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1.1 Introduction

For a function ψ ∈ L2(R), we define its affine (or wavelet) system by

W(ψ) = {ψj,k(x) = 2
j
2 ψ(2jx− k) : j, k ∈ Z}

If the system is an orthonormal basis of L2(R), then we call ψ a wavelet. In
the more general case when the system forms a frame for L2(R), we call ψ a
frame wavelet, or simply a framelet. If W(ψ) is a tight frame (with constant
1), i.e.,

||f ||2 =
∑

j∈Z

∑

k∈Z
|〈f, ψj,k〉|2 for all f ∈ L2(R),

then ψ is a tight framelet and also called a Parseval wavelet.
One of the fundamental problems in the theory of wavelets is a problem

posed by Baggett in 1999. Baggett’s problem asks whether every Parseval
wavelet ψ must necessarily come from a generalized multiresolution analysis
(GMRA). The precise meaning of this statement is explained later. Nonethe-
less, this problem can be reformulated in terms of the space of negative dilates
of ψ defined as

V (ψ) = span{ψj,k : j < 0, k ∈ Z}. (1.1)

Question 1 (Baggett, 1999). Let ψ be a Parseval wavelet with the space of
negative dilates V = V (ψ). Is it true that

⋂

j∈Z
Dj(V ) = {0} ?

Despite its simplicity Question 1 is a difficult open problem and only par-
tial results are known. For example, Rzeszotnik and the author proved in [15]
that if the dimension function (also called multiplicity function) of V (ψ) is
not identically ∞, then the answer to Question 1 is affirmative.
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Question 1 is not only interesting for its own sake, but it also has several
implications for other aspects of the wavelet theory. Rzeszotnik and the au-
thor [14] showed that a positive answer to Question 1 would imply that all
compactly supported Parseval wavelets come from a MRA, thus generalizing
the well-known result of Lemarié-Rieusset [1, 31] for compactly supported (or-
thonormal) wavelets. Furthermore, the answer to Question 1 would help in
understanding the structure of the set of Parseval wavelets which was recently
studied by Šikić, Speegle, and Weiss [37].

However, there is some evidence that the answer to Question 1 might be
negative. This is because there exists a (non-tight) frame wavelet ψ with a
very large space of negative dilates. The first example of such ψ was given by
Rzeszotnik and the author in [14]. In fact, ψ has a dual frame wavelet and the
space of negative dilates of ψ is the largest possible V (ψ) = L2(R). Here, we
improve this result by showing that one can find such ψ with good smoothness
and decay properties, e.g., ψ in the Schwartz class S(R).

1.2 Preliminaries

Despite the fact that all of our results are motivated by the classical case of
dyadic dilations in R we will adopt a more general setting of an expansive
integer-valued matrix, i.e., an n × n matrix whose eigenvalues have modulus
greater than 1. That is, we shall assume that we are given an n×n expansive
matrix A with integer entries, which plays the role of the usual dyadic dila-
tion. The dilation operator D is given by Dψ(x) = |det A|1/2ψ(Ax) and the
translation operator Tk is given by Tkf(x) = f(x− k), k ∈ Zn.

We say that a finite family Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) is a wavelet if its
associated affine system

ψj,k = DjTkψ, j ∈ Z, k ∈ Zn, ψ ∈ Ψ

is an orthonormal basis of L2(Rn). In the more general case, when the affine
system is a frame or tight frame (with constant 1), we say that Ψ is a frame
wavelet or a Parseval wavelet, resp. Moreover, a frame wavelet Ψ is called
semi-orthogonal if

DjW ⊥ Dj′
W for all j )= j′ ∈ Z.

where
W = W (Ψ) = span{Tkψ : k ∈ Zn, ψ ∈ Ψ}. (1.2)

The support of a function f defined on Rn is denoted by

supp f = {x ∈ Rn : f(x) )= 0}.

Note that we are not taking the closure, since most of our functions are ele-
ments of L2(Rn) and hence they are defined a.e. Given a Lebesgue measurable
set K ⊂ Rn, define the space
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Ľ2(K) = {f ∈ L2(Rn) : supp f̂ ⊂ K}.

Here, the Fourier transform is defined by

Ff(ξ) = f̂(ξ) =
∫

Rn

f(x)e−2πi〈x,ξ〉 dx.

1.2.1 GMRAs

Definition 1. A sequence {Dj(V )}j∈Z of closed subspaces of L2(Rn) is called
a generalized multiresolution analysis (GMRA) if

(M1) TkV = V for all k ∈ Zn,
(M2) V ⊂ D(V ),
(M3)

⋃
j∈Z Dj(V ) = L2(Rn),

(M4)
⋂

j∈Z Dj(V ) = {0}.
In addition, if (M5) holds,

(M5) ∃ ϕ ∈ V such that {Tkϕ}k∈Zn is an orthonormal basis of V ,

then {Dj(V )}j∈Z is a multiresolution analysis (MRA).

A GMRA {Dj(V )}j∈Z is customarily written as {Vj}j∈Z, where Vj =
Dj(V ). The space V is called the core space of the GMRA. Condition (M1)
means that V is shift-invariant (SI) and allows us to use the theory of shift-
invariant spaces for understanding the connections between the GMRA struc-
ture and wavelets or framelets. This is a subject of an extensive study by
several authors, e.g. [3, 4, 5, 7, 11, 13, 17, 29, 30].

For a family Ψ ⊂ L2(Rn) we define its space of negative dilates by

V = V (Ψ) = span{ψj,k : j < 0, k ∈ Zn, ψ ∈ Ψ}. (1.3)

We say that a frame wavelet Ψ is associated with a GMRA, or shortly comes
from a GMRA, if its space V = V (Ψ) satisfies (M1)–(M4). In addition, if V
satisfies (M5), then V is associated with an MRA.

It turns out that every semi-orthogonal frame wavelet Ψ comes from a
GMRA. That is, the space V = V (Ψ) satisfies the conditions (M1)–(M4) and,
therefore, V is a core space of a GMRA. This is an easy consequence of the
fact that the spaces V and W given by (1.2) and (1.3) satisfy

⊕

j∈Z
Dj(W ) = L2(Rn), V =

⊕

j≤−1

Dj(W ) =
( ⊕

j≥0

Dj(W )
)⊥

. (1.4)

Conversely, if we want to see when a GMRA gives rise to a wavelet, or a
semi-orthogonal frame wavelet, then some knowledge of shift-invariant spaces
is useful.
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1.2.2 The spectral function of shift-invariant spaces

Every shift-invariant space V ⊂ L2(Rn) has a set of generators Φ, that is, a
countable family of functions whose integer shifts form a tight frame (with
constant 1) for V , see [10, Theorem 3.3]. Although this family is not unique,
the function

σV (ξ) =
∑

ϕ∈Φ

|ϕ̂(ξ)|2

does not depend (except on a set of null measure) on the choice of the family of
generators. We call σV the spectral function of V . This notion was introduced
by Rzeszotnik and the author in [13]. The basic property of σ is that it is
additive on countable orthogonal sums of SI spaces and that σL2(Rn) = 1.
The spectral function also behaves nicely under dilations since σD(V )(ξ) =
σV ((AT )−1ξ). Moreover, if V is generated by a single function ϕ then

σV (ξ) =

{
|ϕ̂(ξ)|2(

∑
k∈Zn |ϕ̂(ξ + k)|2)−1 for ξ ∈ supp ϕ̂,

0 otherwise.

We also mention that there are several other equivalent ways of defining
the spectral function among which we note the following formula

σV (ξ) = lim
ε→0

||PV̂ (1(ξ−ε/2,ξ+ε/2)n)||2/εn for a.e. ξ ∈ Rn,

where PV̂ denotes the orthogonal projection of F(V ) = V̂ onto L2(Rn).
The spectral function also allows us to define the dimension function of V

dimV (ξ) =
∑

k∈Zn

σV (ξ + k).

The dimension function (also called the multiplicity function) takes values
in N ∪ {0,∞}. It is additive on countable orthogonal sums as the spectral
function. Moreover, the minimal number of functions needed to generate V is
equal to the L∞ norm of dimV . In particular, V can be generated by a single
function if and only if dimV ≤ 1. Moreover, condition (M5) is equivalent to
the equation dimV ≡ 1. We refer the reader to [10, 13] for the proofs of all
these facts.

1.2.3 Semi-orthogonal Parseval wavelets and GMRAs

The dimension function can be applied to connect GMRAs to semi-orthogonal
Parseval wavelets. If V is a core space of a GMRA, then the space W =
D(V ) . V is shift-invariant and has a (possibly infinite) set of generators Ψ .
From (M2), (M3), and (M4) it follows that

L2(Rn) =
⊕

j∈Z
Dj(W ),
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so we conclude that Ψ is a Parseval wavelet possibly of infinite order. That
is, Ψ may have infinite number of generators and the affine system generated
by the elements of Ψ forms a tight frame for L2(Rn). Moreover, Ψ is clearly
semi-orthogonal.

Conversely, if Ψ is a semi-orthogonal Parseval wavelet (possibly of infinite
order), then the space V of its negative dilates satisfies conditions (M1)–(M4)
due to (1.4). Therefore, there is a perfect duality between GMRA structures
and semi-orthogonal Parseval wavelets (with possibly infinite number of gen-
erators).

Since we are interested in finitely generated frame wavelets, the following
result provides the required connection.

Theorem 1. Suppose that Ψ is a semi-orthogonal Parseval wavelet with L
generators and V is the space of negative dilates of Ψ . Then, {Dj(V )}j∈Z is
a GMRA such that

dimV (ξ) < ∞ for a.e. ξ, (1.5)

and ∑

d∈D
dimV ((A∗)−1(ξ + d))− dimV (ξ) ≤ L for a.e. ξ, (1.6)

where D consists of representatives of distinct cosets of Zn/(A∗Zn).
Conversely, if {Dj(V )}j∈Z is a GMRA satisfying (1.5) and (1.6), then

there exists a a semi-orthogonal Parseval wavelet Ψ (with at most L genera-
tors) associated with this GMRA.

Theorem 1 is a variant of the following well-known result of Baggett et al.
[4]. For simplicity we state Theorem 2 in a shorter form. Its full form looks
analogously as Theorem 1.

Theorem 2 (Baggett, Medina, Merrill, 1999). A GMRA gives rise to
a wavelet with L generators if and only if the dimension function of its core
space V satisfies (1.5) and

∑

d∈D
dimV ((A∗)−1(ξ + d))− dimV (ξ) = L for a.e. ξ. (1.7)

Equation (1.7) is often referred as the consistency equation of Baggett. In
order to establish Theorem 1 we recall the following fact shown in [13].

Lemma 1. If Ψ is a semi–orthogonal Parseval wavelet and V is the space of
negative dilates of Ψ , then

σV (ξ) =
∑

ψ∈Ψ

∞∑

j=1

|ψ̂((A∗)jξ)|2.

In particular,
dimV (ξ) = DΨ (ξ) for a.e. ξ,
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where

DΨ (ξ) :=
∑

ψ∈Ψ

∑

k∈Zn

∞∑

j=1

|ψ̂((A∗)j(ξ + k))|2. (1.8)

The function DΨ is often referred to as the wavelet dimension function
[1, 2, 16, 27, 35].

Proof (Theorem 1). Suppose that Ψ is a semi-orthogonal Parseval wavelet
with L generators and the spaces W and V are given by (1.2) and (1.3). We
already know that {Dj(V )}j∈Z is a GMRA. By Lemma 1,

∫

[0,1]n
dimV (ξ)dξ =

∫

Rn

σV (ξ)dξ =
∑

ψ∈Ψ

∞∑

j=1

∫

R
|ψ̂((A∗)jξ)|2

=
∑

ψ∈Ψ

||ψ||2/(|det A| − 1) ≤ L/(|det A| − 1) < ∞.
(1.9)

Hence, (1.5) holds. Since W ⊕ V = D(V ), we have

σW (ξ) + σV (ξ) = σD(V )(ξ) = σV ((A∗)−1ξ).

This implies that

dimW (ξ) + dimV (ξ) =
∑

d∈D
dimV ((A∗)−1(ξ + d)) for a.e. ξ, (1.10)

where D consists of representatives of distinct cosets of Zn/(A∗Zn). Since
dimW (ξ) ≤ L, (1.6) holds.

Conversely, let {Dj(V )}j∈Z be a GMRA satisfying (1.5) and (1.6). Let
W = D(V ). V . The consistency equation (1.10) and (1.6) yields

dimW (ξ) ≤ L for a.e. ξ.

By [10, Theorem 3.3] this implies that W has a set Ψ of ≤ L generators. Since

V =
⊕

j≤−1

Dj(W ),

we infer that Ψ is a semi–orthogonal Parseval wavelet associated with the
GMRA {Dj(V )}j∈Z.

1.3 Baggett’s problem for Parseval wavelets

Baggett posed the following open problem during his talk at Washington
University in 1999.
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Question 2 (Baggett, 1999). Is every Parseval wavelet Ψ associated with a
GMRA?

For the sake of historical accuracy, one should add that Baggett actually
attempted to answer affirmatively Question 2 during his momentous lecture.
This has sparked the interest of two listeners, Rzeszotnik and the author,
who pointed out a missing argument in Baggett’s approach. Despite several
attempts in the next few years Question 2 remains unanswered as of now.
Nonetheless, in his talk Baggett proved that Questions 1 and 2 are equivalent.
Indeed, the following observation is due to Baggett.

Proposition 1 (Baggett, 1999). If Ψ is a Parseval wavelet, then its space
of negative dilates V is shift-invariant.

Proof. It is enough to prove that the orthogonal complement V ⊥ of V is
shift-invariant. It is clear that this complement is given by

V ⊥ = { f ∈ L2(Rn) : ‖f‖22 =
∑

ψ∈Ψ

∞∑

j=0

∑

k∈Zn

|〈f, ψj,k〉|2 }

by the tight frame property. Thus, we can see immediately that the space V ⊥

is shift–invariant. 12

We remark that the above result also holds if we assume that the framelet
Ψ has a canonical dual framelet with the same number of generators, or equiv-
alently, that Ψ has period one in the terminology of Daubechies and Han [23].
However, Proposition 1 in general is false for non-tight framelets and even for
framelets which have a dual framelet. These facts were shown by Weber and
the author in [17].

Proposition 1 proves that the space of negative dilates of a Parseval wavelet
Ψ satisfies condition (M1). The other two conditions, (M2) and (M3), are
clearly satisfied leaving only (M4). This crucial obstacle leads naturally to
Question 1. Consequently, Questions 1 and 2 are equivalent.

In general, one might want to know what conditions on a shift-invariant
space V guarantee that ⋂

j∈Z
Dj(V ) = {0}. (1.11)

A non-trivial result of this type was shown by Rzeszotnik in [36].

Proposition 2 (Rzeszotnik, 2001). Let V be a shift-invariant space. If
σV ∈ L1(Rn), then condition (1.11) holds.

In the case when V is a space of negative dilates we have a stronger result
due to Rzeszotnik and the author [15].
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Theorem 3 (Bownik, Rzeszotnik, 2006). Let Ψ ⊂ L2(Rn) be a Parseval
wavelet and V be its space of negative dilates. If

|{ξ ∈ Rn : dimV (ξ) < ∞}| > 0, (1.12)

then (1.11) holds and Ψ generates a GMRA.

While the complete proof of Theorem 3 can be found in [15], we present its
outline containing the key idea of semi-orthogonalization appearing later in
the proof of Theorem 4. This procedure constructs a semi-orthogonal wavelet
which is associated to the same GMRA as a given Parseval wavelet. In prac-
tice, it may not even be known whether a Parseval wavelet Ψ , as in Theorem
3, is associated with a GMRA. Nevertheless, one can use the idea of semi-
orthogonalization to eventually deduce this property.

Proof. Let W = D(V ).V . Observe that W is a shift-invariant space generated
by {ψ − PV ψ}ψ∈Ψ , where PV is the orthogonal projection on V . Since Ψ is
finite, W has a finite number of generators. That is, we have dimW ≤ L for
some L ∈ N. The equation D(V ) = V ⊕W implies that

∑

d∈D
m(B−1ξ + d) = m(ξ) + dimW (ξ) ≤ m(ξ) + L, (1.13)

where m = dimV and B = A∗. To complete the proof we need the following
result from [15].

Lemma 2. Suppose that m : Rn → [0,∞) is Zn-periodic, measurable function
such that ∑

d∈D

m(ξ + d) ≤ m(Bξ) + L for a.e. ξ ∈ Tn, (1.14)

for some L ≥ 0. Then,
∫

Tn

m(ξ)dξ ≤ L/(|det A| − 1). (1.15)

To apply Lemma 2 we need to show that m is finite a.e. This can be done
using a simple ergodic argument.

Since the matrix B = A∗ : Rn → Rn preserves the lattice Zn, it induces a
measure preserving endomorphism B̃ : Tn → Tn. Moreover, B̃ is ergodic by
[38, Corollary 1.10.1] because B is expansive. Define the set

E = {ξ ∈ Tn : m(ξ) < ∞}.

The condition (1.13) implies that B̃−1E ⊂ E. Since B̃ is measure preserving
we must have B̃−1E = E (modulo null sets). Finally, by the ergodicity of
B̃, we have either |E| = 0 or |E| = 1. Combining this with our hypothesis
|E| > 0, proves that m(ξ) < ∞ for a.e. ξ ∈ Rn.

Since all the assumptions of Lemma 2 are satisfied for our m, we get that
m ∈ L1(Tn). Equivalently, we have σV ∈ L1(Rn). By Proposition 2, (1.11)
holds and Ψ generates a GMRA.
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We end this section by mentioning an interesting variant of Baggett’s
problem for single-generated Parseval wavelets [37].

Question 3 (Šikić, Speegle, and Weiss, 2007). Let V be the space of negative
dilates of a Parseval wavelet ψ. Is it true that

ψ )∈ V. (1.16)

Naturally, an affirmative answer to Question 1 implies a positive answer
to Question 3. However, the converse implication is not known. Nonetheless,
the following equivalent statements about a Parseval wavelet ψ can be easily
shown [37]:

(i) ψ ∈ V ,
(ii) V = DV ,
(iii) V = L2(R).

Once we relax the assumption that ψ is a Parseval wavelet, then Questions
1 and 3 are distinct. In Theorem 7, we shall exhibit a frame wavelet ψ such
that ψ )∈ V , but (1.11) fails.

1.4 Ramifications of Baggett’s problem

A positive answer to Baggett’s problem influences many other problems in-
volving Parseval wavelets. The reason behind it is a semi-orthogonalization
procedure which was introduced by Rzeszotnik and the author in [14].

Theorem 4. Suppose that Ψ is a Parseval wavelet with L generators and
its space of negative dilates V satisfies (1.11). Then, there exists a semi-
orthogonal Parseval wavelet Φ with ≤ L generators such that its space of
negative dilates is also V . In other words, both Ψ and Φ are associated with
the same GMRA {Dj(V )}j∈Z.

Proof. Let V be the space of negative dilates of Ψ . By the hypothesis (1.11),
the sequence {Dj(V )}j∈Z is a GMRA. Let W = D(V ).V . Observe that W is
generated by L functions, namely ψ−PV ψ, ψ ∈ Ψ , where PV is the orthogonal
projection onto V . Therefore, we can find a set Φ of ≤ L generators for W .
As in the proof of Theorem 1, we have

V =
⊕

j≤−1

Dj(W ).

Hence, we can infer that that Φ is a semi-orthogonal Parseval wavelet and V
is the space of negative dilates of Φ. Therefore, Φ is associated to the same
GMRA as Ψ .
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Remark 1. A more explicit semi-orthogonalization procedure for the subclass
of MRA Parseval wavelets was introduced recently by Šikić et al. [37]. Suppose
that ψ ∈ L2(R) is a dyadic Parseval wavelet associated with an MRA. Let m
be its generalized low-pass filter [32, 33, 37]. Then, the authors of [37] proved
that one can modify the filter m in some minimal way to obtain a new filter
corresponding to a semi-orthogonal Parseval wavelet φ which is associated
with the same MRA as ψ.

As a corollary of Theorems 1 and 4 we deduce that Parseval wavelets give
rise to the same class of GMRAs as semi-orthogonal Parseval wavelets. A
priori, this is only true for Parseval wavelets associated with a GMRA which
may (or may not) encompass all Parseval wavelets depending on the answer
to Question 2.

Corollary 1. Suppose that Ψ is a Parseval wavelet with L generators. Then,
either {Dj(V )}j∈Z is a GMRA satisfying (1.5) and (1.6), or dimV ≡ ∞.

Proof. If dimV is not identically∞, then {Dj(V )}j∈Z is a GMRA by Theorem
3. Hence, Theorems 1 and 4 imply that (1.5) and (1.6) hold.

Next, we deduce that an affirmative answer to Baggett’s problem implies
that a compactly supported Parseval wavelet comes from an MRA [14].

Theorem 5 (Bownik, Rzeszotnik, 2005). Let Ψ be a Parseval wavelet with
L = |detA| − 1 generators such that its space of negative dilates V satisfies
condition (1.11). Then, Ψ is associated with an MRA if and only if

DΨ (ξ) =
∑

ψ∈Ψ

∑

k∈Z

∞∑

j=1

|ψ̂((A∗)j(ξ + k))|2 > 0 a.e. (1.17)

Remark 2. We recall that the restriction on the number of generators L =
|detA| − 1 in Theorem 5 is a necessary condition for (orthogonal) wavelet
Ψ to be associated with an MRA due to Lemma 1. In the case of Parseval
wavelets it is possible to have MRA constructions resulting with bigger number
of generators, see [20, 21, 24, 26, 34]. However, Theorem 5 is false if we relax
the assumption L = |detA| − 1.

Remark 3. We must emphasize that for general Parseval wavelets DΨ is not
equal to dimV . This is unlike the case of semi-orthogonal wavelets, where
Lemma 1 yields

DΨ ≡ dimV . (1.18)

Conversely, by the results of Paluszyński et al. [33] the identity (1.18) forces a
Parseval wavelet Ψ to be semi-orthogonal, see also [37, Theorem 3.15]. For the
sake of accuracy, we should add that this result was shown only for dyadic,
single generated, 1-dimensional Parseval wavelets.

Despite that (1.18) may fail we have that for any Parseval wavelet Ψ
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suppDΨ = suppdimV , (1.19)

see [14]. Indeed, by Proposition 1, V is a shift-invariant space generated by
the functions

{D−jψ : ψ ∈ Ψ, j = 1, 2, . . .}.
This, combined with an equivalent definition of the dimension function of
shift-invariant spaces in terms of its range function, see [8, 10], yields

dimV (ξ) = dim span{(ψ̂((A∗)j(ξ + k))k∈Zn : ψ ∈ Ψ, j = 1, 2, . . .},

which shows (1.19).

Proof (Theorem 5). First, suppose that Ψ is associated with an MRA, i.e., its
space of negative dilates satisfies dimV ≡ 1. By (1.18) we have that suppDΨ =
Rn and thus (1.17) holds.

Conversely, assume (1.17). We need to show that (M5) is satisfied, or
equivalently that dimV ≡ 1. Let Φ be the semi-orthogonal Parseval wavelet
obtained from Ψ by Theorem 4. By Lemma 1 and the estimate (1.9) with Φ
taking place of Ψ , we have

∫

[0,1]n
dimV (ξ) dξ =

∑

ϕ∈Φ

‖ϕ̂‖2/(|detA| − 1) ≤ L/(|detA| − 1) = 1.

On the other hand, (1.17) and (1.18) imply that dimV (ξ) > 0 for a.e. ξ. Since
dimV is integer–valued we have that dimV ≡ 1, which concludes the proof of
Theorem 5. 12

As a corollary of Theorem 5 we have the following extension of a result of
Lemarié-Rieusset [31] to Parseval wavelets.

Corollary 2 (Bownik, Rzeszotnik, 2005). Suppose that a Parseval wavelet
Ψ satisfies the assumptions of Theorem 5 and at least one generator of Ψ is
compactly supported. Then, Ψ is associated with an MRA.

Combining Corollary 2 with Theorem 3, we have the following corollary.

Corollary 3. Suppose that a Parseval wavelet Ψ has L = |detA| − 1 genera-
tors and at least one of them is compactly supported. If the space V of negative
dilates of Ψ satisfies (1.12), then Ψ comes from an MRA.

1.5 Frame wavelets with large spaces of negative dilates

In this section we prove that the assumption in Question 1 on ψ being a Par-
seval wavelet is necessary. This result is due to Rzeszotnik and the author [14]
who constructed an example of a dyadic framelet ψ ∈ L2(R), such that its
space of negative dilates V is the largest possible, i.e., V = L2(R). Further-
more, such a framelet can have frame bounds arbitrarily close to 1 and it has
a dual framelet. Here, we shall improve the example in [14] by showing that
such a framelet can also have good smoothness and decay properties.
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Theorem 6. For any δ > 0, there exists a frame wavelet ψ ∈ L2(R) such
that:

(i) ψ̂ is C∞ and all its derivatives have exponential decay,
(ii) the frame bounds of W(ψ) are 1 and 1 + δ,
(iii) the space of negative dilates of ψ is equal to L2(R),
(iv) ψ has a dual frame wavelet.

While the proof of Theorem 6 follows the general construction method of
[14], there are also some significant changes due to the additional smoothness
requirement on ψ. In the proof of Theorem 6 we will use the following two
standard results. Lemma 3 gives a sufficient condition for an affine system to
be a Bessel sequence. Its proof can be found in [28, Theorem 13.0.1]. Lemma 4
is a basic perturbation result for frames which can be found in [19, Corollary
15.1.5].

Lemma 3. Suppose that ψ ∈ L2(R) is such that ψ̂ ∈ L∞(R) and

ψ̂(ξ) =O(|ξ|δ) as ξ → 0, (1.20)

ψ̂(ξ) =O(|ξ|−1/2−δ) as |ξ| → ∞, (1.21)
(1.22)

for some δ > 0. Then the affine system W(ψ) is a Bessel sequence.

Lemma 4. Suppose that H is a Hilbert space, {fj} ⊂ H is a frame with
constants C1 and C2,

C1||f ||2 ≤
∑

j

|〈f, fj〉|2 ≤ C2||f ||2 for all f ∈ H,

and {gj} ⊂ H is a Bessel sequence with constant C0,
∑

j

|〈f, gj〉|2 ≤ C0||f ||2 for all f ∈ H.

If C0 < C1, then {fj + gj} is a frame with constants ((C1)1/2− (C0)1/2)2 and
((C2)1/2 + (C0)1/2)2.

We will also need the following fact about the scale averaging of periodic
functions. Lemma 5 can be considered as a special case of a result due to
Bui and Laugesen [18, Lemma 9] which also holds for functions in Lp

loc(Rn)
and fairly general dilation matrices. This result is very close in spirit to the
classical results of Banach-Saks and Szlenk asserting that weak convergence
in Lp implies norm convergence of arithmetic means. Since we impose weaker
assumptions on Ψ than in [18], we present the proof of Lemma 5 for complete-
ness.
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Lemma 5. Suppose Ψ ∈ L2(T), where T = R/Z. In other words, Ψ is a 1-
periodic function in L2

loc(R). Let Ψj(x) = Ψ(2jx), and c =
∫ 1
0 Ψ . Then, for

any strictly increasing sequence (lj)j∈N ⊂ N,

lim
J→∞

1
J

J∑

j=1

Ψlj = c in L2
loc(R). (1.23)

Proof. Without loss of generality we can assume that c =
∫ 1
0 Ψ = 0. Other-

wise, it suffices to apply (1.23) for a function Ψ−c. For the purpose of Lemma
5, let ||Ψ || = (

∫ 1
0 |Ψ |

2)1/2 be the norm in L2(T) with the corresponding scalar
product 〈·, ·〉.

We claim that the sequence (Ψj) converges to c weakly in L2(T). Indeed,
let f be 1-periodic and continuous. Take any ε > 0 and choose j ∈ N such
that |x− y| ≤ 2−j =⇒ |f(x)− f(y)| ≤ ε. Since

∫ (k+1)/2j

k/2j

Ψ(2jx)dx = 0

we have

∣∣∣∣
∫ 1

0
Ψjf

∣∣∣∣ =
∣∣∣∣
2j−1∑

k=0

∫ (k+1)/2j

k/2j

Ψ(2jx)(f(x)− f(k/2j))dx

∣∣∣∣ ≤ ε

∫ 1

0
|Ψ |.

A standard approximation argument using Luzin’s theorem and ||Ψj || = ||Ψ ||,
shows the claim. In particular, we have that

dj := |〈Ψ, Ψj〉| → 0 as j →∞. (1.24)

For any j ≤ k ∈ N, the change of variables and 1-periodicity of Ψ yields

|〈Ψj , Ψk〉| = |〈Ψ, Ψk−j〉| = dk−j .

Thus, we have the estimate

||Ψl1 + . . . + ΨlJ ||2 =
∣∣∣∣

J∑

j=1

J∑

k=1

〈Ψlj , Ψlk〉
∣∣∣∣ ≤

J∑

j=1

J∑

k=1

d|lj−lk| ≤ 2J
J−1∑

j=0

d∗j .

Here, we used d|lj−lk| ≤ d∗|j−k|, where d∗j = sup{dk : k ≥ j} is a decreasing
sequence dominating (dj). Hence, by (1.24)

∥∥∥∥
Ψl1 + . . . + ΨlJ

J

∥∥∥∥
2

≤ 2
J

J−1∑

j=0

d∗j → 0 as J →∞.

This shows (1.23) and completes the proof of Lemma 5.
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Proof (Theorem 6). Define the sets Z1, Z2 by

Z1 =
⋃

k∈Z
(k + (−1/4, 1/4)),

Z2 = R \ Z1.

Suppose that ψ0 = ψ1 + ψ2, where ψ1 ∈ Ľ2(Z1) and ψ2 ∈ Ľ2(Z2). As usual,
define

W l
j = span{ψl

j,k : k ∈ Z} for l = 0, 1, 2.

Lemma 6.
W 0

j = W 1
j ⊕W 2

j for j ∈ Z. (1.25)

Proof. It suffices to show (1.25) for j = 0. Take any f ∈ W 1
0 and g ∈ W 2

0 . By
the results in [8, 10] we have

W l
0 = {f ∈ L2 : f̂(ξ) = m(ξ)ψ̂l(ξ), m is measurable and 1-periodic}.

(1.26)
Since supp f̂ ⊂ Z1, supp ĝ ⊂ Z2 we have f ⊥ g. Thus, W 1

0 ⊥ W 2
0 . Finally, it

suffices to prove W 1
0 ⊕W 2

0 ⊂ W 0
0 , since the converse inclusion is trivial. Take

any f ∈ W 1
0 ⊕W 2

0 . By (1.26) there are 1-periodic measurable functions m1

and m2 such that

f̂(ξ) = m1(ξ)ψ̂1(ξ) + m2(ξ)ψ̂2(ξ) = m1(ξ)1Z1(ξ)ψ̂
0(ξ) + m2(ξ)1Z2(ξ)ψ̂

0(ξ).
(1.27)

Since the sets Z1 and Z2 are invariant under integer shifts, m = m11Z1 +
m21Z2 is 1-periodic. Hence, by (1.26) and (1.27) f ∈ W 0

0 , which shows W 0
0 =

W 1
0 ⊕W 2

0 .

It now remains to choose ψ1 and ψ2 appropriately. The idea is that negative
dilates of ψ1 will generate functions whose Fourier transform is supported near
the origin, whereas the negative dilates of ψ2 will exhaust all functions which
are supported away from the origin (in the Fourier domain).

Let ψ1 be a Parseval wavelet such that ψ̂1 is C∞ and

supp ψ̂1 = (−1/4,−1/16) ∪ (1/16, 1/4).

Such a frame wavelet can be constructed by a standard method, for example
see [12]. Indeed, it suffices to take the convolution of 1(−3/16,−1/8)∪(1/8,3/16)

with a non-negative smooth bump function supported on (−1/16, 1/16) and
normalize the result to obtain the Calderón condition

∑

j∈Z
|ψ̂1(2jξ)|2 = 1 for ξ ∈ R \ {0}.

Note that ψ1 ∈ Ľ2(Z1) and by (1.26), W 1
0 = Ľ2((−1/4,−1/16)∪ (1/16, 1/4)).

Hence,
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W 1
j = Ľ2((−2j−2,−2j−4) ∪ (2j−4, 2j−2)) for any j ∈ Z,

and therefore, the space of negative dilates of ψ1 is

V 1 = span
⋃

j<0

W 1
j = Ľ2

( −1⋃

j=−∞
(−2j−2,−2j−4) ∪ (2j−4, 2j−2)

)

= Ľ2(−1/8, 1/8).

(1.28)

The function ψ2 should be regarded as a perturbation term of ψ0 = ψ1 + ψ2.
We are now ready to describe the construction procedure of ψ2.

Let {ϕm : m ∈ N} be some enumeration of the “truncated” Gabor system

{1(k,k+1)e
2πijξ : j ∈ Z, k ∈ Z, k )= −1, 0}.

Clearly, {ϕm : m ∈ N} is an orthonormal basis of L2((−∞,−1)∪ (1,∞)). For
any m ∈ N, let km ∈ Z denote the left endpoint of the support of ϕm, i.e.,
suppϕm = (km, km + 1).

Let Ψ be a 1-periodic function such that

Ψ ∈ C∞, suppΨ ⊂ Z2,

∫ 1

0
Ψ = 1. (1.29)

Let (mp)p∈N be a sequence of natural numbers such that each natural num-
ber occurs infinitely many times. We construct by induction a sequence of
functions {φp : p ∈ N} and a sequence of natural numbers (lp)p∈N.

Let φ1 = D−l1(ϕm1)Ψ and l1 = 1. Suppose we have constructed functions
φ1, . . . , φp and integers l1, . . . , lp up to some p ∈ N. Define lp+1 to be the
smallest integer such that

supp φ1 ∪ . . . ∪ supp φp ⊂ (−2lp+1 , 2lp+1), (1.30)

and
φp+1 = D−lp+1(ϕmp+1)Ψ. (1.31)

It is easy to see that the sequence (lp)p∈N is increasing and the supports of φp’s
are included in pairwise disjoint open intervals. Finally, define ψ2 ∈ Ľ2(Z2)
by

ψ̂2(ξ) =
∑

p∈N
cpφp(ξ) =

∑

p∈N
cpD

−lp(ϕmp)Ψ, (1.32)

for some sufficiently fast decaying sequence (cp)p∈N of positive numbers. More
precisely, we can choose cp’s such that 0 < cp+1 < cp/(p + 1) for all p ∈ N
and all derivatives of ψ̂2 have exponential decay. This will guarantee that
ψ0 = ψ1 + ψ2 satisfies property (i) of Theorem 6. In particular, by Lemma 3,
the affine system generated by ψ2 is a Bessel sequence.

Our next goal is to show the following key fact.
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Lemma 7. Suppose that ψ2 given by (1.32) is constructed as above. Let V 2

be the space of negative dilates of ψ2 and P be the orthogonal projection onto
Ľ2((−∞,−1) ∪ (1,∞)), i.e.,

(̂Pf)(ξ) = f̂(ξ)1(−∞,−1)∪(1,∞) for f ∈ L2(R).

Then, P (V 2) is dense in Ľ2((−∞,−1) ∪ (1,∞)).

Proof. Since
Ṽ 2 := span{ψ2

−lp,0 : p ∈ N} ⊂ V 2

it suffices to show that P (Ṽ 2) is dense in Ľ2((−∞,−1) ∪ (1,∞)). Hence, we
need to show that each basis element ϕm, m ∈ N, of L2((−∞,−1) ∪ (1,∞))
belongs to the closure of F(P (Ṽ 2)). Given r ∈ N,

ψ̂2
−lr,0 = Dlr (ψ̂2) =

∑

p∈N
cpD

lr (φp).

By (1.30) and (1.31), suppDlr (φp) ⊂ (−1, 1) for p < r, and we have

(P (ψ2
−lr,0))̂ =

∑

p≥r

cpD
lr (φp) =

∑

p≥r

cpD
lr−lp(ϕmp)Ψlr

= crΨlr

[
ϕmr +

∑

p>r

cp

cr
Dlr−lp(ϕmp)

]
.

Since cr+1/cr < 1/(r + 1),
∣∣∣∣

∣∣∣∣
∑

p>r

cp

cr
Dlr−lp(ϕmp)

∣∣∣∣

∣∣∣∣ ≤
∑

p>r

1
(r + 1)(r + 2) . . . p

||Dlr−lp(ϕmp)|| < 2/r,

we conclude that Ψlr (ϕmr + ηr) belongs to F(P (Ṽ 2)) for some ηr ∈ L2 with
||ηr|| < 2/r.

For a fixed m ∈ N, let R = {r ∈ N : mr = m}. By our construction
R = {r1, r2, . . .} is infinite. By Lemma 5

Ψlr1
+ . . . + ΨlrJ

J
→ 1 as J →∞ in L2(km, km + 1).

Hence, as J →∞

Ψlr1
(ϕmr1

+ ηr1) + . . . + ΨlrJ
(ϕmrJ

+ ηrJ )
J

= ϕm

Ψlr1
+ . . . + ΨlrJ

J
+

Ψlr1
ηr1 + . . . + ΨlrJ

ηrJ

J
→ ϕm in L2(R),

since ||Ψl||∞ = ||Ψ ||∞ < ∞ and
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ηr1 + . . . + ηrJ

J
→ 0 in L2(R) as J →∞.

Therefore, ϕm belongs to the closure of F(P (Ṽ 2)). Since m ∈ N is arbitrary
and {ϕm : m ∈ N} is an orthonormal basis of L2((−∞,−1) ∪ (1,∞)), this
completes the proof of Lemma 7.

Lemma 8. Suppose that V 2 is the same as in Lemma 7. Let Pj be the or-
thogonal projection onto Ľ2((−∞,−2j) ∪ (2j ,∞)), i.e.,

(̂Pjf)(ξ) = f̂(ξ)1(−∞,−2j)∪(2j ,∞) for f ∈ L2(R).

Then, Pj(V 2) is dense in Ľ2((−∞,−2j) ∪ (2j ,∞)) for any j ∈ Z.

Proof. Since the case j ≥ 0 follows immediately from Lemma 7, we may
assume that j < 0. A straightforward calculation shows that Pj = DjPD−j .
Take any f ∈ Ľ2((−∞,−2j)∪ (2j ,∞)). Since D−jf ∈ Ľ2((−∞,−1)∪ (1,∞)),
by Lemma 7 there exists a sequence {fk : k ∈ N} ⊂ V 2 such that P0fk →
D−jf as k →∞. Hence, PjDjfk → f as k →∞. Since Djfk ∈ V 2 for j ≤ 0,
this shows Lemma 8.

We are now ready to conclude the proof of Theorem 6. Let V 0 be the space
of negative dilates of ψ0. By (1.25),

V 0 = span
( ⋃

j<0

W 0
j

)
= span

( ⋃

j<0

(W 1
j ∪W 2

j )
)

= span(V 1 ∪ V 2).

Therefore, by (1.28) and by Lemma 8

P−3(V 2) = Ľ2((−∞,−1/8) ∪ (1/8,∞)),

we have that V 0 is dense in L2(R). Since V 0 is closed it must be equal to L2(R).
It remains to show that one can also find a framelet with this property.

Recall that ψ0 = ψ1 +ψ2, where ψ1 is a Parseval wavelet and ψ2 generates
a Bessel affine system. Therefore, by Lemma 4, there exists ε > 0 such that
ψ′ = ψ1 +εψ2 is a framelet with frame bounds 1− δ/3 and 1+ δ/3. Moreover,
since εψ2 is also of the form (1.32), the space of negative dilates of ψ′ is also
L2(R). Therefore, ψ = (1−δ/3)−1/2ψ′ is a framelet with constants 1 and 1+δ
whose space of negative dilates is L2(R). In fact, a more delicate argument
shows that the lower frame bound of ψ′ is ≥ 1 and the last normalization step
is not necessary.

Finally, to show that ψ has a dual frame wavelet we employ the well-
known characterizing equations [9, 25, 27]. We recall that functions φ, ψ ∈
L2(R) whose respective affine systems are Bessel sequences form a pair of
dual framelets if and only if

∑

j∈Z
φ̂(2jξ)ψ̂(2jξ) = 1 a.e. ξ,
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∞∑

j=0

φ̂(2jξ)ψ̂(2j(ξ + q)) = 0 a.e. ξ and for odd q.

Thus, using supp ψ̂i ⊂ Zi, i = 1, 2, one can show that φ = (1 − δ/3)1/2ψ1 is
a dual framelet to ψ = (1− δ/3)−1/2(ψ1 + εψ2). This completes the proof of
Theorem 6.

We finish this section by showing that the affirmative answer to Question
3 does not imply a positive answer to Question 1 for general frame wavelets
ψ.

Theorem 7. For any δ > 0, there exists a frame wavelet ψ ∈ L2(R) such
that:

(i) ψ̂ is C∞ and all its derivatives have exponential decay,
(ii) the frame bounds of W(ψ) are 1 and 1 + δ,
(iii) the space V of negative dilates of ψ satisfies

⋂
j∈Z Dj(V ) )= {0},

(iv) ψ )∈ V ,
(v) ψ has a dual frame wavelet.

Proof. Let ψ1 and ψ2 be the same as in the proof of Theorem 6. Then, a frame
wavelet constructed by Theorem 6 is of the form ψ′ = c1ψ1 + c2ψ2 for some
constants c1, c2.

Define a function ψ = c1ψ1 + c2ψ+, where ψ+ is given by ψ̂+ = ψ̂1(0,∞).
We claim that ψ satisfies all properties of Theorem 7. Indeed, (i) is trivial. The
property (ii) follows from the same perturbation argument as in Theorem 6.
Likewise, the same argument as in Theorem 6 shows that the space of negative
dilates V satisfies Ľ2(0,∞) ⊂ V . This is mainly due to the decomposition

L2(R) = H+(R)⊕H−(R), where H2
−(R) = Ľ2(−∞, 0), H2

+(R) = Ľ2(0,∞),

and the fact that Hardy spaces H2
−(R) and H2

+(R) are invariant under the
action of D and Tk. On the other hand, it is clear that V )= L2(R) and hence
(iv) holds. Finally, (v) is shown exactly in the same way as in Theorem 6 with
φ = (c1)−1ψ1 being a dual framelet to ψ.
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