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ABSTRACT. For weights in the matricial Muckenhoupt classes
we investigate a number of properties analogous to properties
which hold in the scalar Muckenhoupt classes. In contrast to
the scalar case we exhibit for each p, 1 < p <∞, a matrix weight
W ∈Ap,q \

⋃
p′<pAp′,q′ . We also give a necessary and sufficient

condition on W in Ap,q, a “reverse inverse volume inequality”,
to ensure that W is inAp′,q′ for some p′ < p.

1. INTRODUCTION

LetH be the Hilbert transform andM be the Hardy-Littlewood maximal function;
H is initially defined for smooth compactly supported functions on R. The clas-
sical theory of singular integral operators shows that these (and related) operators
extend to bounded operators from Lp(R) to itself, for 1 < p < ∞. In the ’70’s the
theory was expanded to include systematic consideration of weighted Lp spaces. In
particular, it was shown by Richard Hunt, Benjamin Muckenhoupt, and Richard
Wheeden [M], [HMW] that the necessary and sufficient condition for either H or
M to be bounded on Lp(w(t)dt) (1 < p < ∞), i.e., that there is a constant C so
that ∫

R
|Hf(t)|pw(t)dt ≤ C

∫
R
|f(t)|pw(t)dt for all f ,

(and similarily for M) is that w be in the Muckenhoupt class Ap. We say that a
positive scalar function w on R is in the Muckenhoupt Ap class (1 < p < ∞) if
and only if there is a constant C > 0 so that

〈w−1/p〉I,q ≤ C〈w1/p〉−1
I,p for all intervals I ⊂ R,(1.1)

where 〈ϕ〉I,p is an abbreviation for (1/|I|
∫
I(ϕ(t))p dt)1/p, and 〈ϕ〉I = 〈ϕ〉I,1 =

1/|I|
∫
I ϕ(t)dt. These classes are known to play a major role in singular integral
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theory. We merely mention [CF] and [C] as two milestones, and [GR] as a general,
if slightly dated, reference.

There is little difficulty in extending the basic Lp(R) boundedness results from
scalar functions to functions valued in Cn (however, there are interesting obstacles
for Banach space valued functions). However, the extension of the weighted norm
inequalities to vector valued functions has proven difficult. Informally, the diffi-
culty is this. If the matrix weight, which is a matrix valued function on R (full
definitions will be given later), is diagonal, then the directions decouple, the ques-
tions reduce to n independent questions for scalar valued functions, and there are
no new difficulties. However, even when n = 2, there is a fundamentally new
issue which can arise; the frames which diagonalize the weight may, as a function
of t ∈ R, vary wildly. We will see in simple explicit examples that this can pro-
duce fundamentally new phenomena. Beyond the simple examples those issues
are tightly intertwined, and the full story is complicated.

In spite of the difficulties, substantial progress has been made on these prob-
lems in recent years and the correct analog ofAp condition has been given in [NT]
and [V].

To introduce matricial weighted norm inequalities consider the Hilbert trans-
form H acting on a finite dimensional complex space, which we identify with Cn,
given by

Hf(t) = p. v.
1
π

∫
R

f(t − s)
s

ds,

when f : R → Cn is smooth and compactly supported. Clearly H extends to a
bounded operator acting on Lp for 1 < p <∞ and even an isometry on L2, where

Lp =
{
f : R→ Cn measurable, ‖f‖Lp =

(∫
R
‖f(t)‖p dt

)1/p
<∞

}
.

A weight is defined as a measurable mapping ρ : R → {all norms on Cn}, i.e., for
all x ∈ Cn, t , ρt(x) is measurable. For 1 < p < ∞ define the weighted space
by

Lp(ρ) =
{
f : R→ Cn measurable, ‖f‖Lp(ρ) =

(∫
R
ρt(f (t))p dt

)1/p
<∞

}
.

If the dimension n = 1, we are in the realm of the usual scalar weights. The
Hilbert transform H is bounded on Lp(ρ) precisely whenw(t) = ρt(1)p belongs
to the Muckenhoupt Ap class.

For simplicity we will consider matrix weights, that is measurable maps W :
R → {positive (self-adjoint) matrices on Cn}, for which we define Lp(W) to be
Lp(ρ), where ρt(·) = ‖W 1/p(t)·‖. The choice of exponent 1/p is not accidental,
we want our definition to overlap with the usual scalar weights in the dimension
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n = 1. Moreover, the restriction of attention to matrix weights doesn’t actually
limit our problem, because John’s theorem asserts that every norm ρ on Cn is at
most

√
n in the Banach-Mazur distance from the standard Euclidean norm ‖ · ‖

(see [P] or [TJ]). Hence there is a positive matrix A s.t. 1/
√
n‖Ax‖ ≤ ρ(x) ≤

‖Ax‖ for all x ∈ Cn. This reduction significantly simplifies the analysis.
The first result giving a characterization of matrix weights for which the

Hilbert transform is bounded on L2(W) was obtained by Sergei Treil and Alexan-
der Volberg in [TV1]. They proved that H is bounded on L2(W) iff there exists
C > 0 so that

〈W−1〉I ≤ C〈W〉−1
I for all intervals I ⊂ R,

or equivalently that supI⊂R ‖〈W−1〉1/2I 〈W〉1/2I ‖ <∞.
For a general 1 < p < ∞, the following condition was introduced by Fedor

Nazarov and Sergei Treil in [NT].

Definition 1.1. We say that a matrix weight W satisfies the Ap,q condition
(where 1 < p < ∞, 1/p + 1/q = 1) if there is a constant C > 0 so that

〈ρ?〉I,q ≤ C〈ρ〉?I,p for all intervals I ⊂ R,(1.2)

where ρt(·) = ‖W 1/p(t) · ‖, and ρ? denotes the dual of the norm ρ.

Naturally, in the dimension n = 1 (1.2) is equivalent to (1.1), where w(t) =
ρt(1)p. Note that if p ≥ 1, then 〈ρ〉I,p (if not infinite for some x ∈ Cn) is a
norm by Minkowski’s inequality.

Fedor Nazarov, Sergei Treil in [NT] and Alexander Volberg in [V], using dif-
ferent approaches, have given the complete characterization of matrix weights for
which the Hilbert transform is bounded.

Theorem 1.2 (Nazarov, Treil, Volberg). The Hilbert transform is bounded on
Lp(W) for 1 < p <∞ if and only if W satisfies theAp,q condition.

In the scalar case it is known that the Ap classes have substantial structure.
However, the situation for the matrixAp,q classes is much more complicated and
that is the subject of the present paper. We will see that some of the scalar results
extend, some do not, and some do but only under additional hypotheses. In
particular we will consider matricial analogs of the following properties of scalar
weights:
(1) w ∈ Ap ⇒ ∀s, s > p ∃cs > 0 s.t. ∀I ⊂ R 〈|w1/s|s〉I ≤ cs〈|w1/p|p〉I ,
(2) w ∈ Ap ⇒ ∃s, s < p ∃cs > 0 s.t. ∀I ⊂ R 〈|w1/s|s〉I ≤ cs〈|w1/p|p〉I ,
(3) w ∈ Ap ⇒ ∀α, 0 < α < 1 wα ∈ Ap,
(4) w ∈ Ap ⇒ ∀s, s > p w ∈ As ,
(5) w ∈ Ap ⇒ logw ∈ BMO,
(6) w ∈ Ap ⇒ ∃ε > 0 s.t. w ∈ Ap−ε (open ended property),
(7) w ∈ Ap ⇒ ∃r > 1 s.t. wr ∈ Ap,
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(8) w ∈ Ap ⇒ ∃r > 1 s.t. wr ∈ Apr ,
(9) w ∈ Ap ⇒ ∃r > 1, c > 0 s.t. ∀I ⊂ R 〈w〉I,r ≤ c〈w〉I (reverse Hölder

inequality),
(10) ∃cp, b ∈ BMO s.t. ‖b‖ < cp ⇒ eb ∈ Ap,
(11) b ∈ VMO ⇒ ∀p > 1 eb ∈ Ap.

In the scalar case properties (1) and (2) are trivial equalities (i.e., cs = 1 and
one does not even need w ∈ Ap) but we will see that their matricial analogs
are not. Properties (3), (4), and (5) are elementary; they follow from the defini-
tions and convexity inequalities (Hölder, Jensen). To prove any of the next three
properties is more delicate, although now quite well understood. All these three
properties follow from the reverse Hölder inequality (9). The last pair also requires
more than just convexity considerations.

We will be interested in the analogs of these statements forAp,q classes. Here
we give a very informal summary of our conclusions, we will give the precise
definitions later. Versions of (3), (4), and (5) are again true. This is shown using
convexity, John’s theorem which allows reduction of the case of general norms
to that of matricial norms, and some basic matrix inequalities. On the other
hand (6), (7), (10), and (11) all fail. We present explicit counterexamples in two
dimensions. (The failure of (10) had been known earlier by an indirect argument.)

Interestingly, matrix analogs of (8) and (9) still hold and their proofs do re-
quire some of the depth of the scalar theory, the reverse Hölder inequality for Ap
weights.

The analogs of (1) and (2) in the matricial case involve integrals of the form
〈‖W 1/pv‖p〉I , where v is a constant vector and W is a positive matrix valued
function. In contrast to the scalar case, these integrals depend effectively on p
and the statements are no longer trivial. We will show that an analog of (1) con-
tinues to hold for convexity reasons. (2) however, can fail; again, we will see a
counterexample.

Although (2), (6), and (7) do not hold for all W ∈Ap,q their conclusions can
certainly hold for individual W . Interestingly, these conclusions are not indepen-
dent of each other. We will show that conclusions (6) or (7) hold for W if and
only if W and its dual W−q/p satisfy statement (2).

We would like to call particular attention to the conclusion to (2), called a
reverse inverse volume estimate in Section 3. It may be that that statement can be
helpful in understanding how the matricial theory differs from the scalar theory.
It is a truly matricial statement which has no analog in one dimension. In fact it
is also true for elementary reasons if the function W takes only values which are
diagonal matrices. Also the statement does not imply any non-trivial improvement
in the size estimates for the entries of W .

We recall some further definitions and properties of matrix weights, see [NT]
and [V]. For a homogenous σ : Cn → [0,∞), i.e., σ(cx) = |c|σ(x), c ∈ C (in
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particular a norm) define the inverse volume v−1(σ) by

v−1(σ) = vol({x ∈ Cn : ‖x‖ ≤ 1})
vol({x ∈ Cn : σ(x) ≤ 1}) .

Note that v−1(‖A·‖) = (detA)2 for a positive matrix A, the exponent is 2 because
we work in the complex space. v−1 automatically satisfies the following convexity
estimate.

Lemma 1.3. Let ρ be a weight such that t , logv−1(ρt) is locally integrable.
Then for any p ≥ 0 and I ⊂ R

v−1(〈ρ〉I,p) ≥ exp(〈logv−1(ρt)〉I).(1.3)

Proof. Note that for p < 1, 〈ρ〉I,p in general is not a norm but still satisfies the
homogeneity property 〈ρ〉I,p(cx) = |c|〈ρ〉I,p(x), c ∈ C. We define 〈ρ〉I,p for
p = 0 by 〈ρ〉I,0(x) = exp(〈logρ(x)〉I). By monotonicity of 〈ρ〉I,p with respect
to p, it suffices to show (1.3) for p = 0. For any homogenous σ : Cn → [0,∞),
i.e., σ(cx) = |c|σ(x), c ∈ C,

vol({x ∈ Cn : σ(x) ≤ 1}) = 1
2n

∫
S
σ(e)−2n ds(e),(1.4)

where S = {e ∈ Cn : ‖e‖ = 1} and ds is (2n− 1) dimensional Lebesgue measure
on S.

Therefore

exp(〈log vol{ρt(·) ≤ 1}〉I) = exp
(

1
|I|

∫
I
log

(
1

2n

∫
S
ρt(e)−2n ds(e)

)
dt
)

≥ 1
2n

∫
S

exp
(

1
|I|

∫
I
log(ρt(e)−2n)dt

)
ds(e)

= 1
2n

∫
S

(
exp

(
1
|I|

∫
I
logρt(e)dt

))−2n
ds(e)

= vol{〈ρ〉I,0(·) ≤ 1},

by the exp-log Minkowski inequality [DS, Ex. 36, p. 535], see also (7.3). For
the convenience we include the proof in the Appendix. This immediately yields
(1.3). ❐

Definition 1.4. A matrix weight W satisfies the Ap,0 condition if t ,
logv−1(ρt) is locally integrable and there is C > 0 so that

v−1(〈ρ〉I,p) ≤ C exp(〈logv−1(ρ)〉I) for all I ⊂ R,

where ρt(·) = ‖W 1/p(t) · ‖, or equivalently

v−1(〈‖W 1/p · ‖〉I,p) ≤ C exp

(
2
p
〈log detW〉I

)
for all I ⊂ R.(1.5)
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Now the Ap,q condition can be rewritten in the following very useful way,
see [NT].

Theorem 1.5. A weight ρ belongs to the classAp,q iff ρ and ρ? satisfy theAp,0
andAq,0 conditions respectively. That is, W ∈Ap,q iff W satisfies both (1.5) and

v−1(〈‖W−1/p · ‖〉I,q) ≤ C exp

(
− 2
p
〈log detW〉I

)
for all I ⊂ R.(1.6)

The paper is organized as follows. In Section 2 we prove basic facts about
the class Ap,q, among them Ap,q ⊂ Ap′,q′ for 1 < p < p′ < ∞. In the next
section we answer a question posed by Alexander Volberg by giving a necessary
and sufficient condition, for a matrix weight W ∈ Ap,q to be in a smaller class
Ap′,q′ for some p′ < p. In Section 4 we give an example of a matrix weight in
C2 for p = 2 which fails the open ended property satisfied by scalar weights, and
in the following section we describe a family of such weights for any 1 < p < ∞.
In Section 6 we discuss the relation between logarithms of weights and the space
BMO. Finally, in the last section we present the proof of the exp-log Minkowski
inequality.

2. BASIC PROPERTIES

Lemma 2.1. Suppose W is a (self-adjoint) positive matrix on Cn. Then for 0 <
α < 1 we have

‖Wαx‖1/α ≤ ‖Wx‖ for ‖x‖ = 1.(2.1)

Proof. Let {v1, . . . , vn} be an orthonormal basis of eigenvectors of W with
eigenvalues λ1, . . . , λn > 0. Take any x ∈ Cn with ‖x‖ = 1 and write it as
x = ∑ni=1 xivi. Then Wx = ∑ni=1 λixivi and Wαx = ∑ni=1 λ

α
i xivi. Inequality

(2.1) reads now

( n∑
i=1

λ2α
i |xi|2

)1/2α
≤
( n∑
i=1

λ2
i |xi|2

)1/2
,

which can be rewritten as( n∑
i=1

λ2α
i |xi|2

)
≤
( n∑
i=1

λ2
i |xi|2

)α
,

which follows by Jensen inequality. ❐

Lemma 2.2. There is a universal constant C > 0, depending only on the dimen-
sion n, such that if ρ is a norm on Cn, then

1
C
v−1(ρ) ≤ inf(ρ(v1) · · ·ρ(vn))2 ≤ Cv−1(ρ),(2.2)
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where the infimum is taken over all orthonormal bases {v1, . . . , vn} of Cn.

Proof. By John’s Theorem, there exists a positive matrix A, so that

1√
n
‖Ax‖ ≤ ρ(x) ≤ ‖Ax‖ for all x ∈ Cn.(2.3)

Fix any orthonormal basis {v1, . . . , vn} of Cn.

n∏
i=1

‖Avi‖ ≥
n∏
i=1

〈Avi, vi〉 =
n∏
i=1

(a1(v1
i )

2 + · · · + an(vni )2)(2.4)

≥
n∏
i=1

a(v
1
i )

2

1 · · ·a(v
n
i )

2

n =
n∏
i=1

a(v
i
1)2+···+(vin)2

i =
n∏
i=1

ai = detA,

where {a1, . . . , an} are eigenvalues of A with eigenvectors {w1, . . .wn}, and vi =
v1
i w1+· · ·+vni wn. We have equality in (2.4) if {v1, . . . , vn} are the eigenvectors

of A. Therefore by (2.3)

n−n
n∏
i=1

‖Avi‖2 ≤
n∏
i=1

ρ(vi)2 ≤
n∏
i=1

‖Avi‖2,

and by taking the infimum over all orthonormal basis of Cn

n−nv−1(ρ) ≤ n−n(detA)2 ≤ inf(ρ(v1) · · ·ρ(vn))2 ≤ (detA)2 ≤ nnv−1(ρ),

where the extreme inequalities follow from (2.3). Hence C = nn works in
(2.2). ❐

Lemma 2.3 (inverse volume inequality). There exists a universal constant Cn >
0 so that if W is a matrix weight and 0 < p < p′ <∞, then

v−1(〈‖W 1/p′ · ‖〉I,p′) ≤ Cn(v−1(〈‖W 1/p · ‖〉I,p))p/p′ .(2.5)

Proof. Take any x ∈ Cn with ‖x‖ = 1; then

(
1
|I|

∫
I
‖W 1/p(t)x‖p dt

)1/p
≥
(

1
|I|

∫
I
‖W 1/p′(t)x‖p′ dt

)1/p

by applying (2.1) with exponent α = p/p′. Applying this inequality for unit
vectors {v1, . . . , vn} gives us

〈‖W 1/pv1‖〉I,p · · · · · 〈‖W 1/pvn‖〉I,p
≥ (〈‖W 1/p′v1‖〉I,p′ · · · · · 〈‖W 1/p′vn‖〉I,p′

)p′/p.
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If we square this and take the infimum over all orthonormal bases {v1, . . . , vn},
we obtain by Lemma 2.2

Cv−1(〈‖W 1/p · ‖〉I,p) ≥
(

1
C
v−1(〈‖W 1/p′ · ‖〉I,p′)

)p′/p
,

which gives us (2.5) with Cn = n2n. ❐

The intuitive meaning of Lemma 2.3 is that p , (v−1(〈‖W 1/p · ‖〉I,p))p is
a decreasing function of 0 < p < ∞. This would be the case if we knew that the
constant Cn = 1 in (2.5). It is an open question whether inverse volume inequality
holds with the constant Cn = 1.

Theorem 2.4. If W ∈ Ap,q, then for any 0 < α < 1, Wα ∈ Ap′,q′ , where
p′ = α(p − 1)+ 1 and 1/p′ + 1/q′ = 1.

Proof. Since W ∈Ap,0 reads

v−1(〈‖W 1/p · ‖〉I,p) ≤ C exp

(
2
p
〈log detW〉I

)
,

we have

v−1(〈‖W 1/p · ‖〉I,p)pα/p′ ≤ Cα exp

(
2α
p′
〈log detW〉I

)
.

By Jensen’s inequality we have

v−1(〈‖Wα/p′ · ‖〉I,p′) ≤ v−1(〈‖Wα/p′ · ‖〉I,p′/α)
≤ Cnv−1(〈‖W 1/p · ‖〉I,p)pα/p′ ,

where the last inequality is a consequence of Lemma 2.3 applied for exponents
p < p′/α = p − 1+ 1/α. Combining the last inequalities, we have

v−1(〈‖Wα/p′ · ‖〉I,p′) ≤ CnCα exp

(
2α
p′
〈log detW〉I

)
,

which means precisely that Wα ∈Ap′,0.
Similarly, since W−q/p ∈Aq,0 reads

v−1(〈‖W−1/p · ‖〉I,q) ≤ C exp

(
− 2
p
〈log detW〉I

)
,

we have

v−1(〈‖W−1/p · ‖〉I,q)q/q′ ≤ Cq/q′ exp

(
−2α
p′
〈log detW〉I

)
,



Inverse Volume Inequalities for Matrix Weights 391

(because q/(pq′) = α/p′). By Lemma 2.3 applied for exponents q < q′

Cnv−1(〈‖W−1/p · ‖〉I,q)q/q′ ≥ v−1(〈‖W−q/(pq′) · ‖〉I,q′)
= v−1(〈‖W−α/p′ · ‖〉I,q′).

The last two inequalities yield

v−1(〈‖W−α/p′ · ‖〉I,q′) ≤ CnCq/q′ exp

(
−2α
p′
〈log detW〉I

)
,

which precisely means that W−αq′/p′ ∈ Aq′,0.
This finishes the proof because Wα ∈ Ap′,0, and W−αq′/p′ ∈ Aq′,0 iff Wα ∈

Ap′,q′ . ❐

Theorem 2.5. Suppose 1 < p < p′ < ∞. If W ∈Ap,q, then W ∈Ap′,q′ .

Proof. As before, W ∈Ap,0 reads

v−1(〈‖W 1/p · ‖〉I,p) ≤ C exp

(
2
p
〈log detW〉I

)
.

Using Lemma 2.3, we have

v−1(〈‖W 1/p′ · ‖〉I,p′) ≤ Cnv−1(〈‖W 1/p · ‖〉I,p)p/p′ ,

and by combining it with the previous inequality, we obtain

v−1(〈‖W 1/p′ · ‖〉I,p′) ≤ Cn
(
C exp

(
2
p
〈log detW〉I

))p/p′

= CnCp/p′ exp

(
2
p′
〈log detW〉I

)
,

which says that W ∈Ap′,0.
Similarly, W−q/p ∈Aq,0 reads

v−1(〈‖W−1/p · ‖〉I,q) ≤ C exp

(
− 2
p
〈log detW〉I

)
.

Using Lemma 2.3 for the matrix weight W−q/p and exponents 1 < q < qp′/p <
∞, we have

Cnv−1(〈‖W−1/p · ‖〉I,q)p/p′ ≥ v−1(〈‖W−1/p′ · ‖〉I,qp′/p)
≥ v−1(〈‖W−1/p′ · ‖〉I,q′),
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where in the last step we could use Jensen’s inequality, because qp′/p > q′ (since
p′/q′ = p′ − 1 > p − 1 = p/q). By combining the two previous inequalities, we
obtain

v−1(〈‖W−1/p′ · ‖〉I,q′ ≤ CnCp/p′ exp

(
− 2
p′
〈log detW〉I

)
,

which says W−q′/p′ ∈ Aq′,0. ❐

Corollary 2.6. Suppose W ∈Ap,q; then Wα ∈ Ap,q for any 0 < α < 1.

Proof. Immediate from Theorems 2.4 and 2.5. ❐

Remark 2.7. The proofs of Theorems 2.4 and 2.5 give the following quan-
titative statements. Suppose 0 < α < 1 and W ∈ Ap,0 with constant C; then
Wα ∈ Aα(p−1)+1,0 with constant at most CnC. Also, if W ∈ Ap,0 (or W−q/p ∈
Aq,0) with constant C, then W ∈ Ap′,0 (or W−q′/p′ ∈ Aq′,0) with constant at
most CnC for any p′ > p, 1/p′ + 1/q′ = 1. We will use these observations later.

Corollary 2.8. Suppose r > 1 and Wr ∈ Ap,q; then W ∈ Ap′,q′ , where
p′ = (p − 1)/r + 1 and 1/p′ + 1/q′ = 1.

Proof. Immediate from Theorem 2.4. ❐

3. REVERSE INVERSE VOLUME INEQUALITY

Definition 3.1. We say that a matrix weight W satisfies the reverse inverse
volume inequality for exponent 1 < p < ∞, if there is some 1 < p′ < p and a
constant C > 0 such that

Cv−1(〈‖W 1/p · ‖〉I,p) ≥ v−1(〈‖W 1/p′ · ‖〉I,p′)p′/p for all I ⊂ R.(3.1)

Note. Lemma 2.3 says that we always have

v−1(〈‖W 1/p · ‖〉I,p) ≤ Cnv−1(〈‖W 1/p′ · ‖〉I,p′)p′/p

for 1 < p′ < p <∞. IfW is a scalar weight, then we simply have equality (without
the constant Cn). More generally, if a matrix weightW is simultaneously diagonal-
izable, i.e., there exists a universal orthonormal basis {v1, . . . , vn} of eigenvectors
of W(t) for all t ∈ R, then both sides are comparable.

We start with a lemma about the equivalence ofAp,0 and strongAp,0 condi-
tions, which has appeared in a similar form both in [NT] and [V]. We say that a
matrix weight W satisfies a strongAp,0 condition if there is a constant C so that

〈‖W−1/p · ‖〉I,0 ≤ C〈‖W 1/p · ‖〉?I,p for all I ⊂ R.

The author has decided to include a proof of this lemma to emphasize the inter-
dependence of constants which will be used later.
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Lemma 3.2. Let 1 < p < ∞. Suppose V is a matrix weight and for some
interval I ⊂ R

v−1(〈‖V · ‖〉I,p) ≤ C1 exp(2〈log detV〉I).(3.2)

Then

〈‖V−1 · ‖〉I,0 ≤ C2〈‖V · ‖〉?I,p,(3.3)

with C2 =
√
C1n3n/2. Conversely, (3.3) implies (3.2) with constant C1 = nn(C2)2n.

Proof. By John’s Theorem, we can select a positive matrix VI which is a reduc-
ing norm for 〈‖V · ‖〉I,p, i.e.,

1√
n
‖VI · ‖ ≤ 〈‖V · ‖〉I,p ≤ ‖VI · ‖.(3.4)

Then (3.4) implies

1
nn
(detVI)2 ≤ C1 exp(2〈log detV〉I).(3.5)

Define a matrix valued function C by C(t) = V(t)−1VI . Note that

1√
n
‖x‖ ≤ 〈‖C−1(t)?x‖〉I,p = 〈‖V(t)V−1

I x‖〉I,p ≤ ‖x‖.(3.6)

Fix x ∈ Cn with ‖x‖ = 1. For any t in I let y(t) ∈ Cn, ‖y(t)‖ = 1, be an
eigenvector of a positive symmetric matrix C(t)?C(t) corresponding to the least
eigenvalue, that is y(t) minimizes ‖C(t)y(t)‖. Then

detC(t) = (detC(t)?C(t))1/2 =
( n∏
i=1

〈C(t)?C(t)vi, vi〉
)1/2

(3.7)

≥ (〈C(t)?C(t)x,x〉)1/2(〈C(t)?C(t)y(t),y(t)〉)(n−1)/2

= ‖C(t)x‖‖C(t)y(t)‖n−1,

where v1, . . . , vn are eigenvectors of C(t)?C(t). An integration of the logarithm
of both sides of (3.7) yields

〈log‖C(t)x‖〉I ≤ log detVI − 〈log detV(t)〉I − (n− 1)〈log‖C(t)y(t)‖〉I .

Since

1 = 〈C−1(t)C(t)y(t),y(t)〉 = 〈C(t)y(t), C−1(t)?y(t)〉
≤ ‖C(t)y(t)‖‖C−1(t)?y(t)‖,
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we can substitute ‖C−1(t)?y(t)‖−1 in place of ‖C(t)y(t)‖ to obtain (after ex-
ponentiation of both sides)

〈‖C(t)x‖〉I,0 ≤ detVI exp(−〈log detV(t)〉I)(〈‖C−1(t)?y(t)‖〉I,0)n−1

≤
√
C1nn/2(〈‖C−1(t)?y(t)‖〉I,p)n−1 ≤

√
C1nn/2nn−1

≤
√
C1n3n/2‖x‖.

By (3.5) and a crude estimate from (3.6)

〈‖C−1(t)?y(t)‖〉I,p ≤
〈 n∑
i=1

‖C−1(t)?ei‖
〉
I,p
≤

n∑
i=1

〈‖C−1(t)?ei‖〉I,p ≤ n.

Therefore

〈‖V−1(t)x‖〉I,0 ≤
√
C1n3n/2‖V−1

I x‖ ≤
√
C1n3n/2〈‖V(t)x‖〉?I,p,

where the last inequality follows by taking duals of (3.4).
Conversely, assume (3.3) holds. By applying v−1 to both (3.4) and the dual

of (3.4) and multiplying the two resulting inequalities, we obtain

n−n ≤ v−1(〈‖V · ‖〉I,p)v−1(〈‖V · ‖〉?I,p) ≤ nn.(3.8)

Condition (3.3) implies v−1〈‖V · ‖〉I,0) ≤ (C2)2nv−1(〈‖V · ‖〉?I,p), hence

[
v−1(〈‖V · ‖〉I,p) exp(−〈log detV〉I)

][
v−1(〈‖V−1 · ‖〉I,0) exp(−〈log detV−1〉I)

]
≤ nn(C2)2n,

since the exponential terms give 1 when multiplied. By Lemma 1.3 the second
factor in the brackets (and the first as well) is at least 1, therefore we have (3.2)
with constant C1 = nn(C2)2n. ❐

Lemma 3.3. Suppose a matrix weight V satisfies (3.3) for some interval I ⊂ R.
Then for any 0 ≠ x ∈ Cn,

〈‖Vx‖〉I,p ≤ C2 exp(〈log‖Vx‖〉I).(3.9)

Proof. Fix x ≠ 0 and choose 0 ≠ y ′ ∈ Cn such that

〈‖Vx‖〉I,p = sup
y≠0

|〈x,y〉|
〈‖V · ‖〉?I,p(y)

= 〈x,y ′〉
〈‖V · ‖〉?I,p(y ′)

.
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Using the above and (3.3) we obtain

〈‖Vx‖〉I,p exp(−〈log‖Vx‖〉I) ≤ C2〈x,y ′〉 exp(−〈log‖V−1y ′‖〉I − 〈log‖Vx‖〉I)
= C2〈x,y ′〉 exp(−〈log(‖V−1y ′‖ · ‖Vx‖)〉I)
≤ C2〈x,y ′〉 exp(−〈log〈x,y ′〉〉I) = C2.

This proves inequality (3.9). ❐

The next lemma states that matrix weights satisfy a kind of self-improvement,
which is an analog of the reverse Hölder inequality for scalar weights.

Lemma 3.4. Suppose 1 < p0 < ∞ and C > 0. Then there exist r > 1 and
C′ > 0, depending only on p0 and C, having the property that if a matrix weight V
satisfies for some 1 < p ≤ p0

v−1(〈‖V · ‖〉I,p) ≤ C exp(2〈log detV〉I) for all I ⊂ R,(3.10)

then

v−1(〈‖V · ‖〉I,pr ) ≤ C′ exp(2〈log detV〉I) for all I ⊂ R.(3.11)

Proof. Assume (3.10) holds; then by Lemmas 3.2 and 3.3 we have for any
x ≠ 0

〈‖Vx‖〉I,p ≤
√
Cn3n/2 exp(〈log‖Vx‖〉I) for all I ⊂ R,

hence

〈‖Vx‖p〉I ≤ Cp/2n3pn/2 exp(〈log‖Vx‖p〉I) for all I ⊂ R,

which means that a scalar weight w(t) = ‖V(t)x‖p satisfies

〈w〉I exp(−〈logw〉I) ≤ C̃ for all I ⊂ R,

where C̃ = Cp0/2n3p0n/2. By [H, Theorem 1] (see also [GR, Theorem 2.15,
p. 405]) w ∈ A∞, i.e., for all intervals I ⊂ R and all measurable subsets E ⊂ Q,

|E| ≤ 1
2
|I| ⇒

∫
E
w(t)dt ≤ δ

∫
I
w(t)dt,

with δ = max( 1
2 ,4C̃

2/(1+4C̃2)). Hence by [S, Proposition 4, p. 202], weight w
satisfies the reverse Hölder inequality, i.e., there exist r > 1 and c > 0 so that

〈‖Vx‖〉I,rp ≤ c〈‖Vx‖〉I,p for all I ⊂ R.
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Hence

v−1(〈‖V · ‖〉I,rp) ≤ c2nv−1(〈‖V · ‖〉I,p) ≤ C′ exp(2〈log detV〉I),

with C′ = c2nC. ❐

Corollary 3.5. Suppose W ∈ Ap,q. Then there exists r > 1 such that Wr ∈
Apr,q′ , where 1/(pr)+ 1/q′ = 1.

Proof. Lemma 3.4 says that W ∈Ap,0 implies Wr ∈Apr,0. Since q′ < q we
have

v−1(〈‖W−1/p · ‖〉I,q′) ≤ v−1(〈‖W−1/p · ‖〉I,q) ≤ C exp

(
− 2
p
〈log detW〉I

)
,

which shows that W−q′/p = (Wr )−q′/(pr) ∈ Aq′,0. ❐

Theorem 3.6. Suppose W ∈Ap0,q0 . Then the following are equivalent:
(i) W ∈Ap1,q1 for some 1 < p1 < p0, 1/p1 + 1/q1 = 1,

(ii) Wr ∈Ap0,q0 for some r > 1,
(iii) W and W−q0/p0 satisfy reverse inverse volume inequalities for exponents p0 and

q0, respectively.

Proof of (i)⇒ (iii). W ∈Ap1,0 says that

v−1(〈‖W 1/p1 · ‖〉I,p1) ≤ C exp

(
2
p1
〈log detW〉I

)
.

Raising this to the power p1/p0 and combining with Lemma 1.3 applied to
‖W 1/p0 · ‖ with exponent p0, i.e.,

v−1(〈‖W 1/p0 · ‖〉I,p0) ≥ exp

(
2
p0
〈log detW〉I

)

gives

Cp1/p0v−1(〈‖W 1/p0 · ‖〉I,p0) ≥ (v−1(〈‖W 1/p1 · ‖〉I,p1))
p1/p0 .

Hence W satisfies the reverse inverse volume inequality with exponent p0.
Similarly, W−q1/p1 ∈Aq1,0 says that

v−1(〈‖W−1/p1 · ‖〉I,q1) ≤ C exp

(
− 2
p1
〈log detW〉I

)
.
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Taking this to the power p1/p0, and combining with Lemma 1.3 applied to
‖W−1/p0 · ‖ with exponent q0

v−1(〈‖W−1/p0 · ‖〉I,q0

) ≥ exp

(
− 2
p0
〈log detW〉I

)

gives us

Cp1/p0v−1(〈‖W−1/p0 · ‖〉I,q0

) ≥ (v−1(〈‖W−1/p1 · ‖〉I,q1)
)p1/p0 .

Since 〈‖W−1/p1 · ‖〉I,q1 ≥ 〈‖W−1/p1 · ‖〉I,q0p1/p0 (by q1 > q0p1/p0) we have

Cp1/p0v−1(〈‖W−1/p0 · ‖〉I,q0

) ≥ (v−1(〈‖W−1/p1 · ‖〉I,q0p1/p0)
)p1/p0 ,

hence W−q0/p0 satisfies the reverse inverse volume inequality with exponent
q0. ❐

Proof of (iii)⇒ (ii). By our hypothesis, there exists 1 < p1 < p0 such that

Cv−1(〈‖W 1/p0 · ‖〉I,p0

) ≥ (v−1(〈‖W 1/p1 · ‖〉I,p1)
)p1/p0 .

This can be rewritten as

Cv−1(〈‖W 1/p0 · ‖〉I,p0

) ≥ (v−1(〈‖Wr0/p0 · ‖〉I,p0/r0)
)1/r0 ,

where r0 = p0/p1 > 1. Combining it with W ∈Ap0,0 yields

(
v−1(〈‖Wr0/p0 · ‖〉I,p0/r0)

)1/r0 ≤ C exp

(
2
p0
〈log detW〉I

)
,

hence

v−1(〈‖Wr0/p0 · ‖〉I,p0/r0

) ≤ Cr0 exp

(
2r0

p0
〈log detW〉I

)
.

By the inverse volume inequality (Lemma 2.3)

v−1(〈‖Ws/p0 · ‖〉I,p0/s
) ≤ Cn(v−1(〈‖Wr0/p0 · ‖〉I,p0/r0)

)s/r0

≤ Cr0Cn exp

(
2s
p0
〈log detW〉I

)
,

for all 1 ≤ s ≤ r0.



398 MARCIN BOWNIK

By Lemma 3.4 applied for exponent p0, constant Cr0Cn, and weights V =
Ws/p0 there exists r1 > 1 and C′ > 0 so that

v−1(〈‖Ws/p0 · ‖〉I,r1p0/s) ≤ C′ exp

(
2s
p0
〈log detW〉I

)
,(3.12)

for all 1 ≤ s ≤ r0. We can also assume that r1 ≤ r0 (otherwise use Hölder
inequality to decrease r1). Take s = r1 in (3.12) to obtain Wr1 ∈Ap0,0.

Thus we have shown that W ∈ Ap0,0 and W satisfying the reverse inverse
volume inequality with exponent p0 implies that there exists r > 1 so that Wr ∈
Ap0,0. Applying the above for the weight W−q0/p0 ∈ Aq0,0 satisfying the reverse
inverse volume inequality with exponent q0, we have r2 > 1 so that W−r2q0/p0 ∈
Aq0,0. Finally take r = min(r1, r2) > 1 and use Corollary 2.6 to conclude that
both Wr ∈Ap0,0 and W−rq0/p0 ∈Aq0,0, so Wr ∈ Ap0,q0 . ❐

Proof of (ii)⇒ (i). Follows from Corollary 2.8. ❐

4. AN EXAMPLE OF A MATRIX WEIGHT IN A2,2

In this section we exhibit a matrix weight in A2,2 that violates the open ended
property enjoyed by scalar weights. This is the first example of such a weight,
and it suggested to the author a wider class of matrix weights breaking the open
ended property for any 1 < p <∞. Although Proposition 5.3 gives an alternative
proof to the one below, the author decided to present this example to display the
argument used in the simpler case p = 2.

Lemma 4.1. Suppose −∞ < a < b < ∞ and 0 < c < 1; then

1
b − a

∫ b
a
|t|−c dt ≤ 2

1− c max(|a|, |b|)−c,

1
b − a

∣∣∣∣∫ b
a

sign(t)|t|−c dt
∣∣∣∣ ≤ 1

1− c max(|a|, |b|)−c.

Proof. It is enough to show

1
b − a

∫ b
a
|t|−c dt ≤ 1

1− c b
−c

for any 0 ≤ a < b <∞, which in turn follows easily by differentiation of left hand
side as a function of a for fixed b. ❐

Theorem 4.2. There is a 2×2 matrix weightW ∈ A2,2 such that for any r > 1,
Wr 6∈ A2,2.
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Proof. Let

W(t) = U(t)?
(

1 0

0 b(t)

)
U(t), U(t) =

(
cosα(t) − sinα(t)

sinα(t) cosα(t)

)
,

where

b(t) =
|t|

1/2 −1 ≤ t ≤ 1,

1 otherwise,

α(t) =
sign(t)|t|1/4 −1 ≤ t ≤ 1,

sign t otherwise.

By direct computations we have

W =
 cos2α − sinα cosα

− sinα cosα sin2α

+ |t|1/2
 sin2α sinα cosα

sinα cosα cos2α

 ,
and

W−1 =
 cos2α − sinα cosα

− sinα cosα sin2α

+ |t|−1/2

 sin2α sinα cosα

sinα cosα cos2α

 .
Let ∆ = {(a, b) : a ≤ b, a, b ∈ R} \ {(0,0)} ⊂ R2. Define a function

N : ∆→ R by

N(a,b) = ‖〈W−1〉1/2I 〈W〉1/2I ‖, where I = [a, b],

and 〈W〉I for I = [a,a] means W(a). We claim that N is continuous on ∆ and,
moreover, N(a,b) tends to 1 as a→∞ or as b →∞.

To show W ∈ A2,2, we need N(a,b) be bounded as ∆ 3 (a, b) → (0,0).
First notice that

W(t) =
 1+O(|t|1/2) − sign(t)|t|1/4 +O(|t|3/4)
− sign(t)|t|1/4 +O(|t|3/4) 2|t|1/2 +O(|t|)

 ,
and

W−1(t) =
 2+O(|t|1/2) − sign(t)|t|−1/4 +O(|t|1/4)
− sign(t)|t|−1/4 +O(|t|1/4) |t|−1/2 +O(1)

 ,
for t close to 0.
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Suppose that I = [a, b] for b > 0, b ≥ |a| and take any x = (x1, x2) ∈ C2.

〈〈W〉Ix, x〉 ≤ (1+O(b1/2))|x1|2 + 2(b1/4 +O(b3/4))|x1| |x2|
+ (2b1/2 +O(b))|x2|2

≤ 2(|x1|2 + 2b1/4|x1| |x2| + 2b1/2|x2|2)
≤ 2(2|x1|2 + 3b1/2|x2|2).

Hence

〈W〉I ≤ 2

(
2 0

0 3b1/2

)
.

Analogously, using Lemma 4.1 we have

〈〈W−1〉Ix, x〉 ≤ (2+O(b1/2))|x1|2 + 2
(

4
3
b−1/4 +O(b3/4)

)
|x1| |x2|

+ (4b−1/2 +O(1))|x2|2

≤ 2(2|x1|2 + 2b−1/4|x1| |x2| + 3b−1/2|x2|2)
≤ 2(3|x1|2 + 4b−1/2|x2|2).

Hence

〈W−1〉I ≤ 2

(
3 0

0 4b−1/2

)
.

Analogously, if I = [a, b] for a < 0, |a| ≥ |b| we obtain the estimates

〈W〉I ≤ 2

(
2 0

0 3|a|1/2
)
,

〈W−1〉I ≤ 2

(
3 0

0 4|a|−1/2

)
,

which show thatN is bounded if a, b are close to 0. ThereforeN must be bounded
on all of ∆, which means W ∈A2,2.

On the other hand, by computing averages over symmetric intervals I =
[−a,a], a > 0, we see that Wr for r > 1 can not belong to A2,2. Indeed,
since

W±r =
 cos2α − sinα cosα

− sinα cosα sin2α

+ |t|±r/2
 sin2α sinα cosα

sinα cosα cos2α

 ,
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we have for small a > 0

〈Wr 〉I =

1+O(a1/2) 0

0
2
3
a1/2 +O(ar/2)

 ,

〈W−r 〉I =


2

(3− r)a
(1−r)/2 +O(1) 0

0
2

(2− r)a
−r/2 +O(a(1−r)/2))

 ,
because the off-diagonal entries vanish.

Now it is clear that N(−a,a) = ‖〈W−r 〉1/2I 〈Wr 〉1/2I ‖ → ∞ as a→ 0. ❐

Corollary 4.3 (counterexample to the open ended property). There exists a 2×
2 matrix weightW ∈ A2,2 which is not in classAp,q for any p < 2, 1/p+1/q = 1.

Proof. Immediate from Theorems 4.2 and 3.6. ❐

5. EXAMPLES OF WEIGHTS IN Ap,q

Lemma 5.1. There is a universal constant C > 0, depending on dimension n,
such that for any 1 ≤ p ≤ ∞ and any unitary matrix U

1
C
‖x‖ ≤ ‖Ux‖p ≤ C‖x‖ for x ∈ Cn.

Here for x = (x1, . . . , xn) ∈ Cn we denote

‖x‖p =


( n∑
i=1

|xi|p
)1/p

1 ≤ p <∞,

sup |xi| p = ∞.

Proof. Since

‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1 for any 1 ≤ p ≤ ∞,

and ‖U−1x‖ = ‖x‖, it suffices to show that there exists C > 0 such that

1
C
‖x‖ ≤ ‖x‖∞ and ‖x‖1 ≤ C‖x‖.

It is easy to see that C = √n works in both inequalities. ❐

Lemma 5.2. Let 1 ≤ p ≤ ∞ and A be any non singular n × n matrix. If
ρ(x) = ‖Ax‖p, then ρ?(x) = ‖(A−1)?x‖q, where 1/p + 1/q = 1.
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Proof. Let Bp = {x ∈ Cn : ‖x‖p ≤ 1} denote the unit ball of ‖ · ‖p. Then
the unit ball Bρ of the norm ρ is A−1(Bp).

ρ?(y) = sup
x∈Bρ

〈y,x〉 = sup
x∈Bp

〈y,A−1x〉 = sup
x∈Bp

〈(A−1)?y,x〉 = ‖(A−1)?y‖q.

We used here that ‖ · ‖?p � ‖ · ‖q, where the duality is realized by the standard
inner product 〈·, ·〉. ❐

Proposition 5.3. Suppose a 2× 2 matrix weight W is given by

W(t) = U(t)?
(

1 0

0 b(t)

)
U(t), where U(t) =

(
cosα(t) − sinα(t)

sinα(t) cosα(t)

)
,

α(t) =
sign(t)|t|δ for |t| ≤ 1,

sign(t) otherwise,
b(t) =

|t|
ε for |t| ≤ 1,

1 otherwise,

and −1 < ε < p/q, δ > 0, and 1/p + 1/q = 1. Then W ∈ Ap,q if and only if
−pδ ≤ ε ≤ pδ.

Proof. Assume first that 0 < ε < p/q. Let ρt(x) = ‖W 1/p(t)x‖, where
x = (x1, x2) ∈ C2. Since

U(t)W 1/p(t) =
(

cos(α(t)) − sin(α(t))

|t|ε/p sin(α(t)) |t|ε/p cos(α(t))

)
,

Lemma 5.1 implies that

1
C
ρt(x) ≤

(|x1 cos(α(t))− x2 sin(α(t))|p + |t|ε|x1 sin(α(t))+ x2 cos(α(t))|p)1/p

≤ Cρt(x),

and similarly

1
C
ρ?t (x) ≤

(|x1 cos(α(t))− x2 sin(α(t))|q + |t|−εq/p|x1 sin(α(t))
+ x2 cos(α(t))|q)1/q

≤ Cρ?t (x).
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Suppose that ε ≤ pδ. Then for t close to 0

1
Cp
(ρt(x))p ≤ |x1(1+O(|t|2δ))− x2 sign(t)(|t|δ +O(|t|3δ))|p

+ |t|ε|x1 sign(t)(|t|δ +O(|t|3δ))+ x2(1+O(|t|2δ))|p

≤ 2p|x1|p[(1+O(|t|2δ))p + |t|ε(|t|δ +O(|t|3δ))p]
+ 2p|x2|p[(|t|δ +O(|t|3δ))p + |t|ε(1+O(|t|2δ))p]

≤ 2p+1[|x1|p + |t|ε|x2|p].

Therefore, if I = [a, b] is some interval with a, b close to 0 and d = max(|a|, |b|),
then

〈ρ〉I,p ≤ 4C(|x1|p + dε|x2|p)1/p = 4C(|x1|p + |dε/px2|p)1/p.

After taking the dual norm, by Lemma 5.2 we have

〈ρ〉?I,p ≥
1
4
C(|x1|q + d−εq/p|x2|q)1/q.

Analogously,

1
Cq
(ρ?t (x))

q ≤2q|x1|q[(1+O(|t|2δ))q + |t|−εq/p(|t|δ +O(|t|3δ))q]

+ 2q|x2|q[(|t|δ +O(|t|3δ))q + |t|−εq/p(1+O(|t|2δ))q]
≤2q+1[|x1|q + |t|−εq/p|x2|q],

therefore by εq/p < 1 and Lemma 4.1

〈ρ?〉I,q ≤ 4C
(
|x1|q + 2

1− εq/pd
−εq/p|x2|q

)1/q

.

To finish the argument, define ∆ = {(a, b) : a ≤ b, a, b ∈ R}\{(0,0)} ⊂ R2

and a function N : ∆→ R by

N(a,b) = sup
0≠x∈C2

〈ρ?〉I,q(x)
〈ρ〉?I,p(x)

, where I = [a, b],

and 〈ρ〉I,p(x) for I = [a,a]means simply ρa(x). We claim that N is continuous
on ∆ and, moreover, N(a,b) tends to 1 as a → ∞ or as b → ∞. By collecting the
two previous inequalities together we obtain

〈ρ?〉I,q ≤ (4C)2
(

2
1− εq/p

)1/q

〈ρ〉?I,p,
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which means that N is bounded as a, b are close to 0. Therefore N must be
bounded on all of ∆, which means W ∈Ap,q.

On the other hand, assume ε > δp; then for t close to 0 we have

Cpρt(x)p ≥ |x1(1+O(|t|2δ))− x2 sign(t)(|t|δ +O(|t|3δ))|p

+ |t|ε|x1 sign(t)(|t|δ +O(|t|3δ))+ x2(1+O(|t|2δ))|p.

Consider a matrix V given by

V =
(

1 −1

1 1

)
.

Then the matrix U = 1/
√

2V is unitary, and by Lemma 5.1 ‖Uy‖p ≥ 1/C2‖y‖p
for any y ∈ C2, hence ‖Vy‖p ≥

√
2/C2‖y‖p. Hence, if t is close to 0 we have

Cp(ρt(x)p + ρ−t(x)p)
≥ 2p/2C−2p[|x1|p(1+O(|t|2δ))p + |x2|p(|t|δ +O(|t|3δ))p

+ |t|ε(|x1|p(|t|δ +O(|t|3δ))p + |x2|p(1+O(|t|2δ))p)
]

≥ C−2p[|x1|p + |x2|p|t|δp].

An integration of the above inequality on the interval I = [0, a], where a > 0 is
close to 0, yields

1
a

∫ a
0
(ρt(x)p + ρ−t(x)p)dt ≥ C−3p

(
|x1|p + 1

1+ δpa
δp|x2|p

)
,

hence

〈ρ〉I,p ≥ 2−1/pC−3

(
|x1|p +

1
1+ δpa

δp|x2|p
)1/p

,

where I = [−a,a]. After taking the dual norm, by Lemma 5.2 we have

〈ρ〉?I,p(x) ≤ 21/pC3(|x1|q + (1+ δp)q/pa−δq|x2|q)1/q.

Using the above technique we could also estimate the norm 〈ρ?〉I,q. However,
to obtain the desired conclusion it is enough to find values of these norms on the
standard unit vector e1.

For t close to 0 we have

Cqρ?t (e1)q ≥ (1+O(|t|2δ))q + |t|−εq/p(|t|δ +O(|t|3δ))q ≥ 1
2
|t|(δp−ε)q/p.
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An integration of the above inequalities over an interval I = [−a,a], where a > 0
is close to 0, yields

〈ρ?〉I,q(e1) ≥
1

2C

(
1+ (δp − ε)q

p

)−1/q

a(δp−ε)/p.

Now we see that N(−a,a) ≥ 〈ρ?〉I,q(e1)/〈ρ〉?I,p(e1) → ∞ as a → 0. Therefore,
the assumption ε > δp excludes W from being in classAp,q. This ends the proof
of the proposition in the case 0 < ε < p/q.

If ε = 0, then W(t) = Id belongs toAp,q class. Finally assume −1 < ε < 0.
By the duality, i.e., W ∈ Ap,q ⇐⇒ W−q/p ∈ Aq,p we deduce that W ∈ Ap,q
(where W is defined as in Proposition 5.3) iff −εq/p ≤ qδ, i.e., ε ≥ −pδ. This
ends the proof of Proposition 5.3. ❐

Remark 5.4. For any 1 < p < ∞, by taking ε = δp, Proposition 5.3 gives
a weight W in Ap,q, which is not in Ap′,q′ for any p′ < p. It is not hard to
see that W satisfies the reverse inverse volume inequality for exponent p, but by
Theorem 3.6, W−q/p cannot satisfy this inequality for exponent q. By the duality
(take ε = −pδ in Proposition 5.3) we can find a matrix weight W which does
not satisfy the reverse inverse volume inequality for exponent p, but W−q/p does
satisfy it.

6. LOGARITHM OF A WEIGHT AND BMO

The following theorem is an immediate consequence of the result by Steven Bloom
in [B].

Theorem 6.1. Suppose W ∈ Ap,q for some 1 < p < ∞. Then the self-adjoint
matrix valued function logW belongs to BMO, i.e., each entry of logW is in BMO.

Proof. Suppose W ∈ Ap,q. Then by Theorem 2.4, there exists 0 < α ≤ 1
such that Wα ∈ A2,2 (if p ≤ 2, it suffices to take α = 1, by Theorem 2.5).
Therefore by [B, Theorem 2.5], logWα = α logW is in BMO, and so is logW . ❐

In the scalar case it is known that the converse statement is true, that is, if b ∈
BMO, then exp(εb) is in Ap for ε sufficiently close to 0. However, in the
matrix case there is a self-adjoint matrix valued function B(t) in BMO, such
that exp(εB(t)) 6∈ A2,2 for any ε ≠ 0, see [B]. Therefore, by Theorem 2.4,
exp(εB(t)) 6∈ Ap,q for any ε ≠ 0 and 1 < p < ∞. Also, in the scalar case, if
b ∈ VMO, then exp(b) is in Ap. This again turns out to be false in the matrix
case. The construction of our example is based on the counterexample to Peller’s
conjecture, found in [TV3].

Theorem 6.2. There is a self-adjoint matrix valued B belonging to VMO such
that exp(εB) is not inAp,q (1 < p <∞) for any ε ≠ 0.
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Proof. Let

B(t) = U(t)?
(

0 0

0 b(t)

)
U(t), U(t) =

(
cosα(t) − sinα(t)

sinα(t) cosα(t)

)
,

where

b(t) =
(− log |t|)1/2 − 1

2 ≤ t ≤
1
2 ,

(− log 1
2)

1/2 otherwise,

α(t) =


sign t
log |t| − 1

2 ≤ t ≤
1
2 ,

sign t
log 1

2

otherwise.

By a simple calculation

B(t) =
 sin2α(t)b(t) sinα(t) cosα(t)b(t)

sinα(t) cosα(t)b(t) cos2α(t)b(t)

 .
It is clear that all entries of the matrix B, except (B)2,2, are continuous. But
(B)2,2 ∼ b(t) = (− log |t|)1/2 has vanishing mean oscillation for intervals I as
|I| → 0, because (− log |t|)1/2 is in VMO. Since B(t) is constant for |t| ≥ 1

2 , the
mean oscillation will also vanish for I as |I| → ∞. Therefore the matrix function
B is in VMO.

Consider the matrix weight W given by

W(t) = exp(εB(t)) = U(t)?
(

1 0

0 exp(εb(t))

)
U(t).

By direct computations we have

W =
 cos2α − sinα cosα

− sinα cosα sin2α

+ exp(εb(t))

 sin2α sinα cosα

sinα cosα cos2α

 ,
and

W−1 =
 cos2α − sinα cosα

− sinα cosα sin2α

+ exp(−εb(t))
 sin2α sinα cosα

sinα cosα cos2α

 .
If we consider only symmetric intervals I = [−a,a], a > 0, then the off-

diagonal entries of the averaged matrices 〈W〉I and 〈W−1〉I vanish because the
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functions sinα(t) and cosα(t) are, respectively, odd and even. It’s not hard to see
that, for small a > 0, we can find a constant C > 0 independent of a such that

sinα
(
a
2

)
> C sinα(a),

and consequently we have

1
|I|

∫
I
sin2α(t)dt ≥ C

2

2
sin2α(a).

Therefore we can deduce that

〈W〉I ≥ exp(εb(a))

C
2

2
sin2α(a) 0

0 cos2α(a)

 ,
〈W−1〉I ≥

cos2α(a) 0

0
C2

2
sin2α(a)

 ,
and

〈W〉−1
I ≤ exp(−εb(a))

2C−2 sin−2α(a) 0

0 cos−2α(a)

 .
The A2,2 condition requires that there exists a constant A > 0 such that for all
intervals I ⊂ R

〈W−1〉I ≤ A〈W〉−1
I ,

which in our case would imply that exp(εb(a)) sin2α(a) cos2α(a)must be bounded
for small a > 0. But

exp(ε(− log |a|)1/2) sin2α(a) cos2α(a) ∼ exp(ε(− log |a|)1/2)
log2 |a|

→ ∞ as a→ 0,

by Lemma 6.3. Therefore the matrix weight W = exp(εB) does not belong to
A2,2 for any ε ≠ 0, and consequently exp(εB) 6∈ Ap,q for any 1 < p <∞. ❐

Lemma 6.3. For any ε, δ, N > 0

lim
x→∞

exp(ε(log |x|)δ)
logN |x|

= ∞.

Proof. L’Hôpital rule. ❐
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7. APPENDIX: MINKOWSKI’S INEQUALITY

Suppose (S, µ), (T , ν) are two measure spaces (µ, ν are positive and σ -finite).
Suppose that a function K : S × T → [0,∞) is measurable. The Minkowski
inequality for 1 ≤ q <∞ asserts that

(∫
T

(∫
S
K(s, t)dµ(s)

)q
dν(t)

)1/q
≤
∫
S

(∫
T
K(s, t)q dν(t)

)1/q
dµ(s).(7.1)

By a simple change of exponents, p = 1/q, we obtain Minkowski’s inequality for
0 < p ≤ 1,(∫

T

(∫
S
K(s, t)dµ(s)

)p
dν(t)

)1/p
≥
∫
S

(∫
T
K(s, t)p dν(t)

)1/p
dµ(s).(7.2)

Assume additionally that K(s, t) > 0 for a.e. (s, t) ∈ S × T , and ν(T) = 1. The
limiting case of Minkowski’s inequality as p approaches 0 asserts that

(7.3) exp
(∫

T
log

(∫
S
K(s, t)dµ(s)

)
dν(t)

)
≥
∫
S

exp
(∫

T
logK(s, t)dν(t)

)
dµ(s).

We refer to (7.3) as the exp-log Minkowski inequality. This inequality can be ap-
plied only if the function

t , log+

(∫
S
K(s, t)dµ(s)

)
is integrable on T,(7.4)

where log+ x = max(0, logx). Then for a.e. s ∈ S the function t , log+K(s, t)
is integrable, and under the convention exp(−∞) = 0 both sides of (7.3) are
always meaningful. To show (7.3) we use the following well known fact, see [Bo,
Ch. IV Section 6, Ex. 7c] or [DS, Ex. 32, p. 535].

Fact 7.1. Suppose (T , ν) is a measure space with ν(T) = 1. If f : T ,
[0,∞) is a measurable function such that

∫
T f (t)p dν(t) < ∞ for some p > 0,

then we have(∫
T
f (t)p dν(t)

)1/p
→ exp

(∫
T

logf(t)dν(t)
)

as p → 0+.(7.5)

Proof of (7.3). We claim that it suffices to show (7.3) under the hypothesis
µ(S) < ∞. Indeed, if µ(S) = ∞, we express S = ⋃∞

m=1 Sm, where Sm ⊂ Sm+1,
and µ(Sm) < ∞ for all m. Since (7.4) holds with S replaced by Sm, we have
(7.3) with S replaced by Sm. We obtain (7.3) by letting m → ∞ and using the
Monotone Convergence Theorem.
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Suppose now µ(S) < ∞. First we show (7.3) under the assumption that K is
bounded. By Fatou’s Lemma, (7.2), and (7.5)∫

S
exp

(∫
T

logK(s, t)dν(t)
)
dµ(s)

=
∫
S

lim
p→0+

(∫
T
K(s, t)p dν(t)

)1/p

≤ lim inf
p→0+

∫
S

(∫
T
K(s, t)p dν(t)

)1/p
dµ(s)

≤ lim inf
p→0+

(∫
T

(∫
S
K(s, t)dµ(s)

)p
dν(t)

)1/p

= exp
(∫

T
log

(∫
S
K(s, t)dµ(s)

)
dν(t)

)
.

This shows (7.3) for K bounded. Suppose now that K is an arbitrary non-negative
function on S × T such that (7.4) holds. For every ε > 0 define Kε by Kε(s, t) =
max(ε,K(s, t)). By (7.3) and the Monotone Convergence Theorem applied to
the sequence of functions (min(m,Kε))∞m=1 we have

exp
(∫

T
log

(∫
S
Kε(s, t)dµ(s)

)
dν(t)

)
(7.6)

≥
∫
S

exp
(∫

T
logKε(s, t)dν(t)

)
dµ(s).

By (7.4) and

εµ(S) ≤
∫
S
Kε(s, t)dµ(s) ≤ εµ(S)+

∫
S
K(s, t)dµ(s),(7.7)

the left side of (7.6) is finite. In particular, by (7.6) with ε = 1 we have t ,
logK1(s, t) = log+K(s, t) is integrable for a.e. s ∈ S. By (7.4), (7.7), and the
Monotone Convergence Theorem the left side of (7.6) converges to the left side
of (7.3) as ε → 0. Since the right side of (7.6) is greater than the right side of (7.3),
this shows (7.3). ❐
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