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Duals of Hardy spaces on homogeneous groups
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Hardy spaces on homogeneous groups were introduced and studied by Folland and Stein [3]. The purpose of
this note is to show that duals of Hardy spaces H”, 0 < p < 1, on homogeneous groups can be identified with
Morrey—Campanato spaces. This closes a gap in the original proof of this fact in [3].
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1 Introduction

We begin by reviewing some definitions. Let G be a homogeneous group, i.e., G is a connected and simply
connected nilpotent Lie group which is endowed with a family of dilations {4, },~o. We recall that a family of
dilations on the Lie algebra g of G is a one parameter family of automorphisms of g of the form {exp(Alogr) :
r > 0}, where A is diagonalizable linear operator on g with positive eigenvalues 1 = dy < dp < -+ < d,,
n = dim(G). Then the exponential map from g to G defines the corresponding family of dilations {4, },~0 on
G. We will often use the abbreviated notation 6,z = rz forx € G and r > 0.

We fix a homogeneous norm on G, i.e., a continuous map |-| : G — [0, 00) thatis C* on G \ {0} and satisfies

|o7! =|z| for all z€G,
|0,2] = r|z| for all x € G, r >0,
2] =0 <= x=0.

The ball B(r, x) of radius ~ > 0 and center z € G is defined as
B(r,z) ={yeG: !x_1y| <r},

and we denote by ~y be the minimal constant such that

lzy| < v(Jz| + |y|) for all z,y € G.

If ¢ is a function on G and ¢ > 0, we define its dilate D) as
Dyp(x) =t~ (01 ppx) =t~ (/t),
where
Q =di+---+d,

is the homogeneous dimension of . The dilate D;1) is also denoted by ;. The (left) translate of ¢ by zg € G
is defined as

TeoW(x) = w((xo)_lx).
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1224 Bownik and Folland: Duals of Hardy spaces

Given a multiindex I = (i1,...,i,) € N, we set
| =14 +in, d(I)=dyi1+ -+ dpin.

Let A be the additive semi-group of R generated by 0,d1,ds,...,d,. Thatis, A = {d(I) I € NN}. Let
71,---,Mn be a basis for the linear polynomials on G such that 7; is homogeneous of degree d;. Then every
polynomial P can be written uniquely as

P=>am', n'=ni. . ., acC
I

The homogeneous degree of P =), a ! is defined as
deg(P) = max{d(I) : ar # 0}.

Given s € A, we denote the space of polynomials of homogeneous degree < s by
Py ={P € P :deg(P) < s}.

We recall that P; is invariant under left and right translations; see [3, Proposition 1.25].
Suppose that 0 < p < 1,1 < g < oo and s € A. We say that a triplet (p, q, s) is admissible if p < ¢ and

s>max{s’ € A:s' <Q(1/p—1)}.
We say that a function a is a (p, ¢, s)-atom, where (p, ¢, s) is admissible, if

suppa C B(xzg,r) for some zp€ G, r >0,

llallg < |B(ao,r)[/9717,

/ a(x)P(x)dz =0 for all P € P;.

G

The atomic Hardy space HY  is the set of all tempered distributions f such that f = >~ A\ia; (convergence in
S’) such that the a; are (p, g, s)-atoms, A; > 0, and > Al < oo. H?  is actually independent of ¢ and s ([3,
Theorem 3.30]) and so may be denoted simply by HP.

Let B denote the collection of all open balls in G. If ] > 0,1 < ¢ < 00, and s € A, we define the Campanato
space C(l], s to be the space of all locally L9 functions » on G so that

1/q
1
] := sup inf B_l<—/ux—qudx> < 00 < 00),
ey, = sup inf (B ( 57 [ u(e) - Pla) (< o)

sup inf |B| ™ esssup,cp |u(z) — P(z)| < o0 (¢ = ).

ey += sup inf

We identify two elements of C(l], < if they are equal almost everywhere. (Note: The space called Cclz,s here is called
C%@in [3].)
a8

2 Duals of Hardy spaces

The main goal of this note is to prove that the dual of the Hardy space HY ; is isomorphic to the Campanato
space C;,<ZS)_1/PS, where (p, q, s) is an admissible triplet and 1/q + 1/¢’ = 1. This result in the setting of Hardy
spaces on homogeneous groups was obtained by Folland and Stein [3, Chapter 5]. However, careful examination
of the arguments in [3] reveals a gap in the first part of the proof of [3, Theorem 5.3]. The trouble is that uniform
boundedness of a functional on atoms does not guarantee that the functional is bounded on H?; see [2]. Hence,
the operator norm of a functional L on H? is given by the supremeum of | La| over all atoms a, as asserted in [3,
Lemma 5.1], only when the functional is known a priori to be continuous. To remedy this situation we will apply
a rather subtle approximation argument inspired by [4, Chapter I11.5], see also [1, Section §].

(© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 280, No. 11 (2007) 1225

We will need some simple observations about Campanato spaces. First, note that for any ¢ > 0, the substitution
s =1/t gives

1/4’
1 ql
ugllet = sup inf |B(xg, _l( t~%u(x/t T dx)
|| 15||Cq,’S 20€C. >0 PEP, | ( 0 )| |B(l'(), )| B(zo.r) | /) ( )‘
1/q
—1 1 o q 2.1
= sup inf (t9|B(xo,s)| <7 t=9 |u(z) — t2P(tx) dx)
e i2F, )\ BGo Joeon' ! |
=t Q(l+1)||u||cl, -
Next, for any B € B, let 7z : L*(B) — Pj be the natural projection defined by
/(ﬂ'Bf( x)dx —/ f(x)Q(x)dx for all fe L*'(B), Q€Ps.
B
We claim that there is a constant C' = C, independent of f and B, such that
sup 5 f(0)] < oz [ |7(o)]da. 22)
zEB |B|

Indeed, for the fixed ball By = B(0,1), let {Q1 : d(I) < s} be an orthonormal basis of P with respect to the
L?(By) norm. Then

mi= Y ( BOf(x)Qz—(x)dx)QI,

d(I)<s

so the estimate (2.2) holds for B = By with C' = |Bo| 3 (sup,ep, |Q1(x)|)2. Since 7 (o, r)f = (Tao © Dy 0
By © D1/r © T(z0)-1) [, (2.2) then follows for arbitrary B = B(xo,r) € B.
Next, we claim that we can define an equivalent norm on C(l], s Dy setting

1/q
[l|ull|c: = sup |B|_l< / |u(z) — mpu(z)|? dm) (1<q <), (2.3)
7= BeB |B|
lullle, , = sup |BI” Less sup, e g [u(z) — mpu(e)] (q" = o0). 2.4)
’ €B

Indeed, for any B € B and P € Pg, by the fact that P = w5 P and (2.2) we have

(3 - o)
<|B|/ e )| dx)l/q,Jr (li?l/l;|7rB(Pu)(x)|q/dx>l/ql
<|B|/ Ju(a |qu)1/q +CE/ e x)| da
<(C+1) (|B|/ |u(z )|de>1/q.

Therefore,
lullc, < llulllet, < (C+Dlullc, — forall ue Cor s (2.5)

The key ingredients in the proof of the duality theorem are some approximation results for Campanato spaces.
To begin with, define the space

0% = {f € LYG) : supp f is compactand [, f(z)P(x)dz =0 for P € P,} . (2.6)
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Lemma 2.1 Suppose u € C(l],,s, wherel > 0,1 < ¢ < oo, and s = 0,1, ... Fix a nonnegative function
¢ € O with compact support and [ ¢ =1, and let ¢, (x) = r~%p(z/r). Then

/f (u* @r)( dx—>/f x)de as r—0 forall fe€0OL 2.7)

and
luxelics, < Ilullles, . for atl r>0. @)
Proof. If ¢ < oo, (2.7) holds since u* p, — win Lgc(G) asT — 0. If ¢ = oo, u* ¢, is uniformly bounded

on compact sets and converges a.e. to u(z) by [3, Theorem 2.6], so (2.7) holds by the dominated convergence
theorem. Next, given B € B and r > 0, define a function P, by

Py(x) = /G 71 mu(y~2) or(y) dy.

Since we can write m,—1 gu(y~'z) = 2od(n<s ca(y)n' (y~'z) and the coefficients ¢, (y) are continuous func-
tions of y, P, is a polynomial of homogeneous degree < s. By the Minkowski inequality,

(i [t - popra) ™
= (157 L] L 070) = mmomnts e q,dx) "
< [ (15 ) = my st a) bt
A= IUCELRCIES o

< llellles, |BI"

This proves (2.8). O

Lemma 2.2 Let 1) € C* be such that suppp C B(0,1), 0 < ¢(z) < 1, and (x) = 1 for x € B(0,1/2).
There exist C > 0 and § € A with § > s such that

2.9

q’,s»

I(w - 7, 0)llct, < Cllulles, for all weCl,
where By = B(0,v(2y + 1)).

Proof. Suppose u € CL, _ with |[|u||[c:, < 1. For brevity, we only consider the case ¢’ < oo; the case
k) q/,s

¢’ = oo uses a similar argument. Let U = u — 7w, u. Since supp ¢ C By,
/ U (z) ()7 da < / |U(2)|9 dz < | Bo|¥ ! < oo. (2.10)
Bo

Therefore, if B = B(xo,7) € B withr > 1, then

y 1/q’ |BO| l+1/ql
q < [ —= < .
= (|B|/'U @) dx) —(|B|) SO

Hence, to show (2.9) it is enough to estimate the integral of Ut over balls B = B(xzg,r) with 0 < r < 1.
Moreover, we can assume that B N B(0, 1) # &, since otherwise U1 = 0 on B. Consequently, we are limited to
balls B C By. Let P, = ngU. By (2.2) and (2.10),

1 , Ve 1 , A\ V7 ,
(E / |P1<x>|wx) < C(E / |U<x>|qu) <cy BV @.11)
B B
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Let Py(x) be the left Taylor polynomial of ¢ at 2y of homogenous degree sq (i.e., the polynomial whose left-
invariant derivatives at the origin of homogeneous degree < s( agree with the corresponding derivatives of f at
x0), where sgp € A is chosen to satisfy sg > Q(! 4+ 1/¢’). By the Taylor inequality ([3, Theorem 1.37] and the
remark following it), the remainder satisfies

}l/}(l')fpg(l‘all‘”SCQ}QS‘61£C|SO for =€ B C B(zo,1),

with Cs independent of zg. Finally, let P(z) = Py ()P, (zg lx), which is a polynomial of homogeneous degree
atmost § = s + sg. By (2.11),

([ w@we - pel a) "

< (/B [U(z) —Pl(x)]w(fc)lq'dx) " + (/B |Pr() [9(2) —P2($61$)qudfﬂ>

1/q'

1/q 1/d
<ol ([ 106 - Piofae) "+ supluto) - Pategta)|( [ o as)
B z€B B
< |B|l+1/q, + C1Cr™.
But %0 = C3|B|*0/Q < C3|B|!*t1/9 50 (2.9) is proved with 5 = s + so. O

Lemma 2.3 Suppose u € C’fl, o Wherel > 0,1 < q < oo, ands =0,1,... There exist 3 > s, a constant
C' > 0 independent of u, and a sequence of test functions {uy }ren C S so that

llurllct, < Cllullct,  for all k€N, (2.12)
klim / f(@)ug(z) dx = / f@)u(x)dz for all feO©l 1/q+1/¢ =1. (2.13)

Proof. First suppose u € C’é,ﬁ NC®. Let @y, = Dy-ru and u, = Do ((Gy, — mp, Uk )1), Where By is as in
Lemma 2.2. By (2.1) and (2.9),

i~ 7, ma)oller, < Clllcs, . = C29D fullgs,
Therefore (2.12) holds, since

lurllee, = 27D || (@ — o Uk)¥llcr, < Clluller, (2.14)
Moreover,
up(x) = u(z) — (Dar 0 7, © Do-r)u(z) = u(x) — T 2t (2y+1)u(x) for € B(0, 2k_1). (2.15)

Thus (2.13) also holds.
To end the proof we remove the assumption that u € C*°. Given u € Ctl]’,s’ define the sequence {uy }ren C S
by ur = Do (G, — 7B, Uk )W), Where 4y, = Do—k(u * @) with ¢ as in Lemma 2.1. Combining (2.8) and

(2.14) yields (2.12), whereas (2.7) and (2.15) yield (2.13), completing the proof of of Lemma 2.3. O

Lemma 2.4 Suppose that (p, q, s) is admissible and f € ©%, where ©1 is given by (2.6). Suppose u € C,l],ys,
1/q+1/q¢ = 1,1 = 1/p— 1. There exists 5§ > s such that if f is decomposed into f = Y ;= N;a;, where
Yoo INi|P < o0 and the a;’s are (p, q, 5)-atoms, then

/fu: Z)\i/aiu. (2.16)
=1
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Proof. Letabea (p, g, s)-atom supported on a ball B € Band u € C(l],,s. Since [ua = [(u — P)a for all
P € P, then by the standard calculation we have

‘/ua /(u—P)a /
(/BW) ( 2k /|u_P|q> 2.17)

, 1 , 1/(]/
< |B|1/q71/p|B|l+1/q |B|l<— me /|u—P|q>

< fulles,

= inf
PePs

IN

Next, suppose that f € ©7 is decomposed into f = > .=, A\;a;, where >~ |\;|P < oo and the a;’s are
(p, q, §)-atoms, where § > s is the same as in Lemma 2.3. Suppose also that u € Cf;/,s» 1/¢g+1/q¢ =
Il =1/p—1.Let{ur}ren C S be the sequence guaranteed by Lemma 2.3. For every k € N we have

/fuk = Z)\i/aiuka (2.18)
=1

since convergence in HP implies convergence in S’ by [3, Proposition 2.15]. By (2.13)

klim / a;(z)ug(x) de = / ai(z)u(z)dz for all 7€ N.
By (2.12) and (2.17) we have | [ uga;| < ||uk||cz <C ||u||Cz - Since Y007 [N < (302 [N |p)1/p < 00
we can take the limit as £ — oo in (2.18) by the dominated convergence theorem applied to counting measure on
N. This shows (2.16). O

At last we are in a position to prove the duality theorem.

Theorem 2.5 Suppose (p, q, s) is admissible. Then
(Hé’ys)* = C’é/}s/Ps, where 1/q+1/¢ =1, 1=1/p—1.

More precisely, if u € C' l . and f is a finite linear combination of (p, q, s)-atoms, let L,f = [uf. Then L,

extends continuously to H }]’ & and every L € (HE ()* is of this form. Moreover,

lulles, = lLullg.y for all ue cl .. (2.19)

Proof. The fact that any bounded functional L on HE ; must be of the form L = L, for some u € C’é,ﬁ was
already shown in [3].

Conversely, suppose u € C(l],7s. Our goal is to demonstrate that the functional L, f = [ uf defined initially
for f € ©F, where © is given by (2.6), extends to a bounded functional on HY ; and || Ly ||z )+ < ||“||C;,

We emphasize again that boundedness of L., on atoms (2.17) alone does not guarantee boundedness on the entire
space.
Suppose that f € ©%. By [3, Theorem 3.30] we can find an atomic decomposition of f = > >, X;a;, where

- 1/p
(Z w) <2l fllur, < ClIf Il

i=1

and the a;’s are (p, ¢, §)-atoms. By (2.17) and Lemma 2.4

1/p
|Luf] < ZI/\ 1 Luai| < [lullc, (ZI/\ |”> < Clluller, fllmz.-

i=1
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Therefore, L, extends uniquely to a bounded functional on H. 5}8. Next, we recall that the norm of a bounded
functional on H f;}s is always achieved on atoms; see [3, Lemma 5.1], which holds under the assumption of
continuity. Therefore, (2.17) implies |[Ly||(gr )~ < [|u[|lct, , which finishes the proof of Theorem 2.5. O
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