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T i g h t  F r a m e s  of  
M u l t i d i m e n s i o n a l  Wavele t s  

M a r c i n  B o w n i k  

.T'Ty f ( x ) 

.T'LI A f (x ) 

Definition. 
0, B < ~ ,  such that for all v 6 7-/, 

AIIvll 2 _< ~ I(v, vj)l z _< nllvll z • 
jEJ 

ABSTRACZ In this paper we deal with multidimensional wavelets arising from a multiresolution 
analysis with an arbitrary dilation matrix A, namely we have scaling equations 

~°S(x)= Z hSk Iv/~ttal~°l(Ax-k) f o r s =  1 . . . . .  q ,  

k ~ Z  n 

whereto I is a scaling fimction for this multiresolution and ~o 2 . . . . .  ~o q ( q = [ det A [ ) are wavelets. O rthog- 
onality conditions for ~o I . . . . .  ~o q naturally impose constraints on the scaling coefficients {hSk }~=L,~..,q, 
which are then called the wavelet matrix. We show how to reconstruct functions satisfying the scaling 
equations above and show that ~o 2 . . . . .  ~o q always constitute a tight frame with constant 1. Furthermore. 
we generalize the sufficient and necessary conditions of orthogonality given by Lawton and Cohen to the 
case of several dimensions and arbitrary dilation matrix A. 

1. P r e l i m i n a r i e s  

In this section we fix some definitions and notations and we present theorems we use later. 
We use the following definition of  the Fourier transform in R n. 

.T f ( x )  = f ( x )  = ~ ,  f ( y ) e - Z ~ i ( x ' y ) d y  . (1.1) 

This is well defined for integrable functions f .  Nevertheless, .F can be defined on L2(]~n), and 
then : "  : L2(R n) ----> L2(~  n) is unitary (Plancherel theorem). Let II" 112 be the norm in L2(Rn). 
Let us recall some useful properties of  the Fourier transform. Let us denote by 7.y the operator of  
translation by y, U y f ( x )  = f ( x  - y)  and by HA the scaling operator by a non-degenerate matrix 
A E M n ( R ) , H A f ( x )  = f ( A x ) .  Then 

= e-2~ri(x'Y)3~(x), (1.2) 

(()-,) 
- idet A-----~ f A T x .  (1.3) 

A family of  vectors (v j ) j~s  in Hilbert space 7-/ is called a f rame  if there are A > 

(1.4) 
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A and B are called frame constants. If  A = B, then (vj)j~j is called a tight frame. [] 

General information about frames can be found in [3]. For a tight frame with frame constant 1 
we need only the simple fact that if [Ivjll = 1 for all j 6 J ,  then (vj)j~j is an orthonormal basis of  
7-/. To see this, note that linear combinations of  vj are dense in 7-( and [I vjo[I 2 = )--~4eJ I(vjo' vj)12 = 

Ilvjo 114 + Y~j~J.j#Jo ]{uJo' vJ )12; hence, (vjo, vj) = 0 f o r j  # j0. 

D e f i n i t i o n .  For any integer m > 0 we introduce the Sobolev space (with exponent 2) by 

wm(~,n)= { f  ~ L2(IR"):  D a f  ~ LZ(R n) for lot I < m} . (~.5) 

with norm 

0 [ I f l lw . . . .  _ _  , ( l .6) 

[al<m 

where c~ = (ot~ ~,,) is a multi index and by Dct ~I,,I . . . . .  --  ,3~ ~...~x~'' is the distributional derivative. 

W m (N n) equipped with the norm (1.6) is Hilbert space. [ ]  

We will use the Sobolev lemma and a simple lemma about Sobolev spaces (see[ 17]). 

L e m m a  1. 
(Sobolev). l f  f ~ W 'n (R n) and m > n/2, then (eventually after a change of values on a set of  

measure O) 

• f ~ c r ( R n ) f o r r  < m - n/2, 

• the derivatives D a f f o r  lct[ < r satisfy the inequality 

I I D = f l t ~  ~ cl l f l lwm, (1.7) 

with constant c > 0 independent of f . 

L e m m a  2. 
Let h ~ wrn(~, n) and g ~ Cc¢(R n) have compact support. 

I IhT"kgl]w,,, k ~ Z", belongs to 12(Z'7). 

Proof .  

Then the sequence ak 

lakl z = I Ih~gl lZm = ~ IID~(h~g)lt~ <_ C ~ [IDUhDl~(~g)ll2 2 
lal<m lal+l~l_<m 

< C sup ItDt~gll~ ~ f s  IOC~h(x)12dx" 
I~l<m tal_<m uppT"-kg 

Because suppg is bounded, 

fs tDah(x)12dx 5_ c "  fR IDah(x)12dx 
Z uppT-kg . kEZ n 

which finishes the proof. [ ]  

2. Introduct ion 
Assume we have some matrix A ~ Mn(N) acting on a lattice F, (F = PZ n for some non- 

degenerate matrix P 6 Mn (]R)), such that: 
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• A is a dilation matrix, i.e., all eigenvatues ), of  A satisfy [)-I > I 

• 1" is invariant for A, that is AF C 1-'. 

p -  1A P is a matrix with integer entries hence q = ]det A I = Idet P -  1A P] is an integer greater than 
1. 

De f in i t i on .  By a multiresolution analysis associated with (A, F) we mean a sequence of closed 
subspaces (Vi)iez C L2(Rn),  satisfying following conditions: 

i. Vi C Vi+l fo r /  E Z. 

i i .  giEz Vi is dense in LZ(IRn). 

iii. AiEz  V/ = {0}. 

iv. f (x )  ~ V~ iff f (A - i x )  ~ Vo. 

v. There exists ~o called a scaling function such that {~o(x - Y)}vsr is an orthonormat basis 
of VO. 

[ ]  

R e m a r k .  Conditions (iv) and (v) can be expressed by saying that for each i {~o(Aix - Y)}v~r is 
an orthonormal basis of  Vi. Condition (i) then implies that a scaling equation is satisfied 

~o(x) = Z h y ~ o ( A x  - y)  , (2.1) 
y ~ F  

for some coefficients (hy)yer'. Thus, the main ingredient of  a multiresolution analysis is scaling 
function ~o satisfying (2.1). [ ]  

If  we have a multiresolution analysis with scaling function ~o, then one can show there are 
numbers /hs  l s = 2 " - " q  . .  t , ,×Jy~r so that the q - I functions q)2, . ~oq, called wavelets, generated from ~o by 
the formula 

q¢'(x) = Z hSr " ~ 9 ) ( A x  - Y) for s = 2 . . . . .  q ,  (2.2) 
y ~ F  

have the property that {rpS(x - ,,aff=2,...,q is an orthonormal basis of  W0 = V1 • V0 (the orthogonal • " J J y E F  
compliment of  V0 in V 1 ), see [19]. Equations (2.1) and (2.2) can be expressed jointly by 

= v--.,_,----------2, h~,/]detAl~ol(A x _ g) fo r s  = 1 . . . . .  q ,  (2.3) ~Os ( X ) 
y~F 

where ~o I = ~o is the scaling function and h~, = h×, g c P. Therefore 

I s=2....,q 
{]det A[J/aps(AJx - Y)/×s r . j sZ  (2.4) 

is an orthonormal basis of  L2(~n).  
In order to simplify many calculations, we will deal with a multiresolution analysis asso- 

ciated with (A ,Zn) ,  where A is some dilation matrix with integer entries. One should stress 
that this is not an essential restriction. For any multiresolution analysis (Vi)i~z, associated with 
(A, F) with scaling function ¢p, we can consider another multiresolution analysis associated with 
( P - l A P ,  zn) ,  where P has the same meaning as above. Since A and p - l A p  have the same char- 
acteristic polynomials P - l A P  is also a dilation matrix. Consider the unitary operator Up given 
by U e f ( x )  = t ~ / ~ P l f ( P x ) .  Because Up preserves scalar product in L2(~ n) (Up Vi)i~ Z is a 
muttiresolution analysis with scaling function Up~p. Scalings and translates of  Up~o 2 . . . . .  Upq)q 
form an orthonormal basis. The operator Up preserves other properties, such as tightness of the 
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frame, smoothness, vanishing in infinity, compact support, etc. This is why we will deal only with 
dilation matrices A acting invariantly on F = Z n. 

Self similar tilings of  R n arise naturally when one considers a multiresolution analysis for 
which the scaling function is the indicator function of some measurable set. This was first noticed 
in the paper [6]. Many other authors have worked on related subjects, see [8, 12] and [5]. The 
following fact which can be extracted from [9] is of  great use. 

Fact  1. 
Let A be a dilation matrix and 79 = {k! . . . . .  kq} be q = Idet A[ representatives o f  different 

L 1 t]Rn,~ cosets o f Z n / A Z  n and Q = Q(A,  73) = {x 6 IR" • x = ~--~-~=t A - i 6 i '  Ei ~ 79}. l f f  6 loc" J 

(locally integrable on R n) is Z n-periodic then 

f Q f ( X ) d x  = JQJ f[o.,l f ( x ) d x  " 

3. Solution of the Sealing Equation 

Suppose we have some scaling coefficients {h E }~cz" q and using them we try to reconstruct 
the wavelets appearing in (2.3). Naturally, we should add some extra conditions on these coefficients. 
The orthonormality o f  translations of the scaling function and of  the wavelets is the motivation for 
the following definition. 

Def in i t ion .  A sequence of  vectors (h i , h 2 . . . . .  h q) ~ (l I (Zn)) q is called a wavelet matrix, if 

~--] h s h s' k+Am k+Am' -~- ~s.s'~m.rn' (3.1) 
kEZ n 

for every s, s '  = 1 . . . . .  q; m, rn' 6 Z n and 

him = ~ .  (3.2) 
m E T ,  n 

The first vector is called the scaling vector, the others are called wavelet vectors. [ ]  

This definition in the case of  one dimension appeared in [7], where the reader can find various 
examples of  wavelet matrices. The simplest example of  a wavelet matrix for the general dilation 

A is obtained by taking a unitary q x q matrix U = ,,t'U'uJi=l'~J=l . . . . .  . . . . .  qq with a constant first row, that is 

u U = 1/q/~, j = 1 . . . . .  q and defining 

s ifk = ki for some i = 1, , q , 
• U i . , .  

hE = 0 otherwise, 

where {kl . . . . .  kq} are representatives of  different cosets of  Z n / A Z  n. Not much is known to the 
author about the existence, for a given dilation matrix, of  wavelet matrices with coefficients of  
compact support or with strong decay at infinity. 

Now we begin to study the existence of  a scaling function satisfying (2.1) and hence wavelets 
given by (2.2). 

For a given scaling vector (hk)k~Z" we define a function m by 

1 m(x)  ~ ,. _-2rt i (k  x) 
= ~ k Z_[.  , , ke  " . (3.3) 

Let us denote B = A T and let us choose any I i . . . . .  lq representatives of  different cosets of Zn/BT], n, 
that is I,.Jq=t (lj + B Z  n) = Z n. 



Tight Frames t~" Multidimensional Wavelets 5 2 9  

Lemma 3. 

q 1 (e27ri(m'B-jlj) II 0 m f[ AZ  n, - = 
j=l IdetA 1 m E AZ  n . 

The proof can be found in [5]. 

L e m m a  4. 
Let (hk)kaz" E l I (Z n) and let m(x) be a function given by (3.3). The condition 

Z hkhk+Am "~ ¢~O,m for m E Z n 
k~Z n 

is equivalent to 

Proof. 

q 

Im(B- l ( x  + lj))l 2 = 1 

j = l  

for a.e. x ~ ~ n  . 

q 

I m ( x  + B - I l j ) l  2 

j = l  

q 1 hk~k,e_2~ri(k_k,x+B-Ii) ) 
= Z idet AI 

j = l  k.k '~Z" 

q 1 e2Jri(m.B-Jl)  ) = Z hkhk~me2Jri(m'x) Z Idet a-"~ 
k.m e Z "  j = 1 

= Z h k h k + A m e 2 r r i ( A m ' x )  

k ,mEZ n 

(3.4) 

(3.5) 

In the last equation, we used Lemma 3. Since {e 2Jrilm'x) }m~7." is an orthonormal basis of  L2([0, | in)  
(3.4) is equivalent to (3.5). [ ]  

I f  (h~)k~z, is a scaling vector, then using (3.2) we can deduce that m is continuous, [m(x)l < 1 
and m(0) = 1. The next theorem tells about the existence of a scaling function ~o. 

Theorem 1. 
(about the product) Let m be given by (3.3), where h is a scaling vector. I f  the product 

l-I~=l m ( B - i x )  converges pointwise to 

oo 

~(X) := V i m ( B - i x ) ,  (3.6) 
i=1 

then ~b belongs to L2(R n) and lkbll2 _< 1. Moreover, ~ is the Fourier transform of the ~o satisfying 
the scaling equation (2.1). 

P r o o f .  Let/Z = {11 . . . . .  lq } denote the set of  representatives of  the distinct q cosets of  Z n / B Z  n 

and 

Q = x E R n : x = B- ' e i ,  ei E F. . 
i = 1  

We can use the fact 1 for the set Q. 
Let us define the sequence {fk}k>_0 by 

fo(x)  = X t - 1 / 2 , 1 / 2 l n ( X )  , 

k 

fk (x)  = l--I m(B- ix)x[-1/2 ,1 /z] , (B-kx)  fo rk  > 0 .  
i----1 
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Since B is a dilation matrix fk converges pointwise to ~b. 
We compute the norms of f t  in L2(Nn). 

k 

fRn lfk(x)[2dx = fRn I-X [m(B-ix)12X[-l/2.1/2]n(B-kx)dx 
i=1  

k 

= Idet BIt rE- I - [  Im(Bt-ix)lZdx 
1/2,1/21" i = 1  

= ldet Bt t f[0,W 

--IdetBlkfQf~ l IQ[ [m(Bk-ix)[2dx (by fact I) 

IdetBI t - I  f t 
= J8 1--I Im(Bt-i-lx)12dx 

IQI ai=l 

k 

1"-I Im(Bt-ix)12 dx 
i=1  

IdetBlk-I f l 
- -  Im(Bk-i-tx)12dx (by the self similarity of Q) 

Ia l  q (l + Q )  K,Mj= 1 J i=1 

- [QI ]"Ilm(Bk-i-~X)12 Irn(B-l(xWlj))l 2 dx 
i=1 ' - j = l  

(By (3.5) the sum in the bracket = 1.) 
k - I  

= 'de tBlk- I  f i_ 1--[ Im(Bk-i-lx)12dx = fR ]fk-l(X)12dx" 
1/2,1/2]n i=1  n 

Therefore, we have shown that for every k > 0 

IIA[12 = t lA- l l l2  . . . . .  Ilfol12 = 1. 

Hence, by Fatou's lemma 

fR [~(x)lZdx l iminf  [ [fk(x)12dx 1 
P 

< 
I 

and we have II~bl12 _< 1. 
It is easy to see that ~b satisfies 

~(x) = m(B-lx)~o(B-Ix) , (3.7) 

Using (1.2) and (1.3) and the fact that h ~ l l(Zn) is a scaling vector, we can see that (3.7) is an 
equivalent form of the scaling equation (2.1). [ ]  

In order to apply Theorem 1, we need to ensure convergence of the product in (3.6). Therefore, 
we add some conditions on m in the next definition. 

De f in i t i on .  A function m given by (3.3) is A-regular, if the product I"[~=1 m(B-ix) is convergent 
uniformly on compact sets in ]~n, where B = A r. [] 

R e m a r k .  In our considerations, the matrix A does not change so we will simply say that m is 
regular. For regular m Theorem 1 is valid and the function ~b is continuous and ~b(0) = 1. Therefore, 
for any regular scaling vector there exists a non-vanishing scaling function ~o satisfying (2.1) and 
unique up to a constant factor. [ ]  
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that 

For example, to assure regularity of m, it is sufficient to assume there exists some e > 0 such 

[ h k l [ k l  E < o<~. 
kEZ" 

Indeed, we can assume e < 1 and for any R > 0 and every [x l < R 

oo 

Im(B-Jx)  - I I 

j = l  

= ~ ~ I~/-ld~tAlhk e -2Jri(k'B-jx) - 1[ 
j = l  k~Z n 

oo 

j = l  

2 Z Ih l Z clkl t  2 Z lh lC'lkl Z 
kEZ n j = l  kEZ n j = l  

_< C" ~ Ihkllkl C < ~ .  
kEZ" 

We used the elementary inequality I sinxl 5 CIxU for x 6 R, 0 < e < 1 and since B is 
dilation matrix there exist constants ~. > 1 and C'  > 0 such that 

I B-Jxl  ~ C t ~ . - J l x l  for x 6 •", j > 0 .  (3.8) 

The next result extends Theorem 1. 

Theorem 2. 
Let h, m, and (o be as in Theorem 1. /fl[~ol12 = 1, then the translates of ~o are orthonormal, 

i.e., (<o, 7"~p) = ~k.ofor k E Z n. 

P r o o f .  Denote by S : L 2 ( ~  n) --+ L2(R n) the bounded operator given by 

S f ( x )  = Z hk l 'c/~Alf(Ax - k ) .  (3.9) 
kEZ n 

Using (3.4) it is easy to check that if the translates of f are orthonormal, i.e., ( f ,  7~f )  = &k.0 for 

k E Z n, then the translates of  S f  are too, (Sf, ~ S f )  = 3k.0. Denoting ,~ = ~"SU - l  and using (1.2) 
and (1.3) we get 

Sg(x) = m ( B - l x ) g ( B - I x )  . (3.10) 

Let fo = Z[-t/2,U2l", fk = S~fo, k > 0. Then 

k 

fk(X) = ~S k fo(x) = I - I  m ( B - i x ) f o ( B - k x )  " 

i = I  

The functions fk converge pointwise to ~b as k --* cx~ because f0 is continuous in a neighborhood 
of 0 and f0(0) = 1. Since the ik are uniformly bounded by 1, the fk converge weakly to q3. Weak 
convergness of fk to ~b and flAIl2 = Ikbtlz = 1 imply fk converge in norm to ~b. Hence, the fk 
converge in norm to ~o so translates of  ~o are orthonormal, [ ]  

It is worth noting that using the ideas in the previous proof one can simplify the proof of  
Theorem 1, avoiding calculations. 
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Theorem 3. 
Assume that the Zn-periodic function m is of class C N for some N = 1,2 . . . . .  c~. 

given by (3.6) is also of class C N. Moreover ~ ~ wN (~,n). 

Proof. 
Sketch of the proof Assume that m is of  class C N. Calculate the partial derivatives 

Then, ~o 

.¢(x) = (B-  )i,S~xsm(B x) m(B-Jx) 
k = l  = j=l  

a 
and the series is convergent because Im(x)l < 1, the derivatives ~-i-~m are bounded and (3.8) is true. 
Analogously we compute derivatives of  higher order. 

To show ~b 6 WN(R n) we take the sequence {fk}k>__0 defined in the proof of  Theorem 1 which 
converges pointwise to ~b. 

OXi fk = Z (B- l ) i ' s  m(B-lx) m(B-Jx)xt-I/2.1/2l"(B-kx) • 
l = l  s = l  j=!  

Using calculations similar to those in the proof of  Theorem 1 we get 

k fR" H Im(B-Jx)12X[-1/2.1/2] n (B-kX) dx = Idet B I ,  
)=1 
j#l 

for l = I . . . . .  k, k > 0. Therefore, by (3.8) 

< Idet Bin sup m Z C)~-t • 
s = l  ..... n 1=1 

Using Fatou's  lemma, we get ]1 ~i~o112 < cx~. Using similar methods we can estimate derivatives of  

higher order. [ ]  

Corollary 1. 
Assume the Zn-periodic function m is of class CN for N > n/2 and ~ is given by (3.6). Then 

the series ~-~k~z" kb(x + k)l 2 is convergent uniformly on compact sets and its limit is a continuous 
function. 

P r o o f .  Let g be of  class C ~ with compact Support and g(x) = 1 for x 6 B(0, r), r > 0. For any 
> 0 Lemma 2 guarantees there exists m > 0 such that 

lkl>m 

Since N > n/2, we may use the Sobolev lemma 

I~(x -k- k)l 2 < Ce, 
lkl>m 

fo rx  6 B(0, r ) ,  

which assures uniform convergence on B(0, r). Since r > 0 was arbitrary, this finishes the proof. 
[] 
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4. Tight Frames of Wavelets 
We start this section with some facts associated with the definition of  the wavelet matrix. If  

(h I . . . . .  h q) is the wavelet matrix and m = ml is regular, then by Theorem 1 ~v = ~v I satisfies (2.1) 
and we can define ~v s, s = 2 . . . . .  q by (2.2). The main result of  this section says that dilates and 
translates of  ~ps for s = 2 . . . . .  q form a tight frame. This generalizes results in [ 14] (a proof can also 
be found in [3], Proposition 6.2.3), where dimension n = 1, dilation A = [2] and h~ = ( -  l)kh-~-_k+l. 

For any matrix wavelet (hz . . . . .  hq) we denote by ml . . . . .  mq the functions given by 

1 ~ hSe -27rilk'x) (4.1) ms(X) = ~ kZ_~Z, k 

The next fact is parallel to Lemma 4. 

L e m m a  5. 
Condition (3.1) is equivalent to 

q 

E ms(B-I  (x + li))ms,(B -I (x + l i ) )  = 3s.s '  , 

i=1 

and for a.e. x E R n. 

P r o o f .  

q 

E ms(X + B-l l i )  ms,(X + B-l l i )  
i=1 

for s, s' = 1 . . . . .  q (4.2) 

q 1 hS~S,,e_2~ri(k_k,x+B-tti ) 
- - E [ d e t m i  E k k, 

i=1 k.k'EZ n 
q 

= E hSh k+m ~2rri(m'x) E ~ I  e2rri(m,B-lli ) 

k,mEZ n i=1 

= E t'ShS' °27ri(Am'x)  
"k k+Arn ~ 

k,rnEZ n 

the last equality being a consequence of Lemma 3. 
L2([0, l]n), thus 

iff 

{e27ri(m'X)}mEZn is an orthonormal basis of  

E s s t hkhk+Am = ~m.OSs,s ~ 
k,mEZ n 

which turns out to be (3.1). [ ]  

Another way of  stating (3.1) is given by the next lemma. 

L e m m a  6. 
Let (hi . . . . .  hq) E ( l l ( Z n ) )  q. Equality holds in (3.1) iff 

q 

E Z hSm-AkhSm'-Ak =¢~m.m' 
kEZ n s = l  

for a.e. x e [0, 1]" 

for m, m'  e Z n . (4.3) 

q 

E ms(X + B - I l i ) m s , ( X  + B - l l i )  = Ss.s' 
i=1 
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P r o o f .  Consider 

( ~"~,kEdl+AZn h ie  -2nilk,x) 

~k~dq + mZ, h i e  -2ni (k•x) 

. . .  ~'-~k~dl+AZ, hqk e-2ni(k'x) 

) ... ~-~k~dq+az~ hq e -2nilk.x) 

where dt . . . . .  dq are representatives of  different cosets of  Zn/AZ n. This matrix is unitary for a.e. 
x iff equality holds in (3.1). To show this, it suffices to compute the scalar product of  two columns 
s and s ~. 

~ (  S h~e-2rri(k'x))( ~'~ hsk'e-2ni(k'x,) 
j = l  kEdj+AZ n kEdj+AZ 

q 
= ~-~ 12 hShS k '~ 

j = l  k,k'~d.i+AZ n 
q 

= I 2 2  
j = l  k,k'~Z n 

q 

=12  

hS ~,s' ~-2~ri(di+Ak-d'-Ak',x) 
dj+Ak,,dj+Ak,~ _ 1 

hS h s' e2rri(Ak'.x) 
dj+Ak dj+Ak+Ak' 

= 2  ~ hsdr+Akhsdr,+Ak '~'-2:ri(dr+Ak-dr'-Ak''x) 

s= l  k.k~cZ n 
q 

~ ~,s l,s ~,-2ni(dr-d r, -Ak',x) 
/_..., ./ ~ "dr+Ak"dr,+Ak+Ak '~ 

k.k~EZ n s=l  

s s e-2rr i (dr-d r,-Ak ~.x) 
= 1 2  2 h d r + m k h d r , + t k + a k  ' 

kr6Z n kEZ n s = |  

Since the matrix is unitary, the last expression in brackets is equal to •ar.ar,+Ak' which turns 
out to be (4.3). [ ]  

Theorem 4. 
(about tight frames). Suppose (h I . . . . .  h q) is a wavelet matrix and ml is regular. Then the 

family of wavelets' s ,s=2.....q i~pj.k/j~z.k~z,,, where ~o],k(x ) = Idet A lJ/2~oS ( AJ x - k ), forms a tight frame with 
constant 1 in L2(~n) ,  i.e., 

2 I(f,~p].k)l = = Ilfll 2 f o r f  E L2(•") .  (4.4) 
s=2,...,q, 
jeZ.teZ n 

Moreover, ifll~011 = 1, then this family forms an orthonormal basis. 

j=l k.k~Z n 

= 2 ~ hs~s' e2Zri(Ak"x) k"k+Ak' : ~ ~k'.O~s.s re2ni(Ak''x) = ~s.s' 
k' ~Z n k eZ" k' ~Z n 

If  we compute the scalar products of  two rows r and r/, we arrive at 

~'~ ( 12 hSke-2ni<g'x) ) ( ~-~ hSke-2niq~.x' ) 
s= l  kEdr+AZ n kEdrt+AZ 

q 
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P r o o f .  Let f be any function of class C ~ with compact support. Since these functions are dense 
in LZ(Rn), it is sufficient to show (4.4) for any such f .  

I. First we show that for every j series ~ ' - ~ ,  I(f ,  ~oj,k)[2 is convergent (using the notation 
~o./.k = ~0),k). 

Z I(f'~°j'k)12 < q J Z  , I f ( x ) l l ~ ° ( A j x - k ) l d x  
kEZ" k 

qJ ~ Ilf]12 f s  I~°(aJx - k)12dx < 
k uppf  

9 - j  fA = qJ[lf[l~q ~ ko(x)12dx. 
k J (suppf)+k 

Since s u p p f  is compact, there exists an integer K > 0 such that AJ(suppf)  C ( - K ,  K] n. Contin- 
uing the calculations 

(suppl)+k J (supp f)+ 2K l +r ICZ n r C : ( - K , K ]  n. r E Z  n 

and since k 6 Z n is uniquely represented as k = 2Kl + r where l 6 Z" and the remainder 
r E ( - K ,  K]n f) Z n we can proceed 

~ £J(suppf)+r+2Kl [ ~ O ( X ) { 2  - -  E fR" [~°(x)12dx' 
rE( -K,K]ntqTZ n IEZ n rE(-K.K]nC)TZ n 

because ( ( - K ,  K] n + 2Kl) N ( ( - K ,  K]" + 2Kl') = 0 for l # l'. This gives us an estimate of  the 
sum of  series. 

2. Now we compute q s s ~--~.,.=l ~--~-kEZ" I(f,  ~O~.k)l 2- Since ~00. 0 = Y'~-,n~Z" hm~°l.m' then 

¢'~,/,(x) = ~4,o(X - e)  = ~ h~ ,~ l .m(~  - ~) 
m EZ n 

s 
= h m ~ O l , m + A k ( X  ) = ~ h S - A k q g l , m ( x )  

m~TZ n tnEZ n 

Therefore, 

q 

s= l  k ~ Z  n 

q 

S ZI<:, Z 2 h r n _ A k  CPl.rn ) [ 

k E Z  n s= l  rnEZ n 

= 2 Z  Zhs hs m-Ak m'-Ak (~ °l.m' f ) ( f '  ~°l.m') 
k e g  n rn,m'EZ n s= 1 

= Z (~Ol'm' f ) ( f '  ~Ol,m) = Z I(~ol,m, f ) l  2 • 
m E Z  n m E Z  n 

The third equality is a consequence of Lemma 6. 
3. The operator UA : L2(R ") --+ L2(~  n) given by UAf(x)  = Idv/-Id'~lf(Ax) is unitary. 

Using this and Item 2 we can transform our last equality to get 

q 

k~Z"  s = l  k ~ Z  n 

fo r /  6 Z .  
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Using this repeatedly for i E { - I ,  - I  + 1 . . . . .  1}, 1 > 0, 1 E Z we obtain 

1 q 

i=-I kEZ" s=2 k~Z n keZn 

4. To finish the proof we need to show 

lim Z I(f,'P-t.k)l 2 = 0,  (4.5) 
kEZ n 

lim Z [(f' (Pl'k)[2 = IlfllZ (4.6) 
1----> o~ kETZn 

Let us first prove (4.5). Using the computations in Item 1 we have the estimate 

I(f, go-t,k)l 2 ~ Ilfll21supPfl ~ L-t(suppf)+k Iq°(x)12dx" 
k~Z" k 

Since A is a dilation matrix, there exists I0 such that A-I(suppf) C ( -1 /2 ,  1/2)" for I > Io. If 
I > I0, the last expression becomes 

[ lf i f~lsuppfl  fR" ]~°(x)[2Xl(X)dx' 

where X1(X) = ~-~k~z" XA-t(suppf)+k( x)" For every e > 0, A-t(suppf) C B(0, e) for sufficient 
big I; thus, Xt converges pointwise to 0 when I ~ cx~. By Lebesgue's dominated convergence 
theorem we obtain 

lim [~o(x)12Xi(x)dx = O. 
/---+co n 

Now we compute (4.6). 

I fR f ( x )~ l . k ( x )dx  2 I(f, ~°t.k)l 2 =  ~ . 
kEZ '~ keZ" 

= ~ Idet AV f~. f(x)e-2"i(k'e-'xl~(B-tx)dx 
k~Z" 

= k~Z" ~ [ fB'lO.ll-Idet AI ------~1 e_2rri(k.B-tX)[l~f(xq_Bll)~(B_IxWl)]dxl 2 

I l) 2dx = fB'[O, 1l" Z f ( x  q- B l l ) ~ ( S - ' x  -t- 
I~Z n 

(since {Idet Al-le-2~i(k'B-IX)}ksZ. is orthonormal basis in L2(Bt[O, 1])) 

= LtlO.I]. ~ f (x  + Bll)~o(B-tx -q-l)f(x -t- Bll')~o(B-tx +l')dx 
I,I'EZ n 

= Z fR" ](x)f(x + B*l')~(B-lx)~o(B-lx q- l') dx 
lt E TZ. n 

= If(x)121~o(B-tx)12dx + R(f), 
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where R(f) represents the terms summed with l '  ~ Z n \ {0}. The dominated convergence theorem 
yields 

lim f If(x)12l~(B-Zx)lZdx = I[fl[ 2 = Ilfll  2 , 
l-...+cx~ JRn 

since ~b(0) = 1, ~b is continuous in a neighborhood of 0 and ~o(B-Ix) tends to 1 as I ~ ~x~. 
Now it suffices to estimate R(f). 

IR( f ) [  _< 
l~Z"\{o} 

-< F. 
l~Z%{o} 

-< F. 
I~Z"\{0} 

R" f(x)f(x + Bll)~(B-Ix)~(B-lx + l)dx 

I~1t 2 f~ ,  I f ( x ) l l f ( x  -4- BZl)ldx 

fR. If(x)llf(x + BZl)ldx 

because I1~11~o ~ 1. Since f is of  class C °°, there exists C > 0 such that I f (x ) l  < C(1 + lxl) -an. 
Continuing the estimates 

_< ~ £.Jf(~)llf(~+B'Ordx 
l~Z"\{0l 

<-- ~ cZ fR(l+lxl)-4"(l+lx+,Blll)-4"dx 
l~Z"\{O} 

<-- C2 E ~ ,  (1-4-lxl)-2"((l ÷ txl)(l ÷ lx-4- g111))-2"dx 
l~Z"\{o} 

C 2 f 4n 
,(1 + [ x D - Z n d x  Z [Blll2n " < 

JR tzz"\lol 

We used the elementary inequality 

1 2 
sup < - -  

.~R (I + Ixl)(l + Ix + yl) - lyl ' 

for y # 0. EIET__n\[0} Ill -2" < C',  for some C'  > 0. Since B is a dilation, there exist ~. > 1 and 
C" > 0 such that 

IBtxl > C"),llxl fo rx  6 R n, I > 0 .  

Therefore, 
f 4 n c  ' 

I R ( f ) l  _< C2jR o (1 + Ix l)-Z"dx (C,)2,,X2,,/ ~ 0 

when I -,'- ~ .  This shows the tightness of the frame. 
5. If II~oll = 1, then by Theorem 2 the translates of  ~0 are orthonormal; hence, 11~o2ll = 

, s ,s=2....,q . . . .  Ikoqll = 1 and the family t~o),k~j~z.~z, is an orthonormal basis of L2(~  n) by the remark in 

Section 1. [ ]  

5. Orthonormality of Wavelets 
In this section we give necessary and sufficient conditions for orthonormality of  the translates 

of  ~o given by (3.6), where m is given by (3.3). When these criteria are satisfied, the tight frame of 
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wavelets becomes orthonormal basis. The first condition is found in [I] in the case where A = 21d 
and it generalizes in a straightforward way to arbitrary dilation matrices A. 

Theorem 5. 
(Cohen). Suppose m is regular and (9 is given by (3.6). 
Suppose there exists a compact set K C R n such that 

• K contains neighborhood of  zero, 
• IK A (l + K)I = ~l,oforl E Z n, 
• m(B- ix )  ~ Oforx E K, i > O. 

Then (~o, ~o )  = 8t.oforl E Z n. 
Moreover, if m is of class C N, where N > n/2, then the converse is true. 

P r o o f .  Define a sequence of functions {gk}~>__0 by 

go(x) = XK(x) ,  
k 

gk(x) = I - Im(B- i x )XK(B-kx )  
i=1  

fork  > 0 .  

Since B is a dilation and K contains a neighborhood of  zero, gk tends pointwise to ~ when k --+ ~ .  
Because m is continuous there exists c > 0 such that Im(B-ix)[ > c for x ~ K, i > 0. Since the 
product I " I~ l  m(B- ix )  converges uniformly on K, there exists some N such that ]"I~N m(B- ix )  > 
c'  for x ~ K,  where c'  > 0 is some constant independent o fx .  Therefore, 

N - [  ~ ,  

I@(x)l = I - I  Im(B-ix)[ I-~ Im(B-ix)l >-- c N - l c ' =  c" 
i=1  i=N 

fo rx  ~ K ,  

which can be written as 
, i  

xx (x )  <_ ~,, I~(x)l fo rx  ~ R n . 

Using the last inequality we can estimate gk from above 

k 

Ig~(x)l ~ ~ [ m ( n - l x ) l  I f f (n-kx) l  = ~71~(x)l-  
i=1  

We compute 

k 
Ln lgk(x)]2e-2Jri(l'x) = fRn i~=l lm(B-ix)12e-2Jri(l'X)XK(B-kx)dx 

k 
= ldet BI k fK I-I [m(Bk-ix)12e-2Jri(l'BkX)dx 

i=1  

k 

= Idet B[ k fro H Im(Bk-ix)12e-2Zri(l'BkX)dx 
"l]n i-----1 

(by Zn-periodicity of  the integrand) 

- Idet BIk fQ I~ IQI Im(Bk-ix)12e-2Jri<t'SkX~dx (by fact 1) 
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k 
- -  ldetBIk-I fB I-I ]m(Bk-i-lx)12e-2Jri<l'Bk-tX)dx 

[QI Qi=J 

'det Blk-'  £ k- '  I i  ] 
- IQI 1--I Im(Bk - i - l x )12e -Z~r i ( l 'B~ - l x )  Im(B-l(x  "k"/j))l 2 dx 

i=l  j = l  

(since B Q = + Q)) U J = I  (/j 
k 

= Idet BI k-I rio ]-I  Im(Bk-i-lx)12e-2Jri(l'Bk-lX)dx 
"l]n i=1 

k 
Idet B'k-l fg m Bk-i-lx 2e-2 ri(l Bk-lX)dx = f ( )1 " = . I g k - I ( x ) l Z e  -2rci(f'x) 

i=1 

Therefore, by induction we have for every k > 0, 

f R n l ~ k ( X ) 1 2 e - 2 7 r i ( l ' x ) = f N , ~ O ( X ) 1 2 e - 2 7 r i ( l ' x ) = ( S l .  0 . 

Lebesgue's dominated convergence theorem gives orthonormality 

lim fR ' g k (x ) }2e -2Zr i ( l ' x )=  f R  ]~O(x)'2e-2~ri(l 'x'" 
k .-.* cx~ n n 

Now we show the implication in the opposite direction. 

= fR. lCo(x)lee -' i<t'x>dx=fto.,r[y'  l¢(x+k)12]e2=i<z'X'dx 
kEZ n 

(5.1) 

and using the fact that {e27ri<l'X)}lsTZ,, is an orthonormal basis in L2([0, I] n) we obtain that the 
orthonormality condition is equivalent to 

lqo(x + k) [  2 = 1 for a . e .  x ~ ]R n 
kEZ n 

In fact, the series )--]ksz" I~(x + k)l 2 converges uniformly on compact sets and equality holds for 
every x 6 N. n by virtue of Corollary 1. Thus, there exists I > 0 such that 

1 
I~(x + k)l 2 > 

k~Z",Ikl</ 

forx 6 [ -1 /2 ,  1/2]".  

The last sum is finite; hence, there exists c > 0 such that for any x 6 [ -1 /2 ,  1/2] n we can find a 
cube Ux with center in x and a translation kx e Z", Ikxl < l such that 

I~(y + kx)] > c fory  • Ux • 

We can find finite subcover { Uxl }i=I ..... m with x t = 0 of the covering { Ux }x s[- I/2.1/2], of [ -  1/2, 1/2] n. 
Now we define by induction sets Kl . . . . .  Kin. 

KI = Ux, 71[-I /2 ,  1 / 2 ] "  

Ki+l = Ux,+, \uij=lK j ~ [ - 1 / 2 ,  1/2]" 
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m = = U i = l ( K i  q -kx i )  satisfies Since U i = I  Ki [--1/2,  1/2] n and IKi N Kjl = 0 for i # j ,  K m 
IK ¢3 (l + K)I  = St,0 for I E Z n and K contains a neighborhood of  zero. Moreover, kb(x)l > c for 
x ~ K. By the definition of~b every element of  the product Im(B-ix)[ > c for i > 0. Therefore, K 
has all the required properties and the proof is done. [ ]  

Another necessary and sufficient condition is due to Lawton which originally appeared in the 
context of  one dimension. For any fixed scaling vector h we define an operator C : L2([0, 1] n) --+ 
L2([0, 1] n) by the formula 

q 

C f ( x )  = Z Im(B- l (x  + lJ ) )12 f (B- l ( x  q- l j )) ,  (5.2) 
j = l  

where L2([0, 1] n) is the space of Zn-periodic functions and Ii . . . . .  lq are representatives of  different 

cosets of  Z " / B Z  n. The choice of  representatives does not affect definition of C'. 
The following lemma justifies the notation of E'. 

L e m m a  7. 
Operator C is unitary equivalent (by the Fourier transform) to C : 12(Z n) --+ 12(Z n) which is 

represented by the matrix 

C = (Cp.r)p.r~Zn, Cp,r = Z hkhk+mr-p • (5.3) 
k~Zn 

P r o o f .  Suppose f (x)  -~ e 2rri(p'x) and compute C f 
q 

C f ( x )  = ~ [m(B- l (x  q- lj))12e 2~ri(p'B-l(x+lj)) 

j--I 

1 q 
- IdetAI Z ~ -~hk-~me-2rti(k-m'B-I(x+lj))e2rri(p'B-I<x+lj)) 

k,mEZ n j= l  

b, "b"-o2ni(m--k+P .B-Ix) : 1 ~'~ Z ,,K,.m~ ~ld~'-"  ~ ~ e2rri(m-k+p'B-Ilj) 
/ k,m~Z n j= 1 

By Lemma  3 the expression in brackets is equal to 1 when m - k + p ~ AZ n or 0 when m - k + p ¢~ 
AZ n. Hence, we can assume that m - k -~ p = Ar for some r 6 Z n. Therefore, we can write the 
last expression as 

Z e 2 r r i ( r ' x ) ( Z h k h k + a r - ; )  , 

rETZ, n kEZ n 

which shows the unitary equivalence of C and C'. [ ]  

Theorem 6. 
(Lawton). Suppose a scaling vector h has a finite number of non-zero elements, m is given 

by (3.3) and ~ by (3.6). 
The following conditions are equivalent: 
1. (~o, Tl~O) = 81.oforl E Z n. 
2. There is no non-constant trigonometric polynomial 7/(x) = ~-~lzZ" Zle27ri(l'x) satisfying 

= 

P r o o f .  Let us consider ~(x)  = Y~kzZ" I~b(x + k)l 2. By Corollary 1, ~ is continuous. Moreover, 
is a trigonometric polynomial 

qt(x) = ~ zle 2~i<l'x) , where zt = (tp, 'T_l~O) , 

l~Z" 
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because ~o has bounded support and (5.1) holds. In order to check £ ' ~  = ~ ,  it suffices to show 
Cz = z where z = (zl)t~z" by Lemma 7. 

k , p E Z  n k E Z  n p E Z  n 

kEZ n p E Z  n 

k ~ Z  n p~Z"  

= (~o, ~o) = @, T-r~O) 

where the fifth equality is true by (2.1). Therefore, we have showed that if Item 1 is not true, then ~p 
is a non-constant trigonometric polynomial satisfying C'~p = ~ .  

Conversely, suppose that there exists such a polynomial ~ .  Since ~ is also an eigenvector of  
C', hence without loss of generality we can assume ~p is real valued and positive (by adding some 
constant). 

Let us define m i by 
m l(x)  = m ( x ) ~ / ¢ ( x ) / ¢ ( B x ) .  

The function ml is given by (3.3) by some scaling vector. This can be seen easily by Lemma 4 and 
the calculations below: 

q q 

Z Imt(B-I (x +/j))l 2 = ~ Im(B -l (x + li))12~(B -1 (x -t-lj))/~(x) = q/(x)/~(x) = 1. 
j=J j=l 

Hence, we can define ~oi by 

~bl(x) = H m l ( B - i x ) =  H m(B-ix) /~(B-ix) /~t(B-i+Ix)  
i=1 i=1 

= ~ ( x ) ~ / ~ ( o ) / ~ ( x ) .  

Since m(x) and m I (x) vanish on the same set, m satisfies the Cohen condition i f fm I does. Suppose 
Item 1 holds, hence 

7z(O) 7z(O) 
1 =  Z [~bl(x+k)[2 = Z I~(x+k) lZ~(x+k)  = ~(x) 

kEZn kEZn 

Therefore, ~ is constant-contradiction. [ ]  

R e m a r k .  The last theorem can be presented with more general assumptions about the regularity of  
m. Nevertheless, the most interesting case from a practical point of view is when m is a polynomial.  
This theorem gives us a method of constructively checking of orthonormality by computing the 
spectrum of  C. Those calculations can be done on computers. This was already known in the case 
of  self similar filings of  Rn in the work of [5]. For more criteria of  orthogonality of  compactly 
supported scaling functions in R n, see [13]. [ ]  
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