Duals of Hardy spaces on homogeneous groups

Marcin Bownik^{*1} and Gerald B. Folland^{**2}

¹ Department of Mathematics, University of Oregon, Eugene, OR 97403-1222, USA

² Department of Mathematics, University of Washington, Seattle, WA 98195-4350, USA

Received 13 January 2005, accepted 24 July 2005 Published online 9 July 2007

Key words Hardy space, Campanato space, homogeneous group, duality **MSC (2000)** Primary: 42B30; Secondary: 43A80, 46E35

Hardy spaces on homogeneous groups were introduced and studied by Folland and Stein [3]. The purpose of this note is to show that duals of Hardy spaces H^p , 0 , on homogeneous groups can be identified with Morrey–Campanato spaces. This closes a gap in the original proof of this fact in [3].

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

We begin by reviewing some definitions. Let G be a homogeneous group, i.e., G is a connected and simply connected nilpotent Lie group which is endowed with a family of dilations $\{\delta_r\}_{r>0}$. We recall that a family of dilations on the Lie algebra \mathfrak{g} of G is a one parameter family of automorphisms of \mathfrak{g} of the form $\{\exp(A \log r) : r > 0\}$, where A is diagonalizable linear operator on \mathfrak{g} with positive eigenvalues $1 = d_1 \leq d_2 \leq \cdots \leq d_n$, $n = \dim(G)$. Then the exponential map from \mathfrak{g} to G defines the corresponding family of dilations $\{\delta_r\}_{r>0}$ on G. We will often use the abbreviated notation $\delta_r x = rx$ for $x \in G$ and r > 0.

We fix a homogeneous norm on G, i.e., a continuous map $|\cdot|: G \to [0,\infty)$ that is C^{∞} on $G \setminus \{0\}$ and satisfies

$$\begin{split} \left| x^{-1} \right| &= \left| x \right| \quad \text{for all} \quad x \in G, \\ \left| \delta_r x \right| &= r \left| x \right| \quad \text{for all} \quad x \in G, \ r > 0, \\ \left| x \right| &= 0 \iff x = 0. \end{split}$$

The ball B(r, x) of radius r > 0 and center $x \in G$ is defined as

$$B(r, x) = \{ y \in G : |x^{-1}y| < r \},\$$

and we denote by γ be the minimal constant such that

$$|xy| \le \gamma(|x| + |y|)$$
 for all $x, y \in G$.

If ψ is a function on G and t > 0, we define its dilate $D_t \psi$ as

$$D_t \psi(x) = t^{-Q} \psi(\delta_{1/t} x) = t^{-Q} \psi(x/t),$$

where

$$= d_1 + \dots + d_n$$

is the homogeneous dimension of G. The dilate $D_t \psi$ is also denoted by ψ_t . The (left) translate of ψ by $x_0 \in G$ is defined as

$$\tau_{x_0}\psi(x) = \psi((x_0)^{-1}x).$$

Q

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

^{*} e-mail: mbownik@uoregon.edu, Phone: +1 541 346 5622, Fax: +1 541 346 0987

^{**} Corresponding author: e-mail: folland@math.washington.edu, Phone: +1 206 543 7083, Fax: +1 206 543 0397

Given a multiindex $I = (i_1, \ldots, i_n) \in \mathbb{N}^n$, we set

$$|I| = i_1 + \dots + i_n, \quad d(I) = d_1 i_1 + \dots + d_n i_n.$$

Let Δ be the additive semi-group of \mathbb{R} generated by $0, d_1, d_2, \ldots, d_n$. That is, $\Delta = \{d(I) : I \in \mathbb{N}^N\}$. Let η_1, \ldots, η_n be a basis for the linear polynomials on G such that η_i is homogeneous of degree d_i . Then every polynomial P can be written uniquely as

$$P = \sum_{I} a_{I} \eta^{I}, \quad \eta^{I} = \eta_{1}^{i_{1}} \dots \eta_{n}^{i_{n}}, \quad a_{I} \in \mathbb{C}.$$

The homogeneous degree of $P = \sum_{I} a_{I} \eta^{I}$ is defined as

$$\deg(P) = \max\{d(I) : a_I \neq 0\}.$$

Given $s \in \Delta$, we denote the space of polynomials of homogeneous degree $\leq s$ by

$$\mathcal{P}_s = \{ P \in \mathcal{P} : \deg(P) \le s \}.$$

We recall that \mathcal{P}_s is invariant under left and right translations; see [3, Proposition 1.25].

Suppose that $0 and <math>s \in \Delta$. We say that a triplet (p, q, s) is *admissible* if p < q and

$$s \ge \max\{s' \in \Delta : s' \le Q(1/p - 1)\}$$

We say that a function a is a (p, q, s)-atom, where (p, q, s) is admissible, if

$$\begin{split} & \operatorname{supp} a \subset B(x_0, r) \quad \text{for some} \quad x_0 \in G, \quad r > 0, \\ & ||a||_q \leq |B(x_0, r)|^{1/q - 1/p}, \\ & \int_G a(x) P(x) \, dx = 0 \quad \text{for all} \quad P \in \mathcal{P}_s. \end{split}$$

The atomic Hardy space $H_{q,s}^p$ is the set of all tempered distributions f such that $f = \sum \lambda_i a_i$ (convergence in S') such that the a_i are (p, q, s)-atoms, $\lambda_i \ge 0$, and $\sum \lambda_i^p < \infty$. $H_{q,s}^p$ is actually independent of q and s ([3, Theorem 3.30]) and so may be denoted simply by H^p .

Let \mathcal{B} denote the collection of all open balls in G. If $l \ge 0, 1 \le q \le \infty$, and $s \in \Delta$, we define the *Campanato* space $C_{q,s}^l$ to be the space of all locally L^q functions u on G so that

$$||u||_{C_{q,s}^{l}} := \sup_{B \in \mathcal{B}} \inf_{P \in \mathcal{P}_{s}} |B|^{-l} \left(\frac{1}{|B|} \int_{B} |u(x) - P(x)|^{q} dx\right)^{1/q} < \infty \quad (q < \infty),$$

$$||u||_{C_{\infty,s}^{l}} := \sup_{B \in \mathcal{B}} \inf_{P \in \mathcal{P}_{s}} |B|^{-l} \operatorname{ess\,sup}_{x \in B} |u(x) - P(x)| < \infty \qquad (q = \infty).$$

We identify two elements of $C_{q,s}^l$ if they are equal almost everywhere. (Note: The space called $C_{q,s}^l$ here is called $C_{q,s}^{Ql}$ in [3].)

2 Duals of Hardy spaces

The main goal of this note is to prove that the dual of the Hardy space $H_{q,s}^p$ is isomorphic to the Campanato space $C_{q',s}^{1/p-1}/\mathcal{P}_s$, where (p,q,s) is an admissible triplet and 1/q + 1/q' = 1. This result in the setting of Hardy spaces on homogeneous groups was obtained by Folland and Stein [3, Chapter 5]. However, careful examination of the arguments in [3] reveals a gap in the first part of the proof of [3, Theorem 5.3]. The trouble is that uniform boundedness of a functional on atoms does not guarantee that the functional is bounded on H^p ; see [2]. Hence, the operator norm of a functional L on H^p is given by the supremeum of |La| over all atoms a, as asserted in [3, Lemma 5.1], only when the functional is known a priori to be continuous. To remedy this situation we will apply a rather subtle approximation argument inspired by [4, Chapter III.5], see also [1, Section 8]. We will need some simple observations about Campanato spaces. First, note that for any t > 0, the substitution s = r/t gives

$$\begin{aligned} ||u_t||_{C_{q',s}^l} &= \sup_{x_0 \in G, \ r > 0} \inf_{P \in \mathcal{P}_s} |B(x_0, r)|^{-l} \left(\frac{1}{|B(x_0, r)|} \int_{B(x_0, r)} \left| t^{-Q} u(x/t) - P(x) \right|^{q'} dx \right)^{1/q'} \\ &= \sup_{x_0 \in G, \ s > 0} \inf_{P \in \mathcal{P}_s} \left(t^Q |B(x_0, s)| \right)^{-l} \left(\frac{1}{|B(x_0, s)|} \int_{B(x_0, s)} t^{-Qq'} |u(x) - t^Q P(tx)|^{q'} dx \right)^{1/q'} \\ &= t^{-Q(l+1)} ||u||_{C_{q',s}^l}. \end{aligned}$$
(2.1)

Next, for any $B \in \mathcal{B}$, let $\pi_B : L^1(B) \to \mathcal{P}_s$ be the natural projection defined by

$$\int_{B} (\pi_B f(x))Q(x) \, dx = \int_{B} f(x)Q(x) \, dx \quad \text{for all} \quad f \in L^1(B), \quad Q \in \mathcal{P}_s.$$

We claim that there is a constant $C = C_s$, independent of f and B, such that

$$\sup_{x \in B} |\pi_B f(x)| \le C \frac{1}{|B|} \int_B |f(x)| \, dx.$$
(2.2)

Indeed, for the fixed ball $B_0 = B(0, 1)$, let $\{Q_I : d(I) \le s\}$ be an orthonormal basis of \mathcal{P}_s with respect to the $L^2(B_0)$ norm. Then

$$\pi_{B_0} f = \sum_{d(I) \le s} \left(\int_{B_0} f(x) \overline{Q_I(x)} \, dx \right) Q_I,$$

so the estimate (2.2) holds for $B = B_0$ with $C = |B_0| \sum_I \left(\sup_{x \in B_0} |Q_I(x)| \right)^2$. Since $\pi_{B(x_0,r)} f = (\tau_{x_0} \circ D_r \circ \pi_{B_0} \circ D_{1/r} \circ \tau_{(x_0)^{-1}}) f$, (2.2) then follows for arbitrary $B = B(x_0, r) \in \mathcal{B}$.

Next, we claim that we can define an equivalent norm on $C_{a',s}^l$ by setting

$$|||u|||_{C^{l}_{q',s}} = \sup_{B \in \mathcal{B}} |B|^{-l} \left(\frac{1}{|B|} \int_{B} |u(x) - \pi_{B} u(x)|^{q'} dx \right)^{1/q'} \quad (1 \le q' < \infty),$$
(2.3)

$$||u|||_{C^{l}_{\infty,s}} = \sup_{B \in \mathcal{B}} |B|^{-l} \operatorname{ess\,sup}_{x \in B} |u(x) - \pi_{B} u(x)| \qquad (q' = \infty).$$
(2.4)

Indeed, for any $B \in \mathcal{B}$ and $P \in \mathcal{P}_s$, by the fact that $P = \pi_B P$ and (2.2) we have

$$\begin{split} \left(\frac{1}{|B|} \int_{B} |u(x) - \pi_{B} u(x)|^{q'} dx\right)^{1/q'} \\ &\leq \left(\frac{1}{|B|} \int_{B} |u(x) - P(x)|^{q'} dx\right)^{1/q'} + \left(\frac{1}{|B|} \int_{B} |\pi_{B} (P - u)(x)|^{q'} dx\right)^{1/q'} \\ &\leq \left(\frac{1}{|B|} \int_{B} |u(x) - P(x)|^{q'} dx\right)^{1/q'} + C \frac{1}{|B|} \int_{B} |u(x) - P(x)| dx \\ &\leq (C + 1) \left(\frac{1}{|B|} \int_{B} |u(x) - P(x)|^{q'} dx\right)^{1/q'}. \end{split}$$

Therefore,

$$||u||_{C^{l}_{q',s}} \le |||u|||_{C^{l}_{q',s}} \le (C+1)||u||_{C^{l}_{q',s}} \quad \text{for all} \quad u \in C^{l}_{q',s}.$$

$$(2.5)$$

The key ingredients in the proof of the duality theorem are some approximation results for Campanato spaces. To begin with, define the space

$$\Theta_s^q = \left\{ f \in L^q(G) : \text{supp } f \text{ is compact and } \int_G f(x) P(x) \, dx = 0 \text{ for } P \in \mathcal{P}_s \right\}.$$
(2.6)

www.mn-journal.com

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Lemma 2.1 Suppose $u \in C_{q',s}^l$, where $l \ge 0, 1 \le q' \le \infty$, and $s = 0, 1, \ldots$ Fix a nonnegative function $\varphi \in C^{\infty}$ with compact support and $\int \varphi = 1$, and let $\varphi_r(x) = r^{-Q}\varphi(x/r)$. Then

$$\int_{G} f(x)(u \ast \varphi_{r})(x) \, dx \longrightarrow \int_{G} f(x)u(x) \, dx \quad as \quad r \longrightarrow 0 \quad for \ all \quad f \in \Theta_{s}^{q}, \tag{2.7}$$

and

$$||u * \varphi_r||_{C^l_{q',s}} \le |||u|||_{C^l_{q',s}} \quad for \ all \quad r > 0.$$
(2.8)

Proof. If $q' < \infty$, (2.7) holds since $u * \varphi_r \to u$ in $L^{q'}_{loc}(G)$ as $r \to 0$. If $q' = \infty$, $u * \varphi_r$ is uniformly bounded on compact sets and converges a.e. to u(x) by [3, Theorem 2.6], so (2.7) holds by the dominated convergence theorem. Next, given $B \in \mathcal{B}$ and r > 0, define a function P_r by

$$P_r(x) = \int_G \pi_{y^{-1}B} u(y^{-1}x)\varphi_r(y) \, dy$$

Since we can write $\pi_{y^{-1}B}u(y^{-1}x) = \sum_{d(I) \leq s} c_{\alpha}(y)\eta^{I}(y^{-1}x)$ and the coefficients $c_{\alpha}(y)$ are continuous functions of y, P_r is a polynomial of homogeneous degree $\leq s$. By the Minkowski inequality,

$$\begin{split} \left(\frac{1}{|B|} \int_{B} |(u * \varphi_{r})(x) - P_{r}(x)|^{q'} dx\right)^{1/q'} \\ &= \left(\frac{1}{|B|} \int_{B} \left| \int_{G} \left(u(y^{-1}x) - \pi_{y^{-1}B}u(y^{-1}x)\right)\varphi_{r}(y) dy \right|^{q'} dx\right)^{1/q'} \\ &\leq \int_{G} \left(\frac{1}{|B|} \int_{B} |u(y^{-1}x) - \pi_{y^{-1}B}u(y^{-1}x)|^{q'} dx\right)^{1/q'} |\varphi_{r}(y)| dy \\ &= \int_{G} \left(\frac{1}{|y^{-1}B|} \int_{y^{-1}B} |u(z) - \pi_{y^{-1}B}u(z)|^{q'} dz\right)^{1/q'} \varphi_{r}(y) dy \\ &\leq |||u|||_{C^{l}_{q',s}} |B|^{l}. \end{split}$$

This proves (2.8).

Lemma 2.2 Let $\psi \in C^{\infty}$ be such that $\operatorname{supp} \psi \subset B(0,1)$, $0 \leq \psi(x) \leq 1$, and $\psi(x) = 1$ for $x \in B(0,1/2)$. There exist C > 0 and $\tilde{s} \in \Delta$ with $\tilde{s} \geq s$ such that

$$||(u - \pi_{B_0} u)\psi||_{C^l_{q',\bar{s}}} \le C \, ||u||_{C^l_{q',s}} \quad \text{for all} \quad u \in C^l_{q',s},$$
(2.9)

where $B_0 = B(0, \gamma(2\gamma + 1)).$

Proof. Suppose $u \in C_{q',s}^l$ with $|||u|||_{C_{q',s}^l} \leq 1$. For brevity, we only consider the case $q' < \infty$; the case $q' = \infty$ uses a similar argument. Let $U = u - \pi_{B_0} u$. Since $\operatorname{supp} \psi \subset B_0$,

$$\int_{G} |U(x)\psi(x)|^{q'} dx \le \int_{B_0} |U(x)|^{q'} dx \le |B_0|^{lq'+1} < \infty.$$
(2.10)

Therefore, if $B = B(x_0, r) \in \mathcal{B}$ with $r \ge 1$, then

$$|B|^{-l} \left(\frac{1}{|B|} \int_{B} |U(x)\psi(x)|^{q'} dx\right)^{1/q'} \le \left(\frac{|B_0|}{|B|}\right)^{l+1/q'} \le C < \infty$$

Hence, to show (2.9) it is enough to estimate the integral of $U\psi$ over balls $B = B(x_0, r)$ with 0 < r < 1. Moreover, we can assume that $B \cap B(0, 1) \neq \emptyset$, since otherwise $U\psi = 0$ on B. Consequently, we are limited to balls $B \subset B_0$. Let $P_1 = \pi_B U$. By (2.2) and (2.10),

$$\left(\frac{1}{|B|} \int_{B} |P_1(x)|^{q'} dx\right)^{1/q'} \le C \left(\frac{1}{|B|} \int_{B} |U(x)|^{q'} dx\right)^{1/q'} \le C_1 |B|^{-1/q'}.$$
(2.11)

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.mn-journal.com

Let $P_2(x)$ be the left Taylor polynomial of ψ at x_0 of homogenous degree s_0 (i.e., the polynomial whose leftinvariant derivatives at the origin of homogeneous degree $\leq s_0$ agree with the corresponding derivatives of f at x_0), where $s_0 \in \Delta$ is chosen to satisfy $s_0 \geq Q(l + 1/q')$. By the Taylor inequality ([3, Theorem 1.37] and the remark following it), the remainder satisfies

$$|\psi(x) - P_2(x_0^{-1}x)| \le C_2 |x_0^{-1}x|^{s_0}$$
 for $x \in B \subset B(x_0, 1)$,

with C_2 independent of x_0 . Finally, let $P(x) = P_1(x)P_2(x_0^{-1}x)$, which is a polynomial of homogeneous degree at most $\tilde{s} = s + s_0$. By (2.11),

$$\begin{split} \left(\int_{B} |U(x)\psi(x) - P(x)|^{q'} dx \right)^{1/q'} \\ &\leq \left(\int_{B} |[U(x) - P_{1}(x)]\psi(x)|^{q'} dx \right)^{1/q'} + \left(\int_{B} |P_{1}(x)[\psi(x) - P_{2}(x_{0}^{-1}x)]|^{q'} dx \right)^{1/q'} \\ &\leq ||\psi||_{\infty} \left(\int_{B} |U(x) - P_{1}(x)|^{q'} dx \right)^{1/q'} + \sup_{x \in B} |\psi(x) - P_{2}(x_{0}^{-1}x)| \left(\int_{B} |P_{1}(x)|^{q'} dx \right)^{1/q'} \\ &\leq |B|^{l+1/q'} + C_{1}C_{2}r^{s_{0}}. \end{split}$$

But $r^{s_0} = C_3 |B|^{s_0/Q} \le C_3 |B|^{l+1/q'}$, so (2.9) is proved with $\tilde{s} = s + s_0$.

Lemma 2.3 Suppose $u \in C_{q',s}^l$, where $l \ge 0, 1 \le q' \le \infty$, and s = 0, 1, ... There exist $\tilde{s} \ge s$, a constant C > 0 independent of u, and a sequence of test functions $\{u_k\}_{k \in \mathbb{N}} \subset S$ so that

$$|u_k||_{C^l_{q',\bar{s}}} \le C \, ||u||_{C^l_{q',\bar{s}}} \quad for \ all \quad k \in \mathbb{N},$$
(2.12)

$$\lim_{k \to \infty} \int_G f(x) u_k(x) \, dx = \int_G f(x) u(x) \, dx \quad \text{for all} \quad f \in \Theta_s^q, \quad 1/q + 1/q' = 1.$$
(2.13)

Proof. First suppose $u \in C_{q',s}^l \cap C^{\infty}$. Let $\tilde{u}_k = D_{2^{-k}}u$ and $u_k = D_{2^k}((\tilde{u}_k - \pi_{B_0}\tilde{u}_k)\psi)$, where B_0 is as in Lemma 2.2. By (2.1) and (2.9),

$$||(\tilde{u}_k - \pi_{B_0} \tilde{u}_k)\psi||_{C^l_{q',\bar{s}}} \le C \, ||\tilde{u}_k||_{C^l_{q',s}} = C \, 2^{kQ(l+1)} ||u||_{C^l_{q',s}}.$$

Therefore (2.12) holds, since

$$||u_k||_{C^l_{q',\tilde{s}}} = 2^{-kQ(l+1)} ||(\tilde{u}_k - \pi_{B_0}\tilde{u}_k)\psi||_{C^l_{q',\tilde{s}}} \le C \,||u||_{C^l_{q',s}}.$$
(2.14)

Moreover,

$$u_{k}(x) = u(x) - (D_{2^{k}} \circ \pi_{B_{0}} \circ D_{2^{-k}})u(x) = u(x) - \pi_{B(0,2^{k}\gamma(2\gamma+1))}u(x) \quad \text{for} \quad x \in B(0,2^{k-1}).$$
(2.15)

Thus (2.13) also holds.

To end the proof we remove the assumption that $u \in C^{\infty}$. Given $u \in C_{q',s}^l$, define the sequence $\{u_k\}_{k\in\mathbb{N}} \subset S$ by $u_k = D_{2^k}((\tilde{u}_k - \pi_{B_0}\tilde{u}_k)\psi)$, where $\tilde{u}_k = D_{2^{-k}}(u * \varphi_k)$ with φ_k as in Lemma 2.1. Combining (2.8) and (2.14) yields (2.12), whereas (2.7) and (2.15) yield (2.13), completing the proof of f Lemma 2.3.

Lemma 2.4 Suppose that (p, q, s) is admissible and $f \in \Theta_s^q$, where Θ_s^q is given by (2.6). Suppose $u \in C_{q',s}^l$, 1/q + 1/q' = 1, l = 1/p - 1. There exists $\tilde{s} \ge s$ such that if f is decomposed into $f = \sum_{i=1}^{\infty} \lambda_i a_i$, where $\sum_{i=1}^{\infty} |\lambda_i|^p < \infty$ and the a_i 's are (p, q, \tilde{s}) -atoms, then

$$\int fu = \sum_{i=1}^{\infty} \lambda_i \int a_i u. \tag{2.16}$$

www.mn-journal.com

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Proof. Let a be a (p,q,s)-atom supported on a ball $B \in \mathcal{B}$ and $u \in C^l_{q',s}$. Since $\int ua = \int (u-P)a$ for all $P \in \mathcal{P}_s$ then by the standard calculation we have

$$\begin{aligned} \left| \int ua \right| &= \inf_{P \in \mathcal{P}_{s}} \left| \int (u - P)a \right| \\ &\leq \left(\int_{B} |a|^{q} \right)^{1/q} \left(\inf_{P \in \mathcal{P}_{s}} \int |u - P|^{q'} \right)^{1/q'} \\ &\leq |B|^{1/q - 1/p} |B|^{l + 1/q'} |B|^{-l} \left(\frac{1}{|B|} \inf_{P \in \mathcal{P}_{s}} \int |u - P|^{q'} \right)^{1/q'} \\ &\leq ||u||_{C_{q',s}^{l}}. \end{aligned}$$

$$(2.17)$$

Next, suppose that $f \in \Theta_s^q$ is decomposed into $f = \sum_{i=1}^{\infty} \lambda_i a_i$, where $\sum_{i=1}^{\infty} |\lambda_i|^p < \infty$ and the a_i 's are (p, q, \tilde{s}) -atoms, where $\tilde{s} \ge s$ is the same as in Lemma 2.3. Suppose also that $u \in C_{q',s}^l$, 1/q + 1/q' = 1, l = 1/p - 1. Let $\{u_k\}_{k \in \mathbb{N}} \subset S$ be the sequence guaranteed by Lemma 2.3. For every $k \in \mathbb{N}$ we have

$$\int f u_k = \sum_{i=1}^{\infty} \lambda_i \int a_i u_k, \tag{2.18}$$

since convergence in H^p implies convergence in S' by [3, Proposition 2.15]. By (2.13)

$$\lim_{k \to \infty} \int_G a_i(x) u_k(x) \, dx = \int_G a_i(x) u(x) \, dx \quad \text{for all} \quad i \in \mathbb{N}.$$

By (2.12) and (2.17) we have $|\int u_k a_i| \le ||u_k||_{C^l_{q',\bar{s}}} \le C ||u||_{C^l_{q',s}}$. Since $\sum_{i=1}^{\infty} |\lambda_i| \le \left(\sum_{i=1}^{\infty} |\lambda_i|^p\right)^{1/p} < \infty$ we can take the limit as $k \to \infty$ in (2.18) by the dominated convergence theorem applied to counting measure on \mathbb{N} . This shows (2.16).

At last we are in a position to prove the duality theorem.

Theorem 2.5 Suppose (p, q, s) is admissible. Then

$$(H_{q,s}^p)^* \cong C_{q',s}^l / \mathcal{P}_s, \text{ where } 1/q + 1/q' = 1, \quad l = 1/p - 1.$$

More precisely, if $u \in C_{q',s}^l$ and f is a finite linear combination of (p,q,s)-atoms, let $L_u f = \int uf$. Then L_u extends continuously to $H_{q,s}^p$, and every $L \in (H_{q,s}^p)^*$ is of this form. Moreover,

$$||u||_{C^{l}_{q',s}} = ||L_{u}||_{(H^{p}_{q,s})^{*}} \quad for \ all \quad u \in C^{l}_{q',s}.$$

$$(2.19)$$

Proof. The fact that any bounded functional L on $H^p_{q,s}$ must be of the form $L = L_u$ for some $u \in C^l_{q',s}$ was already shown in [3].

Conversely, suppose $u \in C_{q',s}^l$. Our goal is to demonstrate that the functional $L_u f = \int uf$ defined initially for $f \in \Theta_s^q$, where Θ_s^q is given by (2.6), extends to a bounded functional on $H_{q,s}^p$ and $||L_u||_{(H_{q,s}^p)^*} \leq ||u||_{C_{q',s}^l}$. We emphasize again that boundedness of L_u on atoms (2.17) alone does not guarantee boundedness on the entire space.

Suppose that $f \in \Theta_s^q$. By [3, Theorem 3.30] we can find an atomic decomposition of $f = \sum_{i=1}^{\infty} \lambda_i a_i$, where

$$\left(\sum_{i=1}^{\infty} |\lambda_i|^p\right)^{1/p} \le 2 \, ||f||_{H^p_{q,\tilde{s}}} \le C \, ||f||_{H^p_{q,s}}$$

and the a_i 's are (p, q, \tilde{s}) -atoms. By (2.17) and Lemma 2.4

$$|L_u f| \le \sum_{i=1}^{\infty} |\lambda_i| |L_u a_i| \le ||u||_{C_{q',s}^l} \left(\sum_{i=1}^{\infty} |\lambda_i|^p\right)^{1/p} \le C ||u||_{C_{q',s}^l} ||f||_{H_{q,s}^p}.$$

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.mn-journal.com

Therefore, L_u extends uniquely to a bounded functional on $H^p_{q,s}$. Next, we recall that the norm of a bounded functional on $H^p_{q,s}$ is always achieved on atoms; see [3, Lemma 5.1], which holds under the assumption of continuity. Therefore, (2.17) implies $||L_u||_{(H^p_{q,s})^*} \leq ||u||_{C^l_{q,s}}$, which finishes the proof of Theorem 2.5.

References

- M. Bownik, Anisotropic Hardy Spaces and Wavelets, Memoirs of the American Mathematical Society Vol. 164, No. 781 (Amer. Math. Soc., Providence, RI, 2003).
- [2] M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions, Proc. Amer. Math Soc. 133, 3535– 3542 (2005).
- [3] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups (Princeton University Press, Princeton, NJ, 1982).
- [4] J. García–Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics (North-Holland, Amsterdam, 1985).