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Abstract—We give a characterization of all (quasi)affine frames inL2(Rn)which
have a (quasi)affine dual in terms of the two simple equations in the Fourier
transform domain. In particular, if the dual frame is the same as the original system,
i.e., it is a tight frame, we obtain the well-known characterization of wavelets.
Although these equations have already been proven under some special conditions
we show that these characterizations are valid without any decay assumptions on
the generators of the affine system. 2000 Academic Press
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1. INTRODUCTION

In this paper we try to unify several concepts that arise in the theory of wavelets.
A classicalorthonormalwavelet is a functionψ on the real line such that

{ψj,k = 2j/2ψ(2j · −k)}j,k∈Z

forms an orthonormal basis ofL2(R). The natural question is whether we can characterize
such functions. It turns out that the necessary and sufficient condition is that‖ψ‖2 = 1,
and the following two equations are satisfied:∑

j∈Z
|ψ̂(2j ξ)|2= 1 for a.e.ξ ∈R

∞∑
j=0

ψ̂(2j ξ)ψ̂(2j (ξ + s))= 0 for a.e.ξ ∈R, s ∈ 2Z+ 1.

There are several directions in which a notion of a wavelet can and has been extended, for
example multiwavelets inRn forming a tight frame or theφ andψ-transforms of Frazier
and Jawerth; see [9, 10].

In this paper we present a unified approach to these various means of analyzing and
reconstructing functions, as well as the fact that translations need not always be performed
before dilations. It is natural to consider what happens if we exchange this order in the
definition of ψj,k . This will lead us to the consideration of quasiaffine systems. Our
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unification of the characterization of all these concepts shows that two equations that
are surprisingly not much different from the ones in the one-dimensional case apply to
the situation in the more general settings. In fact we go beyond the cases just described
by considering dilations that are not necessarily dyadic and translations by elements of
certain general lattices. In order to describe these and also give proper references we need
to establish some notation.

Assume we have a lattice0 (0 = PZn for some nondegeneraten× n matrixP ) and a
dilation matrixA preserving0, i.e., all eigenvaluesλ of A satisfy |λ|> 1, andA0 ⊂ 0.
Let9 be a finite family of functions9 = {ψ1, . . . ,ψL} ⊂ L2(Rn). Theaffine system(resp.
quasiaffine system) generated by9 associated with (A,0) is the collection

X(9)= {ψlj,γ : j ∈ Z, γ ∈ 0, l = 1, . . . ,L}
Xq(9)= {ψ̃lj,γ : j ∈ Z, γ ∈ 0, l = 1, . . . ,L},

where forψ ∈ L2(Rn) we use the convention

ψj,γ (x)=DAj Tγ ψ(x)= |detA|j/2ψ(Ajx − γ ), j ∈ Z, γ ∈ 0
ψ̃j,γ (x)=

{
DAj Tγ ψ(x)= |detA|j/2ψ(Ajx − γ ), j ≥ 0, γ ∈ 0
|detA|j/2TγDAj ψ(x)= |detA|jψ(Aj (x − γ )), j < 0, γ ∈ 0,

whereTγ f (x)= f (x − γ ) is a translation operator by the vectorγ ∈Rn, andDAf (x)=√|detA|f (Ax) is a dilation by the matrix A.

DEFINITION 1.1. X ⊂ L2(Rn) is aBessel familyif there existsB > 0 so that∑
η∈X
|〈f,η〉|2 ≤B‖f ‖2 for f ∈ L2(Rn). (1.1)

If, in addition, there exist 0<A≤B so that

A‖f ‖2≤
∑
η∈X
|〈f,η〉|2 ≤ B‖f ‖2 for f ∈ L2(Rn), (1.2)

X is aframeand it istight if A,B can be chosen so thatA= B. (Quasi)affine systemX(9)
(resp.Xq(9)) is a(quasi)affine frameif (1.2) holds forX =X(9) (X=Xq(9)).

DEFINITION 1.2. Let9 = {ψ1, . . . ,ψL}, 8 = {φ1, . . . , φL} ⊂ L2(Rn) be two finite
families of functions so thatX(9), X(8) are Bessel families. Then8 is called a
(quasi)affine dualof 9 , if (1.3) (resp. (1.4)) holds,

〈f,g〉 =
L∑
l=1

∑
j∈Z

∑
γ∈0
〈f,ψlj,γ 〉〈φlj,γ , g〉 for all f,g ∈ L2(Rn) (1.3)

〈f,g〉 =
L∑
l=1

∑
j∈Z

∑
γ∈0
〈f, ψ̃lj,γ 〉〈φ̃lj,γ , g〉 for all f,g ∈ L2(Rn). (1.4)

Note that by polarization identity for sesquilinear formsS

S(f,g)= 1

4

3∑
k=0

S(f + ikg, f + ikg), (1.5)
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(1.3) (or (1.4)) holds if and only if it holds for allf = g ∈ L2(Rn).

The concepts of affine and quasiaffine frames are closely related. This was observed by
Ron and Shen in [17, 18] under some decay assumptions and proved by Chuiet al. in full
generality in [6].

THEOREM 1.3. Suppose9 ,8⊂ L2(Rn) are finite sets with the same cardinality. Then

(i) X(9) is a Bessel family if and only ifXq(9) is a Bessel family. Furthermore,
their exact upper bounds are equal.

(ii) X(9) is an affine frame if and only ifXq(9) is a quasiaffine frame. Furthermore,
their lower and upper exact bounds are equal.

(iii) 8 is an affine dual of9 if and only if8 is a quasiaffine dual of9 .

Although the implication⇐ of (iii) in Theorem 1.3 is not stated and proved in [6] it
does follow from the techniques developed in their paper.

SinceAPZn ⊂ PZn, P−1AP is a matrix with integer entries andq = |detA| =
|detP−1AP | is the order of the group0/A0; see [22]. Let0∗ be the dual lattice; that
is,

0∗ = {γ ′ ∈Rn :∀γ ∈ 0 〈γ, γ ′〉 ∈ Z} = (P T )−1Zn.

By taking the transpose ofP−1AP we observe thatB = AT is a dilation preserving the
dual lattice:B0∗ ⊂ 0∗. Also letS= 0∗\B0∗. We use the Fourier transformF given by

Fψ(ξ)= ψ̂(ξ)=
∫
Rn
ψ(x)e−2πi〈x,ξ 〉 dx.

The main result of our paper is the characterization of affine dual frames in terms of two
equations, (1.6) and (1.7), in the Fourier transform domain.

THEOREM 1.4. Suppose two affine systemsX(9), X(8) form Bessel families, where
9 = {ψ1, . . . ,ψL}, 8 = {φ1, . . . , φL} ⊂ L2(Rn). Then8 is a (quasi)affine dual of9 if
and only if

L∑
l=1

∑
j∈Z

ψ̂l (Bj ξ)φ̂l(Bj ξ)= |detP | a.e.ξ ∈Rn (1.6)

ts(ξ)≡
L∑
l=1

∞∑
j=0

φ̂l(Bj ξ)ψ̂l (Bj (ξ + s))= 0 a.e.ξ ∈Rn for s ∈ S. (1.7)

This result was obtained by Frazieret al. [8] for dyadic dilationsA= 2Id , even though
they did not use the language of affine dual frames. Ron and Shen [18] and, independently,
Han [13] have obtained the above characterization under some decay assumptions of the
Fourier transform of the generators9 and8. Finally, in the case when8= 9 the above
characterization was established by Calogero in [4]. The proof that we present has elements
similar to all these cited papers. We think our approach is more direct and also avoids
unnecessary assumptions like decay at infinity. In fact, one of the purposes of this work is
to show that the decay assumptions can be eliminated.

Without loss of generality and in order to simplify the proofs we will deal with
(quasi)affine systems associated with dilation matrices preserving the standard latticeZn.
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Indeed, for any (quasi)affine systemX(9) (Xq(9)) associated with (A,0) we consider
the unitary operatorDP given byDPf (x) =√|detP |f (Px). X(DP9) (or Xq(DP9))
as a (quasi)affine system associated with (Ã,Zn) (whereÃ= P−1AP is a dilation matrix
with integer entries) is equivalent toX(9) (orXq(9)); we see this from

X(DP9)=DPX(9), Xq(DP9)=DPXq(9),

which follow from the following identities:

DÃj TkDP =DP [DAj TPk], TkDÃj DP =DP [TPkDAj ], j ∈ Z, k ∈ Zn.

Since the unitary operatorDP preserves the scalar product inL2(Rn) it also preserves
properties like being a Bessel family, a frame, duality of affine systems, etc.

Moreover, Eqs. (1.6) and (1.7) are also invariant under this transformation. LetB̃ =
ÃT = PT B(PT )−1; sinceFDPψ(ξ)= |detP |−1/2Fψ((PT )−1ξ), we have

FDPψ(B̃j ξ̃ )= |detP |−1/2Fψ(Bj ξ)
(1.8)

FDPψ(B̃j (ξ̃ + s̃))= |detP |−1/2Fψ(Bj (ξ + s)),
whereξ̃ ∈ Rn, s̃ ∈ Zn\B̃Zn, andξ = (P T )−1ξ̃ , s = (P T )−1s̃ ∈ 0∗\B0∗. Formulae (1.8)
guarantee that (1.6) and (1.7) hold for the affine systemsX(9), X(8) associated with
(A,0) if and only if they hold forX(DP9), X(DP8) associated with (̃A,Zn).

Theorem 1.4 and other results in this paper could be written in slightly greater generality
involving subspaces ofL2(Rn) of the form

FL2(S)= {f ∈ L2(Rn) : suppf̂ ⊂ S},

where S ⊂ Rn satisfiesBS = S; see [13]. This would inevitably lead to even more
complicated notation, the presence of which is not justified by the only natural example
known to the author, i.e.,FL2(0,∞)=H2(R).

2. PREPARATORY FACTS ABOUT LATTICES AND FRAMES

For the rest of the paper we will assume we have a dilationA with integer entries. Since
A (and, therefore,B =AT ) is a dilation there exist constantsλ > 1 andc > 0 such that

|Bj ξ |> cλj |ξ |, |B−j ξ |< 1/cλ−j |ξ | for j > 0. (2.1)

Throughout this paper we will follow the convention that the support of the functionf is
suppf = {x ∈Rn :f (x) 6= 0} andIn = (−1/2,1/2)n.

LEMMA 2.1. LetC be any nonsingular matrix inRn; then

lim
M→∞

#((−M,M)n ∩CZn)
(2M)n

→ 1

|detC| asM→∞.

Proof. Let δ = diam(CIn). DefineZ0 = {m ∈ Zn :C(In + m) ⊂ (−M,M)n}, Z1 =
{m ∈ Zn :C(In +m)∩ (−M,M)n 6= ∅}. Clearly(−M + δ,M − δ)n ⊂⋃m∈Z0

C(In +m)
and

⋃
m∈Z1

C(In +m)⊂ (−M − δ,M + δ)n modulo sets of measure zero. Hence
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|(−M + δ,M − δ)n| ≤ (detC)#Z0≤ (detC)#((−M,M)n ∩CZn)
≤ (detC)#Z1≤ |(−M − δ,M + δ)n|.

Dividing this inequality by|(−M,M)n| = (2M)n and taking the limit asM →∞ we
obtain the desired conclusion.

LEMMA 2.2.

#((2In)∩BjZn)≤ 2nq−j for j < 0 andq = |detB|. (2.2)

Proof. Note first that (2In + m) ∩ BjZn = (2In) ∩ BjZn since j < 0. For any
k ∈ Z, k ≥ 0 letZ = {m= (m1, . . . ,mn) ∈ Zn : |mi | ≤ k, i = 1, . . . , n}.

#
⋃
m∈Z

(2In + 2m)∩BjZn = #Z · #((2In)∩BjZn)= (2k + 1)n#((2In)∩BjZn).

Since
⋃
m∈Z(2In + 2m)⊂ (−2k− 1,2k+ 1)n then, by Lemma 2.1,

#
⋃
m∈Z(In + 2m)∩BjZn

(4k+ 2)n
= (2k + 1)n#((2In) ∩BjZn)

(4k + 2)n

= 2−n#((2In)∩BjZn)≤ q−j .
LEMMA 2.3. Supppose0< a < b <∞. Then for anyξ ∈Rn

#{j ∈ Z :a < |Bjξ |< b} ≤M, (2.3)

whereM =M(b/a) depends monotonically only onb/a.

Proof. For anyξ 6= 0 let j0 ∈ Z be the smallest integer such that|Bj0ξ | > a. Then
by (2.1)|Bj0+kξ |> cλk|Bj0ξ |> cλka for k ≥ 0, whereλ, c are the same as in (2.1). Let
k0> 0 be the smallest integer such thatcλk0a > b, i.e.,k0= dlogλ(b/(ac))e. Then we have

{j ∈ Z :a < |Bjξ |< b} ⊂ {j0, . . . , j0+ k0− 1},

andM = k0 works. ThereforeM: R+ →N defined byM(x)= dlogλ(x/c)e performs the
job.

LEMMA 2.4. Supposea > 0, g ∈ L∞(Rn), suppg ⊂ {ξ ∈ Rn : |ξ |> a}, andsuppg ⊂
Bj0In + ξ0 for someξ0 ∈Rn andj0 ∈ Z then∑
j∈Z

∑
m∈Zn\{0}

qi |g(Bj ξ)g(Bj (ξ +m))| ≤ 2nqj0M((a + δ)/a)‖g‖2∞1ϒ(ξ) a.e.ξ ∈Rn,
(2.4)

whereδ = diam(Bj0In) andϒ =ϒ(ξ0, j0)=⋃j<j0
B−j (Bj0In + ξ0).

Proof. For simplicity assume‖g‖∞ = 1. If |g(Bj ξ)g(Bj (ξ + m))| 6= 0 for some
ξ ∈ Rn thenB−j (Bj0In + ξ0) ∩ (B−j (Bj0In + ξ0) − m) 6= ∅ ⇔ (In + B−j0ξ0) ∩ (In +
B−j0ξ0 − Bj−j0m) 6= ∅ ⇔ In ∩ (In − Bj−j0m) 6= ∅ ⇔ Bj−j0m ∈ 2In. SinceBj−j0Zn ∩
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2In = {0} for all j − j0 ≥ 0, only the terms withj < j0 may contribute to the sum.
Moreover, by Lemma 2.2

#{m ∈ Z: |g(Bj ξ)g(Bj (ξ +m))| 6= 0} ≤ 2nqj0−j (2.5)

for anyj < j0 andξ ∈Rn.
Clearly we can finda′ ≥ a so that suppg ⊂ {ξ ∈ Rn :a′ < |ξ | < a′ + δ}, and for any

ξ 6= 0 denoteZ = {j ∈ Z :a′ < |Bjξ |< a′ + δ}. Then by (2.3) and (2.5)∑
j<j0

∑
m∈Zn\{0}

qj |g(Bj ξ)g(Bj (ξ +m))|

≤
∑
j∈Z

qj2nqj0−j = 2nqj0#Z ≤ 2nqj0M((a′ + δ)/a′)≤ 2nqj0M((a + δ)/a).

Since only terms withj < j0 contribute to the sum,g(Bj ξ) 6= 0 impliesξ ∈B−j (Bj0In+
ξ0) and only forξ ∈ϒ =⋃j<j0

B−j (Bj0In + ξ0) the sum is nonzero.

For the sake of completness we will prove the following simple lemma.

LEMMA 2.5. SupposeF,G ∈ L2(Rn), andsuppF , suppG are bounded. Then

∑
k∈Zn

F̂ (k)Ĝ(k)=
∫
Rn

( ∑
m∈Zn

F (ξ +m)
)
G(ξ) dξ.

Proof. ConsiderZn periodization ofF andG:

F̃ (ξ)=
∑
m∈Zn

F (ξ +m), G̃(ξ)=
∑
m∈Zn

G(ξ +m).

Clearly F̃ , G̃ belong toL2(In), because only a finite number of terms contributes to the
above sum. Since

ˆ̃
F (k)=

∫
In

F̃ (ξ)e−2πi〈k,ξ 〉 dξ = F̂ (k), for k ∈ Zn,

hence by Plancherel formula∫
Rn
F̃ (ξ)G(ξ) dξ =

∫
In

F̃ (ξ)G̃(ξ) dξ =
∑
k∈Zn

F̂ (k)Ĝ(k).

To investigate duality of frames we need two lemmas (see [8]).

LEMMA 2.6. Let {ei}i∈N be a seguence of vectors in Hilbert spaceH. If
∑∞
i=1 ei

converges unconditionally inH, then

∞∑
i=1

‖ei‖2<∞.

LEMMA 2.7. Suppose{ei}i∈N, {fi}i∈N are Bessel sequences inH, i.e., there isC > 0∑
i∈N
|〈h, ei〉|2 ≤ C‖h‖2

∑
i∈N
|〈h,fi〉|2 ≤C‖h‖2 for all h ∈H. (2.6)
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Then the following are equivalent:

‖h‖2=
∑
i∈N
〈h, ei〉〈fi , h〉 for all h ∈D, whereD is dense inH (2.7)

‖h‖2=
∑
i∈N
〈h, ei〉〈fi , h〉 for all h ∈H (2.8)

h=
∑
i∈N
〈h, ei〉fi =

∑
i∈N
〈h,fi〉ei unconditionally inH for all h ∈H. (2.9)

3. GENERALIZED DUALITY OF AFFINE SYSTEMS

In this section we prove a general result about some kind of weak duality between
two affine systemsX(9), X(8) without even assuming that these systems are Bessel
families. This is a generalization of the result by Frazieret al. originally proved for dilations
A = 2Id ; see Theorem 3 in [8]. First we start with the lemma which provides necessary
condition for familyX({ψ}) to be a Bessel family. We will make extensive use of

D= {f ∈L2(Rn) : f̂ ∈L∞(Rn),suppf̂ ⊂K for some compactK ⊂Rn\{0}},

which is a dense subspace ofL2(Rn).

LEMMA 3.1. Supposeψ ∈L2(Rn), f ∈D, andJ ∈ Z. Then∑
j≤J

∑
k∈Zn
|〈f,ψj,k〉|2<∞.

Moreover,∑
j∈Z
|ψ(Bj ξ)|2 ∈ L1

loc(R
n\{0})⇔

∑
j∈Zn

∑
k∈Zn
|〈f,ψj,k〉|2<∞ for all f ∈D. (3.1)

Proof. Note that

ψ̂j,k(ξ)= q−j/2ψ(B−j ξ)e−2πi〈k,B−j ξ 〉, q = |detB|;

therefore,

〈f,ψj,k〉 = 〈f̂ , ψ̂j,k〉 = q−j/2
∫
Rn
f̂ (ξ)ψ̂(B−j ξ)e2πi〈k,B−j ξ 〉 dξ

= q−j/2
∫
Rn
f̂ (Bj ξ)ψ̂(ξ)e2πi〈k,ξ 〉qj dξ = qj/2

∫
Rn
f̂ (Bj ξ)ψ̂(ξ)e2πi〈k,ξ 〉 dξ.

(3.2)

By (3.2) we can write the series as

I =
∑
j≤J

∑
k∈Zn
|〈f,ψj,k〉|2=

∑
j≤J

∑
k∈Zn

qj
∣∣∣∣ ∫
Rn
f̂ (Bj ξ)ψ̂(ξ)e2πi〈k,ξ 〉 dξ

∣∣∣∣2. (3.3)

For fixedj ∈ Z letF(ξ)≡ f̂ (Bj ξ)ψ̂(ξ); then, using Lemma 2.5 applied whenF =G, we
have
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∑
k∈Zn

∣∣∣∣ ∫
Rn
f̂ (Bj ξ)ψ̂(ξ)e2πi〈k,ξ 〉 dξ

∣∣∣∣2
=
∫
Rn
f̂ (Bj ξ)ψ̂(ξ)

[∑
m∈Zn

f̂ (Bj (ξ +m))ψ̂(ξ +m)
]
dξ;

hence,

I =
∑
j≤J

qj
∫
Rn
|f̂ (Bj ξ)|2|ψ̂(ξ)|2 dξ

+
∑
j≤J

qj
∫
Rn
f̂ (Bj ξ)ψ̂(ξ)

[ ∑
m∈Zn\{0}

f̂ (Bj (ξ +m))ψ̂(ξ +m)
]
dξ. (3.4)

Since

2|ψ̂(ξ)ψ̂(ξ +m)| ≤ |ψ̂(ξ)|2+ |ψ̂(ξ +m)|2,
the second sum is absolutely convergent inL1(Rn) and, thus, absolutely summable for a.e.
ξ even if we extend the sumation over allj ∈ Z; i.e.,∫

Rn

∑
j∈Z

∑
m∈Zn\{0}

qj |f̂ (Bj ξ)ψ̂(ξ)||f̂ (Bj (ξ +m))ψ̂(ξ +m)|dξ

≤ 1

2

∫
Rn

∑
j∈Z

∑
m∈Zn\{0}

(qj |f̂ (Bj ξ)f̂ (Bj (ξ +m))|

+ qj |f̂ (Bj (ξ −m))f̂ (Bj ξ)|)ψ̂(ξ)|2dξ

=
∫
Rn
|ψ̂(ξ)|2

∑
j∈Z

∑
m∈Zn\{0}

qj |f̂ (Bj ξ)f̂ (Bj (ξ +m))|dξ

≤ C
L∑
l=1

∫
Rn
|ψ̂(ξ)|2dξ <∞, (3.5)

whereC is the constant appearing in Lemma 2.4 depending on the size and the location
of suppf̂ .

The first sum apearing in (3.4) can be estimated crudely by∑
j≤J

qj
∫
Rn
|f̂ (Bj ξ)|2|ψ̂(ξ)|2dξ ≤ ‖f̂ ‖2∞

∑
j≤J

qj
∫
Rn
|ψ̂(ξ)|2 dξ

= qJ+1

q − 1
‖f̂ ‖2∞‖ψ‖2. (3.6)

To show the second part of the lemma, note that we have∑
j∈Zn

∑
k∈Zn
|〈f,ψj,k〉|2=

∑
j∈Z

qj
∫
Rn
|f̂ (Bj ξ)|2|ψ̂(ξ)|2 dξ

+
∑
j∈Z

qj
∫
Rn
f̂ (Bj ξ)ψ̂(ξ)

[ ∑
m∈Zn\{0}

f̂ (Bj (ξ +m))ψ̂(ξ +m)
]
dξ,

where the second expression in this decomposition is always finite by (3.5).
The implication “⇒” follows from
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∑
j∈Zn

qj
∫
Rn
|f̂ (Bj ξ)|2|ψ̂(ξ)|2dξ =

∑
j∈Zn

∫
Rn
|f̂ (ξ)|2|ψ̂(B−j ξ)|2dξ

≤ ‖f̂ ‖2∞
∫

suppf̂

∑
j∈Zn
|ψ̂(B−j ξ)|2dξ <∞,

whereas the converse “⇐” is the consequence of applying the above tof̂ = 1K for compact
K ⊂Rn\{0}, since we have equality (instead of inequality) in the above formula.

THEOREM 3.2. Suppose9 = {ψ1, . . . ,ψL},8= {φ1, . . . , φL} ⊂ L2(Rn). Then

‖f ‖2= lim
J→∞

L∑
l=1

∑
j≤J

∑
k∈Zn
〈f,ψlj,k〉〈φlj,k , f 〉 for allf ∈D (3.7)

iff

lim
J→∞

L∑
l=1

∑
j≥−J

ψ̂l (Bj ξ)φ̂l (Bj ξ)= 1 weakly inL1(K), ∀compactK ⊂Rn\{0}
(3.8)

ts(ξ)≡
L∑
l=1

∞∑
j=0

φ̂l(Bj ξ)ψ̂l (Bj (ξ + s))= 0 for a.e.ξ ∈Rn for s ∈ S= Zn\BZn.
(3.9)

Before we start the proof let us see that statements (3.7)–(3.9) are meaningful by
showing that all three series are absolutely convergent. Since

2|〈f,ψlj,k〉〈φlj,k, f 〉| ≤ |〈f,ψlj,k〉|2+ |〈φlj,k, f 〉|2

the series in (3.7) is summable by Lemma 3.1. Moreover, by the polarization identity (1.5),
condition (3.7) is equivalent to

〈f,g〉 = lim
J→∞

L∑
l=1

∑
j≤J

∑
k∈Zn
〈f,ψlj,k〉〈φlj,k, g〉 for all f,g ∈D. (3.10)

Note that for anyψ ∈L2(Rn), ands ∈Rn,∫
Rn

∑
j≥−J

|ψ̂(Bj (ξ + s))|2dξ =
∫
Rn

∑
−j≤J

q−j |ψ̂(ξ +Bj s)|2dξ

= qJ+1

q − 1

∫
Rn
|ψ̂(ξ)|2 dξ <∞;

hence, ∑
j≥−J

|ψ̂(Bj (ξ + s))|2<∞ for a.e.ξ. (3.11)

Using the above whens = 0 yields

2
L∑
l=1

∑
j≥−J

|ψ̂l (Bj ξ)φ̂l(Bj ξ)| ≤
L∑
l=1

∑
j≥−J

|ψ̂l (Bj ξ)|2+ |φ̂l(Bj ξ)|2<∞ for a.e.ξ.
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And, similarly, (3.11) applied whenJ = 0 implies

2
L∑
l=1

∞∑
j=0

|φ̂l(Bj ξ)ψ̂l (Bj (ξ + s))|

≤
L∑
l=1

∞∑
j=0

|φ̂l(Bj ξ)|2+ |ψ̂l (Bj (ξ + s))|2<∞ for a.e.ξ.

Proof (3.8)and(3.9)⇒ (3.7). Supposef,g ∈D. By (3.2)

〈f,ψlj,k〉〈φlj,k, g〉 = qj
∫
Rn
f̂ (Bj ξ)ψ̂l (ξ)e2πi〈k,ξ 〉 dξ

∫
Rn
ĝ(Bj ξ)φ̂l(ξ)e−2πi〈k,ξ 〉 dξ.

For fixedl = 1, . . . ,L, andj ∈ Z, let F(ξ) ≡ f̂ (Bj ξ)ψ̂l (ξ), G(ξ)≡ ĝ(Bj ξ)φ̂l(ξ); then,
using the above and Lemma 2.5, we have

∑
k∈Zn
〈f,ψlj,k〉〈φlj,k, g〉 =

∫
Rn

[∑
m∈Zn

f̂ (Bj (ξ +m))ψ̂l(ξ +m)
]
ĝ(Bj ξ)φ̂l(ξ) dξ. (3.12)

Hence,

I = I (J )=
L∑
l=1

∑
j≤J

∑
k∈Zn
〈f,ψlj,k〉〈φlj,k, g〉 = I0+ I1, (3.13)

where
I0= I0(J ) =

L∑
l=1

∑
j≤J

qj
∫
Rn
f̂ (Bj ξ)ĝ(Bj ξ)ψ̂l (ξ)φ̂l(ξ) dξ

I1= I1(J ) =
L∑
l=1

∑
j≤J

qj
∫
Rn
ĝ(Bj ξ)φ̂l(ξ)

[ ∑
m∈Zn\{0}

f̂ (Bj (ξ +m))ψ̂l(ξ +m)
]
dξ

by splitting the sum (3.12) into terms corresponding tom = 0 andm 6= 0. We can
interchange the summation and integration inI0 and I1 since for h ∈ D, defined by
ĥ=max(|f̂ |, |ĝ|), we have

L∑
l=1

∑
j≤J

qj
∫
Rn
|ĥ(Bj ξ)|2|ψ̂l (ξ)φ̂l(ξ)|dξ <∞

L∑
l=1

∑
j∈Z

qj
∫
Rn
|ĥ(Bj ξ)φ̂l(ξ)|

[ ∑
m∈Zn\{0}

|ĥ(Bj (ξ +m))ψ̂l(ξ +m)|
]
dξ <∞.

(3.14)

Indeed, using 2|ψ̂l(ξ)φ̂l(ξ)| ≤ |ψ̂l(ξ)|2 + |φ̂l(ξ)|2 and, similarly, 2|φ̂l(ξ)ψ̂l (ξ + m)| ≤
|φ̂l(ξ)|2+ |ψ̂l(ξ +m)|2 the estimate (3.14) follows from estimates (3.5) and (3.6).

Therefore, we can manipulate the sums

I1=
L∑
l=1

∑
j≤J

qj
∫
Rn
ĝ(Bj ξ)φ̂l(ξ)

[ ∑
m∈Zn\{0}

f̂ (Bj (ξ +m))ψ̂l(ξ +m)
]
dξ
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=
L∑
l=1

∑
j≤J

∫
Rn
ĝ(ξ)φ̂l(B−j ξ)

[ ∑
m∈Zn\{0}

f̂ (ξ +Bjm))ψ̂l (B−j ξ +m)
]
dξ

=
L∑
l=1

∑
j≤J

∫
Rn
ĝ(ξ)φ̂l(B−j ξ)

∑
r≥0

∑
s∈S

f̂ (ξ +BjBrs))ψ̂l (B−j ξ +Brs)dξ

=
∫
Rn
ĝ(ξ)

L∑
l=1

∑
s∈S

∑
r≥0

∑
j≤J

ψ̂l (Br(B−r−j ξ))f̂ (ξ +Bj+r s)ψ̂l (Br(B−r−j ξ + s)) dξ

=
∫
Rn
ĝ(ξ)

L∑
l=1

∑
s∈S

∑
r≥0

∑
p≤J+r

φ̂l(Br(B−pξ))ψ̂l (Br(B−pξ + s))f̂ (ξ +Bps) dξ

=
∫
Rn
ĝ(ξ)

L∑
l=1

∑
s∈S

∑
r≥0

∑
p∈Z

φ̂l(Br(B−pξ))ψ̂l (Br(B−pξ + s))f̂ (ξ +Bps) dξ,

for J sufficiently large so that̂g(ξ)f̂ (ξ + Bps) = 0 for all p ≥ J , s ∈ S, i.e., (suppf̂ −
supĝ) ∩BpS= ∅ for all p ≥ J . If b = sup{|ξ | : ξ ∈ (suppf̂ − suppĝ)}; thus, by (2.1) any
J ≥ dlogλ(b/c)e works. Therefore, we have for anyf,g ∈D and sufficiently largeJ ,

I (J )= I0(J )+I1(J ), where


I0(J )=

L∑
l=1

∑
j≥−J

∫
Rn
f̂ (ξ)ĝ(ξ)ψ̂l (Bj ξ)φ̂l(Bj ξ) dξ

I1(J )=
∫
Rn
ĝ(ξ)

∑
p∈Z

∑
s∈S

f̂ (ξ +Bps)ts(B−pξ) dξ.

(3.15)
Note that the formula forI0 follows by a simple change of variables, andI1 does not
depend onJ . Equation (3.15), combined with assumptions (3.8) and (3.9), immediately
implies limJ→∞ I (J )= limJ→∞ I0(J )+ I1(J )= 〈f̂ , ĝ〉 = 〈f,g〉.

Proof (3.7)⇒ (3.9). Fix s0 ∈ S andd > 0 and define

�(d)= {ξ ∈Rn : |ξ |> d, |ξ + s0|> d}.

For anyξ0 ∈�(d) andj ≥ 0 define

f̂j (ξ)= |B−j In|−1/2 argts0(ξ)1B−j In+ξ0(ξ)

ĝj (ξ)= |B−j In|−1/21B−j In+ξ0+s0(ξ),
where, for the purposes of the proof, we define, forz ∈C,

argz=
{
z/|z| z 6= 0
1 z= 0.

By separating the term corresponding top = 0 ands = s0 in formula (3.15) forI1(J )
f = fj , g = gj , from the rest, which we denote byR(j), we have

I1(J )= 1

|B−j In|
∫
B−j In+ξ0

|ts0(ξ)|dξ +
∫
Rn
ĝj (ξ)

∑
p∈Z,s∈S

(p,s) 6=(0,s0)

f̂j (ξ +Bps)ts(B−pξ) dξ.

(3.16)
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Indeed, if|ĝj (ξ)f̂j (ξ + Bps)| 6= 0 for someξ ∈ Rn then(B−j In + ξ0) ∩ (B−j In + ξ0+
s0− Bps) 6= ∅ soB−j (2In) ∩ (s0− BpS) 6= ∅ which means 2In ∩ (Bj s0− Bp+jS) 6= ∅.
If p+ j ≥ 0 thenBj s0−Bp+jS⊂ Zn, and since 2In ∩Zn = {0}, s0 /∈BpS for p 6= 0, the

only nonzero term happens forp = 0 ands = s0. Therefore, the other nonzero terms can

contribute only ifp+ j < 0, so we can restrict the sum in (3.16) top <−j .

Using the estimate

2|ts(ξ)| ≤
L∑
l=1

∑
m≥0

|φ̂l(Bmξ)|2+ |ψ̂l (Bm(ξ + s))|2≤ T (ξ)+ T (ξ + s),

whereT (ξ)≡∑L
l=1

∑
m≥0 |φ̂l(Bmξ)|2+ |ψ̂l(Bmξ)|2 ∈ L1, we have

|R(j)| ≤ 1

2

∫
Rn

∑
p<−j

∑
s∈S

qp|ĝj (Bpξ)||f̂j (Bp(ξ + s))|T (ξ) dξ

+ 1

2

∫
Rn

∑
p<−j

∑
s∈S

qp|ĝj (Bpξ)||f̂j (Bp(ξ + s))|T (ξ + s) dξ

= 1

2

∫
Rn

∑
p<−j

∑
s∈S

qp|ĝj (Bpξ)||f̂j (Bp(ξ + s))|T (ξ) dξ

+ 1

2

∫
Rn

∑
p<−j

∑
s∈S

qp|ĝj (Bp(ξ − s))||f̂j (Bpξ)|T (ξ) dξ. (3.17)

Using |f̂j (ξ)| = |ĝj (ξ − s0)| we have

∑
p<−j

∑
s∈S

qp|ĝj (Bpξ)||f̂j (Bp(ξ + s))|

=
∑
p<−j

∑
s∈S

qp|ĝj (Bpξ)||ĝj (Bp(ξ + s)− s0)|

=
∑
p<−j

∑
s∈S

qp|ĝj (Bpξ)||ĝj (Bp(ξ + s −B−ps0)|

≤
∑
p<−j

∑
m∈Zn\{0}

qp|ĝj (Bpξ)||ĝj (Bp(ξ +m)|

≤ 2nqjM((a + δ)/a)‖ĝj‖2∞1ϒ(ξ)= 2nM((a + δ)/a)1ϒ(ξ), (3.18)

by Lemma 2.4, assuminga > 0, wherea = a(j)= inf{|ξ | : ξ ∈ B−j In + ξ0}, δ = δ(j)=
diam(B−j In), ϒ =ϒ(j)=⋃p<−j B−p(B−j In + ξ0). Similarly,
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∑
p<−j

∑
s∈S

qp|ĝj (Bp(ξ − s))||f̂j (Bp(ξ)|

≤
∑
p<−j

∑
m∈Zn\{0}

qp|f̂j (Bpξ)||f̂j (Bp(ξ +m)|

≤ 2nqjM((b+ δ)/b)‖f̂j‖2∞1ϒ ′(ξ)= 2nM((b+ δ)/b)1ϒ ′(ξ) (3.19)

by Lemma 2.4, assumingb > 0, whereb = b(j) = inf{|ξ | : ξ ∈ B−j In + ξ0 + s0}, ϒ ′ =
ϒ ′(j)=⋃p<−j B−p(B−j In + ξ0+ s0).

For anyε > 0, there existsr > 0, so that
∫
|ξ |>r T (ξ) dξ < ε. By (2.1) we can findj0> 0

so thatδ(j) < d/2, and consequentlya(j) > d/2, b(j) > d/2 for j > j0. Furthermore,
by (2.1) we can choose (a possibly larger)j0 so that

inf{|ξ | : ξ ∈ϒ(j)} = inf

{
|ξ | : ξ ∈

⋃
p>j

Bp(B−j In + ξ0)
}
> cλjd/2> r

inf{|ξ | : ξ ∈ϒ ′(j)} = inf

{
|ξ | : ξ ∈

⋃
p>j

Bp(B−j In + ξ0+ s0)
}
> cλjd/2> r

for all j > j0.

Hence, by placing (3.18) and (3.19) into (3.17) we have

|R(j)| ≤ 2n−1M(2)
∫
ϒ(j)

T (ξ) dξ + 2n−1
∫
ϒ ′(j)

T (ξ) dξ

≤ 2nM(2)
∫
|ξ |>r

T (ξ) dξ < 2nM(2)ε (3.20)

for j > j0 independent of the choice ofξ0 ∈ �(d). Since the supports off̂j and
ĝj are disjoint I0(J ) = 0; moreover, (3.7) (and thus (3.10)) implies 0= 〈fj , gj 〉 =
limJ→∞ I (J )= limJ→∞ I1(J )= I1.

Sinceε > 0 was arbitrary, by (3.16) and (3.20)

lim
j→∞ sup

ξ0∈�(d)
1

|B−j In|
∫
B−j In+ξ0

|ts0(ξ)|dξ = 0. (3.21)

Consider any ballB(r) with radius r > 0 such thatB(r) ⊂ �(2d). Let Z =
{B−jm :B−j (In +m)∩B(r) 6= ∅,m ∈ Zn}. If j is sufficiently large then diam(B−j In) <
min(d, r), so

Z̃ =
⋃
ξ0∈Z

(B−j In + ξ0)⊂�(d)∩B(2r).

Hence, ∫
B(r)

|ts0(ξ)|dξ ≤
∫
Z̃

|ts0(ξ)|dξ ≤
∑
ξ0∈Z

∫
B−j In+ξ0

|ts0(ξ)|dξ

≤
∑
ξ0∈Z
|B−j In + ξ0|ε = |Z̃|ε = 2n|B(r)|ε

for sufficiently largej = j (ε) by (3.21). Sinceε > 0 is arbitrary
∫
B(r) |ts0(ξ)|dξ = 0

for any ballB(r) ⊂ �(2d). Therefore,
∫
�(2d) |ts0(ξ)|dξ = 0 and sinced > 0 is arbitrary∫

Rn |ts0(ξ)|dξ = 0 which impliests0(ξ)= 0 for a.e.ξ ∈Rn, s0 ∈ S.
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Proof (3.7)⇒ (3.8). Equation (3.8) follows easily from (3.9) and (3.15) since any

functionh ∈L∞(K) can be represented ash= f̂ ĝ for somef,g ∈D.

EXAMPLE. We present an example for which we cannot replace the limit in (3.7) by the
sum over allj ∈ Z simply because the series diverges absolutely. For simplicity let us work
in R, the dilationA = 2 (multiplication by 2). LetAj = (2−j−1,2−j ) for j ∈ Z. Define
ψ,φ ∈L2(R) by

ψ̂(ξ)= 1A1(|ξ |)+
∞∑
l=1

1A2l (|ξ |), φ̂(ξ)= 1A1(|ξ |)+
∞∑
l=1

1A2l+1(|ξ |).

Sinceψ̂(ξ)φ̂(ξ)= 1A1(|ξ |) we have∑
j∈Z

ψ̂(2j ξ)φ̂(2j ξ)=
∑
j∈Z

1A1(2
j |ξ |)=

∑
j∈Z

12−jA1
(|ξ |)= 1 for a.e.ξ ∈R.

Since supp̂ψ,suppφ̂ ⊂ (−1/2,1/2)

suppψ̂(2j ·)⊂ (−2−j−1,2−j−1), suppφ̂(2j (· + s))⊂ (−2−j−1,2−j−1)− s;

hence, forj ≥ 0, s ∈ S = Z\(2Z) the supports of the above functions are disjoint and
ts (ξ)≡ 0. Therefore, by Theorem 3.2 we have

‖f ‖2= lim
J→∞

∑
j≤J

∑
k∈Z
〈f,ψj,k〉〈φj,k, f 〉 for all f ∈D.

Takef ∈D given byf̂ = 1(1,4). By a simple calculation

|〈f,ψj,k〉| ≥ 2−j/2−1, |〈f,φj,k〉| ≥ 2−j/2−1 for j ≥ 5, |k| ≤ 2j−5.

Therefore the above sum over allj ∈ Z is not absolutely convergent. This is not surprising
because, in the light of Lemma 3.1, we cannot expect, in general, anything better if∑
j∈Z |ψ̂(2j ξ)|2=∞,

∑
j∈Z |φ̂(2j ξ)|2=∞.

The next corollary is a positive step in this direction.

COROLLARY 3.3. Suppose9 = {ψ1, . . . ,ψL},8= {φ1, . . . , φL} ⊂ L2(Rn) satisfy∑
j∈Z
|ψ̂l (Bj ξ)|2,

∑
j∈Z
|φ̂l(Bj ξ)|2 ∈ L1

loc(R
n\{0}) for l = 1, . . . ,L. (3.22)

Then

‖f ‖2=
L∑
l=1

∑
j∈Z

∑
k∈Zn
〈f,ψlj,k〉〈φlj,k, f 〉 for all f ∈D (3.23)

if and only if

L∑
l=1

∑
j∈Z

ψ̂l(Bj ξ)φ̂l(Bj ξ)= 1 a.e.ξ ∈Rn (3.24)
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ts (ξ)≡
L∑
l=1

∞∑
j=0

φ̂l(Bj ξ)ψ̂l (Bj (ξ + s))= 0 a.e.ξ ∈Rn for s ∈ S= Zn\BZn. (3.25)

Proof. By Lemma 3.1 and (3.22) the series in (3.23) is absolutely convergent. Also
by (3.22) the series in (3.24) converges absolutely inL1

loc(R
n\{0}) and, therefore, is

absolutely convergent for a.e.ξ . Therefore, under the hypothesis (3.22), (3.8)⇔ (3.23)
and (3.9)⇔ (3.24). Hence, the corollary follows from Theorem 3.2.

4. CHARACTERIZATION OF (QUASI)AFFINE DUAL SYSTEMS

In this section we prove the characterization announced in Theorem 1.4.

THEOREM 4.1. Suppose9 = {ψ1, . . . ,ψL}, 8 = {φ1, . . . , φL} ⊂ L2(Rn). Then the
following are equivalent:

(i) 8 is an affine dual of9 .
(ii) 8 is a quasiaffine dual of9 .
(iii) The series in(4.1)converges unconditionally inL2(Rn):

f =
L∑
l=1

∑
j∈Z

∑
k∈Zn
〈f,ψlj,k〉φlj,k =

L∑
l=1

∑
j∈Z

∑
k∈Zn
〈f,φlj,k〉ψlj,k for all f ∈L2(Rn). (4.1)

(iv) The series in(4.2)converges unconditionally inL2(Rn):

f =
L∑
l=1

∑
j∈Z

∑
k∈Zn
〈f, ψ̃lj,k〉φ̃lj,k =

L∑
l=1

∑
j∈Z

∑
k∈Zn
〈f, φ̃lj,k〉ψ̃lj,k for all f ∈L2(Rn). (4.2)

(v) X(9), X(8) are Bessel families, and(3.24)and(3.25)hold.

Proof. First note that if for somel = 1, . . . ,L, φl or ψl is the zero function then each
of the properties (i)–(v) holds for9 ,8 if and only if the corresponding property holds for
9\{ψl}, 8\{φl}. So without loss of generality we can assume that all functions in9 and
8 are nonzero.

(i) ⇒ (ii) was already proved in [6]. To show (ii)⇒ (i) take anyf ∈ L2(Rn) with
compact support. By Lemma 4 in [6]∑
j<0

∑
k∈Zn
|〈DNf, ψ̃lj,k〉〈φ̃lj,k,DNf 〉| ≤

1

2

∑
j<0

∑
k∈Zn
|〈DNf, ψ̃lj,k〉|2+ |〈φ̃lj,k,DNf 〉|2→ 0

asN→∞,
for l = 1, . . . ,L, whereDf (x)= |detA|1/2f (Ax). Hence by (1.4)

I (N)=
L∑
l=1

∑
j≥0

∑
k∈Zn
〈DNf, ψ̃lj,k〉〈φ̃lj,k ,DNf 〉→ ‖DNf ‖2= ‖f ‖2 asN→∞.

But, on the other hand,

I (N)=
L∑
l=1

∑
j≥0

∑
k∈Zn
〈DNf,ψlj,k〉〈φlj,k,DNf 〉 =

L∑
l=1

∑
j≥−N

∑
k∈Zn
〈DNf,ψlj,k〉〈φlj,k ,DNf 〉,
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which yields (1.3) forf ∈ L2(Rn) with compact support. By invoking Lemma 2.7 we
obtain (i).

Assume either (iii) or (iv). Equations (4.1) or (4.2) and Lemma 2.6 imply

∞>

L∑
l=1

∑
j≥0

∑
k∈Zn
|〈f,ψlj,k〉|2‖φlj,k‖2≥ inf

l=1,...,L
‖φl‖2

L∑
l=1

∑
j≥0

∑
k∈Zn
|〈f,ψlj,k〉|2.

Therefore the mappingT : L2(Rn)→ l2(N×Zn × {1, . . . ,L})

Tf = {〈f,ψlj,k〉}l=1,...,L
j∈N,k∈Zn for f ∈ L2(Rn)

is well defined. It is clear that the graph ofT is closed and thereforeT is bounded; i.e.,
there isC > 0 so that

L∑
l=1

∑
j∈N

∑
k∈Zn
|〈f,ψlj,k〉|2 ≤ C‖f ‖2 for f ∈ L2(Rn).

This implies thatX(9) is the Bessel family. Indeed, for anyl = 1, . . . ,L, andN > 0∑
j∈Z

∑
k∈Zn
|〈f,ψlj,k〉|2= lim

N→∞
∑
j≥−N

∑
k∈Zn
|〈f,ψlj,k〉|2

= lim
N→∞

∑
j≥0

∑
k∈Zn
|〈DNf,ψlj,k〉|2≤ C‖f ‖2.

By interchanging the roles ofφl andψl we obtainX(8) is a Bessel family; hence by
Theorem 1.3Xq(9),Xq(8) are Bessel. This shows (iii)⇔ (i) and (iv)⇔ (ii) by virtue of
Lemma 2.7.

Finally assume (i). SinceX(9), X(8) are Bessel, the condition (3.22) is satisfied by
Lemma 3.1; hence we can apply Corollary 3.3 to conclude (v). Conversely, again by
Corollary 3.3 (v) implies (3.23) and, by Lemma 2.7, (i) follows.

In the special case when8 = 9 = {ψ1, . . . ,ψL} we obtain the characterization of
wavelets proved by Calogero in [4]. This result in dimension 1 and for dilationA = 2
was first proved by [11] and independently by [21]; see also [14].

THEOREM 4.2. Suppose9 = {ψ1, . . . ,ψL} ⊂ L2(Rn), then

‖f ‖2=
L∑
l=1

∑
j∈Z

∑
k∈Zn
|〈f,ψlj,k〉|2 for all f ∈ L2(Rn) (4.3)

iff

L∑
l=1

∑
j∈Z
|ψ̂l (Bj ξ)|2= 1 a.e.ξ ∈Rn (4.4)

ts(ξ)≡
L∑
l=1

∞∑
j=0

ψ̂l (Bj ξ)ψ̂l (Bj (ξ + s))= 0 a.e.ξ ∈Rn for s ∈ S= Zn\BZn. (4.5)
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In particular,X(9) is an orthonormal basis ofL2(Rn) if and only if(4.4), (4.5)hold and
‖ψl‖ = 1 for l = 1, . . . ,L.

Proof. By Lemma 3.1 (4.3) implies that∑
j∈Z
|ψ̂l (Bj ξ)|2 ∈ L1

loc(R
n\{0}) for l = 1, . . . ,L,

so we can apply Corollary 3.3 with9 =8= {ψ1, . . . ,ψL} ⊂ L2(Rn)) to obtain (4.4) and
(4.5). Conversely, assume (4.4) and (4.5); then by the same corollary we have

‖f ‖2=
L∑
l=1

∑
j∈Z

∑
k∈Zn
|〈f,ψlj,k〉|2 for all f ∈D.

By the well-known result about abstract tight frames from Chapter 7 of [14] we have
the above for allf ∈ L2(Rn). Furthermore,X(9) is an orthonormal basis ofL2(Rn) if
‖ψl‖ ≥ 1 for l = 1, . . . ,L.

5. FINAL REMARKS

It is relatively easy to construct an affine tight frame for an arbitrary dilation. Here we
present a simple construction of such a frame which is generated by a single functionψ

which is in the Schwartz class and̂ψ isC∞ with compact support.

EXAMPLE. For 0< a < (4‖B‖)−1 considerη: Rn→ R+ = {x ∈ R :x ≥ 0} of class
C∞ such that

suppη= {ξ ∈Rn :a < |ξ |< 2a‖B‖}.
It is not hard to give an explicit example of such function. Since the set{j ∈ Z :a <
‖Bj ξ‖ < 2‖B‖a} has at least one element for allξ ∈ Rn\{0} we conclude that̃η(ξ) =∑
j∈Z η(Bj ξ) > 0 for all ξ 6= 0 andη̃ isC∞ onRn\{0}.
Defineψ ∈ L2(Rn) by ψ̂(ξ)=√η(ξ)/η̃(ξ). Clearly∑

j∈Z
|ψ̂(Bj ξ)|2=

∑
j∈Z

η(Bj ξ)/η̃(Bj ξ)=
∑
j∈Z

η(Bj ξ)/η̃(ξ)= 1.

To guarantee

ψ̂(Bj ξ)ψ̂(Bj (ξ + s))= 0 for all ξ ∈Rn, j ≥ 0, s ∈ S

we have must haveB−j suppη ∩ (B−j suppη − s) = ∅, so suppη ∩ (suppη − Bjs) = ∅;
that isBj s /∈ (suppη − suppη) ⊂ {ξ ∈ Rn : |ξ | < 4a‖B‖}, which is true sinces ∈ S, and
j ≥ 0. Therefore (4.4) and (4.5) hold and by Theorem 4.2{ψj,k}j∈Z,k∈Zn forms a tight
frame with constant 1 inL2(Rn). Note that this frame is not an orthogonal basis since
‖ψ‖< 1. A different approach of constructing tight frames having an MRA-like structure
is presented in [2].

The above example yields a function from the Schwartz class with compact support
in the Fourier domain generating a tight frame. It is less obvious how to find smooth
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generators of tight frames with compact support in the direct space. In the recent paper [12]
Gröchenig and Ron have shown how to construct (for arbitrary dilationA) tight frames
X(9) with functions9 of classCr with compact support for anyr < ∞. In their
construction the number of functions in9 grows withr—the level of desired smoothness.

Not much is known about the existence of “nice” orthogonal wavelets in higher
dimensions. In [7] Daiet al. have shown the existence of orthogonal basisX({ψ})
generated by a single functionψ ∈ L2(Rn); see also [19]. Even thoughψ itself is smooth
it decays slowly at infinity sincêψ is the characteristic function of some set. Strichartz
presented a method of obtainingr-regular wavelets9 = {ψ1, . . . ,ψq−1}, q = |detA| for
dilations which admit Haar-type basis; see [20]. Since not all dilations have this property
(see [15, 16]) one needs-special argument to prove the existence ofr-regular wavelets
for arbitrary dilations; see [3]. Finally, for some specific dilations inR2 Belogay and
Wang in [1] constructed nonseparableCr wavelets with compact support the size of which
depends onr.
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