudes of each component period shown in Figure 7a scaled by the transfer function.

An interesting challenge implied by our analysis with respect to observations however is how to find initial condi-
tions. Our time-dependent steady-state (purely oscillatory) implicitly starts from a unstressed state, but as illus-
trated through 1D analysis (Section 4) the initial strain determines the equilibrium position around which steady 
viscoelastic oscillations occur. In the 2D variable coefficients case the choice of initial strain that will result 
in a particular chamber size (or geometry) is less trivially found; equilibrium magma chamber volume is not a 
parameter but rather a model outcome. From a geophysical perspective, this implies that absolute stress histories 
are needed to interpret general surface displacement time series at volcanoes, and could play an important role in 
eruption cycles as it does for earthquake cycles (e.g., Erickson et al., 2017).

Another important implication of this model is that the volume of crustal rock around the chamber experiencing 
viscous strain over a chamber pressure cycle depends on the frequency of forcing. As demonstrated by Figure 3, 
De = 10 effectively marks the onset of viscous host response to cycling pressure forcing. Figure 5 extends this to 

Figure 7.  (a) Amplitudes and phases of reservoir pressure forcing function, Equation 62. (b) Reservoir pressure timeseries (red curve, left y axis) along with 
numerically computed maximum surface displacement (dashed blue curve, right y axis) and analytic prediction based on the transfer function (yellow curve), 
Equation 63.
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variable coefficients, suggesting that De ≈ 10 effectively bounds the region in which significant deviatoric shear 
stresses (as measured by σv in excess of P0) occur.

We suggest that the frequency-dependent De ≈ 10 contour represents an effective outer edge to the viscoelastic 
“shell” at a given frequency of forcing. This shell has been largely considered fixed in size by previous models 
for viscoelastic magma chamber mechanics (e.g., Degruyter & Huber,  2014; Dragoni & Magnanensi,  1989; 
Jellinek & DePaolo, 2003; Karlstrom et al., 2010; Liao et al., 2021; Segall, 2016). Our model demonstrates that 

Figure 8.  Spatial regions associated with a local Deborah number De = 10 for varying periods τ of the chamber pressure forcing function (colored curves), illustrating 
end member thermal regimes. Magma reservoir is black semi-circle in all panels. (a) Reservoir temperature Tc = 800°C with geothermal gradient α = 20°C/km. 
(b) Reservoir temperature Tc = 800°C with geothermal gradient α = 35°C/km. (c) Reservoir temperature Tc = 1,200°C with geothermal gradient α = 20°C/km. (d) 
Reservoir temperature Tc = 1,200°C with geothermal gradient α = 35°C/km.
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viscoelastic aureole size for a steady temperature distribution dependents on the time history of reservoir stress—
like equilibrium reservoir size, it is a transient model output.

6.3.  Implications for Transcrustal Magmatic Systems

Magma reservoirs that feed volcanic eruptions likely sit near the top of transcrustal magma transport networks 
characterized by high temperatures and partial melt (Sparks et  al.,  2017). Some of this magma accumulates 
episodically into high melt fraction reservoirs such as we model here. But it is to be expected that, as transcrustal 
magma transport networks mature, a significant fraction of the crust is heated and remains hot for extended peri-
ods of time. What are the implications of this rheological structure for ground deformation?

We can begin to answer this question by noting that the bulk crustal rheology of magma storage zones as 
expressed by surface deformation depends on frequency of forcing, as it does on the spatial structure of melt and 
temperature (Mullet & Segall, 2022). This has been long recognized for crustal rheology in other settings (O'con-
nell & Budiansky, 1978; Lau & Holtzman, 2019). But volcanoes offer a particularly interesting case for exploring 
crustal rheology, because different histories of heating—all else equal—will have distinct deformation frequency 
response curves (transfer functions).

Figure 8 plots the De = 10 contour representing onset of viscous mechanical response for different pressurization 
periods, from 0.1 to 1,000 years. We then consider end member steady state thermal regimes: chamber bound-
ary temperature of Tc = 800 and 1,200°C, and geothermal gradient of α = 20 and 35°C/km. In the cold extreme 
(Figure 8a), we see that viscoelastic behavior is confined to a shell around the chamber in all but 1,000 years 
forcing. This is consistent with commonly used models of isolated magma chambers. At long forcing periods 
however the mid/lower crust is activated and starts to creep, defining a mid-crustal brittle-ductile transition that 
depends on background geothermal gradient. In the hot extreme (Figure 8d), we see that viscoelastic response 
of the near-chamber region extends continuously into the mid-crust for forcing periods as low as 10 years. This 
defines a spatially coherent viscous domain induced by magmatic heating (Karlstrom et al., 2017), activated by 
long-period forcing.

While we leave further exploration of this to future work, we note that some of the structure seen in phase lag 
variations in Figure 6 likely reflect changes to the shape as well as volume of the viscous near-chamber region. It 
is notable that significant sensitivity of viscoelastic response to forcing period and variations in thermal structure 
in the 0.1–10 years range, where geodetic observations are increasingly common. Because magma transport is 
unsteady at many scales, ground deformation in volcanic regions will likewise include contributions from viscoe-
lastic deformation defining the crustal thermo-rheologic footprint of magmatism on a range of timescales.

Appendix A:  Stability and Verification via Convergence Tests
Owing to the use of an explicit time-stepping scheme, it is necessary to establish conditions for which the scheme 
outlined in Section 3.2 is stable. As an initial calculation, note that

𝑬𝑬𝑬𝑬𝑬𝑬 =
𝜇𝜇

𝜂𝜂
dev𝝈𝝈.� (A1)

The deviatoric operator in Equation A1 can be expressed as a matrix-vector multiplication, namely

𝑬𝑬𝑬𝑬𝑬𝑬 =
𝜇𝜇

𝜂𝜂
𝝈𝝈,� (A2)

if second-order tensors are stacked into vectors (across rows and removing symmetries)

𝝈𝝈 = [𝜎𝜎𝑟𝑟𝑟𝑟, 𝜎𝜎𝑟𝑟𝑟𝑟, 𝜎𝜎𝑧𝑧𝑧𝑧, 𝜎𝜎𝜃𝜃𝜃𝜃]
𝑇𝑇
,� (A3)

and matrix 𝐴𝐴  is given by
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The non-dimensionalized explicit forward-Euler discretization of the aging law (Equation 28) can therefore be 
expressed as

𝑪̃𝑪
𝑛𝑛+1

=
(
𝑰𝑰 − Δ𝑡𝑡𝑡𝑡𝑡𝑡

−1

)
𝑪̃𝑪

𝑛𝑛
+ Δ𝑡𝑡𝑡𝑡𝑡𝑡

−1
𝑬̃𝑬𝑬𝑬

𝑛𝑛
,� (A5)

the stability of which is determined by the eigenvalues of the growth-factor matrix 𝐴𝐴 𝑰𝑰 − Δ𝑡𝑡𝑡𝑡𝑡𝑡−1 and whether 
we can bound its spectral radius using an appropriate choice for Δt. Eigenvalues for the growth-factor matrix are.

𝜆𝜆1 = 1,� (A6a)

𝜆𝜆2 = 1 −
2

3
Δ𝑡𝑡𝑡𝑡𝑡𝑡

−1
,� (A6b)

𝜆𝜆3 = 1 − Δ𝑡𝑡𝑡𝑡𝑡𝑡
−1
,� (A6c)

where λ3 appears as a repeated eigenvalue. To bound their magnitudes by at most 1 demands that 𝐴𝐴 Δ𝑡𝑡 be smaller 
than 2De. In addition, the time step must be sufficiently small to resolve any time-varying boundary data. In 
this work this amounts to resolving the sinusoidal boundary data at the reservoir wall. Since the corresponding 
(angular) Nyquist frequency for 𝐴𝐴 sin

(
𝑡𝑡
)
 is 1, the largest time step that resolves this frequency is 𝐴𝐴 𝐴𝐴𝑡𝑡 = 𝜋𝜋 , and should 

be (in practice) a small fraction of this. A sufficient, stable time step is then chosen by

Δ𝑡𝑡 ≤ min
{
2𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝑡𝑡

}
.� (A7)

In practice we use more restrictive criteria, namely,

Figure A1.  Number of time steps required to simulate pressure forcing of various periods. Number of time steps decreases 
with increasing Deborah number (red curve), until the Nyquist limit is reached (dashed curve). Number of time steps per 
period is a non-monotonic function of temperature (other colored curves) because both elastic moduli and viscosity are 
temperature dependent.

 21699356, 2022, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024506 by U
niversity O

f O
regon L

ibraries, W
iley O

nline L
ibrary on [08/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Geophysical Research: Solid Earth

RUCKER ET AL.

10.1029/2022JB024506

25 of 29

Δ𝑡𝑡 ≤ min

{
𝐷𝐷𝐷𝐷

4
,
𝛿𝛿𝑡𝑡

2

}
.� (A8)

Except for a few limiting cases, the temperature-dependent material parameters will cause 𝐴𝐴
𝐷𝐷𝐷𝐷

4
 to be the agent that 

restricts time-step. Figure A1 illustrates the number of timesteps required to resolve pressure as a function of 
forcing period, illustrating the increasing computational cost associated with very small Deborah numbers. We 
note that for general (i.e., non-sinusoidal) pressure histories, the minimum time step should be smaller than 2De 
and also be small enough to resolve relevant features of the pressurization forcing.

We verify the accuracy of our numerical method using the method of manufactured solutions (Roache, 1998) and 
explain this technique in the context of the dimensional problem (computationally we solve the non-dimensionalized 
problem). The MMS verification technique lets us choose arbitrary solution fields u*(r, z, t), C*(r, z, t) to act as 
exact solutions to any initial-boundary-value problem, even those without a known analytic solution) necessary 
for measuring convergence. The key point is that u* and C* satisfy the governing equations and boundary condi-
tions with particular choices of source terms and boundary data which we detail in this section.

We choose a manufactured solution to the initial-boundary-value problem Equation 1a, Equations 4–8 based 
on the well-known solution to the pressurized magma cavity problem in an elastic half-space (Mogi,  1958; 
Segall, 2010) given by

𝐮𝐮𝑒𝑒 =
𝑃𝑃0𝑎𝑎

3

4𝜇𝜇(𝑟𝑟2 + 𝑧𝑧2)
3∕2

⎡
⎢
⎢⎣

𝑟𝑟

𝑧𝑧

⎤
⎥
⎥⎦
.� (A9)

which satisfies the reservoir pressure conditions Equations 18a and 18b. Define the manufactured solutions u*, 
C* by.

𝑢𝑢
∗(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) =

(
2 − 𝑒𝑒

−𝑡𝑡
)
𝐮𝐮𝑒𝑒,� (A10)

𝐶𝐶
∗(𝑟𝑟𝑟 𝑟𝑟𝑟 𝑟𝑟) =

(
1 − 𝑒𝑒

−𝑡𝑡
)
𝑬𝑬𝑬𝑬 (𝐮𝐮𝑒𝑒) ,� (A11)

Symbol Explanation Value

a Ellipse semi-major axis 4 km

b Ellipse semi-minor axis 4 km

D Reservoir depth beneath Earth's surface 5 km

Lr Domain length 10 km

Lz Domain depth 10 km

μ shear modulus 0.5 GPa

λ Lamé’s first parameter 4 GPa

η Viscosity 0.5 GPa-s

P0 Chamber Pressure 10 MPa

Table A1 
Parameters Used in Convergence Tests and Their Symbols

h 𝐴𝐴 ‖𝑪𝑪 − 𝑪𝑪
ℎ
‖  𝐴𝐴 𝑪𝑪  -rate 𝐴𝐴 ‖𝐮𝐮 − 𝐮𝐮ℎ‖  u-rate

h/2 5.25 × 10 −9 1.84 × 10 −8

h/4 7.17 × 10 −10 2.87 1.31 × 10 −9 3.81

h/8 9.13 × 10 −11 2.97 8.41 × 10 −11 3.96

h/16 1.14 × 10 −11 3.00 5.24 × 10 −12 4.00

Table A2 
Spatial Convergence Data, Measured With Respect to the Discrete L 2-Norm, for a Single Time Step of Δt = 10 −7 Using 
Polynomials of Degree 3
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which satisfies equilibrium and specifies all boundary data. It does not however satisfy the aging law, and to 
correct for this discrepancy a source term is added, namely

𝑪̇𝑪 = 𝑬𝑬𝑬𝑬𝑬𝑬 +𝑮𝑮.� (A12)

Here, the source term G is determined from the manufactured solutions to be

𝑮𝑮 = 𝑒𝑒
−𝑡𝑡
𝜎𝜎
∗ −

𝜇𝜇

𝜂𝜂
dev 𝜎𝜎

∗
,� (A13)

where σ* is the manufactured stress and can be obtained by computing

𝜎𝜎
∗ = 𝑬𝑬𝑬𝑬 (𝐮𝐮𝑒𝑒) .� (A14)

All parameters used are given in Table A1. Table A2 shows the spatial errors 𝐴𝐴 ‖𝑪𝑪 − 𝑪𝑪
ℎ
‖ and 𝐴𝐴 ‖𝐮𝐮 − 𝐮𝐮ℎ‖ when 

computing approximations to C* and u* after a single time step, using a stable step size of 10 −7 and the discrete 
L 2-norm. Successive mesh refinements are made using polynomials of degree 3 as a basis for the FEM space. 
Convergence rates agrees with FEM theory which predict a convergence rate of p + 1 for u* and p for C* when 
polynomials of degree p are used (Larsson & Thomée, 2008). The same convergence pattern is observed for 
polynomials with degree greater than three except that the L 2-error drops below machine precision leading to 
round-off error in the rate computation.

To measure the convergence in the temporal domain we select a single point in space and perform successive 
mesh refinements in time. Table A3 shows that both 𝐴𝐴 𝑪𝑪  and u exhibit rate-1 temporal convergence, consistent 
with forward Euler.

The benefit of convergence tests based on the MMS technique is that solutions can be manufactured for prob-
lems with more physical complexities, as opposed to relying on simple problems with known analytic solutions 
such as those highlighted in (Hickey & Gottsmann, 2014). With MMS, rigorous convergence can be obtained 
at the exact theoretical rate, a desirable outcome for high-order numerical methods. A drawback is that MMS 
requires making specific choices for source and boundary data, which can sometimes alter the underlying 
physics of interest. Thus code verification can benefit further from community based efforts, as done exten-
sively in the earthquake community (Erickson et al., 2020; Harris et al., 2009). In community benchmarking, 
all mathematical details of a problem are specified and different modeling groups compare code output and 
seek quantitative comparisons. These exercises can be done for problems with or without a known analytic 
solution.

Appendix B:  Construction of General Time-Varying Signals
Although we focus on sinusoidal forcing functions here, our framework may be generalized in principle to any 
transient deformation problem. This generalization follows from superimposing sinusoidal basis functions with 
appropriate weights.

The example of the linear pressure ramp followed by a hold in Equation 15 is plotted in Figure B1, with vari-
ous partial sum approximations 𝐴𝐴 𝐴𝐴𝑁𝑁 (𝑡𝑡) =

∑𝑁𝑁

𝑛𝑛=1
𝑏𝑏𝑛𝑛sin (𝜔𝜔𝑛𝑛𝑡𝑡) , also plotted for several N. The L 2-error made by 

approximating S(t) by SN(t) decreases with increasing N, illustrating convergence. So long as the stable time step-
ping requirements for successively higher frequency contributions are met, deformation associated with complex 
forcing functions can be analyzed using the frequency domain approach developed here, with output (e.g., surface 
deformation) following from the (6.2).

Δt 𝐴𝐴 ‖𝑪𝑪 − 𝑪𝑪
ℎ
‖  𝐴𝐴 𝑪𝑪  -rate 𝐴𝐴 ‖𝐮𝐮 − 𝐮𝐮ℎ‖  u-rate

Δt/2 1.75 × 10 −1 1.18 × 10 −6

Δt/4 8.85 × 10 −2 0.99 5.96 × 10 −7 0.99

Δt/8 4.46 × 10 −2 0.99 3.01 × 10 −7 0.99

Table A3 
Temporal Convergence Data Measured at Point 𝐴𝐴

(
𝐴̃𝐴𝐴 0

)
 Under the Discrete L 2-Norm
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Data Availability Statement
Software consists of Python code developed on top of the free and open source multi-physics library NGSolve 
(Schöberl, 2010–2022) and the accompanying mesh generator (Schöberl, 1997). All source code is freely availa-
ble in the public repository (Bitbucket: magmaxisym, 2022).
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