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Using the range function approach to shift invariant spaces in L2(Rn) we give a
simple characterization of frames and Riesz families generated by shifts of a coun-
table set of generators in terms of their behavior on subspaces of l 2(Zn). This in
turn gives a simplified approach to the analysis of frames and Riesz families done
by Gramians and dual Gramians. We prove a decomposition of a shift invariant
space into the orthogonal sum of spaces each of which is generated by a quasi
orthogonal generator. As an application of this fact we characterize shift preserving
operators in terms of range operators and prove some facts about the dimension
function. � 2000 Academic Press
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1. INTRODUCTION

The aim of this paper is to investigate the structure of shift invariant
spaces in L2(Rn) under the action of some lattice 1=PZn, where P is a
nonsingular n by n real matrix. Without loss of generality, and to simplify
the proofs, we will work only with the standard lattice Zn. The results
about general lattices follow from the corresponding Zn results by standard
arguments.

In the introduction we present the necessary definitions and the proof of
the characterization of shift invariant spaces in terms of the range function.
This result is perhaps not widely known even though it plays the central
role in the L2 theory of shift invariant spaces. The proof follows an idea
from Helson's book [H] adapted to our setting. In the next section we
show that shifts of a given set of functions form a frame (a Riesz family)
in L2(Rn) precisely when these functions form a frame (a Riesz family) with
uniform constants on the fibers over the base space Tn=Rn�Zn in the
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Fourier domain. This allows us to reproduce some results of Ron and Shen
[RS1] involving the Gramian and the dual Gramian matrices. In the third
section we show that every (even infinitely generated) shift invariant space
can be decomposed as an orthogonal sum of spaces, each of which is generated
by a single function whose shifts form a tight frame with constant 1. This result
enables us to prove the Representation Theorem 4.5 for shift preserving
operators in terms of range operators. These operators are defined on
subspaces determined by a range function, they are uniformly bounded,
and when glued together they satisfy a measurability condition. We also
prove some properties of the dimension function. Among them the fact that
two shift invariant spaces can be mapped onto each other with an iso-
morphism commuting with shifts precisely when they have identical dimension
functions almost everywhere. In the last section we derive a result about
dual frames using a range operator approach.

Definition 1.1. A closed subspace V/L2(Rn) is shift invariant if f # V
implies Tk f # V for any k # Zn. Here Ty f (x)= f (x& y) is the translation
by the vector y # Rn. For any subset A/L2(Rn) let

S(A)=span[Tk f : f # A, k # Zn], (1.1)

be the shift invariant space generated by A. If A=[.] we will also write
S(.)=S([.]). If V=S(.) for some function . we say V is principal shift
invariant (PSI). If V=S(A) for some finite A we say V is finitely generated
shift invariant (FSI).

Convention. We will identify Tn=Rn�Zn with its fundamental domain;
that is, Tn=[&1�2, 1�2)n. The Fourier transform is given by

f� ( y)=|
R n

f (x) e&2?i (x, y) dx.

The Hilbert space of square integrable vector functions L2(Tn, l 2(Zn)),
consists of all vector valued measurable functions 8: Tn � l 2(Zn) with the
norm

&8&=\|T n
&8(x)&2

l 2 dx+
1�2

<�.

We will denote by [ek : k # Zn] the standard basis of l 2(Zn), and we will
frequently abbreviate l 2=l 2(Zn).
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Proposition 1.2. T: L2(Rn) � L2(Tn, l 2(Zn)) defined for f # L2(Rn) by

Tf : Tn � l 2(Zn), Tf (x)=( f� (x+k))k # Z n , (1.2)

is an isometric isomorphism between L2(Rn) and L2(Tn, l 2(Zn)).

Definition 1.3. A range function is a mapping

J : Tn � [closed subspaces of l 2(Zn)].

J is measurable if the associated orthogonal projections P(x): l 2(Zn) � J(x)
are weakly operator measurable; i.e., x [ (P(x) a, b) is a measurable
scalar function for each a, b # l 2(Zn). For a given range function J, we
define the space

MJ=[8 # L2(Tn, l 2)) : 8(x) # J(x) for a.e. x # Tn]. (1.3)

Remark (i). Note that in the separable Hilbert space measurability is
equivalent to weak measurability. Therefore, the condition on P is equivalent
to x [ P(x) a being vector measurable for each a # l 2, or x [ P(x)(8(x))
being vector measurable for each vector measurable 8: Tn � l 2.

Remark (ii). Suppose J is a range function which is not necessarily
measurable. Then MJ given by (1.3) is a closed subspace of L2(Tn, l 2).
Indeed, take any sequence (8i)/MJ converging to 8 in L2(Tn, l 2). We
can find a subsequence (8ij

) converging pointwise a.e. to 8 in l 2 ; that is,

8ij
(x) � 8(x) as ij � �, for a.e. x # Tn.

Since the space J(x) is closed, 8 # MJ . Hence MJ is closed. This observation
will play an important role subsequently.

Remark (iii). Suppose MJ=MK for some measurable range functions J
and K with associated projections P and Q, respectively. Then J(x)=K(x)
for a.e. x # Tn. Indeed, if we apply Lemma 1.4 to the constant function
8(x)=ek , where ek is a standard vector in l 2, then we have

P(x) ek=Q(x) ek for all k # Zn, for a.e. x # Tn.

Therefore P(x)=Q(x) for a.e. x # Tn

The following lemma is due to Helson in [H]. We present its proof for
the sake of completeness.
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Lemma 1.4. Let J be a measurable range function with associated projec-
tions P. Let P denote the orthogonal projection of L2(Tn, l 2) onto MJ . Then
for any L2(Tn, l 2)

(P8)(x)=P(x)(8(x)) for a.e. x # Tn. (1.4)

Proof. Define P$: L2(Tn, l 2) � L2(Tn, l 2), by

P$8(x)=P(x)(8(x)).

Note that since &P(x)&�1 the right hand side is a measurable vector
function which belongs to L2(Tn, l 2). Clearly, (P$)2=P$, and (P$)*=P$,
since P(x) has these properties for a.e. x # Tn. Therefore P$ is an orthogonal
projection with range M$. We automatically have the inclusion M$/MJ .
To end the proof we must show that M$=MJ . Suppose, by contradiction,
that there exists 0{9 # MJ , which is orthogonal to MJ . Then

0=|
T n

(P(x) 8(x), 9(x)) l 2 dx

=|
T n

(8(x), P(x) 9(x)) l2 for all 8 # L2(Tn, l 2).

Since 9(x) # J(x), we have 9(x)=P(x) 9(x)=0 for a.e. x # Tn, which is a
contradiction. K

The next proposition, due to Helson in [H], plays the central role in the
theory of shift invariant spaces in L2(Rn). Since Proposition 1.5 is a minor
modification of the original theorem in [H] we present its proof.

Proposition 1.5. A closed subspace V/L2(Rn) is shift invariant if and
only if

V=[ f # L2(Rn) : Tf (x) # J(x) for a.e. x # Tn], (1.5)

where J is a measurable range function. The correspondence between V and
J is one-to-one under the convention that the range functions are identified if
they are equal a.e. Furthermore, if V=S(A) for some countable A/L2(Rn),
then

J(x)=span[T.(x): . # A]. (1.6)

Note that for any f # L2(Rn), k # Zn

TTk f (x)=e&2?i (x, k)Tf (x) for x # Tn. (1.7)
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Therefore V/L2(Rn) is a shift invariant space if and only if M/L2(Tn, l 2)
is a closed subspace closed under multiplication by exponentials; i.e.,

8( } ) # M O e&2?i ( } , k)8( } ) # M for all k # Zn,

where } represents the generic variable. The correspondence is given by
V=TM.

Proof of Proposition 1.5. Suppose V=S(A) is a shift invariant space,
M=TV, and J(x) is given by (1.6). For any 8 # M we can find a sequence
(8i) converging to 8, such that

T&18 i # span[Tk.: . # A, k # Zn];

hence by (1.7) 8i (x) # J(x). As in Remark (ii) we can conclude that
8(x) # J(x), and therefore M/MJ . Take any 0{9 # L2(Tn, l 2) which is
orthogonal to M. For any 8 # TA and k # Zn, we have e&2?i ( } , k)8( } )
# TV; hence

0=|
Tn

(e&2?i (x, k)8(x), 9(x)) dx=|
T n

e&2?i (x, k)(8(x), 9(x)) dx.

Therefore all Fourier coefficients of the scalar function x [ (8(x), 9(x))
vanish. Hence

(8(x), 9(x))=0 for a.e. x # Tn, 8 # TA;

that is, 9(x) # J(x)= for a.e. x. Thus there is no 0{9 # MJ which is
orthogonal to M, and therefore M=MJ .

Finally, we need to show that J given by (1.6) is measurable. Let P

denote the orthogonal projection of L2(Tn, l 2) onto M, and let P(x) be
the projection onto J(x). Take any 9 # L2(Rn, l 2); then (I&P) 9 is
orthogonal to M. By the above argument 9(x)&P9(x) # J(x)= for a.e. x.
Therefore,

P(x)(9(x))=P(x)(P9(x))=P9(x) for a.e. x # Tn, (1.8)

because P9(x) # J(x) a.e. since M=MJ . Take a constant vector function
9(x)=a # l 2. Since P9(x) is a measurable vector function, by (1.8) so is
x [ P(x)a. Therefore J is measurable.

Conversely, if we start with a measurable range function J then by
Remark (ii) V=T&1MJ is a closed shift invariant space. By Lemma 1.4
the space V clearly satisfies (1.5). The correspondence between V and J is
one-to-one by Remark (iii). K

5SHIFT-INVARIANT SUBSPACES OF L2(Rn)
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Corollary 1.6. Suppose J is a range function (not necessarily measurable).
Then there exists a unique measurable range function K such that K(x)/J(x)
for a.e. x # Tn, and MJ=MK .

Definition 1.7. The dimension function of V is a mapping dimV : Tn �
N _ [0, �] given by dimV (x)=dim J(x), where J is the range function
associated with V. The spectrum of V is defined by _(V)=[x # Tn :
J(x){[0]].

Note that this spectrum has nothing to do with a spectrum of an
operator even though we use the symbol _. We use this terminology following
[BDR1, BDR2].

2. FRAMES AND RIESZ FAMILIES

For A/L2(Rn) we define the family of shifts of A by

E(A)=[Tk.: k # Zn, . # A].

Definition 2.1. Suppose H is a Hilbert space. X/H is a Bessel
family with constant B>0, if

:
' # X

|(h, ') |2�B &h&2 for h # span(X ).

If in addition there exist 0<A�B so that

A &h&2� :
' # X

|(h, ') |2�B &h&2 for h # span(X ),

then X is a frame with constants A, B. It is tight if A, B can be chosen so
that A=B. X is a fundamental frame if X is complete in H, i.e. span(X ) is
dense in H.

Definition 2.2. X/H is a Riesz family with constants A, B, if

A :
' # X

|a' |2�" :
' # X

a' '"
2

H

�B :
' # X

|a' |2,

for all (finitely supported) sequences (a')' # X . If a Riesz family X is com-
plete in H, we say X forms a Riesz basis. If we can choose A=B=1, then
X is an orthogonal family. It is an orthogonal basis if X is complete in H.

Remark. In Definition 2.1 we could replace span(X ) by its closure and
obtain an equivalent condition. In Definitions 2.1 and 2.2 we think of
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X/H as a set with multiplicity; i.e., some elements may be repeated.
Naturally, if X is a Riesz family, then no element of X can be repeated.
Nevertheless, we must follow this convention to state correctly the main
result of this section.

Theorem 2.3, which appears implicitly in the work of Ron and Shen
[RS1], characterizes the system of translates E(A) as being a Bessel
family, a frame, or a Riesz family in terms of fibers.

Theorem 2.3. Suppose A/L2(Rn) is countable.

(i) E(A) is a frame with constants A, B (or a Bessel family with
constant B) if and only if [T.(x): . # A]/l 2 is a frame with constants A,
B (or a Bessel family with constant B) for a.e. x # Tn. Moreover, E(A) is
a fundamental frame if and only if [T.(x): . # A]/l 2 is a fundamental
frame for a.e. x # Tn.

(ii) E(A) is a Riesz family with constants A, B if and only if [T.(x):
. # A]/l 2 is a Riesz family with constants A, B for a.e. x # Tn. Moreover,
E(A) is a Riesz basis if and only if [T.(x): . # A]/l 2 is a Riesz basis of
l 2 for a.e. x # Tn.

Proof of (i). The key lies in the following computation:

:
. # A

:
k # Z n

|(Tk., f ) |2= :
. # A

:
k # Z n

|(TTk., Tf ) |2

= :
. # A

:
k # Zn }|T n

e&2?i (x, k)(T.(x), Tf (x)) dx }
2

= :
. # A

|
T n

|(T.(x), Tf (x)) |2 dx. (2.1)

Let J denotes the range function associated with S(A), i.e., J is given by
(1.6). Suppose [T.(x): . # A]/l 2 is a frame with constants A, B (or a
Bessel family with constant B) for a.e. x # Tn ; that is,

A &a&2� :
. # A

|(T.(x), a) |2�B &a&2 for a # J(x). (2.2)

If f # S(A) then a=Tf (x) # J(x) for a.e. x # Tn, and by (2.1) and (2.2),
E(A) is a frame with constants A, B (or a Bessel family with constant B).

The converse requires more work. Suppose E(A) is a frame (or a Bessel
family). Let [d1 , d2 , ...] be a dense subset of l 2. Our aim is to show that

A &P(x) di&2� :
. # A

|(T.(x), P(x) di ) |2

�B &P(x) di &2 for a.e. x # Tn, i # N. (2.3)

7SHIFT-INVARIANT SUBSPACES OF L2(Rn)
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If (2.3) fails then there exists a measurable set D/Tn, with |D|>0, i0 # N,
and =>0 such that at least one of the following two happens (or, in the
Bessel case, only (2.4)):

:
. # A

|(T.(x), P(x) di0
) | 2>(B+=) &P(x) di0

& for x # D, (2.4)

:
. # A

|(T.(x), P(x) di0
) | 2<(A&=) &P(x) di0

& for x # D. (2.5)

Indeed, if (2.3) fails for i=i0 , then set F(x)=�. # A |(T.(x), P(x) di0
) |2.

F is a measurable function on Tn and we can assume F(x) is finite for a.e.
x; otherwise D=[x # Tn : F(x)=�] works in (2.4). At least one of the
two sets below on the left hand side has nonzero measure,

[x # Tn : F(x)&B &P(x) di0
&>0]

= .
�

j=1

[x # Tn : F(x)&(B+1�j) &P(x) d i0
&>0],

[x # Tn : F(x)&A &P(x) di0
&<0]

= .
�

j=1

[x # Tn : F(x)&(A&1�j) &P(x) d i0
&<0],

and thus at least one of the sets in the unions has nonzero measure. There-
fore either (2.4) or (2.5) holds. Suppose first that (2.4) happens. Let
f # S(A) be given by Tf (x)=1D(x) P(x) di0

. Then by (2.1)

:
. # A

:
k # Z n

|(Tk., f ) | 2=|
Tn

:
. # A

|(T.(x), 1D(x) P(x) d i0
) |2 dx

�(B+=) |
T n

1D(x) &P(x) di0
&2 dx

=(B+=) |
T n

&Tf (x)&2=(B+=) & f &2,

which is a contradiction. A similar argument (in the frame case) shows that
(2.5) cannot hold. Therefore (2.3) is true; hence (2.2) holds for a.e. x # Tn.
The statement about a fundamental frame is an immediate consequence of
Proposition 1.5. K

Proof of (ii). Let (a., k) (., k) # A_Z n be any sequence with finitely many
nonzero terms. Define polynomials p.(x)=�k # Z n a., k e&2?i (x, k). Only a
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finite number of the p. 's are non zero. By Proposition 1.2 and (1.7) we
have

" :
(., k) # A_Z n

a., kTk ."
2

=" :
(., k) # A_Z n

a., k TTk."
2

=" :
(., k) # A_Z n

a., k e&2?i ( } , k)T."
2

=|
T n " :

. # A

p.(x) T.(x)"
2

l2
dx, (2.6)

and by Plancherel formula

:
(., k) # A_Z n

|a., k |2=|
T n

:
. # A

| p.(x)|2 dx. (2.7)

Suppose that for a.e. x # Tn, [T.(x): . # A]/l 2 is a Riesz family with
constants A, B. Then

A :
. # A

| p.(x)|2�" :
. # A

p.(x) T.(x)"
2

�B :
. # A

| p.(x)|2. (2.8)

Integrating (2.8) over Tn and using (2.6) and (2.7) we obtain E(A) is also
a Riesz family with the same constants.

Conversely, suppose E(A) is a Riesz family, then by (2.6) and (2.7)

A |
T n

:
. # A

| p.(x)|2 dx�|
T n " :

. # A

p.(x) T.(x)"
2

l 2
dx

�B |
T n

:
. # A

| p.(x)| 2 dx, (2.9)

where only finite number of the polynomials p. is nonzero.
Take any family [m. # L�(Tn) : . # A] of functions with finitely non-

zero m. 's. By Luzin's Theorem, for every . # A we can find a sequence of
polynomials ( p i

. )i # N , so that

&p i
.&��&m.&� for all i # N, . # A,

p i
.(x) � m.(x) as i � � for a.e. x # Tn, . # A.

9SHIFT-INVARIANT SUBSPACES OF L2(Rn)
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By the Lebesgue Dominated Convergence Theorem we can strengthen (2.9)
to

A |
T n

:
. # A

|m.(x)|2 dx�|
T n " :

. # A

m.(x) T.(x)"
2

l2
dx

�B |
T n

:
. # A

|m.(x)| 2 dx. (2.10)

Let (d i ) i # N , where d i=(d i
.). # A # l 2(A), be a dense sequence in l 2(A),

with each d i having finitely many non zero coordinates. Our goal is to
show that

A :
. # A

|d i
. |2�" :

. # A

d i
.T.(x)" l2

�B :
. # A

|d i
. | 2 for all i # N, for a.e. x # Tn. (2.11)

If (2.11) fails then, as in the proof of (2.3), we could find a measurable set
D, |D|>0, i0 # N, and =>0 such that at least one of the following happens:

" :
. # A

d i0
.T.(x)"l2

>(B+=) :
. # A

|d i0
. |2 for x # D, (2.12)

" :
. # A

d i0
.T.(x)" l 2

<(A&=) :
. # A

|d i0
. |2 for x # D. (2.13)

Consider the family of functions m.=d i0
.1D . If, for example, (2.12) happens

then

|
T n " :

. # A

m.(x) T.(x)"
2

l 2
dx=|

D " :
. # A

d i0
.T.(x)"

2

l2
dx

�(B+=) |D| :
. # A

|d i0
. |2

=(B+=) |
T n

:
. # A

|m.(x)| 2 dx,

which contradicts (2.10). Therefore (2.11) holds.
The statement about a Riesz basis is an immediate consequence of

Proposition 1.5. K

10 MARCIN BOWNIK
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Theorem 2.3 allows us to reduce the problem of checking whether E(A)
is a frame, or a Riesz family, in a ``big'' subspace of L2(Rn) to analyzing the
fibers in ``smaller'' subspaces of l 2(Zn) parameterized by the base space Tn.

To simplify the notation enumerate the functions in A=[.i : i # I],
where I=[1, ..., L], or I=N. For a fixed x # Tn, set t i=T.i (x) # l 2.

For a given family of vectors [ti : i # I]/l 2 define operator K: l 2(I ) �
l 2(Zn), initially on sequences (ci) i # I with compact support, by

K(c)= :
i # I

ci t i . (2.14)

If K extends to a bounded operator then its adjoint, K*: l 2(Zn) � l 2(I ), is
given by

K*(a)=((a, ti) ) i # I for a=(ak) # l 2(Zn). (2.15)

Note that [ti : i # I] is a Bessel family with constant B precisely when K*
is bounded and &K*&2�B. Therefore, the operator K given by (2.14) is
bounded if and only if K* given by (2.15) is bounded and hence if and only
if [t i : i # I] is a Bessel family.

Definition 2.4. Suppose [ti : i # I]/l 2(Zn), and K is defined by (2.14).
The Gramian of the system [ti : i # I] is G: l 2(I ) � l 2(I ) defined by
G=K*K. The dual Gramian of the system [ti : i # I] is G� : l 2(Zn) � l 2(Zn)
defined by G� =KK*. In the case where K is unbounded, we say &G&=
&G� &=�.

Consider the Gramian and dual Gramian of [ti=T.i (x) : i # I] for
some fixed x # Tn. In the standard basis (ei) i # I of l 2(I ) the Gramian G acts
by (Gei , ej )=(ti , t j) , for i, j # I. Thus G can be associated with a matrix
function

G=G(x)=((T.i (x), T.j (x)) ) i, j # I=\ :
k # Zn

.̂i (x+k) .̂j (x+k)+ i, j # I
.

(2.16)

Similarly, in the basis (ek)k # Z n the dual Gramian G� acts by (G� ek , el) =
�i # I ti (k) t i(l ), so

G� =G� (x)=\:
i # I

.̂i (x+k) .̂i (x+l )+k, l # Z n
. (2.17)

Remark (i). Note that the entries of the matrix G are always well
defined. If the matrix G represents a bounded operator on l 2(I ), then G is

11SHIFT-INVARIANT SUBSPACES OF L2(Rn)
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non-negative definite (self-adjoint). In this case, K is also bounded, and
&G&=&K&2.

Remark (ii). However, the entries of matrix G� are meaningfully defined
if, at least,

:
i # I

|.̂i (x+k)|2<� for k # Zn. (2.18)

If G� represents a bounded operator on l 2(Zn) then G� is also non-negative
definite (self-adjoint). In this case, K* is also bounded, and &G� &=&K*&2.

Remark (iii). We can conveniently summarize by saying that the
(un-)boundedness of one of the operators K, KC, G, G� implies the (un-)
boundedness of the others. In any case &K&2=&K*&2=&G&=&G� &.

Now we can easily recover the characterization of frames and Riesz
families of shift invariant systems obtained by Ron and Shen in [RS1]. For
the applications of this result to wavelets, or more appropriately affine and
quasi-affine systems, and Weyl�Heisenberg systems we refer the reader to
[RS2, RS3].

Theorem 2.5. Let A=[.i : i # I]/L2(Rn). For x # Tn let G(x) and
G� (x) denote the Gramian and dual Gramian of [T.i (x): i # I].

(i) E(A) is a Bessel family with a constant B �

sup ess
x # T n

&G(x)&�B

�

sup ess
x # T n

&G� (x)&�B.

(ii) E(A) is a frame with constants A, B �

A &a&2�(G� (x) a, a)

�B &a&2 for a # span[T.i (x): i # I], for a.e. x # Tn, (2.19)

�

_(G� (x))/[0] _ [A, B] for a.e. x # Tn. (2.20)

12 MARCIN BOWNIK
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Moreover, E(A) is a fundamental frame with constants A, B � _(G� (x))/
[A, B] for a.e. x # Tn.

(iii) E(A) is a Riesz family with constants A, B �

A &c&2�(G(x) c, c) �B &c&2 for c # l2(I ), for a.e. x # Tn, (2.21)

�

_(G(x))/[A, B] for a.e. x # Tn. (2.22)

Moreover, E(A) is a Riesz basis � (2.21), (2.22) and 0 � _(G� (x)) for
a.e. x # Tn.

The conditions (2.19)�(2.22) are understood in the sense that any of
them can possibly hold only if G(x) or G� (x) are bounded for a.e. x # Tn.

Proof. (i) follows from Theorem 2.3(i) and the observation made
before Definition 2.4.

The equivalence between E(A) being a frame and (2.19) is a consequence
of

(G� a, a) =(K*a, K*a)= :
i # I

|(a, ti) |2 for a # l 2(Zn),

and Theorem 2.3(i). To justify (2.19) � (2.20), note that ker G� (x)�ran G� (x)
=l 2(Zn), because G� (x) is self-adjoint. Moreover, ker G� (x)=ker K*=J(x)=,
where J(x) is the range function of S(A). Therefore ran G� (x)=J(x), and
it suffices to consider the non-negative (self-adjoint) operator G� (x) restricted
to J(x) to see this equivalence. Moreover, E(A) is a fundamental frame if
additionally ker G� (x)=J(x)==[0] for a.e. x # Tn.

The equivalence between E(A) being a Riesz family and (2.21) follows
from

(Gc, c) =(Kc, Kc) =" :
i # I

ci t i "
2

l 2
for c=(ci) i # I # l2(I ),

and Theorem 2.3(ii). Because G is a non-negative definite operator, (2.21)
and (2.22) are equivalent. Moreover, E(A) is a Riesz basis if additionally
ker G� (x)=J(x)==[0]; i.e., 0 � _(G� (x)) for a.e. x # Tn. K

3. THE DECOMPOSITION

The decomposition theorems for finitely generated shift invariant spaces
into quasi regular spaces were obtained by de Boor et al. [BDR1].

13SHIFT-INVARIANT SUBSPACES OF L2(Rn)
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A quasi-regular space, by definition, has a dimension function equal to
some finite constant or zero. For more properties see [BDR1].

Definition 3.1. Suppose we have a PSI, V=S(.), where . # L2(Rn).
We say that a function .0 # V is a tight frame generator or quasi-orthogonal
generator of V if

& f &2= :
k # Z n

|(Tk.0 , f ) |2 \f # S(.). (3.1)

We remark that Definition 3.1 establishes the convention that the zero
function, .0=0, is a quasi-orthogonal generator of the trivial space V=[0].
This is needed to state correctly Theorem 3.3. Without this convention the
orthogonal sum in (3.2) could consist of a finite number of components,
e.g., when the dimension function of V is bounded. The following fact is an
immediate consequence of Proposition 1.5 and Theorem 2.3 and is due to
de Boor et al. in [BDR1]. For a more straightforward argument see [BL].

Fact 3.2. Suppose V is a PSI and .0 # V. Then the following are
equivalent:

(i) .0 is a quasi orthogonal generator of V,

(ii) &T.0(x)&=1_(V)(x) for a.e. x # Tn.

The next theorem provides the decomposition of any shift invariant
subspace of L2(Rn) into an orthogonal sum of PSI spaces.

Theorem 3.3. Suppose V is a shift invariant subspace of L2(Rn). Then V
can be decomposed as an orthogonal sum

V= �
i # N

S(.i), (3.2)

where .i is a quasi orthogonal generator of S(.i), and _(S(.i+1))/_(S(. i))
for all i # N. Moreover, dimS(.i )

(x)=&T.i (x)& for i # N, and

dimV (x)= :
i # N

&T.i (x)& for a.e. x # Tn. (3.3)

Proof. For any shift invariant space W we will construct function 8=
8(W) # TW using the following procedure. Choose a bijection ?: N � Zn.
Let J denotes the range function of W, and P the corresponding projec-
tions. If W=[0], then 8(W)=0. Otherwise, define Ak=[x # Tn : P(x)
e?(k) {0] for k # N. Consider 'k # L2(Tn, l 2(Zn)) defined by

'k(x)={P(x) e?(k) �&P(x) e?(k) &
0

x # Ak ,
otherwise.

(3.4)

14 MARCIN BOWNIK
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Define [Bk]k # N inductively by B1=A1 , Bk+1=Ak+1"�k
j=1 Aj . Finally,

define 8 # L2(Tn, l 2(Zn)) by

8= :
k # N

'k1Bk
. (3.5)

Clearly 8(x) # J(x) for a.e. x # Tn, and &8(x)&=1_(W)(x) for a.e. x # Tn,
since _(W )=�k # N Ak (modulo sets of measure zero). Hence, by Fact 3.2,
.=T&18 is a quasi orthogonal generator of the subspace S(.)/W, and
_(S(.))=_(W). Clearly

T(W � S(.))=[9 # L2(Tn, l 2(Zn)) : 9(x) # J(x), (8(x), 9(x))

=0 a.e. x # Tn]. (3.6)

Moreover, if 9 # T(W � S(.)) then

(9(x), e?(k)) =(9(x), P(x) e?(k))=0 for a.e. x # Tn, k=1, ..., k0 ,

(3.7)

where k0=min[k # N : |Ak |{0].
Now we are ready to define the sequence of quasi orthogonal generators

(.k)k # N by induction. Define .1=T&18(V). Suppose we constructed
functions .1 , ..., .k having the properties

(i) .i # V is a quasi orthogonal generator of S(.i) for i=1, ..., k,

(ii) the subspaces S(.i) are mutually orthogonal for i=1, ..., k,

(iii) (9(x), e?(i))=0 for all i=1, ..., k, 9 # TVk and a.e. x # Tn,
where

Vk=V � \�
k

i=1

S(.i)+ . (3.8)

In this case set .k+1=T&18(Vk). By the construction it is obvious that
[.1 , ..., .k+1] satisfies (i)�(iii). Indeed, (i) follows from &T.k+1(x)&=
1_(Vk )(x) by Fact 3.2. (ii) is a consequence of S(.k+1)/Vk and (3.8),
whereas (iii) follows from (3.7).

Take 9 # T(�i # N Vi). By (iii) we have (9(x), e?(i)) =0 for a.e. x # Tn,
i # N. Thus 9=0 and we have

,
i # N

Vi=[0]. (3.9)

15SHIFT-INVARIANT SUBSPACES OF L2(Rn)
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Therefore (3.2) follows. Moreover, since Vi+1 /Vi we have _(S(.i+1))=
_(Vi+1)/_(Vi)=_(S(.i)). Formula (3.3) is an immediate consequence
of (3.2). K

Remark (i). The decomposition in Theorem 3.2 of a shift invariant
space V is not unique unless dimV (x)�1 for a.e. x # Tn. Nevertheless, if the
essential supremum of dimV is equal to N # N then the decomposition in
(3.2) has N nontrivial components S(.1), ..., S(.N), and S(.i)=[0] for
i�N+1. If dimV is essentially unbounded then all components S(.i), i # N
are nontrivial. Therefore, Theorem 3.3 yields always optimal (minimal)
number of nontrivial components in any decomposition of V as in (3.2).

Remark (ii). Any nontrivial PSI space V=S(.) can be decomposed
into any, e.g. infinite, number of orthogonal PSI components. Without loss
of generality, assume . is a quasi-orthogonal generator of V. Let D=_(V)
/Tn, |D|>0. Partition D=�i # N D i , where Di /Tn are mutually disjoint
and |Di |>0 for i # N. Define 8=T. and 8 i=1Di

8 for i # N. Finally, let
.i=T&18 i for i # N. By Proposition 3.2 .i is a quasi orthogonal gener-
ator of S(.i). We have S(.i)=S(.j) for i{j, since _(S(.i)) & _(S(.i))=
Di & Dj=< for i{ j. Therefore

V= �
i # N

S(.i).

Remark (iii). Our result extends a theorem in [P], where the decomposi-
tion of the form (3.2) was obtained for a shift invariant space associated with
a wavelet basis in L2(R); that is, the space V0 described in the Example below.
As a consequence, one can drop the last condition in the definition of
generalized frame multiresolution analysis (GFMRA) introduced in [P].

Example. Assume we have n by n dilation matrix A preserving Zn, i.e.,
all eigenvalues * of A satisfy |*|>1, and AZn/Zn. A finite set 9=
[�1, ..., �L]/L2(Rn) is called an orthonormal multiwavelet if the system
[� l

j, k : j # Z, k # Zn, l=1, ..., L] is an orthonormal basis for L2(Rn). Here
for � # L2(Rn) we use the convention

�j, k=|det A| j�2 �(A jx&k) for all j # Z, k # Zn. (3.10)

For each j # Z define space

Wj :=span[� l
j, k : k # Zn, l=1, ..., L]. (3.11)

16 MARCIN BOWNIK
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Since spaces Wj are shift invariant for j�0, so is

V0 :=�
j<0

Wj=\ �
j�0

Wj+
=

. (3.12)

Therefore

V0=span[�l (A j ( }&k)): j<0, k # Zn, l=1, ..., L]. (3.13)

By Proposition 1.5

V0=[ f # L2(Rn) : Tf (x) # J(x) for a.e. x # Tn], (3.14)

for the range function J which is given by

J(x)=span[9l, j (x): j�1, l=1, ..., L], (3.15)

by (3.13), where 9l, j (x)=|det A|& j�2 T� l
& j, 0(x)=(�� l (B j (x+k)))k # Z n #

l 2(Zn) a.e., B=AT, l=1, ..., L, j�1. The dimension function of V0 can be
computed explicitly, see Theorem 2.9 in [BRS],

dimV0
(x)=dim J(x)= :

L

l=1

:
�

j=1

&9l, j (x)&l 2

= :
L

l=1

:
�

j=1

:
k # Z n

|�� l (B j (x+k))|2 a.e. x # Tn,

where B=AT. By Theorem 3.3 the space V0 given by (3.12) can be
represented as

V0= �
i # N

S(.i ),

where .i is a quasi orthogonal generator of S(.i) for each i # N. Therefore,
a multiwavelet 9=[�1, ..., �L] is associated with a multiresolution analysis if
and only if .1 is an orthogonal generator, ([Tk.1 : k # Zn] is an orthonormal
basis of S(.1)), and .i=0 for i�2, i.e. dimV0

(x)=1 for a.e. x # Tn. By
Proposition 2.7 in [BRS] this may happen only if L=|det A|&1.

4. SHIFT PRESERVING OPERATORS

Definition 4.1. A bounded linear operator L: V � L2(Rn) defined on a
shift invariant space V is shift preserving if LTk=Tk L for all k # Zn.

17SHIFT-INVARIANT SUBSPACES OF L2(Rn)
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Proposition 4.2. Suppose . is a quasi orthogonal generator of S(.),
and a bounded operator L: S(.) � L2(Rn) is shift preserving. Then for every
m # L2(Tn)

(T b L b T&1)(m8)(x)=m(x)(T b L b T&1) 8(x) for a.e. x # Tn,

(4.1)

where 8=T..

Proof. If we denote F=Tf then by (1.7) we have

(T b L b T&1)(e&2?i ( } , k)F)=(T b L b T&1)(e&2?i ( } , k)Tf )

=(T b L b T&1)(TTk f )

=(T b L b Tk) f =(T b Tk b L)(T&1Tf )

=e&2?i ( } , k)(T b L b T&1) F.

Therefore, by linearity, (4.1) holds for all polynomials p(x)=�k # Z n ak

e&2?i (x, k) # L2(Tn). Since T is an isometry we have &(T b L b T&1)&=
&L&=C<�,

|
T n

| p(x)|2 &(T b L b T&1) 8(x)&2 dx=|
Tn

&(T b L b T&1)( p8)(x)&2 dx

�C2 |
Tn

| p(x)|2 &8(x)&2 dx

=C2 |
Tn

| p(x)|2 1_(S(.))(x) dx,

(4.2)

because &8(x)&=1_(S(.))(x) by Fact 3.2. By Luzin's Theorem, for any
r # L�(Tn) we can find a sequence of polynomials ( p i) i # N , so that

&pi&��&r&� for all i # N,

pi (x) � r(x) as i � � for a.e. x # Tn.

By the Lebesgue Dominated Convergence Theorem we can strengthen (4.2)
to

|
Tn

|r(x)| 2 &(T b L b T&1) 8(x)&2 dx�C 2 |
T n

|r(x)|2 1_(S(.))(x) dx.

18 MARCIN BOWNIK
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Since r # L�(Tn) is arbitrary we obtain

&(T b L b T&1) 8(x)&�C &8(x)& for a.e. x # Tn. (4.3)

Finally, take polynomials ( pi) i # N so that pi � m in L2(Tn). By taking a
subsequence we can additionally require that

pi (x) � m(x), (T b L b T&1)( pi8)(x) � (T b L b T&1)(m8)(x) as i � �,

(4.4)

for a.e. x # Tn. Since (4.1) holds for polynomials then by (4.3) and (4.4) it
holds for a general function m # L2(Tn). K

As an immediate corollary of Propositions 1.5 and 4.2 we obtain

Corollary 4.3. Suppose V/L2(Rn) is shift invariant and that a bounded
operator L: V � L2(Rn) is shift preserving. For every 8 # TV and measurable
function m such that m8 # L2(Tn, l 2) (and hence m8 # TV) we have

(T b L b T&1)(m8)(x)=m(x)(T b L b T&1) 8(x) for a.e. x # Tn.

We now introduce the concept of a range operator as a family of operators
defined on fibers of the range function and satisfying the natural measurability
condition.

Definition 4.4. Suppose V is a shift invariant subspace of L2(Rn) with
the range function J and associated projection P. A range operator on J is
a mapping

R: Tn � set of bounded operators defined on closed subspaces of l 2(Zn),

so that the domain of R(x) equals J(x) for a.e. x # Tn. R is measurable if
x [ R(x) P(x) is weakly operator measurable, i.e. x [ (R(x) P(x) a, b) is
measurable scalar function for each a, b # l 2(Zn).

Theorem 4.5. Suppose V/L2(Rn) is shift invariant and J is its range
function. For every shift preserving operator L: V � L2(Rn) there exists a
measurable range operator R on J such that

(T b L) f (x)=R(x)(Tf (x)) for a.e. x # Tn, f # V. (4.5)

Conversely, given a measurable range operator R on J with sup essx # Tn &R(x)&
<� there is a bounded shift preserving operator L: V � L2(Rn) such that (4.5)

19SHIFT-INVARIANT SUBSPACES OF L2(Rn)
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holds. The correspondence between L and R is one-to-one under the convention
that the range operators are identified if they are equal a.e. Moreover, we
have &L&=sup essx # T n &R(x)&.

Proof. First decompose V as in Theorem 3.3, and denote Vk=
�k

i=1 S(.i), 8 i=T.i . Let Jk be the range function of the space Vk .
Naturally, the set [81(x), ..., 8k(x)]"[0] forms an orthonormal basis of
Jk(x) for a.e. x # Tn. Note that this set might be empty, if 81(x)=0, i.e., if
x � _(V). Define Rk(x): Jk(x) � l 2(Zn) by

Rk(x) \ :
k

i=1

:i8 i (x)+= :
k

i=1

:i (T b L b T&1) 8i (x). (4.6)

By virtue of (4.3) this is well defined even in the case 8i (x)=0 for some
i=1, ..., k. Take any f # Vk and write it as f =f1+ } } } + fk , where fi # S(.i).
Then

Tf =Tf1+ } } } Tfk=m181+ } } } mk8k ,

for some mi # L2(Tn), i=1, ..., k. Proposition 4.2 yields

(T b L) f (x)=(T b L b T&1) \ :
k

i=1

mi8 i+ (x)

= :
k

i=1

m i (x)(T b L b T&1) 8i (x)

= :
k

i=1

m i (x) Rk(x)(8i (x))= :
k

i=1

Rk(x)(mi (x) 8i (x))

= :
k

i=1

Rk(x)(Tf (x)). (4.7)

It is clear that the range operator Rk is measurable.
We claim that &Rk(x)&�C for a.e. x # Tn, where C=&L&<�. Indeed,

for any s=(s1 , ..., sk) # Sk&1=[ y # Ck : &y&=1] define 9s # L2(Tn, l 2(Zn))
by

9s(x)= :
k

i=1

si 8i (x). (4.8)

We will show that for any s # S k&1,

sup ess
x # T n

&Rk(x)(9s(x))&�C. (4.9)
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If not there would exist =>0, and a measurable set D/Tn with |D|>0,
so that &Rk(x)(9s(x))&>C+= for x # D. Consider 9=9s 1D , and �=
T&19 # Vk . Since T is an isometry

&(T b L) �&�C &�&=C &9&.

On the other hand

&(T b L) �&2=|
Tn

&Rk(x)(9(x))&2 dx=|
D

&Rk(x)(9s(x))&2 dx

�|
D

(C+=)2 &9s(x)&2 dx=(C+=)2 &9&2,

which is a contradiction. Finally, let [si]i # N /Sk be a dense subset of S k,

sup ess
x # Tn

&Rk(x)&=sup ess
x # T n

sup
s # Sk

&Rk(x)(9s(x))&

=sup ess
x # Tn

sup
i # N

&Rk(9si
(x))&�C,

by (4.9).
The operators Rk(x) are compatible; that is, for any l�k # N we have

Rl (x)=Rk(x)|Jl (x) . Hence we can define R(x): �l # N Jl (x) � l 2(Zn) by
R(x)(a)=Rl (x)(a) if a # Jl (x) for some l # N. Since &Rl (x)&�C, then

&R(x)(a)&�C &a& for a # .
l # N

Jl (x). (4.10)

Since

.
l # N

Jl (x)=J(x),

we can extend R(x) uniquely to R(x): J(x) � l 2(Zn) with &R(x)&�C.
Furthermore,

(T b L) f (x)=R(x)(Tf (x)) for f # V. (4.11)

Indeed, take any f # V and a sequence fk � f in L2(Rn), fk # Vk , so that
Tfk(x) � Tf (x), and (T b L) fk(x) � (T b L) f (x) for a.e. x # Tn as k � �.
Then we have

(T b L) f (x) � (T b L) fk(x)=R(x)(Tfk(x))

� R(x)(Tf (x)) as k � �,

pointwise for a.e. x # Tn.
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Conversely, suppose we have a measurable range operator R. Take any
f # V. Since x [ Tf (x) is measurable and R is measurable, F� (x)=
R(x)(Tf (x)) is also measurable, and

&F� &=|
Tn

&F� (x)&2 dx�sup ess
x # Tn

&R(x)&2 |
T n

&Tf (x)&2 dx=C2 & f &2,

where C=sup essx # Tn &R(x)&. Define operator L: V �L2(Rn), by Lf =T&1F� .
L is linear, bounded &Lf &�C & f &, and shift preserving, because

(T b L) Tk f (x)=R(x)(TTk f (x))=R(x)(e&2?i (x, k)Tf (x))

=e&2?i (x, k)R(x)(Tf (x))=e&2?i (x, k)T(Lf )(x)

=(T b Tk b L) f (x).

The uniqueness of the correspondence between L and R is an immediate
consequence of (4.5). K

Theorem 4.6. Suppose L is a shift preserving operator on V and R is its
corresponding range operator on J, as in Theorem 4.5. Then L is bounded
from below with a constant c>0; i.e.,

&Lf &�c & f & for all f # V, (4.12)

if and only if for a.e. x # Tn

&R(x) a&�c &a& for all a # J(x). (4.13)

Proof. Note that by (4.5)

&Lf &2=|
T n

&R(x)(Tf (x))&2 dx for f # V. (4.14)

If (4.13) holds then by (4.14) for any f # V

&Lf &2�|
Tn

c2 &Tf (x)&2 dx�c2 & f &2.

Conversely, assume (4.12). Let [d1 , d2 , ...] be a dense subset of l 2(Zn).
Our aim is to show

&R(x)(P(x) di)&�c &P(x) di& for a.e. x # Tn, i # N, (4.15)

where P denotes the projection onto J. If (4.15) fails then there exists a
measurable set D/Tn with |D|>0, i0 # N and =>0 so that

&R(x)(P(x) di0
)&�(c&=) &P(x) di0

& for x # D.
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Consider f # V given by Tf (x)=1D(x) P(x) di0
. By (4.14)

&Lf &2�(c&=)2 |
D

&P(x) d i0
&2 dx=(c&=)2 |

Tn
&Tf (x)&2 dx

=(c&=)2 & f &2,

which contradicts (4.12). K

As an immediate consequence of Theorems 4.5 and 4.6 we obtain

Corollary 4.7. A shift preserving operator L is an isometry if and only
if its corresponding range operator R(x) is an isometry for a.e. x # Tn.

Theorem 4.8. Suppose V/L2(Rn) is a shift invariant space with its
associated range function J and that L: V � V is a shift preserving operator
with its corresponding range operator R.

(o) The dual operator L*: V � V is shift preserving and its corre-
sponding range operator is R* given by R*(x)=(R(x))* for a.e. x # Tn.

(i) Let A�B be two real numbers. L is self-adjoint and _(L)/[A, B]
if and only if R(x) is self-adjoint and _(R(x))/[A, B] for a.e. x # Tn.

(ii) L is unitary if and only if R(x) is unitary for a.e. x # Tn.

Proof of (o). Clearly R* is a measurable and uniformly bounded range
operator on J. By the virtue of Theorem 4.5 there exists a corresponding
shift preserving operator L� ; i.e. (T b L� ) f (x)=(R(x))* (Tf (x)) for f # V.
Take any f, g # V then

(Lf, g)=( (T b L) f, Tg)=|
T n

(R(x)(Tf (x), Tg(x)) dx

=|
T n

(Tf (x), R(x)* (Tg(x))) dx=(Tf, (T b L� ) g) =( f, L� g);

hence L� =L*. K

Proof of (i). By (o) L is self-adjoint if and only if R(x) is self-adjoint
for a.e. x # Tn. Assume that _(L)/[A, B]; that is,

A & f &2�(Lf, f )=|
Tn

(R(x)(Tf (x)), Tf (x)) dx

�B & f &2 for all f # V. (4.16)
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Let [d1 , d2 , ...] be a dense subset of l 2(Zn). Our aim is to show

A &P(x) di &2�(R(x)(P(x) di), P(x) di)

�B &P(x) di &2 for a.e. x # Tn, i # N, (4.17)

where P is the projection onto J. If (4.17) fails then, similarly to the proof
of (2.3), there exists a measurable set D/Tn with |D|>0, i0 # N and =>0
such that at least one of the following two happens

(R(x)(P(x) di), P(x) di0
) >(B+=) &P(x) di0

&2 for x # D,

(R(x)(P(x) di), P(x) di0
) <(A&=) &P(x) di0

&2 for x # D.

By considering f # V given by Tf (x)=1D(x) P(x) di0
we obtain a contradic-

tion with (4.16).
Conversely, assume that _(R(x))/[A, B] for a.e. x # Tn. Hence for

all f # V

A &Tf (x)&2�(R(x)(Tf (x)), Tf (x))�B &Tf (x)&2 for a.e. x # Tn.

An integration of the above over Tn yields (4.16). K

Proof of (ii). The operator LL* (or L*L) is shift preserving and self-
adjoint and its corresponding range operator is R( } ) R( } )* (or R( } )* R( } )).
Hence, by (i), L is unitary, i.e. _(LL*)=_(L*L)=[1] if and only if
_(R(x) R(x)*)=_(R(x)* R(x))=[1] for a.e. x # Tn ; that is R(x) is unitary
for a.e. x # Tn . K

At the end of this section we investigate properties of the dimension
function of a shift invariant space under the action of a shift preserving
operator.

Theorem 4.9. Suppose V/L2(Rn) is shift invariant and L: V � L2(Rn)
is shift preserving. Let V$=L(V) then

dimV$(x)�dimV (x) for a.e. x # Tn. (4.18)

Proof. By Theorem 3.3, V=S(A) for some A=[.1 , .2 , ...] so that
the dimension function dimV (x)=*[i # N : T.i (x){0]. Since V$=S(B),
where B=[L.1 , L.2 , ...], by Proposition 1.5 and Theorem 4.5 the range
function of V$ satisfies for a.e. x # Tn

J$(x)=span[T�(x): � # B]=span[(T b L) .(x) : . # A]

=span[R(x)(T.(x)): . # A]=R(x)(J(x)).

Therefore dim J$(x)�dim J(x). K
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Theorem 4.10. Suppose V, V$/L2(Rn) are shift invariant. Then there
is a shift preserving isomorphism (or isometry) L: V � V$ if and only if
dimV (x)=dimV$(x) for a.e. x # Tn.

Proof. Suppose we have a shift preserving isomorphism L: V � V$.
Then by Theorem 4.9 dimV$�dimV . The inverse L&1: V$ � V is also shift
preserving hence dimV�dimV$ . Therefore the dimension functions must be
equal.

Conversely, suppose we have shift invariant spaces V and V$ with
dimV=dimV$ . Decompose V, V$ as in Theorem 3.3,

V= �
i # N

S(.i), V= �
i # N

S(.$i),

where .i , .$i are quasi-orthogonal, and by Theorem 3.3 _(S(.i))=_(S(.$i))
(modulo sets of measure zero) for all i # N.

For each i # N define Li : S(.i) � S(.$i) by Li (Tk .i)=Tk .$i . That defini-
tion extends to the whole S(.i) since for any c # l 2(Zn) with finite number
of nonzero coordinates

" :
k # Z n

ckTk.i"
2

=" :
k # Z n

cke&2?i ( } , k) T. i"
2

=|
Tn } :

k # Zn

ck e&2?i (x, k) }
2

&T. i (x)&2 dx

=|
Tn } :

k # Zn

ck e&2?i (x, k) }
2

&T.$i (x)&2 dx

=" :
k # Z n

ck Tk.$i"
2

="Li \ :
k # Zn

ckTk.i+"
2

,

because &T.i (x)&=dimS(.i )
(x)=dimS(.$i )(x)=&T.$i (x)& for a.e. x # Tn by

Theorem 3.3. Thus Li extends to a shift preserving isometry between S(.i)
and S(.$i). Therefore L, given by

L= �
i # N

Li : �
i # N

S(.i) � �
i # N

S(.$i),

is a shift preserving isometry of V and V$. K
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Remark. One can ``reverse'' Theorem 4.9. Suppose we have two shift
invariant spaces V and V$ satisfying (4.18). Then there are a shift preserving
operator from V onto V$ and another one-to-one shift preserving operator
from V$ into V. To see this decompose V and V$ as in the proof of Theorem
4.10 and note that we have _(S(.$i ))/_(S(.i)) (modulo sets of measure zero)
for i # N.

5. DUAL FRAMES

Suppose A=[.i : i # I] is a countable family of functions in L2(Rn) and
E(A)=[Tk.: k # Z, i # I] is a Bessel family. Define operator F: S(A) �
l 2(Zn_I ) by

Ff =(( f, Tk.i) ) (k, i) # Z n_I for f # S(A). (5.1)

The dual of F is F*: l 2(Zn_I) � S(A) given by

F*c= :
(k, i) # Zn_I

ck, iTk .i for c=(ck, i) # l 2(Zn_I ). (5.2)

Clearly L :=F*F is a self-adjoint (non-negative definite) operator on S(A)
which is sometimes referred as a frame operator. Indeed, E(A) is a frame
with constants A, B if and only if

A & f &2�(Lf, f )�B & f &2 for f # S(A),

if and only if _(L)/[A, B].

Theorem 5.1. Suppose E(A) is a Bessel family and J is the range func-
tion of S(A). The operator L=F*F is self-adjoint and shift preserving with
the corresponding range operator R(x) :=G� (x)|J(x) , where G� (x) is the dual
Gramian of [T.i (x): i # I] for a.e. x # Tn.

Proof. Note that

Lf = :
(k, i) # Z n_I

( f, Tk .i) Tk.i , (5.3)

where the convergence is unconditional in L2(Rn). By a simple calculation
LTl=TlL for all l # Zn. Let R� denotes the range operator of L. Therefore

&Ff &2=(Lf, f ) =|
T n

(R� (x)(Tf (x)), Tf (x)) dx for f # S(A).

(5.4)
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On the other hand (2.1) says that

&Ff &2=|
T n

(G� (x)(Tf (x)), Tf (x)) dx. (5.5)

Consider the (self-adjoint) range operator R(x) :=G� (x)|J(x) . By (5.4) and
(5.5) we have

|
T n

( (R� (x)&R(x))(Tf (x)), Tf (x))dx=0 for all f # S(A).

Therefore by Theorem 4.8(i) the self-adjoint shift preserving operator
associated with R� ( } )&R( } ) is identically zero and thus _(R� (x)&R(x))=
[0] for a.e. x # Tn ; i.e., R� =R. K

By virtue of Theorem 5.1 the result about dual Gramian analysis of shift
invariant systems due to Ron and Shen; i.e., Theorem 2.5(ii) can be
thought as a special case of the general result about range operators, i.e.,
Theorem 4.8(i).

Finally we present one result about a dual frame to a given shift
invariant frame E(A). Some other results about dual frames are contained
in [RS1, RS4], where the notion of a mixed Gramian is introduced. For
generalities about frames and its duals we refer the reader to Section 3.2 in
Daubechies' book [D].

Theorem 5.2. Suppose E(A) is a frame with constants A, B. Its dual
frame with constants B&1, A&1 is of the form E(A� ), where A� =[.~ i : i # I]
and .~ i=(F*F )&1 . i , F and F* are given by (5.1) and (5.2). Moreover,

T.~ i (x)=R(x)&1 (T. i (x)) for a.e. x # Tn, i # I, (5.6)

where R is the range operator associated with F*F, i.e. R(x)=G� (x)|J(x) and
G� (x) is the dual Gramian of [T.i (x): i # I] for a.e. x # Tn.

Proof. The dual frame of E(A) is a system [.~ k, i : k # Zn, i # I], where
.~ k, i=L&1Tk.i , L :=F*F. By Theorem 5.1 L is shift preserving, so is L&1

and thus the dual frame of E(A) is also a shift invariant system of the form
E(A� ), where A� =[.~ i=L&1.i : i # I]. By Proposition 3.2.3 in [D], E(A� )
is a frame with constants B&1, A&1 and the following reconstruction
formula holds

:
(k, i) # Z n_I

( f, Tk.~ i) Tk.i

= f= :
(k, i) # Z n_I

( f, Tk.i) Tk.~ i for all f # S(A), (5.7)
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where the convergence is unconditional in L2(Rn). Moreover, by Theorem
5.1 the range operator of L&1 is R( } )&1 and hence we have (5.6). K

Remark. In particular, if E(A) is a Riesz family with constants A, B
then its dual system E(A� ) defined in Theorem 5.2 is also a Riesz family
with constants B&1, A&1. Furthermore, by (5.7) we have

(Tk .i , Tl.~ j ) =$k, l $i, j for k, l # Zn, i, j # I.
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