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Abstract

In this paper we study structural properties of shift–modulation invariant (SMI) spaces, also called Gabor
subspaces, or Weyl–Heisenberg subspaces, in the case when shift and modulation lattices are rationally
dependent. We prove the characterization of SMI spaces in terms of range functions analogous to the
well-known description of shift-invariant spaces [C. de Boor, R. DeVore, A. Ron, The structure of finitely
generated shift-invariant spaces in L2(Rd), J. Funct. Anal. 119 (1994) 37–78; M. Bownik, The structure of
shift-invariant subspaces of L2(Rn), J. Funct. Anal. 177 (2000) 282–309; H. Helson, Lectures on Invariant
Subspaces, Academic Press, New York/London, 1964]. We also give a simple characterization of frames
and Riesz sequences in terms on their behavior of the fibers of the range function. Next, we prove several
orthogonal decomposition results of SMI spaces into simpler blocks, called principal SMI spaces. Then,
this is used to characterize operators invariant under both shifts and modulations in terms of families of
linear maps acting on the fibers of the range function. We also introduce the fundamental concept of the
dimension function for SMI spaces. As a result, this leads to the classification of unitarily equivalent SMI
spaces in terms of their dimension functions. Finally, we show several results illustrating our fiberization
techniques to characterize dual Gabor frames.
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1. Introduction

The aim of this paper is to investigate the structure of shift–modulation invariant spaces. These
are the subspaces of L2(Rn) generated by Gabor systems, also called Weyl–Heisenberg systems.
Gabor systems are a subject of the intensive study [4–6,9–17,19]. One of the fundamental prob-
lems in this area is to determine when two SMI spaces are unitarily equivalent, i.e., there exists
a unitary operator between these spaces commuting both with shifts and modulatCCions. A sim-
ilar problem in the context of shift-invariant (SI) spaces was settled by the author in [2]. It was
proved that two SI spaces are unitarily equivalent if and only if their dimension functions coin-
cide a.e. Recall from [1–3] that the dimension function of a SI space V is a Zn-periodic function
dimV : Rn → N ∪ {0,∞}, which measures the dimensions of the fibers of the range function
corresponding to V .

The SMI spaces have, in general, a much more complex structure than their SI counterparts,
since they must also obey modulation invariance. Obviously, every SMI space is also SI, hence
every result about SI spaces can be applied in the shift–modulation setting. This might be a
bit misleading, since SMI spaces are a very special kind of SI spaces. In particular, one can
easily prove that their SI dimension functions take only two possible values: 0 or ∞. This is
a consequence of the fact that every SMI space can be realized as a SI space with an infinite set
of generators being modulations of each other. Therefore, general results about SI spaces have a
limited applicability in the SMI setting and there is a need to develop a genuine shift–modulation
theory.

The main goal of this work is to show that this is indeed possible if modulation and shift
lattices are rationally dependent. The case when lattices are not rationally dependent requires a
different set of techniques and it will not be treated here. Despite that our theory of SMI spaces
is closely parallel to the shift-invariant theory, there are some significant differences setting them
apart. To describe our results in some detail we need to recall a basic terminology.

Definition 1.1. Let Λ, Γ be two full rank lattices in Rn, i.e., Λ = P0Zn, Γ = P1Zn for some
n × n non-singular matrices P0, P1 with real entries. Let A ⊂ L2(Rn) be a countable set of
generators. The Gabor system G(A,Λ,Γ ) is the set of translation and modulation shifts

G(A,Λ,Γ ) = {MλTγ ϕ: λ ∈ Λ, γ ∈ Γ, ϕ ∈A}, (1.1)

where Mλf (x) = e2πi〈x,λ〉f (x), Tγ f (x) = f (x−γ ). We say that a closed subspace V ⊂ L2(Rn)

is shift–modulation invariant (SMI) if

MλTγ V ⊂ V for all λ ∈ Λ, γ ∈ Γ. (1.2)

The smallest SMI space generated by A is denoted by

S(A,Λ,Γ ) = spanG(A,Λ,Γ ).

We say that two lattices Λ and Γ are rationally dependent if Λ ∩ Γ is a full rank lattice.
Applying the standard dilation argument one can assume that the modulation lattice Λ = Zn, or
alternatively that the shift lattice Γ = Zn. Then, any result involving Gabor systems with general
lattices Λ, Γ can be deduced from a corresponding result when one of the lattices is Zn.
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Therefore, for the sake of convenience and the ease of notation, we will always assume that
the lattice of modulations Λ = Zn. Consequently, we will drop the dependence on Λ in the
notation of a Gabor system G(A,Γ ) and a Gabor subspace S(A,Γ ). Moreover, the requirement
that Λ and Γ are rationally dependent corresponds to the fact that Γ is a rational lattice, that is
Γ = PZn for some n × n non-singular matrix P with rational entries.

Given a rational shift lattice Γ , define its integral sub-lattice Ξ = Ξ(Γ ) and its extended
super-lattice Θ = Θ(Γ ) by

Ξ = Γ ∩ Zn, Θ = Γ + Zn. (1.3)

The dual lattice to Ξ is given by

Ξ∗ = {
k ∈ Rn: 〈k, l〉 ∈ Z for all l ∈ Ξ

}
.

A fundamental domain of Rn/Γ is a set I = IΓ ⊂ Rn such that {I + γ : γ ∈ Γ } forms a partition
of Rn.

Let L2(Rn/Γ ) be the Hilbert space of all Γ -periodic measurable functions f : Rn → C such
that

‖f ‖2 =
∫

Rn/Γ

∣∣f (x)
∣∣2

dx < ∞.

In particular, L2(Tn) is the usual space of Zn-periodic functions, where Tn = Rn/Zn. Naturally,
L2(Tn) can be identified with L2(In), where In = [−1/2,1/2)n is the fundamental domain of
Rn/Zn.

In the close analogy to the shift-invariant case we establish a characterization of SMI spaces
in terms of appropriate range functions. Unlike the SI case, the range function in the SMI setting
is defined on the product domain Rn ×Rn with values in subspaces of a finite-dimensional space
Cp rather than the space 
2(Zn) as in the SI case. It also satisfies rather complicated periodicity
constraints, which are heavily dependent on the complexity of the rational dependence of shift
and modulation lattices. However, for the sake of simplicity our characterization result can be
stated as follows.

Theorem 1.1. There is a 1–1 correspondence between SMI spaces V and measurable range
functions

J : IΘ × IΞ∗ → {
E: E is a subspace of Cp

}
. (1.4)

More specifically, if V = S(A,Γ ), then J (x, ξ) = spanVA(x, ξ), where

VA(x, ξ) = {
Tϕ(x + lj , ξ): ϕ ∈A, 1 � j � q

}
, (1.5)

Here, T is the vector-valued Zak transform given by (3.4) and {l1, . . . , lq} ⊂ Γ are representa-
tives of distinct cosets of Θ/Zn.

We should add that p and q above are the orders of the quotient groups Ξ∗/Zn and Θ/Zn,
respectively. In particular, p and q have the same meaning as in Zibulski–Zeevi matrices for
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1-dimensional Gabor system with time and frequency shift parameters a and b such that ab =
p/q ∈ Q, gcd(p, q) = 1, see [13,24,30,31].

Theorem 1.1 enables us to introduce the concept of the dimension function for SMI spaces,
which again is defined on the product domain Rn × Rn and takes only finite number of values
unlike the SI case, where the dimension function has values in N ∪ {0,∞}. The dimension func-
tion of an SMI space V is defined by dimV (x, ξ) = dimJ (x, ξ). The rest of the paper is devoted
to showing that this dimension function classifies unitarily equivalent SMI spaces.

Theorem 1.2. Two SMI spaces V and W are unitarily equivalent if and only if

dimV (x, ξ) = dimW(x, ξ) for a.e. (x, ξ) ∈ IΘ × IΞ∗ .

To achieve this goal we need two main ingredients. First, we demonstrate structural results
for SMI spaces by showing decomposition theorems of general SMI spaces into simpler building
blocks, called principal SMI spaces. The spectrum of an SMI space V is the set

σ(V ) = {
(x, ξ): dimV (x, ξ) > 0

}
.

Then, our basic decomposition result can be stated in a simplified form as follows.

Theorem 1.3. Every SMI space V can be decomposed as

V =
p⊕

i=1

S(ϕi,Γ ),

such that each ϕi is a principal generator of S(ϕi,Γ ), i.e., dimS(ϕi ,Γ ) � 1, and

σ
(
S(ϕ1,Γ )

) ⊃ · · · ⊃ σ
(
S(ϕp,Γ )

)
.

Second, we provide a description of morphisms between SMI spaces, that is operators com-
muting both with shifts and modulations. As a consequence of our techniques we establish
several results on Gabor systems and SMI operators which provide the evidence for a phe-
nomenon, which we should call, the fiberization paradigm for SMI spaces. This paradigm says
that any reasonable property of an original Gabor system G(A,Γ ) (or an SMI operator) must
propagate to the fibers of the corresponding finitely-dimensional systems VA(x, ξ) in the vector-
valued Zak domain (or linear maps between fibers of the corresponding range functions). And
vice versa, any reasonable property holding uniformly almost everywhere on fibers of the range
function corresponds to the same property for the whole system. Simplifying things a bit we have
the following two results.

Theorem 1.4. The Gabor system G(A,Γ ) ⊂ L2(Rn) is a GGS ⇔ 1√
p
VA(x, ξ) ⊂ Cp are GGS

uniformly for a.e. (x, ξ) ∈ IΘ × IΞ∗ , where p = |Zn/Ξ |.

Here, a generic good system (GGS) represents any reasonable property of a collection of
vectors in a Hilbert space such as: orthonormality, completeness, frame, frame sequence, Riesz
basis, or Riesz sequence.
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Theorem 1.5. Suppose that V , W are SMI spaces and J , K are their corresponding range func-
tions. There is a 1–1 correspondence between linear operators L :V → W commuting with shifts
and modulations and measurable linear maps R(x, ξ) :J (x, ξ) → K(x, ξ), (x, ξ) ∈ IΘ × IΞ∗ .

Moreover,

L has a GGP ⇔ R(x, ξ) have GGP uniformly for a.e. (x, ξ) ∈ IΘ × IΞ∗ .

Here, a generic good property (GGP) represents any reasonable property of a linear operator in
a Hilbert space such as: being bounded, bounded from below, isometry, 1–1, onto, self-adjoint,
etc.

Our paper is organized as follows. The starting point in Section 2 is the description of doubly
invariant subspaces of 
2(Zn) with higher multiplicity. In Section 3 we prove the characterization
of SMI spaces in terms of range functions. In Section 4 we prove several manifestations of the
fiberization paradigm for Gabor systems by characterizing Gabor frame and Riesz sequences. In
Section 5 we establish fundamental decomposition results for SMI spaces as orthogonal sums of
principal SMI spaces. In Section 6 we prove the characterization of operators commuting both
with shifts and modulations in terms of range operators. As a consequence we classify unitarily
equivalent SMI spaces in terms of their dimension functions. Finally, in Section 7 we show
several results for dual Gabor systems using our fiberization techniques.

2. Doubly invariant subspaces with higher multiplicity shifts

The goal of this section is to provide a description of subspaces of 
2(Zn), which are invariant
under a certain subgroup of shifts. Recall from [20] that a closed subspace V ⊂ 
2(Zn) is doubly
invariant if SkV ⊂ V for all k ∈ Zn, where Sk is the shift operator by k ∈ Zn. The classical result
of Wiener [20,25] says that every doubly invariant subspace V ⊂ 
2(Zn) is of the form

V = {
a ∈ 
2(Zn

)
: suppFa ⊂ W

}
(2.1)

for some Lebesgue measurable subset W ⊂ Tn. Here, F :
2(Zn) → L2(Tn) is the Fourier trans-
form given by

Fa(x) =
∑
k∈Zn

ake
2πi〈k,x〉 for a = (ak) ∈ 
2(Zn

)
. (2.2)

Nevertheless, in the study of shift–modulation spaces we often encounter subspaces which
are invariant under some specific subgroup of shifts, rather than invariant under all shifts. One
can think of such spaces as doubly invariant with respect to higher multiplicity shifts. Despite
the literature search we were not able to find an analogue of Wiener’s theorem in this setting.
Our main goal is to prove that such an analogue exists when phrased in the language of range
functions, see Theorem 2.1.

Definition 2.1. Let Ξ be a full rank sub-lattice of Zn, i.e., Ξ = PZn for some n×n non-singular
matrix P with integer entries. We say that a closed subspace V ⊂ 
2(Zn) is doubly invariant with
respect to the lattice Ξ , or simply Ξ -invariant, if

SkV ⊂ V for all k ∈ Ξ. (2.3)
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Here, Sk :
2(Zn) → 
2(Zn) is the shift operator by k ∈ Zn.

Given Ξ as above, let D = {d1, . . . , dp}, where p = |detP |, be representatives of distinct
cosets of Ξ∗/Zn, where

Ξ∗ = {
k ∈ Rn: 〈k, l〉 ∈ Z for all l ∈ Ξ

}
represents the dual lattice to Ξ . Equivalently, Ξ∗ = (P ∗)−1Zn. The quotient group Ξ∗/Zn in-
duces a natural action on Cp given by

[k] ◦ (z1, . . . , zp) = (zν(1), . . . , zν(p)) for (z1, . . . , zp) ∈ Cp,

where for each [k] ∈ Ξ∗/Zn, ν is a unique permutation of {1, . . . , p} satisfying

[k] + [di] = [dν(i)] for i = 1, . . . , p.

Definition 2.2. Let Ξ be a full rank sub-lattice of Zn, and hence Ξ∗ is a super-lattice of Zn, i.e.,
Zn ⊂ Ξ∗. Define the space of Ξ∗-quasi-periodic functions as

L2
Ξ∗

(
Tn,Cp

) = {
f ∈ L2(Tn,Cp

)
: f (x + k) = [k] ◦ f (x) for all k ∈ Ξ∗}.

In particular, any f ∈ L2
Ξ∗(Tn,Cp) must be Zn-periodic; that is, f (x + k) = f (x) for all k ∈ Zn.

A Hilbert space norm in L2
Ξ∗(Tn,Cp) is defined by

‖f ‖L2
Ξ∗ (Tn,Cp) =

( ∫
Rn/Ξ∗

∥∥f (x)
∥∥2

Cp dx

)1/2

< ∞.

We note that the notion of Ξ∗-quasi-periodicity has a different meaning than the quasi-
periodicity of the Zak transforms [16]. While a general f ∈ L2

Ξ∗(Tn,Cp) is not Ξ∗-periodic,
the map x �→ ‖f (x)‖ is Ξ∗-periodic, and hence the above norm is well defined. Moreover, any
f ∈ L2

Ξ∗(Tn,Cp) is uniquely determined by its values on a fundamental domain of Rn/Ξ∗. Once
we fix such domain, say IΞ∗ = (P ∗)−1In, we can identify L2

Ξ∗(Tn,Cp) with L2(IΞ∗ ,Cp).

Proposition 2.1. Let TΞ :
2(Zn) → L2
Ξ∗(Tn,Cp) be a finite fiberization map given by

TΞa(x) = (
Fa(x + d1), . . . ,Fa(x + dp)

)
for a ∈ 
2(Zn

)
,

where F is the Fourier transform (2.2). Then, TΞ is an isometric isomorphism.

Proof. Clearly, TΞ is a composition of F and T :L2(Tn) → L2
Ξ∗(Tn,Cp) defined as

Tf (x) = (
f (x + d1), . . . , f (x + dp)

)
for f ∈ L2(Tn

)
.

A map T is isometry. It is clear that the family {IΞ∗ + dj : j = 1, . . . , p} is a partition of a
fundamental domain of Tn = Rn/Zn. Hence, T is an isometric isomorphism. Consequently, so
is TΞ . �
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Definition 2.3. A Ξ -range function is any map

J : Rn → {
E ⊂ Cp: E is a linear subspace

}
,

which is compatible with the action of Ξ∗/Zn. That is:

[k] ◦ J (x) = J (x + k) for any k ∈ Ξ∗.

Let P(x) be the orthogonal projection of Cp onto J (x). We say that J is measurable if the map
x �→ P(x) is operator measurable.

Hence, any Ξ -range function J must be Ξ∗-quasi-periodic and in particular Zn-periodic, i.e.,
J (x) = J (x + k) for all k ∈ Zn. Moreover, any Ξ -range function is uniquely determined by its
values on a fundamental domain of Rn/Ξ∗.

Remark 2.1. Note that the measurability of J is equivalent with x �→ P(x)a being vector
measurable for each a ∈ Cp , which, in turn, is equivalent to x �→ P(x)(Φ(x)) being vector
measurable for each vector measurable Φ : Tn → Cp .

We are now ready to characterize Ξ -invariant spaces in terms of range functions. Theorem 2.1
is an analogue of the corresponding characterization result of shift-invariant spaces of L2(Rn),
see [2, Proposition 1.5], which dates back to Helson [20]. Theorem 2.1 is also a generalization of
Wiener’s Theorem, since in the usual doubly invariant case, TΞ = F , J (x) = {0} or C, and (2.4)
is easily seen to be equivalent with (2.1).

Theorem 2.1. A closed subspace V ⊂ 
2(Zn) is Ξ -invariant if and only if

V = {
a ∈ 
2(Zn

)
: TΞa(x) ∈ J (x) for a.e. x

}
, (2.4)

where J is a measurable Ξ -range function. The correspondence between V and J is 1–1 under
the convention that the range functions are identified if they are equal a.e. Furthermore, if V is
generated by a finite or countable family A ⊂ 
2(Zn), i.e.,

V = span{Ska: a ∈A, k ∈ Ξ}, (2.5)

then the corresponding range function is given by

J (x) = span
{
TΞa(x): a ∈A

}
. (2.6)

To prove Theorem 2.1 we will follow the same strategy as in the shift-invariant case [2]. Given
a Ξ -range function J , define the space

MJ = {
Φ ∈ L2

Ξ∗
(
Tn,Cp

)
: Φ(x) ∈ J (x) for a.e. x ∈ Tn

}
. (2.7)

Then, MJ is easily seen to be a closed subspace of L2
Ξ∗(Tn,Cp), regardless whether J is mea-

surable or not. We need the following two adaptations of results due to Helson [20]. For their
proof, see [2] or Section 3.
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Lemma 2.1. Let J be a measurable Ξ -range function with associated orthogonal projec-
tions P(x), x ∈ Rn. Let P be the orthogonal projection of L2

Ξ∗(Tn,Cp) onto MJ . Then for
any Φ ∈ L2

Ξ∗(Tn,Cp),

(PΦ)(x) = P(x)
(
Φ(x)

)
for a.e. x ∈ Tn. (2.8)

Corollary 2.1. If MJ = MK for some measurable Ξ -range functions J and K , then J (x) =
K(x) for a.e. x.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Note that for any a ∈ 
2(Zn) and k ∈ Ξ ,

TΞ(Ska)(x) = (
e2πi〈k,x+d1〉Fa(x + d1), . . . , e

2πi〈k,x+dp〉Fa(x + dp)
) = e2πi〈k,x〉TΞa(x).

(2.9)

Therefore, a closed subspace V ⊂ 
2(Zn) is Ξ -invariant if and only if M = TΞV is a closed
subspace of L2

Ξ∗(Tn,Cp) invariant under multiplication by exponentials in Ξ , i.e.,

Φ(·) ∈ M ⇒ e2πi〈·,k〉Φ(·) ∈ M for all k ∈ Ξ, (2.10)

where · represents a generic variable.
Suppose that J is Ξ -range function. Then, the space V given by (2.4), or equivalently

V = (TΞ)−1MJ , is Ξ -invariant by (2.9), regardless whether J is measurable or not. Conversely,
suppose that V is Ξ -invariant generated by family A ⊂ 
2(Zn), that is (2.5). Let J (x) be given
by (2.6). Our goal is to show that J is a measurable Ξ -range function and that the space V can
be recovered by (2.4).

Let M = TΞV . For any Φ ∈ M , we can find a sequence (Φi)i∈N converging in norm to Φ and
such that

(TΞ)−1Φi ∈ span{Ska: a ∈A, k ∈ Ξ}.

Hence, by (2.9), Φi(x) ∈ J (x) for all i ∈ N and all x ∈ Tn. By choosing a subsequence of (Φi)i∈N

we have pointwise a.e. convergence to Φ . Consequently, Φ(x) ∈ J (x) for a.e. x, and M ⊂ MJ ,
where MJ is given by (2.7).

To prove the converse inclusion, take any Ψ ∈ MJ , which is orthogonal to M . For any Φ ∈
TΞA and k ∈ Ξ , we have e2πi〈·,k〉Φ(·) ∈ M . Hence,

0 =
∫

IΞ∗

〈
e2πi〈x,k〉Φ(x),Ψ (x)

〉
dx =

∫
IΞ∗

e2πi〈x,k〉〈Φ(x),Ψ (x)
〉
dx.

Since {e2πi〈x,k〉}k∈Ξ is an orthogonal basis of L2(IΞ∗), the scalar function x �→ 〈Φ(x),Ψ (x)〉
must vanish a.e. Therefore,

〈
Φ(x),Ψ (x)

〉 = 0 for all Φ ∈ TΞA, and a.e. x ∈ Tn,
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that is Ψ (x) ∈ J (x)⊥ for a.e. x. Hence, Ψ = 0. Since M ⊂ MJ are closed, M = MJ and (2.4)
holds.

It remains to prove that J (x) given by (2.6) is measurable. Let P be the orthogonal projection
of L2

Ξ∗(Tn,Cp) onto M = MJ , and let P(x) be the orthogonal projection of Cp onto J (x). For
any Ψ ∈ L2

Ξ∗(Tn,Cp), (I −P)Ψ is orthogonal to M . By the above argument, Ψ (x)−PΨ (x) ∈
J (x)⊥ for a.e. x. Combining this with the facts that M = MJ and PΨ (x) ∈ J (x) for a.e. x, we
have

P(x)
(
Ψ (x)

) = P(x)
(
PΨ (x)

) = PΨ (x) for a.e. x ∈ Tn.

Since PΨ (x) is vector measurable, so is x �→ P(x)(Ψ (x)) for any Ψ ∈ L2
Ξ∗(Tn,Cp). Conse-

quently, J is a measurable Ξ -range function.
Finally, to prove that the correspondence between Ξ -invariant spaces and Ξ -measurable

range functions is 1–1, we invoke Corollary 2.1. �
Definition 2.4. Let V ⊂ 
2(Zn) be Ξ -invariant. The dimension function of V is a map

dimV : Rn → {0,1, . . . , p}, dimV (x) = dimJ (x),

where J (x) is a Ξ -range function from Proposition 2.1.

It follows immediately that dimV is Ξ∗-periodic. However, it is much less immediate that
the following result, which is an analogue of classification of unitarily equivalent shift-invariant
spaces [2, Theorem 4.10], must also hold.

Proposition 2.2. Let V,W ⊂ 
2(Zn) be two Ξ -invariant spaces. Then V and W are unitarily
equivalent, i.e., there exists a unitary operator U :V → W commuting with shifts {Sk: k ∈ Ξ} if
and only if

dimV (x) = dimW(x) for a.e. x.

A direct proof of Proposition 2.2 is somewhat tedious, since it involves a decomposition result
for Ξ -invariant spaces and a characterization of Ξ -invariant operators in terms of range opera-
tors as it was done in the shift-invariant case in [2]. Instead, we will deduce Proposition 2.2 as
a consequence of an analogous classification for shift–modulation spaces in Section 6, see Ex-
ample 6.1. Therefore, we now shift our attention to the more involved case of shift–modulation
invariant spaces.

3. Characterization of shift–modulation invariant spaces

Our next goal is to characterize SMI spaces in terms of appropriate range functions which
is analogous to the usual shift-invariant case [2, Proposition 1.5]. In order to do this we must
introduce a necessary terminology.

Let T1 :L2(Rn) → L2(In, 

2(Zn)) be the isometric isomorphism

T1f (x) = (
f (x − k)

)
n . (3.1)
k∈Z
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The isometric isomorphism TΞ :
2(Zn) → L2(IΞ∗ ,Cp) induces then another isometric isomor-
phism

T2 :L2(In, 

2(Zn

)) → L2(In,L
2(IΞ∗ ,Cp

))
,

defined by

T2(Φ)(x) = TΞ

(
Φ(x)

)
for Φ ∈ L2(In, 


2(Zn
))

, x ∈ IΞ∗ .

However, we can identify L2(In,L
2(IΞ∗ ,Cp)) with L2(In × IΞ∗ ,Cp). Hence, by composing

T = T2 ◦ T1 we obtain an isometric isomorphism

T :L2(Rn
) → L2(In × IΞ∗ ,Cp

)
. (3.2)

We will refer to T as a Ξ -Zak transform. More explicitly, T is defined as

Tf (x, ξ) =
( ∑

k∈Zn

f (x − k)e2πi〈k,ξ+d1〉, . . . ,
∑
k∈Zn

f (x − k)e2πi〈k,ξ+dp〉
)

for a.e. (x, ξ) ∈ In × IΞ∗ , (3.3)

where {d1, . . . , dp} are representatives of distinct cosets of Ξ∗/Zn, where Ξ = Γ ∩ Zn. Natu-
rally, the convergence of the above series is in L2-norm, since the sequence (f (x − k))k∈Zn lies
in 
2(Zn) for a.e. x.

Therefore, we can simply define

Tf (x, ξ) = (
Zf (x, ξ + d1), . . . ,Zf (x, ξ + dp)

)
, (3.4)

where Z :L2(Rn) → L2(In × In) is the usual Zak transform given by

Zf (x, ξ) =
∑
k∈Zn

f (x − k)e2πi〈k,ξ〉. (3.5)

Remark 3.1. In the case when Γ = Zn, or more generally when Zn ⊂ Γ , Ξ -Zak transform is
the usual Zak transform, i.e., Tf (x, ξ) = Zf (x, ξ). However, in general the above defined Ξ -
Zak transform is vector-valued (with values in a finite-dimensional space). In this case T is often
called the vector-valued Zak transform [16, Chapter 8.3] or the piecewise Zak transform [30].

So far, the domain of Ξ -Zak transform Tf (x, ξ) was restricted to (x, ξ) ∈ In × IΞ∗ . Since
it is often necessary to avoid such restrictions, we can extend the domain of Tf (x, ξ) for every
(x, ξ) ∈ Rn × Rn by using (3.4). Our next goal is to investigate periodicity properties of the
resulting function.

Definition 3.1. Suppose Ξ ⊂ Zn is an integral sub-lattice. Define the Ξ -multiplex set M as

M = (
Zn/Ξ

) × (
Ξ∗/Zn

)
.

Define the action of M on the space Cp by
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([l], [k]) ◦ (v1, . . . , vp) = (
e2πi〈l,dν(j)〉vν(j)

)
1�j�p

for [l] ∈ Zn/Ξ, [k] ∈ Ξ∗/Zn, (v1, . . . vp) ∈ Cp. (3.6)

Here, ν is a unique permutation of {1, . . . , p} such that

[k] + [di] = [dν(j)] for j = 1, . . . , p. (3.7)

In other words, each element ([l], [k]) ∈ M defines a certain p × p unitary matrix, which is
a certain composition of permutation and diagonal matrices. It may appear that M has a group
structure, e.g. given by a semi-direct product, so that (3.6) is its unitary representation. However,
one can easily see that this is not the case.

Definition 3.2. We say that f : Rn × Rn → Cp is Ξ -multiplex-periodic if for every l ∈ Zn and
k ∈ Ξ∗,

f (x + l, ξ + k) = e2πi〈l,ξ〉([l], [k]) ◦ f (x, ξ) for (x, ξ) ∈ Rn × Rn, (3.8)

where ◦ represent the action of Ξ -multiplex set. In particular, any such f must be Zn-periodic in
ξ -variable and, neglecting the phase term, it is also Ξ -periodic in x-variable. Define the Hilbert
space L2

Ξ(Rn × Tn,Cp) of all Ξ -mutiplex-periodic f such that

‖f ‖L2
Ξ (Rn×Tn,Cp) =

( ∫
Tn×(Rn/Ξ∗)

∥∥f (x, ξ)
∥∥2

Cp dξ dx

)1/2

< ∞.

The above norm is well defined since the map (x, ξ) �→ ‖f (x, ξ)‖ is Zn ×Ξ∗-periodic. More-
over, any f ∈ L2

Ξ(Rn × Tn,Cp) is uniquely determined by its values on a fundamental domain
of Tn × (Rn/Ξ∗). Once we fix such a domain, say In × IΞ∗ , we can identify this space with
L2(In × IΞ∗ ,Cp). Hence, we can deduce the following result.

Proposition 3.1. The Ξ -Zak transform T :L2(Rn) → L2
Ξ(Rn × Tn,Cp), given by (3.4), is an

isometric isomorphism.

The only detail left to verify Proposition 3.1 is that for every f ∈ L2(Rn), Tf is Ξ -multiplex
periodic. Indeed, for (l, k) ∈ Zn × Ξ∗,

Tf (x + l, ξ + k) = (
Zf (x + l, ξ + k + dj )

)
1�j�p

= (
e2πi〈l,ξ+k+dj 〉Zf (x, ξ + k + dj )

)
1�j�p

= e2πi〈l,ξ〉(e2πi〈l,dν(j)〉Zf (x, ξ + dν(j))
)

1�j�p
= e2πi〈l,ξ〉([l], [k]) ◦ Tf (x, ξ),

where the permutation ν is the same as in (3.7).
We are now ready to define range functions corresponding to shift–modulation spaces.

Definition 3.3. A shift–modulation range function J = J (x, ξ) (with respect to the shift lat-
tice Γ ) is a mapping

J : Rn × Tn → {
E ⊂ Cp: E is a linear subspace

}
,
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which is Γ -periodic in x variable and Ξ -multiplex-periodic. More precisely,

J (x + γ, ξ) = J (x, ξ) for γ ∈ Γ, (3.9)

J (x + l, ξ + k) = ([l], [k]) ◦ J (x, ξ) for l ∈ Zn, k ∈ Ξ∗, (3.10)

where ◦ represents the action of Ξ -multiplex set.
Let P(x, ξ) be the orthogonal projection of Cp onto J (x, ξ). We say that J is measurable if

the map (x, ξ) �→ P(x, ξ) is operator measurable.

Remark 3.2. Let {l1, . . . , lq} ⊂ Γ be representatives of distinct cosets of the quotient group
Θ/Zn. Define the group homomorphism ρ :Θ → Zn/Ξ by

ρ(l) = [l − lj ] for l ∈ Θ, l ∈ lj + Zn, j = 1, . . . , q. (3.11)

It is easy to show that ρ is well defined and that its definition is independent of the choice of
representatives {l1, . . . , lq} as long as they are elements of Γ . Then, conditions (3.9) and (3.10)
can be combined into a single equivalent formula

J (x + l, ξ + k) = (
ρ(l), [k]) ◦ J (x, ξ) for l ∈ Θ,k ∈ Ξ∗. (3.12)

In particular, (3.12) shows that any shift–modulation invariant range function J is uniquely
determined by its values on the fundamental domain IΘ × IΞ∗ . Moreover, any such J = J (x, ξ)

is Γ -periodic in x-variable and Zn-periodic in ξ -variable.

Our goal is to characterize shift–modulation spaces in terms of shift–modulation range func-
tions. More precisely, we have the following result.

Theorem 3.1. Suppose Γ ⊂ Rn is a rational lattice. Define lattices Θ and Ξ by (1.3). Then the
following holds.

(i) A closed subspace V ⊂ L2(Rn) is shift–modulation invariant (with respect to the shift lat-
tice Γ ) if and only if

V = {
f ∈ L2(Rn

)
: Tf (x, ξ) ∈ J (x, ξ) for a.e. (x, ξ) ∈ Rn × Tn

}
, (3.13)

where J is a measurable shift–modulation range function (with respect to Γ ), and T denotes
Ξ -Zak transform.

(ii) The correspondence between V and J is 1–1 under the convention that the range functions
are identified if they are equal a.e.

(iii) Furthermore, if V is generated by a finite or countable family A ⊂ L2(Rn), i.e.,

V = span
{
MkTγ ϕ: ϕ ∈ A, k ∈ Zn, γ ∈ Γ

}
, (3.14)

then the corresponding range function is given by

J (x, ξ) = span
{
Tϕ(x + lj , ξ): j = 1, . . . , q, ϕ ∈A

}
, (3.15)

where {l1, . . . , lq} ⊂ Γ are representatives of distinct cosets of Θ/Zn.
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Equivalently, (3.13) can be written as

V = {
f ∈ L2(Rn

)
: Tf (x + lj , ξ) ∈ J (x, ξ)

for all j = 1, . . . , q, and for a.e. (x, ξ) ∈ IΘ × IΞ∗
}
. (3.16)

Remark 3.3. Note that every shift–modulation space V is, in particular, modulation-invariant.
Therefore, using the fiberization map T1 and [2, Proposition 1.5], V can be identified with the
usual range function mapping In into closed subspaces J (x) of 
2(Zn). For general modulation-
invariant spaces, J (x) do not have to satisfy any additional properties with the exception of
measurability. Since V is an SMI space, this imposes certain restrictions on the possible struc-
ture of spaces J (x). In particular, it turns out that each J (x) ⊂ 
2(Zn) must be Ξ -invariant,
and hence it is characterized by Theorem 2.1. Heuristically, to prove Theorem 3.1 we have to
apply first [2, Proposition 1.5] and then on each fiber of the resulting range function we should
use Theorem 2.1. However, the actual argument is more complicated since we have to control
both the measurability and multiplex-periodicity of the resulting shift–modulation range func-
tion. Consequently, the proof of Theorem 3.1 is, in a certain sense, a higher octane version of
Theorem 2.1.

We start with a basic lemma describing SMI spaces in the Zak domain.

Lemma 3.1. A closed subspace V ⊂ L2(Rn) is shift–modulation invariant if and only if M =
TV ⊂ L2

Ξ(Rn × Tn,Cp) is a closed subspace invariant under multiplication by exponentials in
x-variable,

Φ(x, ξ) ∈ M ⇒ e2πi〈l,x〉Φ(x, ξ) ∈ M for all l ∈ Zn, (3.17)

and invariant under x-variable shifts by elements of Γ ,

Φ(x, ξ) ∈ M ⇒ Φ(x − γ, ξ) ∈ M for all γ ∈ Γ. (3.18)

Proof. A direct calculation shows that for l ∈ Zn, γ ∈ Γ ,

Z(MlTγ f )(x, ξ) = e2πi〈l,x〉Zf (x − γ, ξ).

Hence,

T(MlTγ f )(x, ξ) = e2πi〈l,x〉Tf (x − γ, ξ) =
{

e2πi〈l,x〉Tf (x, ξ) for l ∈ Zn, γ = 0,

Tf (x − γ, ξ) for l = 0, γ ∈ Γ.
(3.19)

Therefore, V is shift–modulation invariant implies that (3.17) and (3.18) hold.
Conversely, if (3.17) and (3.18) hold, then by (3.19), V = (T−1)M satisfies

f ∈ V ⇒ Mlf ∈ V for l ∈ Zn,

f ∈ V ⇒ Tγ f ∈ V for γ ∈ Γ,

which completes the proof of Lemma 3.1. �
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Given a shift–modulation range function J , define the space

MJ := {
Φ ∈ L2

Ξ

(
Rn × Tn,Cp

)
: Φ(x, ξ) ∈ J (x, ξ) for a.e. (x, ξ) ∈ Rn × Tn

}
. (3.20)

Since e2πi〈l,x〉J (x, ξ) = J (x, ξ), the space M = MJ satisfies (3.17). Likewise, (3.18) holds
by (3.9). Furthermore, MJ is a closed subspace of L2

Ξ(Rn × Tn,Cp), since every sequence
of functions (Φj )j∈N converging in L2

Ξ(Rn × Tn,Cp) norm has a pointwise almost everywhere
convergent subsequence. Therefore, by Lemma 3.1, the space V = (T−1)MJ is shift–modulation
invariant regardless whether J is measurable or not. This already justifies one direction of The-
orem 3.1(i).

To deal with the converse direction, we need the following extension of Lemma 2.1.

Lemma 3.2. Let J be a measurable shift–modulation range function with associated orthogonal
projections P(x, ξ), (x, ξ) ∈ Rn × Tn. Let P be the orthogonal projection of L2

Ξ(Rn × Tn,Cp)

onto MJ . Then for any Φ ∈ L2
Ξ(Rn × Tn,Cp),

(PΦ)(x, ξ) = P(x, ξ)
(
Φ(x, ξ)

)
for a.e. (x, ξ) ∈ Rn × Tn. (3.21)

Proof. Define an operator P ′ on L2
Ξ(Rn × Tn,Cp) by

(P ′Φ)(x, ξ) = P(x, ξ)
(
Φ(x, ξ)

)
for a.e. (x, ξ) ∈ Rn × Tn. (3.22)

It is clear that P ′Φ is Ξ -multiplex-periodic, since both P(x, ξ) and Φ(x, ξ) are. Also, since
‖P(x, ξ)‖ � 1, the right-hand side of (3.22) is a measurable vector function, which belongs to
L2

Ξ(Rn × Tn,Cp). Moreover, (P ′)2 = P ′ and (P ′)∗ = P since P(x, ξ) is an orthogonal pro-
jection for a.e. (x, ξ). Let M ′ be the range of the orthogonal projection P ′. To show (3.21), it
remains to prove that M ′ = MJ . Since the inclusion M ′ ⊂ MJ is trivial, it suffices to show that
MJ ⊂ M ′.

Take any Ψ ∈ MJ , which is orthogonal to M ′. Then, for all Φ ∈ L2
Ξ(Rn × Tn,Cp),

0 =
∫

In×IΞ∗

〈
P(x, ξ)

(
Φ(x, ξ)

)
,Ψ (x, ξ)

〉
Cp dx dξ =

∫
In×IΞ∗

〈
Φ(x, ξ),P (x, ξ)

(
Ψ (x, ξ)

)〉
Cp dx dξ.

Since Ψ (x, ξ) ∈ J (x, ξ), we have Ψ (x, ξ) = P(x, ξ)(Ψ (x, ξ)) = 0 for a.e. (x, ξ) ∈ In × IΞ∗ .
Thus, Ψ = 0, which shows MJ = M ′, since M ′ ⊂ MJ are closed. �
Corollary 3.1. If MJ = MK for some measurable shift–modulation range functions J and K ,
then J (x, ξ) = K(x, ξ) for a.e. (x, ξ).

Proof. Let Φ ∈ L2
Ξ(Rn ×Tn,Cp) be initially defined by Φ(x, ξ) = ej for (x, ξ) ∈ In × IΞ∗ and

then extended to a Ξ -multiplex-periodic function on Rn × Tn. Here, {ej : j = 1, . . . , p} is the
standard orthonormal basis of Cp . Then we apply Lemma 3.2 for such defined Φ ,

P(x, ξ)ej = Q(x, ξ)ej for all j = 1, . . . , p, and a.e. x ∈ In × IΞ∗ ,
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where P(x, ξ), Q(x, ξ) are orthogonal projections onto J (x, ξ) and K(x, ξ), respectively. There-
fore, P(x, ξ) = Q(x, ξ) for a.e. (x, ξ) ∈ Rn × Tn. �

Finally, we are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. We have already proved that whenever J is shift–modulation range
function, then the space V given by (3.13), or equivalently V = T−1MJ , is SMI, regardless
whether J is measurable or not. Conversely, suppose that the space V is SMI generated by
a family A ⊂ L2(Rn), that is (3.14). Let J (x, ξ) be given by (3.15). Our goal is to show that J is
a measurable shift–modulation range function and that the space V can be recovered by (3.13).

First, note that the definition (3.15) does not depend on the choice of representatives
{l1, . . . , lq} ⊂ Γ , since Tϕ is Ξ -periodic in x-variable. Moreover, (x, ξ) �→ Tϕ(x + lj , ξ) is Ξ -
multiplex periodic implies that J (x, ξ) is, too. Take any γ ∈ Γ and write it as γ = lj0 + l, where
j0 = 1, . . . , q , and l ∈ Zn. Since l ∈ Γ , l ∈ Ξ . Hence, by Ξ -periodicity of Tϕ in x-variable,

J (x + γ, ξ) = span
{
Tϕ(x + l + lj0 + lj , ξ): j = 1, . . . , q, ϕ ∈A

}
= span

{
Tϕ(x + lj0 + lj , ξ): j = 1, . . . , q, ϕ ∈A

} = J (x, ξ),

since {lj0 + lj : j = 1, . . . , q} ⊂ Γ are also representatives of distinct cosets of Θ/Zn. This proves
that J is a shift–modulation range function.

To prove that (3.13) holds, let M = TV . For any Φ ∈ M , we can find a sequence (Φj )j∈N

converging in norm to Φ and such that

T−1Φj ∈ span
{
MkTγ ϕ: ϕ ∈A, k ∈ Zn, γ ∈ Γ

}
.

Hence, by (3.19) and Γ -periodicity of J in x-variable, Φj(x, ξ) ∈ J (x, ξ) for all j ∈ N and all
(x, ξ) ∈ Rn × Tn. By choosing a subsequence of (Φj )j∈N, we have pointwise a.e. convergence
to Φ . Consequently, Φ(x, ξ) ∈ J (x, ξ) for a.e. (x, ξ), and M ⊂ MJ , where MJ is given by (3.20).

To prove the converse inclusion, take any Ψ ∈ MJ , which is orthogonal to M . For any
Φ ∈ TA, using (3.17), (3.18), and Ξ -multiplex-periodicity of Φ , we have

e2πi〈x,l〉Φ(x + k, ξ) = e2πi(〈x,l〉+〈ξ,k〉)Φ(x, ξ) ∈ M for all l ∈ Zn, k ∈ Ξ.

Hence,

0 =
∫

In×IΞ∗

〈
e2πi(〈x,l〉+〈ξ,k〉)Φ(x, ξ),Ψ (x, ξ)

〉
dx dξ

=
∫

In×IΞ∗

e2πi(〈x,l〉+〈ξ,k〉)〈Φ(x, ξ),Ψ (x, ξ)
〉
dx dξ.

Since {e2πi(〈x,l〉+〈ξ,k〉)}l∈Zn, k∈Ξ is an orthogonal basis of L2(In × IΞ∗), the scalar function
(x, ξ) �→ 〈Φ(x, ξ),Ψ (x, ξ)〉 must vanish a.e. Therefore,

〈
Φ(x, ξ),Ψ (x, ξ)

〉 = 0 for all Φ ∈ TA, and a.e. (x, ξ) ∈ Rn × Tn.
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That is Ψ (x, ξ) ∈ J (x, ξ)⊥ for a.e. (x, ξ). Hence, Ψ = 0. Since M ⊂ MJ are closed, M = MJ

and (3.13) holds.
It remains to prove that J given by (3.15) is measurable. Let P be the orthogonal projection

of L2
Ξ(Rn × Tn,Cp) onto M = MJ , and let P(x, ξ) be the orthogonal projection of Cp onto

J (x, ξ). For any Ψ ∈ L2
Ξ(Rn × Tn,Cp), (I −P)Ψ is orthogonal to M . By the above argument,

Ψ (x, ξ) − PΨ (x, ξ) ∈ J (x, ξ)⊥ for a.e. (x, ξ). Combining this with the fact that M = MJ ,
PΨ (x, ξ) ∈ J (x, ξ) for a.e. (x, ξ), and we have

P(x, ξ)
(
Ψ (x, ξ)

) = P(x, ξ)
(
PΨ (x, ξ)

) = PΨ (x, ξ) for a.e. (x, ξ) ∈ Rn × Tn.

Since PΨ (x, ξ) is vector measurable, so is (x, ξ) �→ P(x, ξ)(Ψ (x, ξ)) for any Ψ ∈ L2
Ξ(Rn ×

Tn,Cp). Consequently, J is a measurable shift–modulation range function. Finally, to prove that
the correspondence between SMI spaces and measurable shift–modulation range functions is
1–1, we invoke Corollary 3.1. �

Theorem 3.1 enables us to introduce the notion of the dimension function for SMI spaces.

Definition 3.4. Let V ⊂ L2(Rn) be an SMI space. The dimension function of V is a map

dimV : Rn × Rn → {0,1, . . . , p}, dimV (x, ξ) = dimJ (x, ξ),

where J (x, ξ) is a shift–modulation range function from Theorem 3.1. The spectrum of V is
defined as

σ(V ) = {
(x, ξ) ∈ Rn × Rn: J (x, ξ) �= {0}}.

It follows immediately from (3.12) that dimV is Θ × Ξ∗-periodic, hence its values are
uniquely determined on the fundamental domain of Θ × Ξ∗, e.g. the set IΘ × IΞ∗ .

Later, we will prove that the dimension function classifies unitary equivalence of SMI spaces.
For now, note that if we have two orthogonal SMI spaces V and W , then their corresponding
shift–modulation range functions J and K must be pointwise orthogonal J (x, ξ) ⊥ K(x, ξ) for
a.e. (x, ξ). By Lemma 3.2 and Theorem 3.1, the range function corresponding to V ⊕ W is
simply L = L(x, ξ) = J (x, ξ)⊕K(x, ξ). Hence, the dimension function is additive with respect
to orthogonal sums

dimV ⊕W = dimV +dimW.

Obviously, the additivity is also true with respect to countable orthogonal sums.

4. Gabor frame and Riesz sequences

In this section our aim is to give a simple characterization of Gabor frame and Riesz se-
quences using the fiberization techniques introduced in the previous section. Hence, our goal is
to establish a fiberization paradigm for Gabor systems claiming that any reasonable property of
the original Gabor system G(A,Γ ) is equivalent to the same property holding uniformly over
the fibers in the Zak domain. This is analogous to the fiberization paradigm for SI systems estab-
lished by the author in [2].

We now recall the basic definitions.
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Definition 4.1. A sequence (fi)i∈I of vectors in a Hilbert space H is a frame sequence, if there
exist constants 0 < c0 � c1 < ∞ such that

c0‖f ‖2 �
∑
i∈I

∣∣〈f,fi〉
∣∣2 � c1‖f ‖2 for all f ∈ span{fi : i ∈ I }. (4.1)

In addition, if span{fi : i ∈ I } = H, then (fi)i∈I is a frame for H. If only the upper bound holds
in (4.1), then (fi)i∈I is said to be a Bessel sequence. We say that (fi)i∈I is a tight frame for H,
if (4.1) holds for equal constants c0 = c1, and for all f ∈H.

A sequence (fi)i∈I ⊂ H is a Riesz sequence, if

c0‖a‖2 �
∥∥∥∥∑

i∈I

aifi

∥∥∥∥
2

� c1‖f ‖2 for all a = (ai)i ∈ 
2(I ).

In addition, if span{fi : i ∈ I } = H, then (fi)i∈I is a Riesz basis for H.

Theorem 4.1. Suppose that Γ ⊂ Rn is a rational lattice, Θ , Ξ are given by (1.3), and
{l1, . . . , lq} ⊂ Γ are representatives of distinct cosets of Θ/Zn. Suppose also that A ⊂ L2(Rn)

is countable, 0 < c0 � c1 < ∞.
Then G(A,Γ ) is a GGS with bounds c0, c1 if and only if

VA(x, ξ) = {
Tϕ(x + lj , ξ): 1 � j � q, ϕ ∈A

} ⊂ Cp (4.2)

are GGS with bounds pc0, pc1 for a.e. (x, ξ) ∈ IΘ × IΞ∗ .
Here, a generic good system (GGS) is either:

(i) Bessel sequence (when the lower bound c0 = 0),
(ii) frame sequence,

(iii) frame,
(iv) Riesz sequence,
(v) Riesz basis.

One should note that several authors have used the Zak transform techniques to characterize
Gabor frames. Characterizations of Gabor frames in terms of the vector-valued Zak transform
in one dimension were obtained by Janssen [21–23], Zeevi and Zibulski [30,31]. An analo-
gous characterization for Gabor frame sequences was obtained by Gabardo and Han [13]. Some
higher-dimensional results were also obtained by Ron and Shen [28]. Therefore, certain parts of
Theorem 4.1 could be deduced from earlier works. Nevertheless, both the level of the generality
and the formulation of Theorem 4.1 in the context of Gabor systems appear to be original. The
following two elementary observations will be helpful in the proof of Theorem 4.1.

Remark 4.1. If the system VA(x, ξ) satisfies one of (i)–(v) for a.e. (x, ξ) ∈ IΘ ×IΞ∗ for a certain
choice of representatives, then it satisfies the same property for all other choices. Indeed, suppose
that {l′1, . . . , l′q} ⊂ Γ is another choice of representatives of Θ/Zn. By rearrangement, we can
assume that lj and l′j represent the same coset for 1 � j � q . Hence, lj − l′j ∈ Zn ∩ Γ = Ξ .
Consequently, by Ξ -multiplex periodicity,
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Tϕ
(
x + l′j , ξ

) = e
2πi〈lj −l′j ,ξ〉

Tϕ(x + lj , ξ),

which proves our assertion.

Remark 4.2. Likewise, if the system VA(x, ξ) satisfies one of (i)–(v) for a.e. (x, ξ) ∈ IΘ × IΞ∗ ,
then it satisfies the same property for a.e. (x, ξ) ∈ Rn × Rn. Indeed, take any (l, k) ∈ Θ × Ξ and
represent l = lj0 + l′ for some 1 � j0 � q and l′ ∈ Zn. Again, by Ξ -multiplex periodicity,

Tϕ(x + l + lj , ξ + k) = Tϕ(x + l + lj + lj0, ξ + k) = e2πi〈l′,ξ〉([l′], [k]) ◦ Tϕ(x + lj + lj0, ξ).

Since multiplex action is unitary, and {lj0 + lj : 1 � j � q} are also representatives of distinct
cosets of Θ/Zn, {Tϕ(x + l + lj , ξ + k): 1 � j � q,ϕ ∈ A} satisfies one of (i)–(v) as the sys-
tem (4.2) does. Since (l, k) ∈ Θ ×Ξ is arbitrary, the system (4.2) must satisfy the same property
for a.e. (x, ξ) ∈ Rn × Rn.

Proof of (i), (ii). Take any ϕ ∈A and f ∈ L2(Rn). Then by Proposition 3.1 and (3.19)

∑
k∈Zn

∑
γ∈Γ

∣∣〈MkTγ ϕ,f 〉∣∣2

=
∑
k∈Zn

∑
γ∈Γ

∣∣〈TMkTγ ϕ,Tf 〉∣∣2

=
∑
k∈Zn

∑
γ∈Γ

∣∣∣∣
∫

In×IΞ∗

e2πi〈k,x〉〈Tϕ(x + γ, ξ),Tf (x, ξ)
〉
dx dξ

∣∣∣∣
2

=
∑
k∈Zn

q∑
j=1

∑
l∈Ξ

∣∣∣∣
∫

In×IΞ∗

e2πi〈k,x〉e2πi〈l,ξ〉〈Tϕ(x + lj , ξ),Tf (x, ξ)
〉
dx dξ

∣∣∣∣
2

= 1

p

q∑
j=1

∫
In×IΞ∗

∣∣〈Tϕ(x + lj , ξ),Tf (x, ξ)
〉∣∣2

dx dξ.

In the penultimate step we used (3.8) and the fact that every γ ∈ Γ has a unique decompo-
sition as γ = lj + l for some 1 � j � q and l ∈ Ξ . In the last step we used the fact that
{p1/2e2πi(〈k,x〉+〈l,ξ〉)}k∈Zn, l∈Ξ is an orthonormal basis of L2(In × IΞ∗). Summing the above
formula over ϕ ∈ A, we have

∑
ϕ∈A

∑
k∈Zn

∑
γ∈Γ

∣∣〈MkTγ ϕ,f 〉∣∣2 = 1

p

∑
ϕ∈A

q∑
j=1

∫
In×IΞ∗

∣∣〈Tϕ(x + lj , ξ),Tf (x, ξ)
〉∣∣2

dx dξ. (4.3)

Let J be the shift–modulation range function associated with S(A,Γ ), which is given by (3.15)
by Theorem 3.1.

Suppose that the system (4.2) is a frame sequence, or Bessel sequence (when c0 = 0), with
bounds pc0, pc1 for a.e. (x, ξ) ∈ IΘ × IΞ∗ . Then, by Remark 4.2
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pc0‖v‖2 �
∑
ϕ∈A

q∑
j=1

∣∣〈Tϕ(x + lj , ξ), v
〉∣∣2 � pc1‖v‖2 for all v ∈ J (x, ξ), a.e. (x, ξ). (4.4)

By Theorem 3.1, if f ∈ S(A,Γ ), then v = Tf (x, ξ) ∈ J (x, ξ) for a.e. (x, ξ). Integrating (4.4) for
v = Tf (x, ξ) over In × IΞ∗ , (4.3) shows that G(A,Γ ) is a frame sequence with bounds c0, c1.

Conversely, suppose that G(A,Γ ) is a frame sequence with bounds c0, c1. Let D ⊂ Cp be a
countable dense subset. To prove (4.4), it suffices to show that for any v ∈ D

pc0
∥∥P(x, ξ)v

∥∥2 �
∑
ϕ∈A

q∑
j=1

∣∣〈Tϕ(x + lj , ξ),P (x, ξ)v
〉∣∣2 � pc1

∥∥P(x, ξ)v
∥∥2 a.e. (x, ξ), (4.5)

where P(x, ξ) is the orthogonal projection of Cp onto J (x, ξ). Assume on the contrary that (4.5)
fails. Since D is countable, there exists a measurable set E ⊂ Rn × Tn, with |E| > 0, v0 ∈ D,
and ε > 0, such that at least one of the following two happens (in the Bessel case only (4.6)):

∑
ϕ∈A

q∑
j=1

∣∣〈Tϕ(x + lj , ξ),P (x, ξ)v0
〉∣∣2 � (pc1 + ε)

∥∥P(x, ξ)v0
∥∥2 a.e. (x, ξ) ∈ E, (4.6)

∑
ϕ∈A

q∑
j=1

∣∣〈Tϕ(x + lj , ξ),P (x, ξ)v0
〉∣∣2 � (pc0 − ε)

∥∥P(x, ξ)v0
∥∥2 a.e. (x, ξ) ∈ E. (4.7)

Suppose that (4.6) happens. Without loss of generality, we can also assume that E ⊂ I is a subset
of a fundamental domain I of Rn/Zn × Rn/Ξ∗, since at least one of the sets E ∩ ((l + In) ×
(k+IΞ∗)), l ∈ Zn, k ∈ Ξ∗, has a positive measure. Let Φ ∈ L2

Ξ(Rn ×Tn,Cp) be initially defined
on I by

Φ(x, ξ) =
{

P(x, ξ)v0 for (x, ξ) ∈ E,

0 for (x, ξ) ∈ I \ E,

and then uniquely extended to Ξ -multiplex periodic function on Rn × Tn. Finally, define f ∈
L2(Rn) by Tf = Φ . By Theorem 3.1, f ∈ S(A,Γ ). Moreover, (4.3) holds if In ×IΞ∗ is replaced
by any other fundamental domain of Rn/Zn × Rn/Ξ∗. Hence, by (4.6)

∑
ϕ∈A

∑
k∈Zn

∑
γ∈Γ

∣∣〈MkTγ ϕ,f 〉∣∣2 = 1

p

∑
ϕ∈A

q∑
j=1

∫
I

∣∣〈Tϕ(x + lj , ξ),Tf (x, ξ)
〉∣∣2

dx dξ

= 1

p

∑
ϕ∈A

q∑
j=1

∫
E

∣∣〈Tϕ(x + lj , ξ),P (x, ξ)v0
〉∣∣2

dx dξ

� (c1 + ε/p)

∫
E

∥∥P(x, ξ)v0
∥∥2

dx dξ

= (c1 + ε/p)

∫ ∥∥Φ(x, ξ)
∥∥2

dx dξ = (c1 + ε/p)‖f ‖2,
I
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which is a contradiction with c1 being upper bound of G(A,Γ ). Likewise, (4.7) leads to a con-
tradiction with the lower bound of G(A,Γ ). This shows (4.4) and completes the proof of (i)
and (ii). �
Proof of (iv). Let (aϕ,k,γ )(ϕ,k,γ )∈A×Zn×Γ be any sequence with all but finitely many zero terms.
For each ϕ ∈ A, j = 1, . . . , q , define a complex exponential polynomial

pϕ,j (x, ξ) =
∑
k∈Zn

∑
l∈Ξ

aϕ,k,lj +le
2πi(〈k,x〉+〈l,ξ〉).

Recall that any γ ∈ Γ can be uniquely decomposed as γ = lj + l for some 1 � j � q and l ∈ Ξ .
Hence, by Proposition 3.1 and (3.19)

∥∥∥∥ ∑
(ϕ,k,γ )∈A×Zn×Γ

aϕ,k,γ MkTγ ϕ

∥∥∥∥
2

=
∥∥∥∥ ∑

(ϕ,k,γ )∈A×Zn×Γ

aϕ,k,γ e2πi〈k,x〉Tϕ(x + γ, ξ)

∥∥∥∥
2

L2(In×IΞ∗ )

=
∥∥∥∥ ∑

(ϕ,k,l)∈A×Zn×Ξ

q∑
j=1

aϕ,k,lj +le
2πi(〈k,x〉+〈l,ξ〉)Tϕ(x + lj , ξ)

∥∥∥∥
2

L2(In×IΞ∗ )

=
∫

In×IΞ∗

∥∥∥∥ ∑
ϕ∈A

q∑
j=1

pϕ,j (x, ξ)Tϕ(x + lj , ξ)

∥∥∥∥
2

Cp

dx dξ. (4.8)

On the other hand, by the Plancherel formula

∑
(ϕ,k,γ )∈A×Zn×Γ

|aϕ,k,γ |2 = p
∑
ϕ∈A

q∑
j=1

∫
In×IΞ∗

∣∣pϕ,j (x, ξ)
∣∣2

dx dξ. (4.9)

Suppose that the system (4.2) is a Riesz sequence with bounds pc0, pc1 for a.e. (x, ξ) ∈
IΘ × IΞ∗ . In particular, by Remark 4.2 for a.e. (x, ξ) ∈ Rn × Rn,

pc0

∑
ϕ∈A

q∑
j=1

∣∣pϕ,j (x, ξ)
∣∣2 �

∥∥∥∥ ∑
ϕ∈A

q∑
j=1

pϕ,j (x, ξ)Tϕ(x + lj , ξ)

∥∥∥∥
2

� pc1

∑
ϕ∈A

q∑
j=1

∣∣pϕ,j (x, ξ)
∣∣2

.

(4.10)

Integrating (4.4) over In × IΞ∗ and using (4.8) and (4.9) shows that G(A,Γ ) is a Riesz sequence
with bounds c0, c1.

Conversely, suppose that G(A,Γ ) is a frame sequence with bounds c0, c1. By (4.8) and (4.9)
this is equivalent to
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pc0

∑
ϕ∈A

q∑
j=1

∫
In×IΞ∗

∣∣pϕ,j (x, ξ)
∣∣2

dx dξ �
∫

In×IΞ∗

∥∥∥∥ ∑
ϕ∈A

q∑
j=1

pϕ,j (x, ξ)Tϕ(x + lj , ξ)

∥∥∥∥
2

Cp

dx dξ

� pc1

∑
ϕ∈A

q∑
j=1

∫
In×IΞ∗

∣∣pϕ,j (x, ξ)
∣∣2

dx dξ, (4.11)

where only finite number of polynomials pϕ,j are non-zero.
Suppose that mϕ,j ∈ L∞(In × IΞ∗), ϕ ∈ A, j = 1, . . . , q . By Lusin’s theorem, we can find a

sequence of Zn × Ξ -periodic, complex exponential polynomials (pi)i∈N, depending on ϕ ∈ A,
j = 1, . . . , q , such that∥∥pi

∥∥∞ � ‖mϕ,j‖∞ and pi(x, ξ) → mϕ,j (x, ξ) as i → ∞ for a.e. (x, ξ).

By the Lebesgue Dominated Convergence theorem (4.11) can be strengthened to

pc0

∑
ϕ∈A

q∑
j=1

∫
In×IΞ∗

∣∣mϕ,j (x, ξ)
∣∣2

dx dξ �
∫

In×IΞ∗

∥∥∥∥ ∑
ϕ∈A

q∑
j=1

mϕ,j (x, ξ)Tϕ(x + lj , ξ)

∥∥∥∥
2

Cp

dx dξ

� pc1

∑
ϕ∈A

q∑
j=1

∫
In×IΞ∗

∣∣mϕ,j (x, ξ)
∣∣2

dx dξ, (4.12)

where only a finite number of mϕ,j ∈ L∞(In × IΞ∗) are non-zero. Let D ⊂ 
2(A × {1, . . . , q})
be a countable dense set with the property that each d = (dϕ,j )ϕ,j ∈ D has a finite number of
non-zero coordinates. To complete the proof of (iv), it suffices to show that for every d ∈ D,

pc0

∑
ϕ∈A

q∑
j=1

|dϕ,j |2 �
∥∥∥∥ ∑

ϕ∈A

q∑
j=1

dϕ,jTϕ(x + lj , ξ)

∥∥∥∥
2

� pc1

∑
ϕ∈A

q∑
j=1

|dϕ,j |2 a.e. (x, ξ). (4.13)

On the contrary, if (4.13) fails, then there exists a measurable set E ⊂ Rn × Tn, with |E| > 0,
d ∈ D, and ε > 0, such that at least one of the following happens:

∥∥∥∥ ∑
ϕ∈A

q∑
j=1

dϕ,jTϕ(x + lj , ξ)

∥∥∥∥
2

� (pc1 + ε)
∑
ϕ∈A

q∑
j=1

|dϕ,j |2 a.e. (x, ξ) ∈ E, (4.14)

∥∥∥∥ ∑
ϕ∈A

q∑
j=1

dϕ,jTϕ(x + lj , ξ)

∥∥∥∥
2

� (pc0 − ε)
∑
ϕ∈A

q∑
j=1

|dϕ,j |2 a.e. (x, ξ) ∈ E. (4.15)

Without loss of generality, we can assume that E is a subset of a fundamental domain of Rn/Zn ×
Rn/Ξ∗. Define mϕ,j ∈ L∞(I ) by mϕ,j = dϕ,j 1E . Since (4.12) is also valid if the fundamental
domain In × IΞ∗ is replaced by I , then
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∫
I

∥∥∥∥ ∑
ϕ∈A

q∑
j=1

mϕ,j (x, ξ)Tϕ(x + lj , ξ)

∥∥∥∥
2

Cp

dx dξ =
∫
E

∥∥∥∥ ∑
ϕ∈A

q∑
j=1

dϕ,jTϕ(x + lj , ξ)

∥∥∥∥
2

Cp

dx dξ

� (pc1 + ε)|E|
∑
ϕ∈A

q∑
j=1

|dϕ,j |2

= (pc1 + ε)
∑
ϕ∈A

q∑
j=1

∫
I

∣∣mϕ,j (x, ξ)
∣∣2

dx dξ.

Hence, (4.14) contradicts (4.12). Likewise, (4.15) contradicts (4.12). Therefore, (4.13) must hold
and (4.2) is a Riesz sequence for a.e. (x, ξ). �
Proof of (iii) and (v). By Theorem 3.1, the Gabor system G(A,Γ ) is complete, that is its
closed linear span equals L2(Rn), if and only if its corresponding shift–modulation range func-
tion J (x, ξ) = Cp for a.e. (x, ξ). By (3.15), this is equivalent to the property that the system (4.2)
is complete in Cp for a.e. (x, ξ). Since a frame (or Riesz basis) is simply a frame sequence (or
Riesz sequence) which is complete, then (ii) and (iv) imply (iii) and (v), respectively. �

As an immediate corollary of Theorem 4.1 we have

Theorem 4.2. Suppose that Γ ⊂ Rn is a rational lattice, and let |Rn/Γ | be the Lebesgue measure
of a fundamental domain of Rn/Γ . Suppose that A ⊂ L2(Rn) is countable.

Then the following are true:

(i) If G(A,Γ ) is complete, then A has at least �|Rn/Γ |� elements.
(ii) If G(A,Γ ) is a Riesz sequence, then A has at most �|Rn/Γ |� elements.

(iii) If G(A,Γ ) is a Riesz basis, then |Rn/Γ | is an integer and A has exactly |Rn/Γ | elements.

Here, �x� and �x� denote the floor and ceiling functions, respectively. Theorem 4.2 has a
very rich history and is known either as the Density Theorem, or part (i) as the Incompleteness
Theorem for Gabor systems, see [9,16,19]. The same result also holds for general (not neces-
sarily rational) lattices Γ . Part (i) of Theorem 4.2 is a consequence of Rieffel’s result on von
Neumann algebras associated with lattices [26]. An alternative proof of (i), which does not use
von Neumann algebras, was given by Rzeszotnik and the author [3]. Here, we merely indicate
that Theorem 4.2 easily follows from our results.

Proof. As usual Θ , Ξ are given by (1.3), p is the order of Zn/Ξ , and q is the order of
Θ/Zn. Note that |Rn/Ξ | = |Rn/Γ ||Γ/Ξ |. Since the order of Γ/Ξ is the same as Θ/Zn, which
equals q , then we have |Rn/Γ | = p/q .

If G(A,Γ ) is complete, then by Theorem 3.1, the number of vectors in (4.2) is at least the
dimension of Cp . Hence, q|A| � p, which shows (i). Likewise, if G(A,Γ ) is a Riesz sequence,
then by Theorem 4.1, the number of vectors in (4.2) is at most the dimension of Cp . Hence,
q|A| � p, which shows (i). Finally, if G(A,Γ ) is a Riesz basis, then q|A| = p, proving (iii). �

Another immediate consequence of Theorem 4.1 is the following result of Han and Wang [18,
Lemma 3.2].
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Corollary 4.1. Suppose that Γ ⊂ Rn is a rational lattice, and the Gabor system G(A,Γ ) is a
tight frame with bound 1. Then

∑
ϕ∈A

‖ϕ‖2 = ∣∣Rn/Γ
∣∣.

Proof. Since the system (4.2) is a tight frame with bound p, we have

∑
ϕ∈A

q∑
j=1

∥∥Tϕ(x + lj , ξ)
∥∥2 = p dim Cp = p2.

Integrating the above over (x, ξ) ∈ IΘ × IΞ∗ yields

∑
ϕ∈A

‖ϕ‖2 = p2|IΘ × IΞ∗ | = p/q = ∣∣Rn/Γ
∣∣. �

5. Decomposition of shift–modulation invariant spaces

The main goal of this section is to prove the existence of a decomposition of an SMI space as
an orthogonal sum of much simpler SMI spaces. More precisely, we say that an SMI space V is
principal, if its dimension function dimV � 1. Then, Theorem 5.1 shows that every SMI space
enjoys an orthogonal decomposition into principal SMI spaces.

The concept of principal SMI is borrowed from the theory of shift-invariant spaces, where
the space is called principal if it is generated by a single generator. However, in the context
of SMI spaces it is no longer true in general that if an SMI space V is generated by a single
generator, then V must be principal. By Theorem 3.1, we can only claim that the dimension
function dimV � q , and it is not difficult to see that the equality may happen. Hence, we need to
introduce the concept of a principal generator for SMI spaces.

Definition 5.1. We say that ϕ ∈ L2(Rn) is a principal generator if

dimS(ϕ,Γ ) � 1. (5.1)

Despite its simplicity, the above concept is too broad and we need to impose a more restrictive
conditions on the size of the support of a principal generator ϕ in the Zak domain.

Definition 5.2. We say that ϕ ∈ L2(Rn) is a minimal principal generator if for a.e. (x, ξ) ∈
Rn × Tn, there exists j0 = j0(x, ξ), 0 � j0 � q , such that

∥∥Tϕ(x + lj , ξ)
∥∥ = δj,j0 for all 1 � j � q. (5.2)

In other words, if j0 = 0, then Tϕ(x + lj , ξ) = 0 for all values of 1 � j � q . Otherwise, if 1 �
j0 � q , then ‖Tϕ(x + lj , ξ)‖ = 0 for all values of 1 � j � q , with the exception of a single value
1 � j0 � q , for which ‖Tϕ(x + lj0, ξ)‖ = 1. Here, as usual {l1, . . . , lq} ⊂ Γ are representatives
of distinct cosets of Θ/Zn. It is also convenient to assume that l1 = 0.
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Remark 5.1. It is clear that every minimal principal generator ϕ generates a principal SMI space
V = S(ϕ,Γ ), since by Theorem 3.1, dimV (x, ξ) � 1 for a.e. (x, ξ). The converse is also true,
which is a consequence of the decomposition Theorem 5.1, see Corollary 5.1. Moreover, by
Theorem 4.1, the Gabor system G(ϕ,Γ ) generated by a minimal principal generator ϕ is a tight
frame with bound 1.

Lemma 5.1. Suppose V ⊂ L2(Rn) is an SMI space. Then there exists a minimal principal gen-
erator ϕ such that

S(ϕ,Γ ) ⊂ V, and σ
(
S(ϕ,Γ )

) = σ(V ). (5.3)

Furthermore, ϕ can be chosen so that

suppTϕ ⊂
⋃
l∈Zn

(l + IΘ) × Rn, (5.4)

where IΘ is a fundamental domain of Rn/Θ . In particular, we have

dimS(ϕ,Γ )(x, ξ) = 1σ(S(ϕ,Γ ))(x, ξ) =
q∑

j=1

∥∥Tϕ(x + lj , ξ)
∥∥. (5.5)

Proof. Let J be the range function corresponding to V . We claim that we can find a measurable
function Φ : IΘ × IΞ∗ → Cp , such that

Φ(x, ξ) ∈ J (x, ξ), and
∥∥Φ(x, ξ)

∥∥ = 1σ(V )(x, ξ) a.e. (x, ξ) ∈ IΘ × IΞ∗ , (5.6)

where σ(V ) is the spectrum of V . Let P(x, ξ) be the orthogonal projection onto J (x, ξ) and
{e1, . . . , ep} be the standard basis of Cp . To show the existence of such Φ , it suffices to consider
measurable functions

Φj(x, ξ) =
{

P(x, ξ)ej /‖P(x, ξ)ej‖ if P(x, ξ)ej �= 0,

0 otherwise,
for 1 � j � q,

and notice that their supports cover σ(V ) (modulo null sets). Hence, it suffices to glue them
together on their respective supports to get a single function Φ satisfying (5.6). More precisely,
let {Ej }pj=1 be a partition of σ(V )∩ (IΘ ×IΞ∗) such that Ej ⊂ suppΦj for all 1 � j � p. Define

Φ(x, ξ) = Φj(x, ξ) if (x, ξ) ∈ Ej , 1 � j � p,

and Φ(x, ξ) = 0 elsewhere on IΘ × IΞ∗ . Then, Φ satisfies (5.6).
Next, we extend Φ to a larger domain

⋃q

j=1(lj + IΘ) × IΞ∗ , l1 = 0, by

Φ(x, ξ) = 0 for all (x, ξ) ∈
q⋃

j=2

(lj + IΘ) × IΞ∗ . (5.7)
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Since
⋃q

j=1(lj + IΘ) × IΞ∗ is a fundamental domain of Tn × Rn/Ξ∗, we can uniquely extend
Φ to a Ξ -multiplex-periodic function on Rn × Tn. It is clear that

Φ ∈ L2
Ξ

(
Rn × Tn,Cp

)
, Φ(x, ξ) ∈ J (x, ξ) a.e. (x, ξ).

Let ϕ = T−1Φ . Combining (5.6) and (5.7) implies (5.2), and ϕ is a minimal principal genera-
tor. By Theorem 3.1 and (5.6), we must have (5.3). Furthermore, (5.7) implies that (5.4) holds.
Finally, (5.5) is a consequence of the fact that ϕ is a minimal principal generator and Theo-
rem 3.1. �
Theorem 5.1. Suppose that V is an SMI space with respect to a rational lattice Γ . Then, V can
be decomposed as an orthogonal sum

V =
p⊕

i=1

S(ϕi,Γ ), (5.8)

where each ϕi is a minimal principal generator of S(ϕi,Γ ), and

{
(x, ξ): dimV (x, ξ) � i

} = σ
(
S(ϕi,Γ )

)
for all 1 � i � p. (5.9)

Moreover, we can choose ϕi ’s such that

suppTϕi ⊂
⋃
l∈Zn

(l + IΘ) × Rn for all 1 � i � p, (5.10)

where IΘ is a fundamental domain of Rn/Θ . In particular, we have

dimV (x, ξ) =
p∑

i=1

dimS(ϕi ,Γ )(x, ξ) =
p∑

i=1

q∑
j=1

∥∥Tϕi(x + lj , ξ)
∥∥. (5.11)

Note that by (5.9), minimal principal generators ϕi = 0 for i > ess sup dimV . Consequently,
the orthogonal sum (5.8) may effectively consists of fewer terms than p. However, for notational
convenience we will pretend that we have always p minimal principal generators despite the
fact the some of them could be zero. Moreover, (5.9) implies that the spectra of principal spaces
S(ϕi,Γ ) are nested,

σ(V ) = σ
(
S(ϕ1,Γ )

) ⊃ · · · ⊃ σ
(
S(ϕp,Γ )

)
.

Proof. To prove Theorem 5.1, we apply inductively Lemma 5.1. Let ϕ1 be a minimal princi-
pal generator guaranteed by Lemma 5.1. Assume that we have minimal principal generators
ϕ1, . . . , ϕk , for some 1 � k � q − 1, such that the each ϕi is a minimal principal generator of
S(ϕi,Γ ), 1 � i � k, and these spaces are mutually orthogonal. Assume also that (5.9) and (5.10)
hold for 1 � i � k. Applying Lemma 5.1 for the space

V ′ = V �
(

k⊕
S(ϕi,Γ )

)

i=1
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yields a minimal principal generator ϕk+1 such that S(ϕk+1,Γ ) is orthogonal to the previous
spaces S(ϕi,Γ ). Since the dimension function is additive with respect to orthogonal sums,

dimV = dimV ′ +
k∑

i=1

dimS(ϕi ,Γ ) = dimV ′ +
k∑

i=1

1σ(S(ϕi ,Γ )).

Hence, dimV (x, ξ) � k + 1 implies that (x, ξ) ∈ σ(S(ϕi,Γ )), 1 � i � k, and (x, ξ) ∈ σ(V ′) =
σ(S(ϕk+1,Γ )). Conversely, dimV (x, ξ) � k implies by induction hypothesis (5.9) valid for 1 �
i � k, that

dimV (x, ξ) =
k∑

i=1

1σ(S(ϕi ,Γ ))(x, ξ),

and consequently (x, ξ) /∈ σ(V ′) = σ(S(ϕk+1,Γ )). This shows (5.9) for i = k + 1. To prove
(5.8) note that (5.9) implies that

dimV =
p∑

i=1

1σ(S(ϕi ,Γ )) =
p∑

i=1

dimS(ϕi ,Γ ) = dim⊕p
i=1 S(ϕi ,Γ ) .

Since
⊕p

i=1 S(ϕi,Γ ) ⊂ V , we must have equality. Finally, (5.11) is an immediate consequence
of (5.5). �

As an immediate corollary of Theorem 5.1 we have

Corollary 5.1. Suppose V ⊂ L2(Rn) is a principal SMI space. Then there exists a minimal
principal generator ϕ, such that V = S(ϕ,Γ ). Furthermore, ϕ can be chosen so that

suppTϕ ⊂
⋃
l∈Zn

(l + IΘ) × Rn, (5.12)

where IΘ is a fundamental domain of Rn/Θ .

Finally, it is very useful to introduce the concept of a maximal principal generator.

Definition 5.3. We say that ϕ ∈ L2(Rn) is a maximal principal generator if for a.e. (x, ξ) ∈
Rn × Tn,

∥∥Tϕ(x, ξ)
∥∥ = 0 or 1, (5.13)

and

Tϕ(x + lj , ξ) = cjTϕ(x, ξ) for 1 � j � q, (5.14)

for some constant cj = cj (x, ξ) with |cj | = 1. Here, as usual {l1, . . . , lq} ⊂ Γ are representatives
of distinct cosets of Θ/Zn. It is also convenient to assume that l1 = 0.
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Remark 5.2. It is clear that every maximal principal generator ϕ generates a principal SMI space
V = S(ϕ,Γ ), since by Theorem 3.1, dimV (x, ξ) � 1 for a.e. (x, ξ). The converse is also true,
which is a consequence of Lemma 5.2. Moreover, by Theorem 4.1, the Gabor system G(ϕ,Γ )

generated by a maximal principal generator ϕ is a tight frame with bound q .

The next result provides a simple method of moving between minimal and maximal principal
generators.

Lemma 5.2. If ϕ is a minimal principal generator, then the function ϕ̃ given by

Tϕ̃(x, ξ) =
{

Tϕ(x − lj , ξ), 1 � j � q and (x − lj , ξ) ∈ suppTϕ,

0, otherwise,
(5.15)

is a maximal principal generator. Conversely, if ϕ̃ is a maximal principal generator, then the
function ϕ given by

Tϕ = 1ETϕ̃ (5.16)

is a minimal principal generator, where E is any measurable set such that {(−lj ,0) + E: 1 �
j � q} is a partition (modulo null sets) of Rn × Tn. In either case, ϕ and ϕ̃ generate the same
principal space

S(ϕ,Γ ) = S(ϕ̃,Γ ). (5.17)

Proof. Suppose ϕ is a minimal principal generator. By (5.1), at most one of the points (x − lj , ξ),
1 � j � q , belongs to suppTϕ, and Tϕ̃(x, ξ) is well defined. Moreover, we have

Tϕ̃(x + l1, ξ) = · · · = Tϕ̃(x + lq , ξ),

and (5.14) holds with constants cj = 1, 1 � j � q . Hence, ϕ̃ is a maximal principal generator.
Conversely, suppose ϕ̃ is a maximal principal generator and let E satisfy the hypotheses of

Lemma 5.2. Then (x + lj , ξ) ∈ E for at exactly one 1 � j � q for a.e. (x, ξ) ∈ Rn × Tn. Hence,
ϕ given by (5.16) satisfies (5.1), and therefore, ϕ is a minimal principal generator.

The property (5.17) is an immediate consequence of Theorem 3.1. �
Note that Lemma 5.2 also holds if one chooses a smaller set E such that {(−lj ,0) + E:

1 � j � q} is a partition (modulo null sets) of suppTϕ̃, instead of Rn × Tn, since the definition
of ϕ by (5.16) is unaffected.

As a corollary of Lemma 5.2, we have the following variant of Theorem 5.1.

Theorem 5.2. Suppose that V is an SMI space with respect to a rational lattice Γ . Then, V can
be decomposed as an orthogonal sum

V =
p⊕

i=1

S(ϕi,Γ ), (5.18)

where each ϕi is a maximal principal generator of S(ϕi,Γ ), and
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{
(x, ξ): dimV (x, ξ) � i

} = σ
(
S(ϕi,Γ )

) = {
(x, ξ): Tϕi(x, ξ) �= 0

}
, 1 � i � p. (5.19)

In particular, we have

dimV (x, ξ) =
p∑

i=1

dimS(ϕi ,Γ )(x, ξ) =
p∑

i=1

∥∥Tϕi(x, ξ)
∥∥. (5.20)

Finally, we prove a simple description of principal SMI spaces in terms of their maximal
principal generators.

Theorem 5.3. Suppose V ⊂ L2(Rn) is a principal SMI space and ϕ is its maximal principal
generator, i.e., V = S(ϕ,Γ ). Then

V = {
f ∈ L2(Rn

)
: Tf = mTϕ for some m ∈ L2(Tn × Rn/Ξ∗)}. (5.21)

Moreover, if we require in (5.21) that suppm ⊂ suppTϕ, then

‖f ‖L2(Rn) = ‖m‖L2(Tn×Rn/Ξ∗). (5.22)

Proof. Let J be the range function corresponding to the SMI space V . Let V ′ be the space given
by the right-hand side of (5.21). Since for f ∈ V ′

Tf (x, ξ) ∈ span
{
Tϕ(x, ξ)

} ⊂ J (x, ξ),

hence we have V ′ ⊂ V . Conversely, take f ∈ V . Since

Tf (x, ξ) ∈ J (x, ξ) = span
{
Tϕ(x + lj , ξ): 1 � j � q

} = span
{
Tϕ(x, ξ)

}
a.e. (x, ξ),

we define m(x, ξ) as a unique constant such that

Tf (x, ξ) = m(x, ξ)Tϕ(x, ξ)

if (x, ξ) ∈ suppTϕ, and m(x, ξ) = 0, otherwise. Employing (5.13) we have

‖f ‖2 =
∫

Tn×Rn/Ξ∗
‖Tf ‖2 =

∫
suppTϕ∩(In×IΞ∗ )

‖Tf ‖2 =
∫

suppTϕ∩(In×IΞ∗ )

|m|2‖Tϕ‖2

=
∫

suppTϕ∩(In×IΞ∗ )

|m|2 = ‖m‖2
L2(Tn×Rn/Ξ∗),

which proves (5.22). �
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6. Shift–modulation invariant operators

The goal of this section is to provide a description of the class of shift–modulation invariant
operators, i.e., operators commuting both with shifts and modulations. In the language of the
category theory, such operators are simply morphisms between SMI spaces. Since SMI spaces
can be described in terms of range functions, it seems plausible to expect that morphisms between
SMI spaces must correspond to linear maps between fibers of the corresponding range functions.
The precise formulation of this relationship uses the concept of the range operator and it is stated
in Theorem 6.1. The analogous correspondence for shift-invariant spaces was established by the
author in [2, Section 4]. As a consequence we prove several results manifesting the fiberization
paradigm for SMI operators. More precisely, we postulate that any reasonable property of an
SMI operator is equivalent to the same property holding uniformly over the linear maps of the
corresponding range operator. As a consequence of these techniques we deduce Theorem 6.6
which provides a classification of unitarily equivalent SMI spaces in terms of their dimension
functions.

Definition 6.1. Suppose that V ⊂ L2(Rn) is an SMI space. We say that a bounded linear operator
L :V → L2(Rn) is shift–modulation invariant (SMI) if L commutes with shifts and modulations,

LMkTγ = MkTγ L for all k ∈ Zn, γ ∈ Γ. (6.1)

Lemma 6.1. Assume that ϕ ∈ L2(Rn) satisfies the condition (5.13). Suppose that L :S(ϕ,Γ ) →
L2(Rn) is a bounded SMI operator. Then for every m ∈ L2(Tn × Rn/Ξ∗),

TLT−1(mΦ)(x, ξ) = m(x, ξ)TLT−1(Φ)(x, ξ) a.e. (x, ξ) ∈ Rn × Tn, (6.2)

where Φ = Tϕ. Moreover,

∥∥TLT−1(Φ)(x, ξ)
∥∥ � ‖L‖∥∥Φ(x, ξ)

∥∥ a.e. (x, ξ) ∈ Rn × Tn. (6.3)

Proof. Recall that for any f ∈ L2(Rn),

T(MkTlf )(x, ξ) = e2πi〈k,x〉e2πi〈l,ξ〉Tf (x, ξ) for k ∈ Zn, l ∈ Ξ = Γ ∩ Zn.

Hence, modulations and shifts on L2(Rn) correspond to multiplications by complex exponentials
on L2

Ξ(Rn × Tn,Cp), that is

MkTlf = T−1(e2πi〈k,·x 〉e2πi〈l,·ξ 〉Tf
)

for k ∈ Zn, l ∈ Ξ.

Since L is an SMI operator

TLT−1(e2πi〈k,·x 〉e2πi〈l,·ξ 〉Φ
) = TLMkTlϕ = TMkTlLϕ = e2πi〈k,·x 〉e2πi〈l,·ξ 〉TLT−1Φ.

Therefore, by linearity of L, (6.2) holds for all polynomials

p(x, ξ) =
∑
n

ak,le
2πi〈k,x〉e2πi〈l,ξ〉 ∈ L2(Tn × Rn/Ξ∗).
k∈Z , l∈Ξ
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Since T is an isometric isomorphism, we have ‖TLT−1‖ = ‖L‖ < ∞, and∫
In×IΞ∗

∣∣p(x, ξ)
∣∣2∥∥TLT−1Φ(x, ξ)

∥∥2
dx dξ =

∫
In×IΞ∗

∥∥TLT−1(pΦ)(x, ξ)
∥∥2

dx dξ

= ∥∥TLT−1(pΦ)
∥∥2

L2
Ξ

� ‖L‖2‖pΦ‖2
L2

Ξ

= ‖L‖2
∫

In×IΞ∗

∣∣p(x, ξ)
∣∣2∥∥Φ(x, ξ)

∥∥2
dx dξ. (6.4)

As in the proof of Theorem 3.1(iv), for any r ∈ L∞(In × IΞ∗), we can find a sequence of poly-
nomials (pi)i∈N, such that

‖pi‖∞ � ‖r‖∞ and pi(x, ξ) → r(x, ξ) as i → ∞ for a.e. (x, ξ).

By the Lebesgue Dominated Convergence theorem (6.4) can be strengthened to∫
In×IΞ∗

∣∣r(x, ξ)
∣∣2∥∥TLT−1Φ(x, ξ)

∥∥2
dx dξ � ‖L‖2

∫
In×IΞ∗

∣∣r(x, ξ)
∣∣2∥∥Φ(x, ξ)

∥∥2
dx dξ. (6.5)

Since r ∈ L∞(In × IΞ∗) is arbitrary (6.5) yields (6.3).
Finally, take a sequence of polynomials (pi)i∈N converging to m in L2(Tn × Rn/Ξ∗) norm.

Then, piΦ → mΦ in L2
Ξ(Rn × Tn,Cp) norm, since ‖Φ‖∞ � 1. By choosing a subsequence,

we can assume that for a.e. (x, ξ),

pi(x, ξ) → m(x, ξ) and TLT−1(piΦ)(x, ξ) → TLT−1(mΦ)(x, ξ) as i → ∞. (6.6)

Since (6.2) holds for polynomials, by (6.6) the same must hold for a general m ∈ L2(Tn ×
Rn/Ξ∗). �
Remark 6.1. Note that Lemma 6.1 holds, in particular, if ϕ is either a minimal or maximal
principal generator. Furthermore, in the latter case every f ∈ S(ϕ,Γ ) must be of the form f =
T−1(mΦ) for some m ∈ L2(Tn × Rn/Ξ∗) by Theorem 5.3. Hence, if ϕ is a maximal principal
generator, then (6.2) provides a very simple description of the action of L on the entire space
S(ϕ,Γ ).

The assumption (5.13) in Lemma 6.1 is merely for the convenience.

Corollary 6.1. Suppose that V ⊂ L2(Rn) is SMI and a bounded linear operator L :V → L2(Rn)

is also SMI. Then for every Φ ∈ TV , and a measurable Zn × Ξ∗-periodic function such that
mΦ ∈ L2

Ξ(Rn × Tn,Cp), we have that mΦ ∈ TV and both (6.2) and (6.3) hold.

Proof. Corollary 6.1 is an immediate consequence of Theorem 3.1 and Lemma 6.1. Indeed,
given Φ ∈ TV , define Φ0 ∈ TV by

Φ0(x, ξ) =
{

Φ(x, ξ)/‖Φ(x, ξ)‖ for (x, ξ) ∈ suppΦ,

0, otherwise.
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By Theorem 3.1, Φ0 ∈ TV satisfies

∥∥Φ0(x, ξ)
∥∥ = 0 or 1 for a.e. (x, ξ),

and by Lemma 6.1, (6.2) and (6.3) hold for Φ0. Moreover, since mΦ ∈ L2, we have that m0,
mm0 ∈ L2(Tn × Rn/Ξ∗), where m0(x, ξ) = ‖Φ(x, ξ)‖. Hence,

TLT−1(mΦ)(x, ξ) = TLT−1(mm0Φ0)(x, ξ)

= m(x, ξ)m0(x, ξ)TLT−1(Φ0)(x, ξ)

= m(x, ξ)TLT−1(Φ)(x, ξ),

which proves (6.2). The proof of (6.3) is similar, or one could use the original argument in the
proof of Lemma 6.1 since it did not use the assumption (5.13). �

We are now ready to introduce the concept of a shift–modulation range operator as a collection
of linear maps defined on fibers of the range function and satisfying the natural periodicity and
measurability conditions. This concept complements the notion of the range function in the sense
that it provides the description of the morphisms between SMI spaces (that is SMI operators) on
the Zak domain analogous to the description of SMI spaces by range functions.

Definition 6.2. Suppose V is an SMI space and J is its corresponding range function as in
Theorem 3.1. A shift–modulation range operator on J is a mapping

R : Rn × Tn → {
T : T is a linear map defined on a subspace of Cp

}
,

such that:

(i) the domain of R(x, ξ) equals J (x, ξ) for a.e. (x, ξ),
(ii) R is Γ -periodic in x-variable

R(x + γ, ξ) = R(x, ξ) for γ ∈ Γ, (6.7)

(iii) R is Ξ -multiplex periodic meaning that

R(x + l, ξ + k) = ([l], [k]) ◦ R(x, ξ) ◦ ([l], [k])−1 for l ∈ Zn, k ∈ Ξ∗, (6.8)

where ([k], [l]) is the p × p unitary matrix given by (3.6) and ◦ represents the composition
of linear maps.

Let P(x, ξ) be the orthogonal projection of Cp onto J (x, ξ). We say that R is measurable if
the map (x, ξ) �→ R(x, ξ) ◦ P(x, ξ) is operator measurable.

Note that linear maps appearing in equalities (6.7) and (6.8) have identical domains due to
properties (3.9) and (3.10) of shift–modulation range functions.
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Remark 6.2. Let ρ :Θ → Zn/Ξ be the group homomorphism defined by (3.11). Analogously to
the range function case, the conditions (6.7) and (6.8) for the range operator R can be combined
into a single equivalent formula

R(x + l, ξ + k) = (
ρ(l), [k]) ◦ R(x, ξ) ◦ (

ρ(l), [k])−1 for l ∈ Θ, k ∈ Ξ∗. (6.9)

In particular, (6.9) shows that any shift–modulation range operator R is uniquely deter-
mined by its values on the fundamental domain IΘ × IΞ∗ . Moreover, any such R = R(x, ξ)

is Γ -periodic in x-variable and Zn-periodic in ξ -variable.

Our goal is to characterize SMI operators in terms of shift–modulation range functions. More
precisely, we have the following result.

Theorem 6.1. Suppose V ⊂ L2(Rn) is an SMI space and J is its corresponding range function.
Then the following holds.

(i) For every bounded SMI operator L :V → L2(Rn), there exists a measurable shift–
modulation range operator R on J such that

TLf (x, ξ) = R(x, ξ)
(
Tf (x, ξ)

)
for a.e. (x, ξ) ∈ Rn × Tn, and f ∈ V. (6.10)

Moreover,

‖L‖ = ess sup(x,ξ)∈Rn×Tn

∥∥R(x, ξ)
∥∥ < ∞. (6.11)

(ii) Conversely, for every measurable shift–modulation range operator R on J , such that the
essential supremum in (6.11) is finite, there exists a bounded SMI operator L such that
(6.10) holds.

(iii) The correspondence between L and R is 1–1 under the usual convention that the range
operators are identified if they are equal a.e.

Proof. First, suppose that we have a bounded SMI operator L :V → L2(Rn). By Theorem 5.2,
we can decompose V = ⊕p

i=1 Vi into principal SMI space Vi = S(ϕi,Γ ), where each ϕi is a
maximal principal generator of Vi . By Theorem 3.1, the range function J of V is given by

J (x, ξ) = span
{
Tϕi(x + lj , ξ): j = 1, . . . , q, i = 1, . . . , p

}
,

where {l1, . . . , lq} ⊂ Γ are representatives of distinct cosets of Θ/Zn. By (5.14)

J (x, ξ) = span
{
Tϕi(x, ξ): i = 1, . . . , p

}
. (6.12)

Moreover, the orthogonality Vi ⊥ Vi′ for i �= i′ implies the orthogonality of the corresponding
range functions, and consequently

Tϕi(x, ξ) ⊥ Tϕi′(x, ξ) for i �= i′ and a.e. (x, ξ). (6.13)
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For simplicity, define Φi = Tϕi , i = 1, . . . , p. Combining (5.13), (6.12), and (6.13), implies that
the collection of non-zero vectors {Φ1(x, ξ), . . . ,Φp(x, ξ)} \ {0} forms an orthonormal basis of
J (x, ξ) for a.e. (x, ξ).

Given (x, ξ) ∈ Rn × Tn, define R(x, ξ) :J (x, ξ) → Cp by

R(x, ξ)

(
p∑

i=1

αiΦi(x, ξ)

)
=

p∑
i=1

αiTLT−1(Φi)(x, ξ) (6.14)

for any scalars α1, . . . , αp ∈ C. By (6.2), we have

Φi(x, ξ) = 0 ⇒ TLT−1(Φi)(x, ξ) = 0 a.e.

and R(x, ξ) is well defined. It remains to show that R is a shift–modulation range operator.
Take any f ∈ V and decompose it as f = f1 +· · ·+fp , where fi ∈ Vi . Then by Theorem 5.3

Tf = Tf1 + · · · + Tfp = m1Φ1 + · · · + mpΦp,

for some mi ∈ L2(Tn × Rn/Ξ∗), i = 1, . . . , p. By Lemma 6.1

TLf (x, ξ) = TLT−1

(
p∑

i=1

miΦi

)
(x, ξ) =

p∑
i=1

mi(x, ξ)TLT−1(Φi)(x, ξ)

=
p∑

i=1

mi(x, ξ)R(x, ξ)
(
Φi(x, ξ)

) = R(x, ξ)

(
p∑

i=1

mi(x, ξ)Φi(x, ξ)

)

= R(x, ξ)
(
Tf (x, ξ)

)
. (6.15)

Hence, (6.10) holds.
To see that R is measurable, take any Φ ∈ L2

Ξ(Rn × Tn,Cp). Let P be the orthogonal pro-
jection of L2

Ξ(Rn × Tn,Cp) onto MJ = TV , and let P(x, ξ) be the orthogonal projection of
J (x, ξ) onto Cp . Then, by Lemma 3.2 and (6.15) applied to f = T−1PΦ ,

(x, ξ) �→ R(x, ξ) ◦ P(x, ξ)
(
Φ(x, ξ)

) = R(x, ξ)
(
PΦ(x, ξ)

) = TLT−1(Φ)(x, ξ)

is operator measurable. Since Φ is arbitrary, the map (x, ξ) �→ R(x, ξ) is measurable.
Next, we prove that R is Ξ -multiplex periodic. Take any f ∈ V . Since both Tf and TLf are

Ξ -multiplex periodic, then by (6.15)

R(x + l, ξ + k)
(
Tf (x + k, ξ + l)

)
= TLf (x + k, ξ + l)

= e2πi〈l,ξ〉([k], [l]) ◦ R(x, ξ)
(
Tf (x, ξ)

)
= e2πi〈l,ξ〉([k], [l]) ◦ R(x, ξ)

(
e−2πi〈l,ξ〉([k], [l])−1 ◦ Tf (x + l, ξ + k)

)
= ([k], [l]) ◦ R(x, ξ) ◦ ([k], [l])−1(

Tf (x + l, ξ + k)
)
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for any (l, k) ∈ Zn × Ξ∗. In particular, if f = ϕi , i = 1, . . . , p, then we have

R(x + l, ξ + k)
(
Φi(x + k, ξ + l)

) = ([k], [l]) ◦ R(x, ξ) ◦ ([k], [l])−1(
Φi(x + l, ξ + k)

)
a.e. (x, ξ).

Since the vectors {Φ1(x + l, ξ + k), . . . ,Φp(x + l, ξ + k)} span J (x + l, ξ + k), (6.8) follows.
Finally, we demonstrate that R is Γ -periodic in x-variable. Take any f ∈ V . Since L com-

mutes with Tγ , γ ∈ Γ , then by (3.19) and (6.15)

R(x − γ, ξ)
(
Tf (x − γ, ξ)

) = TLf (x − γ, ξ) = TTγ Lf (x, ξ) = TLTγ f (x, ξ)

= R(x, ξ)
(
TTγ f (x, ξ)

) = R(x, ξ)
(
Tf (x − γ, ξ)

)
for any γ ∈ Γ . In particular, if f = ϕi , i = 1, . . . , p, then we have

R(x − γ, ξ)
(
Φi(x − γ, ξ)

) = R(x, ξ)
(
Φi(x − γ, ξ)

)
a.e. (x, ξ).

Since the vectors {Φ1(x − γ, ξ), . . . ,Φp(x − γ, ξ)} span J (x − γ, ξ) = J (x, ξ), (6.7) follows.
Consequently, R is a measurable shift-invariant range operator on J satisfying (6.10). Finally,

to prove (6.11) we employ (6.3) and (6.10). Let

C = ess sup(x,ξ)∈Rn×Tn

∥∥R(x, ξ)
∥∥. (6.16)

Then

‖L‖ = sup
‖f ‖

L2(Rn)
�1

‖Lf ‖ = sup
‖f ‖�1

( ∫
In×IΞ∗

∥∥TLf (x, ξ)
∥∥2

dx dξ

)1/2

= sup
‖f ‖�1

( ∫
In×IΞ∗

∥∥R(x, ξ)
(
Tf (x, ξ)

)∥∥2
dx dξ

)1/2

� C sup
‖f ‖�1

( ∫
In×IΞ∗

∥∥Tf (x, ξ)
∥∥2

dx dξ

)1/2

= C.

To prove the converse estimate, we will show that for any s ∈ Sp−1 = {s ∈ Cp: ‖s‖ = 1},

ess sup(x,ξ)∈Rn×Tn

∥∥R(x, ξ)
(
Ψs(x, ξ)

)∥∥ � ‖L‖, where Ψs =
p∑

i=1

siΦi, (6.17)

and Φi ’s are the same as before. On the contrary, if (6.17) fails, then there would exist ε > 0 and
a measurable set D ⊂ Rn × Tn with |D| > 0, such that

∥∥R(x, ξ)
(
Ψs(x, ξ)

)∥∥ > ‖L‖ + ε for (x, ξ) ∈ D.
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Without loss of generality, we can assume that D is invariant under shifts in Zn × Ξ∗, namely
D ⊂ Tn × (Rn/Ξ∗). Consider Ψ = Ψs1D , which, by Theorem 3.1, is an element of TV . Conse-
quently, ψ = T−1Ψ ∈ V and by (6.10)

‖TLψ‖2 =
( ∫

In×IΞ∗

∥∥R(x, ξ)
(
Ψ (x, ξ)

)∥∥2
dx dξ

)1/2

=
(∫

D

∥∥R(x, ξ)
(
Ψs(x, ξ)

)∥∥2
dx dξ

)1/2

�
(‖L‖ + ε

)(∫
D

∥∥Ψs(x, ξ)
∥∥2

dx dξ

)1/2

= (‖L‖ + ε
)‖Ψ ‖2 = (‖L‖ + ε

)‖ψ‖2,

which is a contradiction, since T is an isometry. Hence, (6.17) holds. Finally, let S be a countable
dense subset of Sp−1. By Theorem 3.1, {Ψs(x, ξ): s ∈ Sp−1} contains a unit sphere in J (x, ξ)

for a.e. (x, ξ), and by (6.17)

ess sup(x,ξ)∈Rn×Tn

∥∥R(x, ξ)
∥∥ = ess sup(x,ξ)∈Rn×Tn sup

s∈S⊂Sp−1

∥∥R(x, ξ)
(
Ψs(x, ξ)

)∥∥ � ‖L‖,

which shows (6.11) and completes the proof of (i).
To show the converse statement (ii), assume that R is a measurable shift–modulation range

operator on J , such that C in (6.16) is finite. Take any f ∈ V . Since the map (x, ξ) �→ Tf (x, ξ)

is measurable, F(x, ξ) = R(x, ξ)(Tf (x, ξ)) is also measurable. Moreover, F is Ξ -multiplex
periodic since for every l ∈ Zn and k ∈ Ξ∗,

F(x + l, ξ + k) = R(x + l, ξ + k)
(
Tf (x + l, ξ + k)

)
= e2πi〈l,ξ〉R(x + l, ξ + k)

(([l], [k]) ◦ Tf (x, ξ)
)

= e2πi〈l,ξ〉([l], [k]) ◦ R(x, ξ)
(
Tf (x, ξ)

) = e2πi〈l,ξ〉([l], [k]) ◦ F(x, ξ),

where in the penultimate step we used (6.8). Therefore, F ∈ L2
Ξ(Rn × Tn,Cp), since

‖F‖2 =
∫

In×IΞ∗

∥∥F(x, ξ)
∥∥2

dx dξ � C2
∫

In×IΞ∗

∥∥Tf (x, ξ)
∥∥2

dx dξ = C2‖f ‖2 < ∞.

Define the operator L :V → L2(Rn) by Lf = T−1F . Then L is linear and bounded ‖Lf ‖ �
C‖f ‖. Using (3.19) and (6.7),

TLMlTγ f (x, ξ) = R(x, ξ)
(
TMlTγ f (x, ξ)

) = R(x, ξ)
(
e2πi〈l,x〉Tf (x − γ, ξ)

)
= e2πi〈l,x〉R(x, ξ)

(
Tf (x − γ, ξ)

) = e2πi〈l,x〉R(x − γ, ξ)
(
Tf (x − γ, ξ)

)
= e2πi〈l,x〉TLf (x − γ, ξ) = TMlTγ Lf (x, ξ) a.e. (x, ξ),

where l ∈ Zn, γ ∈ Γ . Hence, L is an SMI operator which satisfies (6.10) by the virtue of its
definition.

Finally, the uniqueness of the correspondence between L and R is shown using the same
method as Corollary 3.1. Indeed, suppose we have an SMI operator L and let R1 and R2 be two
corresponding range operators both satisfying (6.10). Then for any s = (s1, . . . , sp) ∈ Sp−1,



M. Bownik / Journal of Functional Analysis 244 (2007) 172–219 207
p∑
i=1

siR1(x, ξ)
(
Φi(x, ξ)

) = R1(x, ξ)
(
Ψs(x, ξ)

) = TLT−1Ψs(x, ξ)

= R2(x, ξ)
(
Ψs(x, ξ)

) =
p∑

i=1

siR2(x, ξ)
(
Φi(x, ξ)

)
,

where Ψs is the same as in (6.17). Since s ∈ Sp−1 is arbitrary and {Φi(x, ξ): i = 1, . . . , p} spans
J (x, ξ), we have

R1(x, ξ) = R2(x, ξ) a.e. (x, ξ). (6.18)

Conversely, if we have two range operators R1 and R2 satisfying hypotheses of (ii) and (6.18),
then they lead to the same SMI operator L due to (6.10). �
Theorem 6.2. Suppose L is an SMI operator on V and R is its corresponding shift–modulation
operator on J as in Theorem 6.1. Then L is bounded from below by a constant c > 0,

‖Lf ‖ � c‖f ‖ for f ∈ V, (6.19)

if and only if

∥∥R(x, ξ)a
∥∥ � c‖a‖ for a ∈ J (x, ξ) and a.e. (x, ξ). (6.20)

Proof. By (6.10)

‖Lf ‖2 =
∫

In×IΞ∗

∥∥R(x, ξ)
(
Tf (x, ξ)

)∥∥2
dx dξ for all f ∈ V. (6.21)

Hence, if (6.20) holds then

‖Lf ‖2 � c2
∫

In×IΞ∗

∥∥Tf (x, ξ)
∥∥2

dx dξ � c2‖f ‖2.

Conversely, assume (6.19). We will show that for any s ∈ Sp−1 = {s ∈ Cp: ‖s‖ = 1},

∥∥R(x, ξ)
(
Ψs(x, ξ)

)∥∥ � c
∥∥Ψs(x, ξ)

∥∥, where Ψs =
p∑

i=1

siΦi, (6.22)

and Φi ’s are the same as in the proof of Theorem 6.1. On the contrary, if (6.22) fails, then there
would exist ε > 0 and a measurable set D ⊂ Rn × Tn with |D| > 0, such that

∥∥R(x, ξ)
(
Ψs(x, ξ)

)∥∥ � (c − ε)
∥∥Ψs(x, ξ)

∥∥ for (x, ξ) ∈ D.
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Without loss of generality, we can assume that D is invariant under shifts in Zn × Ξ∗, namely
D ⊂ Tn × (Rn/Ξ∗). Consider Ψ = Ψs1D , which by Theorem 3.1, is an element of TV . Conse-
quently, ψ = T−1Ψ ∈ V and by (6.21)

‖Lψ‖2 =
∫

In×IΞ∗

∥∥R(x, ξ)
(
Ψ (x, ξ)

)∥∥2
dx dξ =

∫
D

∥∥R(x, ξ)
(
Ψs(x, ξ)

)∥∥2
dx dξ

� (c − ε)2
∫
D

∥∥Ψs(x, ξ)
∥∥2

dx dξ = (c − ε)2‖Ψ ‖2 = (c − ε)2‖ψ‖2,

which is a contradiction, since T is an isometry. Hence, (6.22) holds. Finally, let S be a countable
dense subset of Sp−1. By Theorem 3.1, {Ψs(x, ξ): s ∈ Sp−1} contains a unit sphere in J (x, ξ)

for a.e. (x, ξ), and by (6.22)∥∥R(x, ξ)
∥∥ = sup

s∈S⊂Sp−1,Ψs(x,ξ) �=0

∥∥R(x, ξ)
(
Ψs(x, ξ)

)∥∥/
∥∥Ψs(x, ξ)

∥∥ � c for a.e. (x, ξ)

which shows (6.20) and completes the proof of Theorem 6.2. �
As an immediate consequence of Theorems 6.1 and 6.2 we have

Corollary 6.2. An SMI operator L :V → L2(Rn) is an isometry if and only if its corresponding
range operator R(x, ξ) is an isometry for a.e. (x, ξ).

Next, we investigate properties of the dimension function of an SMI space under the action of
an SMI operator.

Theorem 6.3. Suppose V ⊂ L2(Rn) is an SMI space and L :V → L2(Rn) is an SMI operator.
Then V ′ = L(V ) is SMI and its range function J ′ satisfies

J ′(x, ξ) = R(x, ξ)
(
J (x, ξ)

)
a.e. (x, ξ), (6.23)

where J is the range function of V and R is the range operator of L. In particular, we have

dimV ′(x, ξ) � dimV (x, ξ) for a.e. (x, ξ). (6.24)

Proof. By Theorem 5.2, we can decompose V as an orthogonal sum of principal spaces gener-
ated by maximal principal generators ϕi , i = 1, . . . , p. Since V ′ = S({Lϕ1, . . . ,Lϕp},Γ ), then
by Theorem 3.1, (6.7), and (6.10), the range function of V ′ satisfies

J ′(x, ξ) = span
{
TLϕi(x + lj , ξ): j = 1, . . . , q, i = 1, . . . , p

}
= span

{
R(x + lj , ξ)

(
Tϕi(x + lj , ξ)

)
: i = 1, . . . , p

}
= span

{
R(x, ξ)

(
Tϕi(x + lj , ξ)

)
: j = 1, . . . , q, i = 1, . . . , p

} = R(x, ξ)
(
J (x, ξ)

)
.

Here, {l1, . . . , lq} ⊂ Γ are representatives of distinct cosets of Θ/Zn and R is the range operator
corresponding to L. Therefore, dimJ ′(x, ξ) � dimJ (x, ξ), which proves (6.24). �
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Lemma 6.2. Suppose V,W ⊂ L2(Rn) are two SMI spaces, L :V → W is an SMI operator, and
R is its corresponding range operator. Then, the adjoint operator L∗ :W → V is also SMI and
its corresponding range operator R∗ is given by

R∗(x, ξ) = (
R(x, ξ)

)∗
for a.e. (x, ξ). (6.25)

Proof. Let J and J ′ be the range functions of V and W , respectively, and R be the range operator
of L. Consequently, R(x, ξ) is a linear map between J (x, ξ) and J ′(x, ξ) for a.e. (x, ξ). Clearly,
R∗ is a measurable range operator satisfying

ess sup(x,ξ)∈Rn×Tn

∥∥R∗(x, ξ)
∥∥ = ess sup(x,ξ)∈Rn×Tn

∥∥R(x, ξ)
∥∥ = ‖L‖ < ∞.

Hence, by Theorem 6.1 there exists a corresponding SMI operator L̃ :W → V satisfying

TL̃g(x, ξ) = R(x, ξ)∗
(
Tg(x, ξ)

)
for a.e. (x, ξ) ∈ Rn × Tn, and g ∈ W.

Take any f ∈ V and g ∈ W . Then

〈Lf,g〉 = 〈TLf,Tg〉 =
∫

In×IΞ∗

〈
R(x, ξ)

(
Tf (x, ξ)

)
,Tg(x, ξ)

〉
dx dξ

=
∫

In×IΞ∗

〈
Tf (x, ξ),R∗(x, ξ)

(
Tg(x, ξ)

)〉
dx dξ = 〈Tf,TL̃g〉 = 〈f, L̃g〉.

Hence, L̃ = L∗. �
As a corollary of Lemma 6.2 and Theorem 6.3 we have

Theorem 6.4. Suppose V,W ⊂ L2(Rn) are two SMI spaces and L :V → W is an SMI operator.
Then the following are true:

(i) If L is 1–1, then

dimV (x, ξ) � dimW(x, ξ) for a.e. (x, ξ). (6.26)

(ii) If L is onto, then

dimV (x, ξ) � dimW(x, ξ) for a.e. (x, ξ). (6.27)

(iii) If L is an isomorphism, then

dimV (x, ξ) = dimW(x, ξ) for a.e. (x, ξ). (6.28)
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Proof. Let J and J ′ be the range functions of V and W , respectively, and R be the range operator
of L. Consequently, R(x, ξ) is a linear map between J (x, ξ) and J ′(x, ξ) for a.e. (x, ξ).

First, suppose that L is 1–1. We claim that the linear maps R(x, ξ) are also 1–1 for a.e.
(x, ξ). Otherwise, we would have a set of positive measure D ⊂ Tn × (Rn/Ξ∗) such that
kerR(x, ξ) = {0} for all (x, ξ) ∈ D. Then, one can find a function 0 �= Φ ∈ L2(Rn × Tn,Cp)

such that Φ(x, ξ) ∈ R(x, ξ) a.e. By (6.10) this implies that LT−1Φ = 0, which is a contradic-
tion. Note that the converse implication is also trivially true. Namely, if R(x, ξ) is 1–1 for a.e.
(x, ξ), then L is also 1–1. Hence, (6.26) follows immediately from (6.23).

Next, suppose that L :V → W is onto. Recall that this is equivalent to the fact that L∗ :W →
V is 1–1. Hence, (6.27) follows. Finally, (6.28) is immediate from (6.26) and (6.27). �

Theorem 6.4 has the following converse.

Theorem 6.5. Suppose V,W ⊂ L2(Rn) are two SMI spaces. Then the following are true:

(i) If (6.26) holds, then there exists an isometry of V into W .
(ii) If (6.27) holds, then there exists a partial isometry of V onto W .

(iii) If (6.28) holds, then there exists an isometric isomorphism of V and W .

Proof. By Theorem 5.1, we can decompose V and W as orthogonal sums

V =
p⊕

i=1

S(ϕi,Γ ), W =
p⊕

i=1

S
(
ϕ′

i , Γ
)
,

where each ϕi and ϕ′
i is a minimal principal generator. Thus, we can also require that

suppTϕi, suppTϕ′
i ⊂

⋃
l∈Zn

(l + IΘ) × Rn for all 1 � i � p, (6.29)

where IΘ is a fundamental domain of Rn/Θ . Furthermore, if (6.26) holds, then (3.15) and (5.9)
imply that for 1 � i � p,

p⋃
j=1

(−lj ,0) + suppTϕi = σ
(
S(ϕi,Γ )

) = {
(x, ξ): dimV (x, ξ) � i

} ⊂ {
(x, ξ): dimW(x, ξ) � i

}

= σ
(
S
(
ϕ′

i , Γ
)) =

p⋃
j=1

(−lj ,0) + suppTϕ′
i .

By (6.29) the above unions are disjoint. Therefore, (6.29) implies that we have inclusions

suppTϕi ⊂ suppTϕ′
i for all 1 � i � p. (6.30)

Given (x, ξ) ∈ E := ⋃
l∈Zn(l + IΘ) × Rn, define R(x, ξ) :J (x, ξ) → J ′(x, ξ) by

R(x, ξ)

(
p∑

αiTϕi(x, ξ)

)
=

p∑
αiTϕ′

i (x, ξ), (6.31)

i=1 i=1
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where α1, . . . , αp ∈ C, and J and J ′ are range functions of V and W , respectively. Recall that
the non-zero vectors {Tϕ1(x, ξ), . . . ,Tϕp(x, ξ)} \ {0} form an orthonormal basis of J (x, ξ), and
the analogous statement holds for J ′(x, ξ). Hence, R(x, ξ) is a well-defined isometry of J (x, ξ)

into J ′(x, ξ) by (6.30). Then, a simple calculation as in the proof of Theorem 6.1 shows that R

is a Ξ -multiplex periodic function on E, and hence, R is Ξ -periodic in x-variable. Next, extend
the definition of R(x, ξ) to arbitrary (x, ξ) ∈ Rn × Tn by setting

R(x, ξ) = R(x − lj , ξ) if 1 � j � q and (x − lj , ξ) ∈ E. (6.32)

The above definition assures that R is Γ -periodic in x-variable as a function on Rn ×Tn. Hence,
the Ξ -multiplex periodicity on E extends to the entire domain Rn × Tn. Clearly, R is also
measurable. Therefore, R is a measurable shift–modulation range operator such that each R(x, ξ)

is an isometry. By Corollary 6.2, R corresponds to an isometry L :V → W , which proves (i).
Note that one could define L more directly by setting L(ϕi) = ϕ′

i for all 1 � i � p and ex-
tending it to the unique SMI operator from V to W . That is, we set

L(MkTγ ϕi) = MkTγ ϕ′
i for k ∈ Zn, γ ∈ Γ, 1 � i � p,

and extend it to the whole V by linearity and density. However, the proof that such L is indeed
well defined, though more direct, would be as involved as the above argument.

Recall that L :V → W is a partial isometry if and only if L∗L is an orthogonal projection.
Moreover, recall that L :V → W is an onto partial isometry if and only if L∗ :W → V is an
isometry. Hence, (ii) is an immediate consequence of (i).

Finally, assume that (6.28) holds. Then, the isometry L :V → W given by (i) must be onto,
since each linear map R(x, ξ) is an isometry of J (x, ξ) onto J ′(x, ξ) by (6.23). This completes
the proof of Theorem 6.5. �

As an immediate consequence of Theorems 6.4 and 6.5 we have

Theorem 6.6. Let V,W ⊂ L2(Rn) be two SMI spaces. Then V and W are unitarily equivalent,
in the sense that there exists a unitary SMI operator L :V → W , if and only if

dimV (x, ξ) = dimW(x, ξ) for a.e. (x, ξ).

As a consequence of Theorem 6.6, we can easily deduce Proposition 2.2.

Example 6.1. Suppose that the space V is Ξ -invariant in the sense of Definition 2.1. Then we
can canonically associate to V an SMI space Ṽ with respect to the shift lattice Γ = Ξ by

Ṽ = {
f ∈ L2(Rn

)
: T1f (x) ∈ V for a.e. x ∈ In

}
, (6.33)

where T1 is given by (3.1). An easy argument shows that Ṽ is an SMI space, since V is
Ξ -invariant. Alternatively, let J be the range function of V such that (2.4) in Theorem 2.1 holds.
Then, we can define the SMI space Ṽ as

Ṽ = {
f ∈ L2(Rn

)
: Tf (x, ξ) ∈ J (ξ) for a.e. (x, ξ) ∈ Rn × Tn

}
. (6.34)
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In other words, Ṽ is the unique SMI space whose shift–modulation range function J̃ (x, ξ) =
J (ξ). An easy verification shows that both definitions of Ṽ are equivalent.

In addition, suppose that we have another Ξ -invariant space W and L :V → W is a bounded
linear operator commuting with shifts in Ξ . Then the operator L can be lifted to an SMI operator
L̃ : Ṽ → W̃ defined fiberwise by

T1L̃f (x) = L
(
T1f (x)

)
a.e. x ∈ In. (6.35)

Again, it is not difficult to verify that L̃ is an SMI operator. Consequently, if L is unitary, so is L̃

and

dimV (ξ) = dim
Ṽ
(x, ξ) = dim

W̃
(x, ξ) = dimW(ξ) a.e. (x, ξ). (6.36)

This proves one implication of Proposition 2.2.
To show the other one, take any Ξ -invariant spaces V and W satisfying (6.36). As usual, let

Ṽ and W̃ be their canonical SMI spaces. Finally, let L̃ : Ṽ → W̃ be the unitary SMI operator
guaranteed by Theorem 6.6. Then by Remark 3.3 and [2, Theorem 4.5], L̃ must be of the form

T1L̃f (x) = R(x)
(
T1f (x)

)
a.e. x ∈ In, (6.37)

where R is a measurable range operator, i.e., R(x) is a bounded linear map from V to W , and
x �→ R(x) is operator measurable. Furthermore, [2, Corollary 4.7] implies that R(x) must be a
unitary map for a.e. x. Since L̃ is an SMI operator, R(x) must commute with shifts in Ξ . Hence,
we can choose any x outside a null measure set in In, and define L = R(x). Then L :V → W

is the required unitary operator commuting with shifts in Ξ . This shows that Proposition 2.2 is
indeed a direct consequence of Theorem 6.6.

We conclude this section by some observations about functional calculus for SMI operators.
We shall concentrate on two basic forms of functional calculus listed below.

Definition 6.3. Suppose that T is a bounded operator acting on a Banach space B . Let sp(T ) be
the spectrum of T . Then, for any holomorphic function h defined on some neighborhood Ω of
sp(T ), define

h(T ) = 1

2πi

∫
γ

h(λ)(λI − T )−1 dλ, (6.38)

where γ is any positively oriented contour that surrounds sp(T ) in Ω . It is known that this
definition does not depend on the choice of γ , see [29, Section 10.26].

Definition 6.4. Suppose that T is a normal operator acting on a Hilbert space H, i.e., T T ∗ =
T ∗T = I . Let E be the spectral decomposition of T , see [29, Section 12.23]. Then, for any
bounded Borel function h on sp(T ), define

h(T ) =
∫

sp(T )

h(λ)dE(λ). (6.39)
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Theorem 6.7. Suppose V ⊂ L2(Rn) is an SMI space and L :V → V is a bounded SMI operator.
Let R(x, ξ) be its corresponding shift–modulation range operator as in Theorem 6.1. Assume
that either:

(i) h is a holomorphic function on some neighborhood of sp(L), or
(ii) h is a bounded complex Borel function on sp(L) and L is normal.

Then, h(L) is also an SMI operator and its corresponding shift–modulation range operator is
(x, ξ) �→ h(R(x, ξ)).

Proof. By Theorem 6.1, the range operator of λI − L is (x, ξ) �→ λI − R(x, ξ). Hence, by
Theorem 6.2 we have sp(R(x, ξ)) ⊂ sp(L) for a.e. (x, ξ). Likewise, if L is normal, then by
Lemma 6.2 R(x, ξ) is normal for a.e. (x, ξ). Therefore, it makes sense to speak of h(R(x, ξ))

in both cases. Consequently, if λ /∈ sp(L), then the range operator of (λI − L)−1 is (x, ξ) �→
(λI − R(x, ξ))−1. Hence, by approximating the integral (6.38) by Riemann sums in the operator
norm, we have the required conclusion in case (i).

To prove case (ii), observe that

p(T ,T ∗) =
∫

sp(L)

p(λ, λ̄) dE(λ),

where p is any polynomial in two variables with complex coefficients. Clearly, the range oper-
ator of p(T ,T ∗) is (x, ξ) �→ p(R(x, ξ),R(x, ξ)∗). By Stone–Weierstrass theorem, polynomials
λ �→ p(λ, λ̄) are dense in C(sp(L)). Hence, by [29, Theorem 12.24], the conclusion holds for
continuous functions h. Finally, it suffices to use two basic facts. First, if {hi} is a uniformly
bounded sequence of Borel functions converging pointwise to h on sp(L), then {hi(T )} con-
verges to h(T ) in the strong operator topology. Second, the space of bounded Borel functions
on a compact set K ⊂ C is the smallest space X containing C(K) and closed under pointwise
limits of uniformly bounded sequences in X. Consequently, the required conclusion holds also
for bounded Borel functions. �
7. Duality of Gabor frames

As an illustration of our techniques we will prove several results about dual Gabor frames.
Suppose that A = {ϕm: m ∈ M} is a family of generators in L2(Rn), where M is at most count-
able, and the Gabor system G(A,Γ ) is a Bessel sequence. The analysis operator of this system
F :L2(Rn) → 
2(Zn × Γ × M) is given by

Ff = (〈f,MkTγ ϕm〉)
(k,γ,m)∈Zn×Γ ×M

for f ∈ S(A,Γ ). (7.1)

The adjoint of F is called the synthesis operator F ∗ :
2(Zn ×Γ ×M) → L2(Rn) and it is given
by

F ∗s =
∑

n

sk,γ,mMkTγ ϕm for s = (sk,γ,m) ∈ 
2(Zn × Γ × M
)
. (7.2)
(k,γ,m)∈Z ×Γ ×M
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Finally, the frame operator of G(A,Γ ) is the operator L = F ∗F :L2(Rn) → L2(Rn), which
is self-adjoint and non-negative definite. Recall that G(A,Γ ) is a frame sequence with bounds
0 < c0 � c1 < ∞ if and only if

c0‖f ‖2 � 〈Lf,f 〉 � c1‖f ‖2 for f ∈ S(A,Γ ).

This, in turn, is equivalent to sp(L) ⊂ {0} ∪ [c0, c1].
Likewise, one can define frame operator for an arbitrary Bessel sequence (fi)i∈I in a Hilbert

space H. In particular, when {vm: m ∈ M} is a Bessel sequence in Cp , then its frame operator L

can be identified with p × p dual Gramian matrix given by (7.12).

Theorem 7.1. Suppose that G(A,Γ ) is a Bessel sequence. The frame operator L of G(A,Γ ) is
an SMI operator and its corresponding range operator R is such that each R(x, ξ) is the frame
operator of

1√
p
VA(x, ξ) =

{
1√
p

Tϕm(x + lj , ξ): 1 � j � q, m ∈ M

}
⊂ Cp (7.3)

for a.e. (x, ξ). More explicitly,

〈
R(x, ξ)ek, el

〉 = 1

p

∑
m∈M

q∑
j=1

Zϕm(x + lj , ξ + dl)Zϕm(x + lj , ξ + dk), (7.4)

where {e1, . . . , ep} is the standard basis of Cp , and {l1, . . . , lq} ⊂ Γ , {d1, . . . , dp} are represen-
tatives of distinct cosets of Θ/Zn, Ξ∗/Zn, respectively.

In particular, Theorem 7.1 implies that the frame operator L satisfies

TLf (x, ξ) = R(x, ξ)
(
Tf (x, ξ)

)
for a.e. (x, ξ) ∈ Rn × Tn, and f ∈ L2(Rn

)
, (7.5)

where the linear map R(x, ξ), which can be identified with p × p matrix, is given by (7.5). The
formula (7.5) is often referred to as the Zibulski–Zeevi representation of the frame operator L. It
was first proved in one-dimensional setting by Zibulski and Zeevi [31], see also [10, Chapter 1,
Section 1.5] or [13,16,22–24,30]. However, its higher-dimensional analogue (7.5) appears to be
new.

Before providing the proof of Theorem 7.1, which is a consequence of the more general
Theorem 7.2, we can easily deduce the description of Gabor canonical dual frame sequences.

Definition 7.1. Suppose that G(A,Γ ) is a frame sequence and let L be its frame operator. The
canonical dual frame sequence of G(A,Γ ) is the Gabor system G(A′,Γ ), where

A′ = {
ϕ′

m = L−1ϕm: m ∈ M
}
.

Here, L−1 is the generalized inverse of L. That is, L−1 = (L|S(A,Γ ))
−1, since L|S(A,Γ ) is an

isomorphism of S(A,Γ ).
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Since L is an SMI operator, so is L−1, and we have the well-known identity

L−1(MkTγ ϕm) = MkTγ ϕ′
m for all (k, γ,m) ∈ Zn × Γ × M.

Moreover, G(A′,Γ ) is a also a frame sequence for S(A,Γ ) with bounds (c1)
−1, (c0)

−1. As an
immediate corollary of Theorem 7.1 and (7.5) we have

Corollary 7.1. Suppose that G(A,Γ ) is a frame sequence and J is the range function of
S(A,Γ ). Then its canonical dual frame sequence G(A′,Γ ) satisfies

Tϕ′
m(x, ξ) = (

R(x, ξ)
)−1(

Tϕm(x, ξ)
)

for a.e. (x, ξ), (7.6)

where (R(x, ξ))−1 = (R(x, ξ)|J (x,ξ))
−1 is the generalized inverse of R(x, ξ). In particular, each

system

1√
p
VA′(x, ξ) =

{
1√
p

Tϕ′
m(x + lj , ξ): 1 � j � q, m ∈ M

}
⊂ Cp (7.7)

is the canonical dual of 1√
p
VA(x, ξ) for a.e. (x, ξ).

Theorem 7.1 is a special case of

Theorem 7.2. Suppose that A = {ϕm: m ∈ M} and A′ = {ϕ′
m: m ∈ M} are two families of gen-

erators in L2(Rn), and their corresponding Gabor systems G(A,Γ ) and G(A′,Γ ) are Bessel
sequences. Let F and F ′ be their analysis operators. The mixed frame operator L = F ∗F ′ is an
SMI operator and its corresponding range operator R is such that R(x, ξ) is the mixed frame
operator of 1√

p
VA(x, ξ) and 1√

p
VA′(x, ξ) for a.e. (x, ξ). More explicitly,

〈
R(x, ξ)ek, el

〉 = 1

p

∑
m∈M

q∑
j=1

Zϕm(x + lj , ξ + dl)Zϕ′
m(x + lj , ξ + dk). (7.8)

Proof. The fact that L is an SMI operator follows immediately from the well-known (almost)
commutation relations between shifts Tγ and modulations Mk , and

Lf =
∑
m∈M

∑
k∈Zn

∑
γ∈Zn

〈
f,MkTγ ϕ′

m

〉
MkTγ ϕm,

where the convergence is unconditional in L2 for all f ∈ L2(Rn).
Take any f,g ∈ L2(R) and m ∈ M . Mimicking the proof of Theorem 4.1, by Proposition 3.1

and (3.19)

∑
k∈Zn

∑
γ∈Γ

〈MkTγ ϕm,g〉〈f,MkTγ ϕ′
m

〉

=
∑

n

∑
〈TMkTγ ϕm,Tg〉〈Tf,TMkTγ ϕ′

m

〉

k∈Z γ∈Γ
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=
∑
k∈Zn

∑
γ∈Γ

( ∫
In×IΞ∗

e2πi〈k,x〉〈Tϕm(x + γ, ξ),Tg(x, ξ)
〉
dx dξ

)

×
( ∫

In×IΞ∗

e−2πi〈k,x〉〈Tf (x, ξ),Tϕ′
m(x + γ, ξ)

〉
dx dξ

)

=
∑
k∈Zn

q∑
j=1

∑
l∈Ξ

( ∫
In×IΞ∗

e2πi〈k,x〉e2πi〈l,ξ〉〈Tϕm(x + lj , ξ),Tg(x, ξ)
〉
dx dξ

)

×
( ∫

In×IΞ∗

e−2πi〈k,x〉e−2πi〈l,ξ〉〈Tf (x, ξ),Tϕ′
m(x + lj , ξ)

〉
dx dξ

)

= 1

p

q∑
j=1

∫
In×IΞ∗

〈
Tϕm(x + lj , ξ),Tg(x, ξ)

〉〈
Tf (x, ξ),Tϕ′

m(x + lj , ξ)
〉
dx dξ.

In the penultimate step we used (3.8) and the fact that every γ ∈ Γ has a unique decompo-
sition as γ = lj + l for some 1 � j � q and l ∈ Ξ . In the last step we used the fact that
{p1/2e2πi(〈k,x〉+〈l,ξ〉)}k∈Zn, l∈Ξ is an orthonormal basis of L2(In × IΞ∗). Summing the above
formula over m ∈ M , we have

〈Lf,g〉 = 1

p

∑
m∈M

q∑
j=1

∫
In×IΞ∗

〈
Tϕm(x + lj , ξ),Tg(x, ξ)

〉〈
Tf (x, ξ),Tϕ′

m(x + lj , ξ)
〉
dx dξ.

(7.9)

On the other hand, note that the mixed frame operator R(x, ξ) of (7.3) and (7.7) is simply

R(x, ξ)a = 1

p

∑
m∈M

q∑
j=1

〈
a,Tϕ′

m(x + lj , ξ)
〉
Tϕm(x + lj , ξ) for a ∈ Cp. (7.10)

Consequently,

〈Lf,g〉 = 〈TLf,Tg〉 =
∫

In×IΞ∗

〈
R(x, ξ)

(
Tf (x, ξ)

)
,Tg(x, ξ)

〉
dx dξ. (7.11)

Since g ∈ L2(Rn) is arbitrary, we must have

TLf (x, ξ) = R(x, ξ)
(
Tf (x, ξ)

)
a.e. (x, ξ),

which shows that R = R(x, ξ) is the range operator corresponding to L. Finally, (7.8) is an
immediate consequence of (3.4) and (7.10). �
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Remark 7.1. The linear map R(x, ξ) in (7.8), when thought of as a matrix, is often referred to as a
mixed dual Gramian of (7.3) and (7.7), see for example [27,28]. When ϕm = ϕ′

m, then the matrix
R(x, ξ) is simply the dual Gramian of (7.3). Recall that the dual Gramian G̃ = (G̃i,j )i,j∈N of a
Bessel sequence {vm: m ∈ M} in the Hilbert space 
2(N) is simply the matrix representation of
the frame operator L of {vm: m ∈ M} with respect to the standard orthonormal basis {ei : i ∈ N}
of 
2(N). That is

G̃i,j = 〈Lej , ei〉 =
∑
m∈M

〈ej , vm〉〈vm, ei〉. (7.12)

Finally, we consider general Gabor dual frame sequences. We follow the terminology from
[7,8].

Definition 7.2. Suppose that G(A,Γ ) is a frame sequence and G(A′,Γ ) is a Bessel sequence.
We say that G(A′,Γ ) is a generalized dual of G(A,Γ ) if the mixed frame operator F ∗F ′ is the
identity on S(A,Γ ). In addition, if G(A′,Γ ) is a frame sequence, then G(A′,Γ ) is said to be
an oblique dual frame sequence of G(A,Γ ).

Remark 7.2. In the special case when S(A,Γ ) = L2(Rn), then both of these notions are identical
and yield the usual concept of a dual frame.

As an immediate consequence of Theorems 4.1 and 7.2 we have the following results.

Theorem 7.3. Suppose that G(A,Γ ) is a frame sequence, G(A′,Γ ) is a Bessel sequence, and
J is the range function of S(A,Γ ).

(i) G(A′,Γ ) is a generalized dual of G(A,Γ ) if and only if the mixed dual Gramian R(x, ξ)

given by (7.8) is the identity on J (x, ξ) for a.e. (x, ξ).
(ii) Assume, in addition, that G(A′,Γ ) is a frame sequence. Then, G(A′,Γ ) is an oblique dual

of G(A,Γ ) if and only if the mixed dual Gramian R(x, ξ) given by (7.8) is the identity on
J (x, ξ) for a.e. (x, ξ).

In the special case when S(A,Γ ) = L2(Rn), we can extend the one-dimensional result of
Zibulski and Zeevi [31] to higher dimensions.

Corollary 7.2. Suppose that G(A,Γ ) and G(A′,Γ ) are two Bessel sequences. Then G(A′,Γ )

is a dual frame of G(A,Γ ) if and only if the system (7.7) is a dual frame of (7.3) for a.e. (x, ξ).
Equivalently, R(x, ξ) given by (7.8) is the identity on Cp for a.e. (x, ξ).

Finally, we illustrate how functional calculus can be used for computing canonical tight gen-
erators (also called windows) for Gabor frames.

Definition 7.3. Let G(A,Γ ) be a Gabor frame, A = {ϕm: m ∈ M}, and L be its frame operator.
Define the canonical tight generators by

L−1/2A = {
ψm: ψm = L−1/2ϕm, m ∈ M

}
. (7.13)
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Then, it is easy to see that G(L−1/2A,Γ ) is a tight frame, often called the canonical tight Gabor
frame.

Canonical tight windows for Gabor frames were studied in 1-dimensional case by Janssen
and Strohmer [24] with the use of functional calculus. The functional calculus is particularly
useful for rational Gabor systems where the Zak transform methods, such as Zibulski–Zeevi
matrices, can be used to replace operators of L2 by finite size matrices, see [24, Section 1.1]. By
Theorems 6.7 and 7.1, the same methods can be extended to higher dimensions.

Corollary 7.3. Suppose that G(A,Γ ) is a frame and L is its frame operator. Let R be the range
operator corresponding to L, which is given by (7.4). Let h be a bounded Borel function on
sp(L). Then, h(L) is an SMI operator with the range operator (x, ξ) �→ h(R(x, ξ)). That is,[

T ◦ h(L)
]
f (x, ξ) = h

(
R(x, ξ)

)(
Tf (x, ξ)

)
for a.e. (x, ξ) ∈ Rn × Tn, f ∈ L2(Rn

)
.

Consequently, the functional calculus of the frame operator L reduces to functional calculus
of positive definite p × p matrices, which is useful for doing computations. In particular, if
h(λ) = λ−1/2, then the canonical tight generators (7.13) are given by

Tψm(x, ξ) = R(x, ξ)−1/2(Tϕm(x, ξ)
)

for a.e. (x, ξ),

where R(x, ξ) is a positive definite p × p matrix given by (7.4).
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