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The Feichtinger Conjecture for Wavelet
Frames, Gabor Frames and
Frames of Translates

Marcin Bownik and Darrin Speegle

Abstract. The Feichtinger conjecture is considered for three special families of frames. It is shown that

if a wavelet frame satisfies a certain weak regularity condition, then it can be written as the finite union

of Riesz basic sequences each of which is a wavelet system. Moreover, the above is not true for general

wavelet frames. It is also shown that a sup-adjoint Gabor frame can be written as the finite union of

Riesz basic sequences. Finally, we show how existing techniques can be applied to determine whether

frames of translates can be written as the finite union of Riesz basic sequences. We end by giving an

example of a frame of translates such that any Riesz basic subsequence must consist of highly irregular

translates.

1 Introduction and Statements of Main Results

A frame is a collection of elements {ei : i ∈ I} in a Hilbert space H such that there
exist positive constants A and B such that for every h ∈ H,

A‖h‖2 ≤
∑

i∈I

|〈h, ei〉|2 ≤ B‖h‖2.

A frame {ei : i ∈ I} is bounded if

inf
i∈I

‖ei‖ > 0.

(Note that it is automatic that supi∈I ‖ei‖ < ∞.) A sequence {ei : i ∈ I} is said to
be a Riesz basic sequence if it is a Riesz basis for its closed linear span, i.e., there exist
K1,K2 > 0 such that for every family of scalars {ai : i ∈ I}

K1

∑

i∈I

|ai|2 ≤
∥

∥

∥

∑

i∈I

aiei

∥

∥

∥

2

≤ K2

∑

i∈I

|ai|2.

Note that for Riesz basic sequences we always have

0 < inf
i∈I

‖ei‖ ≤ sup
i∈I

‖ei‖ <∞.

With this notation, one can state the Feichtinger conjecture:
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Conjecture 1.1 (Feichtinger) Every bounded frame can be written as the finite union

of Riesz basic sequences.

The Feichtinger conjecture has received a fair amount of recent interest [6, 7, 13],
and it has been shown to be related to several famous open problems in analysis. In
particular, in [6], it is shown that the conjectured generalization of the Bourgain–

Tzafriri restricted invertibility theorem is equivalent to the Feichtinger conjecture. It
is also shown that the paving conjecture of Bourgain–Tzafriri (which is known to be
equivalent to the Kadison–Singer conjecture) implies the Feichtinger conjecture. For
precise statements of these conjectures and references, see [6].

In this paper, we consider the Feichtinger conjecture for special systems of frames
such as wavelet and Gabor frames and frames of translates. In particular, we are

investigating a stronger version of the Feichtinger conjecture, which asks whether a
bounded frame of a certain type (such as wavelet, Gabor, or frame of translates) can
be decomposed as the finite union of Riesz sequences of the same type.

The answer to this question depends on the type of frame at hand. Namely, we
prove that wavelet frames satisfying certain weak decay and regularity conditions sat-
isfy the stronger Feichtinger property, whereas wavelet frames without this additional

regularity condition in general do not satisfy this property. In contrast, we show that
a significant class of Gabor systems satisfying a certain compatibility condition on
their generating lattices always have this property regardless of any regularity con-
ditions. Finally, for frames of translates the situation with regard to the stronger

Feichtinger property is the same as for wavelets. Nevertheless, we show that the Fe-
ichtinger conjecture leads to some interesting number theoretic problems involving
the quantitative versions of van der Waerden’s theorem.

The plan of this paper is as follows. In Section 2, we introduce the notion of
localization for wavelet frames associated with general expansive dilations and we
show that for such frames the stronger Feichtinger conjecture holds. We prove that
this result is optimal in the sense that it does not hold for general wavelet frames

without a localization property. In Section 3, we show that every sup-adjoint Gabor
frame can be written as the finite union of Riesz basic sequences, generalizing results
of Ron and Shen [21] and Casazza et al. [6].

In Section 4, we study frames of subspaces of L2(R) of the form S f = { f (x + k) :
k ∈ Γ}. We show that if f (x) has good decay and S f is a frame of a subspace, then
S f can be written as the finite union of Riesz basic sequences. Then we consider the

following:

Question 1.2 Suppose f̂ = χU , where U ⊂ R, and S f = { f (x + k) : k ∈ Z} is

a frame for its closed linear span. Can S f be written as a finite union of Riesz basic
sequences?

Most interesting in this section is an example of a function f (x) of the type f̂ =

χU such that S f is a frame of a subspace, but such that if N ⊂ Z has arbitrarily
long arithmetic progressions of a certain type, then { f (x + k) : k ∈ N} is not a
Riesz basic sequence. In particular, a random subset of S f almost surely is not a
Riesz basic sequence; see Theorem 4.16 for details. This example is also compared
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to quantitative versions of van der Waerden’s theorem to conclude the section. Note
that there is a close connection between the Feichtinger conjecture in this setting and

the paving conjecture for Laurent operators. This connection is also briefly explained
in Section 4.

1.1 Some Background Tools

We start by recalling basic definitions and properties of non-isotropic Euclidean
spaces associated with general expansive dilations. A real n × n matrix A is an ex-

pansive matrix, often called a dilation, if minλ∈σ(A) |λ| > 1, where σ(A) is the set of

all eigenvalues (the spectrum) of A. A fundamental notion in our study is a quasi-
norm ρA associated with A.

Definition 1.3 A quasi-norm associated with an expansive matrix A is a measur-
able mapping ρA : R

n → [0,∞) satisfying

(1.1) ρA(x) > 0 for x 6= 0,

ρA(Ax) = | det A|ρA(x) for x ∈ R
n,

ρA(x + y) ≤ H(ρA(x) + ρA(y)) for x, y ∈ R
n,

where H ≥ 1 is a constant.

Here, we will only list a few basic properties of quasi-norms ρA, which will be
used subsequently. For more details we refer to [3, 18]. We recall that all quasi-

norms associated to a fixed dilation A are equivalent, see [3, Lemma 2.4]. Moreover,
there always exist a quasi-norm ρA, which is C∞ on R

n except the origin, see [18].

Proposition 1.4 For any expansive matrix A and ǫ > 0,

∫

B(0,1)

ρA(x)ǫ−1 dx <∞ and

∫

Rn\B(0,1)

ρA(x)−1−ǫ dx <∞.

Proposition 1.4 follows from

(1.2) (1/c)r ≤ |{x ∈ R
n : ρA(x) < r}| ≤ cr for all r > 0.

Lemma 1.5 Suppose A is an expansive matrix, and λ− and λ+ are any positive real

numbers such that 1 < λ− < minλ∈σ(A) |λ| and λ+ > maxλ∈σ(A) |λ|. Let

ζ− :=
lnλ−

ln | det A| , ζ+ :=
lnλ+

ln | det A| .

Then for any quasi-norm ρA there exists a constant C such that,

(1.3) C−1ρA(x)ζ− ≤ |x| ≤ CρA(x)ζ+ if ρA(x) ≥ 1



1124 M. Bownik and D. Speegle

and

(1.4) C−1ρA(x)ζ+ ≤ |x| ≤ CρA(x)ζ− if ρA(x) ≤ 1.

Furthermore, if A is diagonalizable over C, then we may take λ− = minλ∈σ(A) |λ| and

λ+ = maxλ∈σ(A) |λ|.

For any j ∈ Z and k ∈ Z
n, let Q j,k = A− j([0, 1]n + k) be the dilated cube, and

xQ j,k
= A− jk be its “lower-left corner”. Let

Q = {Q j,k : j ∈ Z, k ∈ Z
n}

be the collection of all dilated cubes. Given a function ψ on R
n we define

(1.5) ψQ(x) = | det A| j/2ψ(A jx − k) = |Q|−1/2ψ(A j (x − xQ)) for Q = Q j,k ∈ Q.

Equivalently, if Q = A− j([0, 1]n + k) ∈ Q, then ψQ = D jTkψ, where D is a dila-
tion operator D f (x) = | det A|1/2 f (Ax) and Tk is a translation operator Tk f (x) =

f (x − k).

2 Affine Localized Frames

Gröchenig [13] introduced a notion of localized frames and showed that the Feich-
tinger conjecture holds for this class of frames. While his definition works very well
for systems generated by families of unitary operators with compatible actions on

L2(R
n), such as translations and modulations in the case of Gabor systems, there is

a natural need to have a better adapted notion of localization for systems which are
generated by families of operators with less compatible actions. The most prominent
example of such system is an affine system generated by translates and dilates of a

frame wavelet.

While it seems that there is no single universal notion of frame localization work-
ing for all imaginable frames in L2(R

n), we propose that the following definition gives

a satisfactory answer in the case of wavelet systems. Our definition is motivated by
the almost diagonal condition of Frazier and Jawerth [9, 10, 11] from the study of
isotropic Besov and Triebel–Lizorkin spaces and their anisotropic analogues for ex-
pansive dilations introduced by the first author and Ho [4].

Definition 2.1 We say that a collection {ΨQ : Q ∈ Q} is affine localized if there
exists C, θ > 0 such that

(2.1) |〈ΨQ,ΨP〉| ≤ CκQP(θ) for all Q, P ∈ Q,

where

κQP(θ) =

(

1 +
ρA(xQ − xP)

max(|P|, |Q|)
)−1−θ

min

[

( |Q|
|P|

) 1/2+θ

,
( |P|
|Q|

) 1/2+θ
]

.
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Remark 2.2 We remark that ΨQ should only be understood as a function indexed
by Q ∈ Q, which is not necessarily given by (1.5).

Definition 2.3 We say that ΨQ(x) is a molecule supported near Q ∈ Q with |Q| =

| det A|− j and j ∈ Z, if there exist M > 1 and δ > 0 such that

|ΨQ(x) − ΨQ(y)| ≤| det A| j(1/2+δ)ρA(x − y)δ

(

1 + ρA(A j (x − xQ))
) M

for all x, y ∈ R
n, ρA(x − y) ≤ | det A|− j ,

(2.2)

|ΨQ(x)| ≤ | det A| j/2

(

1 + ρA(A j(x − xQ))
) M for all x ∈ R

n,(2.3)

∫

Rn

ΨQ(x) dx = 0.(2.4)

We say that a collection {ΨQ}Q∈Q is a family of molecules, if each ΨQ is a molecule
supported near Q with the same M > 1 and δ > 0.

Therefore, a molecule ΨQ must satisfy certain smoothness (2.2) and decay (2.3)
conditions appropriately localized to a dilated cube Q in addition to the usual vanish-
ing moment condition (2.4). We also mention that the smoothness condition (2.2)
in Definition 2.3 can be replaced by

(2.5) |ΨQ(x) − ΨQ(y)|

≤ | det A| j(1/2+δ)ρA(x − y)δ sup
ρA(z)≤ρA(x−y)

(

1 + ρA(A j(x − z − xQ))
)−M

to obtain an equivalent definition of a molecule supported near Q modulo a multi-

plicative constant independent of Q. A condition of the type (2.5) is more commonly
used, and it was introduced by Frazier and Jawerth for the dyadic dilation A = 2 Id
in [10, Section 3]. To see the equivalence of (2.2) and (2.5) it suffices to make two

observations. First, we have

1 + ρA(A j(x − xQ)) ≤ sup
ρA(z)≤ρA(x−y)

1 + ρA(A j(x − z − xQ))

≤ (H + 1)(1 + ρA(A j(x − xQ))) for ρA(x − y) ≤ | det A|− j .

Second, if ρA(x − y) > | det A|− j , then (2.3) immediately implies (2.5), with the

right-hand side having an additional factor of 2.

Frequently, we will be interested in families of molecules generated by translates
and dilates of a single function ψ. In this case, the following remark is relevant.
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Remark 2.4 Suppose that a function ψ(x) satisfies

|ψ(x) − ψ(y)| ≤ ρA(x − y)δ

(1 + ρA(x))M
for ρA(x − y) ≤ 1,(2.6)

|ψ(x)| ≤ (1 + ρA(x))−M ,(2.7)
∫

Rn

ψ(x) dx = 0,(2.8)

for some δ > 0 and M > 1. Then the affine system {ψQ : Q ∈ Q} given by (1.5)

forms a family of molecules. Easy verification of this fact is left to the reader.
Also, for those who do not like the use of the quasi-norm ρA, one can write a

slightly stronger version of conditions (2.6) and (2.7), where ρA is replaced by the
standard Euclidean distance | · |. Indeed, by Lemma 1.5 it suffices to assume that

ψ(x) satisfies (2.8) and

|ψ(x) − ψ(y)| ≤ |x − y|δ
(1 + |x|)M/ζ−

for |x − y| ≤ 1,(2.9)

|ψ(x)| ≤ (1 + |x|)−M/ζ− ,(2.10)

for some δ > 0 and M > 1, in order to conclude that for sufficiently small constant
c > 0, {cψQ : Q ∈ Q} given by (1.5) is a family of molecules in the sense of Definition

2.3. Here, ζ− is the same as in Lemma 1.5. In particular, for the dyadic dilation
A = 2 Id in R

n, we have ζ− = ζ+ = 1/n.

We are now ready to state the key result showing that families of molecules must
satisfy almost diagonal estimates.

Lemma 2.5 Suppose {ΦQ}Q and {ΨQ}Q are families of molecules. Then there exist

C > 0 and θ > 0, such that

|〈ΨP,ΦQ〉| ≤ CκQP(θ) for all Q, P ∈ Q.

In particular, any family of molecules {ΨQ}Q is affine localized.

Lemma 2.5 was originally proved in the usual dyadic case by Frazier and Jaw-
erth [10], in a much greater generality than needed here, for molecules with possible

higher degrees of smoothness. In the case of general expansive dilations, the same was
shown in [4]. Since the notion of smooth molecules in [4] is more restrictive than
our Definition 2.3, we will give a proof of Lemma 2.5. We will need the following two
elementary facts.

Lemma 2.6 Suppose that j ∈ Z, j ≥ 0, θ > 0, and x ∈ R
n. Then there exists a

constant C > 0, which is independent of j and x, such that

(2.11)
∑

k∈Zn

(1 + ρA(A− jk + x))−1−θ ≤ C| det A| j .
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Proof First, note that Proposition 1.4 and a change of variables yield

∫

Rn

(1 + ρA(A− jz + x))−1−θ dz ≤ C| det A| j .

Next, it suffices to split the domain of integration into cubes R
n

=
⋃

k∈Zn (k + [0, 1]n)

and use the fact that for z ∈ k + [0, 1]n,

ρA(A− jz + x) ≤ H(ρA(A− jk + x) + sup
y∈[0,1]n

ρA(A− j y)) ≤ C̃(1 + ρA(A− jk + x)).

Lemma 2.7 Suppose that for some θ > 0, R > 1 + θ, and i, j ∈ Z, i ≥ j, and

x0 ∈ R
n, we have

|g(x)| ≤ | det A| j/2(1 + ρA(A jx))−R,(2.12)

|g(x) − g(y)| ≤ | det A| j(1/2+θ)ρA(x − y)θ

(1 + ρA(A jx))R
for ρA(x − y) ≤ | det A|− j ,(2.13)

|h(x)| ≤ | det A|i/2(1 + ρA(Ai(x − x0)))−R,(2.14)
∫

Rn

h(x) dx = 0.(2.15)

Then there exists a constant C > 0 depending only on θ and R, such that

(2.16) |(g ∗ h)(x)| ≤ C| det A|−(i− j)(1/2+θ)
(

1 + ρA(A j (x − x0))
)−R

.

Proof Using translation and dilation, we may assume that j = 0 and x0 = 0. In-
deed, if g and h satisfy (2.12)–(2.14) for some i0 ≥ j0 ∈ Z and x̃0 ∈ R

n, then

D− j0 g(x) and D− j0 T−x̃0
h(x) satisfy the corresponding conditions for i = i0 − j0,

j = 0, and x0 = 0. Thus, assuming Lemma 2.7 holds for j = 0 and x0,

|(D− j0 g ∗ D− j0 T−x̃0
h)(x)| ≤ C| det A|−(i0− j0)(1/2+δ)(1 + ρA(x))−R.

This will show the general case of Lemma 2.7 since

(D− j0 g ∗ D− j0 T−x̃0
h)(x) = (g ∗ T−x̃0

h)(A− j0 x) = (g ∗ h)(A− j0 x + x̃0).

Thus, assume that j = 0 and x0 = 0, take any x ∈ R
n and decompose R

n into 3
domains

D1 = {y ∈ R
n : ρA(y − x) < 1},

D2 = {y ∈ R
n : ρA(y − x) ≥ 1 and ρA(y) ≤ ρA(x)/(2H)},

D3 = {y ∈ R
n : ρA(y − x) ≥ 1 and ρA(y) > ρA(x)/(2H)},

where H is the constant of the quasi-subadditivity inequality.
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By the vanishing moment condition (2.15) we have

|(g ∗ h)(x)| ≤
∫

Rn

|g(y) − g(x)||h(x − y)| dy ≡
∫

D1

+

∫

D2

+

∫

D3

.

By (2.13), (2.14), the change of variables, and Proposition 1.4,

∫

D1

≤ | det A|i/2(1 + ρA(x))−R

∫

D1

ρA(x − y)θ(1 + ρA(Ai(x − y)))−R dy

≤ | det A|i/2(1 + ρA(x))−R

∫

Rn

ρA(y)θ(1 + ρA(Ai y))−R dy

≤ | det A|i/2(1 + ρA(x))−R| det A|−i(1+θ)

∫

Rn

ρA(y)θ(1 + ρA(y))−R dy

≤ C| det A|−i(1/2+θ)(1 + ρA(x))−R.

For y ∈ D2, we have

ρA(x − y) ≥ ρA(x)/H − ρA(y) ≥ ρA(x)/H − ρA(x)/(2H) = ρA(x)/(2H),

and subsequently

(1 + ρA(Ai(x − y)) ≥ | det A|iρA(x − y) ≥ | det A|i(1 + ρA(x))/(4H).

Hence, by (2.12), (2.14), ρA(y) ≤ ρA(x)/(2H) and Proposition 1.4

∫

D2

≤
∫

D2

[

(1 + ρA(x))−R + (1 + ρA(y))−R
] | det A|i/2

(1 + ρA(Ai(x − y)))R
dy

≤ C
| det A|−i(R−1/2)

(1 + ρA(x))R

∫

Rn

1

(1 + ρA(y))R
dy ≤ C

| det A|−i(R−1/2)

(1 + ρA(x))R

≤ C| det A|−i(1/2+θ)(1 + ρA(x))−R,

since R − 1 > θ.
For y ∈ D3, we have ρA(y) > ρA(x)/(2H) and, hence,

∫

D3

≤
∫

D3

[

(1 + ρA(x))−R + (1 + ρA(y))−R
] | det A|i/2

(1 + ρA(Ai(x − y)))R
dy

≤ C
| det A|i/2

(1 + ρA(x))R

∫

ρA(x−y)≥1

1

ρA(Ai(x − y))R
dy

= C
| det A|−i(R−1/2)

(1 + ρA(x))R

∫

ρA(z)≥1

ρA(z)−R dz ≤ C| det A|−i(1/2+θ)(1 + ρA(x))−R.

Combining the above estimates yields (2.16) and completes the proof of Lem-

ma 2.7.
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Proof of Lemma 2.5 We consider 2 cases.

Suppose that |Q| ≤ |P|. Let i, j ∈ Z be such that |Q| = | det A|−i ≤ | det A|− j
=

|P|. Then it is not hard to check that g(x) = ΨP(xP − x) and h(x) = ΦQ(x) satisfy
the hypotheses of Lemma 2.7 with R = M, 0 < θ < min(M − 1, δ), and x0 = xQ.
Therefore,

|〈ΨP,ΦQ〉| = |(g ∗ h)(xP)| ≤ C| det A|−(i− j)(1/2+θ)(1 + | det A| jρA(xQ − xP))−M

≤ C| det A|−(i− j)(1/2+θ)(1 + | det A| jρA(xQ − xP))−1−θ.

Suppose that |Q| > |P|. Let i, j ∈ Z be such that |Q| = | det A|− j > | det A|−i
=

|P|. Again, it is not hard to check that hypotheses of Lemma 2.7 with R = M, 0 <
θ < min(M − 1, δ), x0 = xP, g(x) = ΦQ(xQ − x), and h(x) = ΨP(x), are satisfied.

Therefore,

|〈ΨP,ΦQ〉| = |(g ∗ h)(xQ)| ≤ C| det A|−(i− j)(1/2+θ)(1 + | det A| jρA(xQ − xP))−M

≤ C| det A|−(i− j)(1/2+θ)(1 + | det A| jρA(xQ − xP))−1−θ.

Therefore, both cases yield

|〈ΨP,ΦQ〉| ≤ C
(

1 +
ρA(xQ − xP)

max(|P|, |Q|)
)−1−θ

·
{

(|Q|/|P|)1/2+θ if |Q| ≤ |P|,
(|P|/|Q|)1/2+θ if |Q| > |P|

= CκQP(θ),

which completes the proof of Lemma 2.5.

Theorem 2.8 Suppose {ΨQ}Q ⊂ L2(R
n) is affine localized and

(2.17) inf{‖ΨQ‖L2 : Q ∈ Q} > 0.

Then there exists a finite partition of the collections of dilated cubes

Q = Q1 ∪ · · · ∪ QL

such that each of the systems {ΨQ}Q∈Qi
, i = 1, . . . , L is a Riesz sequence in L2(R

n).

Furthermore, it is possible to choose this partition to be of the form

(2.18) Qi = {A− j([0, 1]n + k) : ( j, k) ∈ (ri + JZ) × (si + NZ
n)}, i = 1, . . . , L,

where J,N ∈ N, L = JNn, and (r1, s1), . . . , (rL, sL) are representatives of distinct cosets

of Z/(LZ) × Z
n/(NZ

n).
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Before we give the proof, we wish to emphasize that Theorem 2.8 goes well beyond
the original idea of Gröchenig’s diagonal dominance approach in [13].

Indeed, we recall that a countable set {ϕi : i ∈ I} in a Hilbert space H is a Riesz
sequence if and only if the Gramian matrix G given by its entries Gi, j = 〈ϕi, ϕ j〉
defines a bounded and invertible operator on ℓ2(I). Furthermore, a sufficient condi-
tion for a matrix (ai, j)i, j∈I defining a bounded positive definite operator on ℓ2(I) to

be invertible is that (ai, j)i, j∈I is diagonally dominant, i.e.,

inf
i∈I

(

|ai,i | −
∑

j 6=i

|ai, j |
)

> 0.

The idea of Gröchenig is to decompose an index set I into a finite union of subsets

I = I1 ∪ · · · ∪ Ir , such that the corresponding Gramian matrix G is decomposed into
diagonally dominant, and thus invertible on ℓ2(Il), “sub-Gramian” matrices G(l)

=

(Gi, j )i, j∈Il
, where l = 1, . . . , r.

This approach does not work in the case of Theorem 2.8, since in Definition 2.1

the decay exponent across the scales is only 1/2 + θ and one can observe that 1 + θ
is required for diagonal dominance approach to work. Namely, one can show that
for small values 0 < θ < 1/2, the matrix (κQP)Q,P∈Q does not satisfy Schur’s test of
boundedness. Therefore, a more delicate approach in showing Theorem 2.8 must be

used.

Proof of Theorem 2.8 Let G = (aQP)Q,P∈Q be the Gramian matrix given by aQP =

〈ΨQ,ΨP〉. By Lemma 2.5, we know that

|aQP| ≤ CκQP(θ) for all Q, P ∈ Q.

Take any J,N ∈ N and for a fixed i = 1, . . . , L = JNn consider the collection of
cubes Q ′

= Qi given by (2.18). Namely, for r = 0, . . . , J−1 and s ∈ {0, . . . ,N −1}n

consider
Q

′
= {A− j([0, 1]n + k) : ( j, k) ∈ (r + JZ) × (s + NZ

n)}.
Let A be the operator on ℓ2(Q ′) associated with the matrix (aQP)Q,P∈Q ′ . We decom-
pose A = A0 + A1 + A2 as

(A0s)Q = aQQsQ, (A1s)Q =

∑

P∈Q
′

|P|≥|Q|
P 6=Q

aQPsP, (A2s)Q =

∑

P∈Q
′

|P|<|Q|

aQPsP,

where s = (sP) ∈ ℓ2(Q ′).
It is clear that A0 is an invertible diagonal operator on ℓ2(Q ′), since

inf{aQQ : Q ∈ Q
′} ≥ inf{‖ΨQ‖2

L2 : Q ∈ Q} > 0.

Our goal is to show that for appropriate choice of J,N ∈ N, A1 and A2 have very
small operator norms on ℓ2(Qi) for every i = 1, . . . , JNn. Therefore, A must be also
invertible on ℓ2(Qi) as a small perturbation of an invertible operator A0.
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Indeed, take any ε > 0 and let s = (sQ) ∈ Q ′. By the Cauchy–Schwarz inequality

(2.19)
∑

Q∈Q ′

|(A1s)Q|2

≤ C
∑

Q∈Q ′

∣

∣

∣

∣

∑

P∈Q
′

|P|≥|Q|
P 6=Q

(1 + ρA(xP − xQ)/|P|)−1−θ
( |Q|
|P|

) 1/2+θ

|sP|
∣

∣

∣

∣

2

≤ C
∑

Q∈Q ′

[

∑

P∈Q
′

|P|≥|Q|
P 6=Q

(1 + ρA(xP − xQ)/|P|)−1−θ
( |Q|
|P|

) θ
]

×
[

∑

P∈Q
′

|P|≥|Q|
P 6=Q

(1 + ρA(xP − xQ)/|P|)−1−θ
( |Q|
|P|

) 1+θ

|sP|2
]

.

Note that the expression in the first bracket is finite, since

∑

P∈Q

|P|=| det A|− j

(1 + ρA(xP − xQ)/|P|)−1−θ ≤ C <∞,

independent of j ∈ Z. Therefore, by (2.19) and Lemma 2.6,

(2.20)
∑

Q∈Q ′

|(A1s)Q|2 ≤ C
∑

P∈Q ′

|sP|2IP, where

IP =

∑

Q∈Q
′

|Q|≤|P|
Q6=P

(1 + ρA(xP − xQ)/|P|)−1−θ
( |Q|
|P|

) 1+θ

.

To estimate IP, we pick any P = A−r− J j0 ([0, 1]n + s + Nk0) ∈ Q ′, where j0 ∈ Z,
k0 ∈ Z

n. Next, we split the summation over |Q| = |P| and |Q| < |P|:

∑

Q∈Q
′

|Q|=|P|
Q6=P

(1 + ρA(xP − xQ)/|P|)−1−θ
( |Q|
|P|

) 1+θ

=

∑

k∈Z
n

k6=k0

(1 + ρA(Nk0 − Nk))−1−θ
=

∑

k∈Zn\{0}
(1 + ρA(Nk))−1−θ < ε
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for sufficiently large N . Likewise, by Lemma 2.6

∑

Q∈Q
′

|Q|<|P|

(1 + ρA(xP − xQ)/|P|)−1−θ
( |Q|
|P|

) 1+θ

=

∞
∑

j= j0+1

∑

k∈Zn

| det A| J( j0− j)(1+θ)

(1 + | det A|r+ J j0ρA(A−r− J j(s + Nk) − xP))1+θ

≤
∞
∑

j= j0+1

∑

k∈Zn

| det A| J( j0− j)(1+θ)

(1 + ρA(A J( j0− j)(s + k) − Ar+ J j0 xP))1+θ

≤ C

∞
∑

j= j0+1

| det A| J( j0− j)θ
= C| det A|− Jθ/(1 − | det A|− Jθ) < ε

for sufficiently large J. Combining the above estimates (which are independent of
P ∈ Q ′) with (2.20) yields

‖A1s‖2
ℓ2(Q ′) ≤ 2εC‖s‖2

ℓ2(Q ′).

Analogously, starting from the estimate

∑

Q∈Q ′

|(A2s)Q|2 ≤ C
∑

Q∈Q ′

[

∑

P∈Q
′

|P|<|Q|

(1 + ρA(xP − xQ)/|Q|)−1−θ
( |Q|
|P|

) 1+θ
]

×
[

∑

P∈Q
′

|P|<|Q|

(1 + ρA(xP − xQ)/|Q|)−1−θ
( |Q|
|P|

) θ

|sP|2
]

,

and using similar arguments as above one can obtain

‖A2s‖2
ℓ2(Q ′) ≤ 2εC‖s‖2

ℓ2(Q ′).

Since ε > 0 is arbitrary, this shows that A1 and A2 have small operator norms and
consequently A is invertible on ℓ2(Q ′) for sufficiently large J,N ∈ N. This completes

the proof of Theorem 2.8.

Corollary 2.9 follows immediately from Theorem 2.8 and Remark 2.4.

Corollary 2.9 Suppose ψ(x) is a non-zero function such that the {ψQ : Q ∈ Q} is

affine localized. In particular, it suffices to assume that ψ(x) satisfies

|ψ(x) − ψ(y)| ≤ C|x − y|δ(1 + |x|)−M/ζ− for |x − y| ≤ 1,

|ψ(x)| ≤ C(1 + |x|)−M/ζ− ,

∫

Rn

ψ(x) dx = 0,
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for some M > 1, δ > 0, and C > 0.

Then {ψQ : Q ∈ Q} is a finite union of pairwise disjoint affine systems, each of which

is a Riesz sequence. More precisely, there exist J,N ∈ N such that the affine systems

(2.21) {D jTk(Dri Tsi
ψ) : j ∈ JZ, k ∈ A−ri NZ

n}, i = 1, . . . , JNn

form a partition of {ψQ : Q ∈ Q} and each system in (2.21) is a Riesz sequence, where

(ri , si)’s are the same as in Theorem 2.8.

We remark that in Corollary 2.9 it is not assumed thatψ(x) is a framelet. Nonethe-
less, the case whenψ(x) is a framelet is probably the most interesting, since it provides
a partial answer to the Feichtinger conjecture. In particular, it shows that if a frame
wavelet generates affine system {ψQ : Q ∈ Q} localized in the sense of Definition 2.1,

then it can be split into a finite union of systems each of which is a Riesz sequence.
Since each of these systems is again an affine system (with respect to some power of
dilation A and lattice given by (2.21)), a stronger variant of the Feichtinger conjecture
holds under the localization assumption.

We also wish to emphasize that Corollary 2.9 is optimal, at least in the qualitative
sense. That is, if we remove the hypothesis of {ψQ : Q ∈ Q} being affine localized,
then the conclusion of Corollary 2.9 is in general invalid even if ψ(x) is a framelet.
Therefore, we will show that the stronger variant of the Feichtinger conjecture for

wavelet frames, asserting that affine frame systems can be split into a finite disjoint
union of affine Riesz sequences, does not hold without a localization assumption on
ψ(x).

Theorem 2.10 There exists a tight frame waveletψ(x) ∈ L2(R) such that the stronger

variant of the Feichtinger conjecture fails. More precisely, {D J jTNkψ : j, k ∈ Z} is

never a Riesz sequence for any choice of J,N ∈ N. Moreover, ψ(x) can be chosen to be a

semi-orthogonal frame wavelet.

Proof Assume momentarily that we find a nowhere dense set W ⊂ [−1/2, 1/2]
such that {2 jW : j ∈ Z} partitions R (modulo null sets) and the sets {W +k : k ∈ Z}
are pairwise disjoint (modulo null sets). Later, we will show how to construct such W .

Let ψ ∈ L2(R) be given by ψ̂ = χW . A standard support argument shows that
D jTkψ ⊥ D j ′Tk ′ψ for all j 6= j ′ ∈ Z and k, k ′ ∈ Z. Moreover, since

∑

k∈Z

|ψ̂(ξ + k)|2 = χW̃ (ξ), where W̃ =

⋃

k∈Z

(k + W ),

{Tkψ : k ∈ Z} is a tight frame with constant 1 for its closed linear span, which
consists of all f ∈ L2(R

n) with supp f̂ ⊂ W . Hence, {D jTkψ : k ∈ Z} has the same
property for any j ∈ Z. Since {2 jW : j ∈ Z} partitions R, ψ is a semi-orthogonal

tight frame wavelet. Moreover, since W ⊂ [−1/2, 1/2] is nowhere dense, we have
that

∑

k∈Z
|ψ̂(ξ+ k/N)|2 must vanish on a set of positive measure and hence {TkNψ :

k ∈ Z} is not a Riesz sequence for any N ∈ N. Consequently, {D J jTNkψ : j, k ∈ Z}
is never a Riesz sequence for any choice of J,N ∈ N.
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Hence, it remains to show the existence of a set W . Let {Wk : k = 1, 2, · · · } ⊂
[−1,−1/2] ∪ [1/2, 1] be a family of closed nowhere dense sets such that

∞
⋃

k=1

Wk = [−1,−1/2] ∪ [1/2, 1] and

∞
∑

k=1

|Wk| = 1.

Clearly, the Wk’s must be pairwise disjoint modulo null sets. Define

W =

∞
⋃

k=1

2−kWk.

An easy verification shows that W has all required properties.

3 Gabor Frames

As mentioned in Section 2, Gröchenig in [13] introduced a notion of intrinsically

localized frames that are well suited for systems (such as Gabor systems) which are
generated by families of unitary operators with compatible actions on L2(R

n). In
particular, he was able to show that if g is in a certain modulation space, then the
(possibly irregular) Gabor system {MkTlg : (k, l) ∈ X} can be written as the finite

union of Riesz basic sequences, provided X is the finite union of separated sets. Here,
Mk f (x) = e2πi〈x,k〉 f (x). In particular, the Feichtinger conjecture holds for such Ga-
bor systems.

An earlier result in this direction was provided by Ron and Shen [21], which we
describe now. Let K, L ⊂ R

n be full rank lattices and K∗, L∗ ⊂ R
n be their dual

lattices. The Gabor system {MkTlg : k ∈ K, l ∈ L} is said to be sup-adjoint if
K∗ ⊂ L. Ron and Shen showed [21, Theorem 3.5] that if {MkTlg : k ∈ K, l ∈ L}
is sup-adjoint and a frame for L2(R

n), then it can be written as the finite union of
Riesz basic sequences. Note that in the one-dimensional case, this corresponds to

{MkaTlbg : k, l ∈ Z} with ab = 1/N for integer N ≥ 1.

Sticking to regular systems, Casazza et al. [6, Theorem 5.1] were able to generalize
the one-dimensional version of Ron and Shen’s theorem by showing that if the Gabor
system {MkaTlbg : k, l ∈ Z} is a frame for L2(R) and ab is rational, then the Gabor
system can be written as the finite union of Riesz basic sequences.

Ron and Shen proposed [21] a class of Gabor systems that are higher dimensional

analogs of rational Gabor systems, which we describe here.

Definition 3.1 ([21]) Let K, L be full rank lattices in R
n. The Gabor system {MkTlg :

k ∈ K, l ∈ L} is said to be compressible if L∗ ∩ K has rank n.

Remark 3.2 In the one-dimensional case {MkaTlbg : k, l ∈ Z} is a compressible
Gabor system if and only if ab is rational.

The main result of this short section is the following, which is a generalization of
both [21, Theorem 3.5] and [6, Theorem 5.1].
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Theorem 3.3 Let K, L ⊂ R
n be full-rank lattices, and g ∈ L2(R

n). If {MkTlg : k ∈
K, l ∈ L} is a compressible Gabor system which is a frame for L2(R

n), then it can be

written as the finite union of Riesz basic sequences.

Before proving this theorem, we will develop some tools. The following simple

proposition is the key to our development.

Proposition 3.4 Let K, L ⊂ R
n be full-rank lattices such that K∗ ∩ L has rank n as

well. Then there exist I < ∞ and {ai : i = 1, . . . , I} such that Γ :=
⋃I

i=1(L + ai) is a

lattice, and K∗ ∪ L ⊂ Γ.

Proof Choose {ai : i = 1, . . . , I} ⊂ K∗ to be a complete set of representatives of
K∗/(K∗∩L). Then, K∗

=
⋃I

i=1((K∗∩L)+ai). We claim Γ =
⋃I

i=1(L+ai) satisfies the

conclusion of the theorem. Indeed, K∗ ⊂ Γ follows immediately from the definition
of Γ, and L ⊂ Γ follows from the fact that one ai is in L.

To show Γ is a lattice, it suffices to show that Γ is a group, since it is clearly a
discrete subset of R

n. Let x1 = l1 + a1 and x2 = l2 + a2 be in Γ, where a1, a2 are
intended to represent arbitrary elements of {ai : i = 1, . . . , I}, and l j are arbitrary
elements of L. Then since K∗/(K∗ ∩ L) is a group, there is a number k ∈ {1, . . . , I}
such that (K∗∩L+a1)−(K∗∩L+a2) = (K∗∩L+ak), i.e., ak−(a1−a2) = l ∈ K∗∩L.
Then, x1 − x2 = l1 − l2 − l + ak ∈ L + ak ⊂ Γ.

Remark 3.5 In the one-dimensional case, if {MkTlg : k ∈ Z, l ∈ (p/q)Z} with
0 < p/q < 1 is a compressible Gabor system, then Proposition 3.4 yields Γ =
⋃p−1

i=0 (p/qZ + i). In their proof that one-dimensional compressible Gabor systems
satisfy the Feichtinger conjecture, Casazza et al. also found this oversampling, but

wrote it as Γ =
⋃p−1

i=0 (p/qZ + i/q).

We now show that the condition on the lattices in Proposition 3.4 is equivalent to

the Gabor system being compressible.

Proposition 3.6 Let K, L ⊂ R
n be full-rank lattices. Then K∗∩L is rank n if and only

if K ∩ L∗ is rank n.

Proof Suppose K∗∩L has rank n. Obtain Γ from Proposition 3.4. Since L∪K∗ ⊂ Γ,
it follows that Γ

∗ ⊂ L∗ ∩ K. Hence, since Γ
∗ has rank n, so does L∗ ∩ K.

We now prove the main result in this section.

Proof of Theorem 3.3 Let Γ be as in Proposition 3.4. Then, {MkTγg : k ∈ K, γ ∈
Γ} is a sup-adjoint Gabor system. Since L ⊂ Γ, a lower frame bound is satisfied, and
since the cardinality of I is finite, and Γ =

⋃

i∈I(L + ai), an upper frame bound is also
satisfied. By [21, Theorem 3.5], {MkTγg : k ∈ K, γ ∈ Γ} can be written as the finite

union of Riesz basic sequences. Hence, since {MkTlg : k ∈ K, l ∈ L} ⊂ {MkTγg :
k ∈ K, γ ∈ Γ}, the result holds.
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4 Frames of Translates

In this section we investigate the following question. Suppose that

S
Γ

f := { f (x + k) : k ∈ Γ}, where Γ ⊂ R
n

is a frame for its closed linear span. Can SΓ

f be written as the finite union of Riesz basic
sequences? There is a large collection of results that can be applied to this question.
One purpose of this section is to show what types of results can be proven using

known techniques, and to show where the limits of known techniques seem to be. Of
particular interest is Theorem 4.16, which provides evidence against the Feichtinger
conjecture, even in this restricted setting.

We begin by applying the results of Gröchenig [13] to this setting. Let X be a

separated subset of R
n, i.e., infx,y∈X,x 6=y |x − y| = δ > 0. Recall that a collection of

vectors {ex : x ∈ X} ⊂ H is said to be intrinsically localized if for some s > n,

|〈ex, ey〉| ≤ C(1 + |x − y|)−s

for all x, y ∈ X.

Proposition 4.1 Let f ∈ L2(R
n) be such that | f (x)| ≤ (1 + |x|)−s for some s > n.

If Γ is a separated subset of R
n, then SΓ

f is intrinsically localized. Consequently, if SΓ

f

is a frame for its closed span, then it can be written as the finite union of Riesz basic

sequences.

Proof It suffices to show for k, l ∈ Γ that

|〈 f (x + k), f (x + l)〉| = |〈 f (x), f (x + (l − k))〉| ≤ C(1 + |l − k|)−s.

Write m = l − k. Let I1 = {x ∈ R
n : |x| < |x + m|}, and I2 = R

n \ I1. Then for

x ∈ I1, |x + m| ≥ 1
2
|m|, and for x ∈ I2, |x| ≥ 1

2
|m|. Thus,

|〈 f (x), f (x + m)〉| =

∣

∣

∣

∣

∫

I1

f (x) f (x + m) dx +

∫

I2

f (x) f (x + m) dx

∣

∣

∣

∣

≤
∫

I1

| f (x)|| f (x + m)| dx +

∫

I2

| f (x)|| f (x + m)| dx

≤ (1 + |m/2|)−s
(

2

∫

| f (x)| dx
)

,

as desired.

For the second statement, since SΓ
f is a frame, the number of points of Γ inside

each cube of side length 1 is uniformly bounded. In fact, it is enough for SΓ

f to

be a Bessel sequence, see Lemma 4.7. Hence, Γ =
⋃M

i=1 Γi , with each Γi separated.
Therefore, one can apply [13, Theorem 2] to each Γi separately and the result follows.
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Remark 4.2 By analyzing the proof of [13, Theorem 2] more carefully (see also
Theorem 2.8 above), in the case that Γ is a lattice and SΓ

f is intrinsically localized,

one can show that the Riesz basic sequences can all be chosen to be translates of a
function by a lattice. Thus, the stronger version of the Feichtinger conjecture holds
in this case. We omit the details.

In the case that Γ is a lattice, one can weaken the hypotheses of Proposition 4.1

somewhat. Denote

(4.1) σΓ

f (ξ) =

∑

γ∈Γ∗

| f̂ (ξ + γ)|2,

where we will suppress the dependence on Γ when it is obvious from context. We
begin by recalling the following; see for example [5, Theorem 2.2].

Theorem 4.3 Let f ∈ L2(R
n), and Γ ⊂ R

n be a full-rank lattice. Then,

(i) SΓ

f is a frame for its closed linear span if and only if there exists 0 < A ≤ B <

∞ such that AχU ≤ σΓ

f ≤ BχU almost everywhere, where U = {ξ ∈ R
n :

σΓ

f (ξ) > 0}.

(ii) SΓ

f is a Riesz basic sequence if and only if there exists 0 < A ≤ B < ∞ such that

A ≤ σΓ

f ≤ B almost everywhere.

An immediate application of Theorem 4.3 yields

Proposition 4.4 Let f ∈ L2(R
n), Γ ⊂ R

n be a full-rank lattice. If SΓ

f is a frame for its

closed linear span and there exists η = (η1, . . . , ηn) ∈ [0, 1]n, ǫ > 0 such that

(4.2) E := η + B(0, ǫ) ⊂ supp(σΓ

f ),

then SΓ

f can be written as the finite union of Riesz basic sequences.

Proof Choose a lattice Λ of rank n satisfying Γ
∗ ⊂ Λ and

(4.3)
∑

λ∈Λ

χE(ξ + λ) ≥ 1, a.e.

Then, A ≤ σΛ

f ≤ B almost everywhere, so SΛ
∗

f is a Riesz basic sequence. Since

Γ =
⋃

i∈I(Λ
∗ + ai), and S

Λ
∗+ai

f are all Riesz basic sequences, the proposition follows.

Remark 4.5 Proposition 4.4 applies, in particular, if f̂ = χ[a,b]. In this case,

|〈 f ,Tk f 〉| =
1

2π|k| |e
2πikb − e2πika|,

so for almost every choice of a, b, f is not intrinsically localized. However, for every
choice of a and b, SZ

f is a frame and can be written as the finite union of Riesz basic
sequences.
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With a little more work, we can improve on Propositions 4.4 and 4.1 in the one-
dimensional case. Recall the following theorem of Montgomery and Vaughan [19,

Theorem 1, Chapter 7], [20].

Theorem 4.6 Suppose that λ1, . . . , λN are distinct real numbers, and suppose that

δ > 0 is chosen so that |λn − λm| ≥ δ whenever n 6= m. Then for any coefficients

a1, . . . , aN , and any T > 0,

(4.4)
(

T − 1/δ
)

N
∑

n=1

|an|2 ≤
∫ T

0

∣

∣

∣

∣

N
∑

n=1

ane2πiλnt

∣

∣

∣

∣

2

dt ≤
(

T + 1/δ
)

N
∑

n=1

|an|2.

We will also need the following lemma, which has several variants in the literature,
e.g., [16, Lemma 1]. We include a proof for completeness.

Lemma 4.7 Let f ∈ L2(R) and Λ = {λn : n ∈ Z}. If there exists a constant B such

that for every m ∈ Z
∑

n∈Z

∣

∣ 〈e2πiλnt f , e2πiλmt f 〉
∣

∣

2 ≤ B,

then the number of points λn inside each interval of length 1 is uniformly bounded.

Proof We prove the contrapositive. By standard arguments, there exists an ǫ > 0
such that for all η with |η| ≤ ǫ,

(4.5)
∣

∣

∣

∫

R

e2πiηt | f (t)|2 dt
∣

∣

∣

2

≥ 1

2
‖ f ‖2.

Suppose that the number of λn inside an interval of length one is not bounded. Then

the number of λn inside intervals of length ǫ is also not bounded. Choose µk such that
the number of λn inside Ak := [µk − ǫ/2, µk + ǫ/2] is at least k. Choose λnk

∈ Ak ∩Λ

arbitrarily. Then, by (4.5) it follows that

∑

n∈Z

∣

∣ 〈e2πiλnk
t f , e2πiλnt f 〉

∣

∣

2 ≥ k

2
‖ f ‖2.

Hence, Λ does not satisfy the hypotheses of the lemma.

Theorem 4.8 Let f ∈ L2(R) be such that there exists a > 0 and an interval I such

that aχI ≤ | f̂ |, and let Γ be an arbitrary subset of R. If SΓ

f is a frame for its closed span,

then SΓ

f can be written as the finite union of Riesz basic sequences.

Proof By Parseval’s identity, 〈 f (x+γ1), f (x+γ2)〉 = 〈e2πiγ1ξ f̂ (ξ), e2πiγ2ξ f̂ (ξ)〉. Thus,
since SΓ

f is a frame for its closed span, the hypotheses of Lemma 4.7 are satisfied, and

Γ can be written as the finite union of separated sequences. In particular, one can
write Γ as the finite union of sets Γ = Γ1 ∪ · · · ∪ ΓN such that for each 1 ≤ i ≤ N ,
δi := inf{|γ − λ| : γ, λ ∈ Γi, γ 6= λ} satisfies 1

δi
< |I|. Clearly, the interval [0,T] in

Theorem 4.6 can be replaced by any interval of length T, so { f (x + γ) : γ ∈ Γi} is a
Riesz basic sequence with lower bound a2(|I| − 1

δi
).
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Corollary 4.9 If {e2πiλξ : λ ∈ Λ} is a Fourier frame, i.e., a frame for L2([0, 1]), then

it can be written as the finite union of Riesz basic sequences.

Corollary 4.9 was also observed by Christensen and Lindner. See the discussion
after Theorem 2.7 of their paper [8].

4.1 Frames of Integer Translates

For the rest of this section we will restrict our attention to the special case of frames of

translates SΓ

f with Γ = Z. In this setting, we can show that the following relationship
holds between frames of translates and pavings of Laurent operators.

Proposition 4.10 Let f ∈ L2(R) be such that SZ

f is a frame for its closed span and f̂ is

a function supported on [0, 1]. Let ϕ be the 1-periodic extension of | f̂ |2 on [0, 1]. If the

Laurent operator Lϕ satisfies the paving conjecture, then SZ

f can be written as the finite

union of Riesz basic sequences.

Proof By Proposition 4.3, f̂ is bounded, so ϕ ∈ L∞(T), where T = R/Z. Hence, ϕ
defines a Laurent operator Lϕ : L2(T) → L2(T) given by Lϕ( f ) = fϕ.

According to [6, Proposition 3.1] and its proof, a frame { fk}k∈Z can be written

as the finite union of Riesz basic sequences if the operator S : ℓ2(Z) → ℓ2(Z), whose
matrix is given by

〈Sek, e j〉 =

{

〈 fk, f j〉 k 6= j,

0 k = j,

can be paved, where {ek}k∈Z is the standard orthonormal basis of ℓ2(Z). Applying

this to the frame {e2πikξ f̂ (ξ) : k ∈ Z} yields S of the form

〈Sek, e j〉 =

{

̂(| f̂ |2)(k − j) = ϕ̂(k − j) k 6= j,

0 k = j.

This is exactly the matrix of Lϕ minus its diagonal, see [2]. Hence, the result follows.

Theorem 4.8 should be contrasted with the following elementary observation.

Example 4.11 Let U be a nowhere dense subset of [0, 1] with positive measure,
f̂ = χU . Then for any natural number N > 0,

⋃

k∈Z
(U − k/N) is nowhere dense

since the finite union of nowhere dense sets is nowhere dense and U is bounded.
Consequently,

(4.6)
∑

k∈Z

χU (ξ + k/N) = 0

on a set of positive measure. Hence, by Theorem 4.3, SNZ

f is not a Riesz basic se-
quence.
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While there is a characterization of when { f (x + k) : k ∈ K} is a Riesz basic
sequence for K ⊂ Z [5], it is still difficult to decide whether { f (x + k) : k ∈ K}
is a Riesz basic sequence when Γ is an irregular subset of Z and f is poorly local-
ized. In particular, for f as generally defined as in Example 4.11, the authors do not
know whether the Feichtinger conjecture is satisfied. We formalize the most natural
question along this line of thought as:

Question 4.12 Suppose f̂ = χU , and { f (x + k) : k ∈ Z} is a frame for its closed
linear span. Can { f (x + k) : k ∈ Z} be written as the finite union of Riesz basic
sequences?

Of course, by Proposition 4.10, a positive solution to the paving problem for Lau-

rent operators would imply a positive answer to Question 4.12.
We now present a specially chosen f of the form f̂ = χU with the property that

any set K ⊂ Z for which { f (x + k) : k ∈ K} is a Riesz basic sequence must be “quite
strange”. While this example does not answer Question 4.12, it will suggest a line

of attack for studying it. We will need to recall some machinery in order to define
f̂ = χU . We follow the development given in [14].

Let u = {un : n = 1, 2, . . . } be a sequence of points in the torus T = R/Z. The
sequence u is said to be uniformly distributed if

lim
N→∞

#{1 ≤ n ≤ N : un ∈ I}
N

= |I|

for every arc I in the torus. For a finite, nonempty set S ⊂ T (possibly with multi-
plicity), we define the discrepancy of S to be

Discr(S) = sup
I⊂T

∣

∣

∣

∣

#(S ∩ I)

#S
− |I|

∣

∣

∣

∣

.

The N-term discrepancy of the sequence u is defined as

DN(u) = Discr
(

{un : 1 ≤ n ≤ N}
)

.

We will need two results.

Theorem 4.13 ([19, Koksma’s Inequality]) For any sequence of points u1, . . . , uN in

T, and any function f : T → R of bounded variation,

∣

∣

∣

∣

1

N

N
∑

n=1

f (un) −
∫ 1

0

f (t) dt

∣

∣

∣

∣

≤ Var( f ) Discr({un : 1 ≤ n ≤ N}),

where Var( f ) is the total variation of f .

Theorem 4.14 ([17]) For any ǫ > 0, the N-term discrepancy of un = nα mod 1
satisfies

DN(u) ≤ CαN−1 log2+ǫ N

for almost all α, where Cα depends only on α.
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Definition 4.15 Let g : N → [0,∞). We say that K ⊂ Z satisfies the g(N) arith-

metic progression condition if for every δ > 0 there exist M ∈ Z and N, ℓ ∈ N such

that

(i) ℓ < δg(N), and
(ii) {M,M + ℓ, . . . ,M + Nℓ} ⊂ K.

Theorem 4.16 There exists a set U ⊂ [0, 1] such that if K ⊂ Z satisfies the g(N) =

N1/2 log−3 N arithmetic progression condition, then { f (x + k) : k ∈ K} is not a Riesz

basic sequence, where f̂ = χU .

Proof Let u = uN (ξ) = {ξ, 2ξ, . . . ,Nξ}. By Theorem 4.14 with ǫ = 1, for almost
all ξ and all N ,

DN (u) ≤ C(ξ)

N
log3 N.

Choose K such that

0 <
∣

∣{ξ ∈ [0, 1] : C(ξ) ≤ K}
∣

∣ < 1,

and let U = {ξ ∈ [0, 1] : C(ξ) ≤ K}. (This choice of K is possible since C is not
a constant function. However, it formally does not matter for this proof, since if C

were constant, then one could choose any subset of [0, 1].)
Let δ > 0 be arbitrary and find M,N and ℓ such that ℓN−1/2 log3 N < δ and such

that {M,M + ℓ, . . . ,M + ℓN} ⊂ K. Let h(ξ) = e2πiℓξ . By Theorem 4.13,

∣

∣

∣

1

N

N
∑

k=1

h(kξ) − 0
∣

∣

∣
≤ Var(h) Discr(uN (ξ)).

Therefore,
∣

∣

∣

1

N
e2πiMξ

N
∑

k=1

h(kξ)
∣

∣

∣
≤ 2πKℓ

1

N
log3 N.

Multiplying both sides by
√

N and integrating yields

(
∫

U

∣

∣

∣

1√
N

e2πiMξ
N

∑

k=1

h(kξ)
∣

∣

∣

2
) 1/2

≤ 2π|U |1/2KℓN−1/2 log3 N < 2πKδ.

So, since
∑N

k=1

(

1√
N

) 2
= 1 and δ > 0 is arbitrary, it follows from the definition of

Riesz basis that { f (x + k) : k ∈ K} is not a Riesz basic sequence.

Remark 4.17 Theorem 4.16 should be compared to [15, Theorem 5.4 (b)], where
a similar negative result is shown for pavings of Laurent operators with certain sym-
bols. Since the paving conjecture for Laurent operators implies the Feichtinger con-

jecture for frames of translations (Proposition 4.10), Theorem 4.16 is a stronger neg-
ative example. The examples given in [15, Theorem 5.4 (b)] were considered natu-
ral candidates for being possible counterexamples to the paving conjecture. It was
proven in [2] that not all of such operators are counterexamples.
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Remark 4.18 If one randomly assigns each integer to one of L subsets K1, . . .KL,
then with probability one, for each i and L there will exist Mi such that

{Mi,Mi + 1, . . . ,Mi + L} ⊂ Ki .

Hence, with f as in Theorem 4.16 and Z partitioned as
⋃L

i=1 Ki , the probability that
the set { f (x + k) : k ∈ Ki} is a Riesz basic sequence is zero.

One should also compare the g(N) = N1/2 log−3 N arithmetic progression con-
dition with van der Waerden’s theorem, which states that, given a partition of the
integers {K1, . . . ,KL}, there exists an i such that Ki has arbitrarily long arithmetic

progressions. One might hope that there is a quantitative version of van der Waer-
den’s theorem that would give the existence of g(N) = N1/2 log−3 N arithmetic pro-
gressions, but this is not the case. The current best quantitative version is given by
Gowers [12], where we use the notation a ↑ b to denote ab, with natural rules for

order of operation.

Theorem 4.19 ([12, Theorem 18.2]) Let 0 < γ ≤ 1/2, let k be a positive integer, let

P ≥ 2 ↑ 2 ↑ γ−1 ↑ 2 ↑ 2 ↑ (k + 9), and let A be a subset of {1, . . . , P} of size at least γP.

Then A contains an arithmetic progression of length k.

Corollary 4.20 Suppose Z is partitioned into L subsets K1, . . . ,KL. Let g(N) =

2 ↑ 2 ↑ L ↑ 2 ↑ 2 ↑ (N + 9). Then there exists an i such that the set Ki satisfies the g(N)

arithmetic progression condition.

Proof With g as above, let δ =
1
N

. Choose γ =
1
L

, k = N and P = 2 ↑ 2 ↑ L ↑ 2 ↑ 2 ↑
(k + 9) as in Theorem 4.19. By Theorem 4.19, there is an i such that Ki contains

an arithmetic progression of length N . Now the “jump” in the progression ℓ satisfies
ℓ ≤ P/N . Therefore, for this arithmetic progression, ℓ ≤ δg(N). Since there are
only finitely many Ki ’s, there exists a Ki for which the g(N) arithmetic progression
condition is satisfied.

We end this section by recalling the following theorem of Bourgain and Tzafriri,
which remains the strongest indicator that the answer to Question 4.12 is “yes”. Recall
that, for a set K ⊂ Z, the density of K is defined to be

dens(K) = lim
n→∞

#(K ∩ [1, n])

n
,

provided that the limit exists.

Theorem 4.21 ([1]) Let U ⊂ T be a set of positive measure. There exists a set K ⊂ Z

such that dens(K) > 0 and {e2πikxχU : k ∈ K} is a Riesz basic sequence.

In this section, we have shown that there are techniques available from the in-
terplay of number theory with harmonic analysis that can be used to address the
Feichtinger conjecture in the case of frames of translates. It is natural to wonder
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whether more sophisticated tools in this area can be used to settle the Feichtinger
conjecture for frames of translates. It would be of particular interest to find the opti-

mal functions g(N) such that Theorem 4.16 and Corollary 4.20 hold. Indeed, if g(N)
in Theorem 4.16 could be chosen to be smaller than g(N) in Corollary 4.20, then the
Feichtinger conjecture would be disproven. There is currently a bit of a gap in the
available estimates.

Acknowledgment The authors thank the referee for providing the reference [15].
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