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Abstract In this paper we study properties of generalized multiresolution analyses
(GMRAs) and wavelets associated with rational dilations. We characterize the class
of GMRAs associated with rationally dilated wavelets extending the result of Baggett,
Medina, and Merrill. As a consequence, we introduce and derive the properties of
the dimension function of rationally dilated wavelets. In particular, we show that
any mildly regular wavelet must necessarily come from an MRA (possibly of higher
multiplicity) extending Auscher’s result from the setting of integer dilations to that
of rational dilations. We also characterize all 3 interval wavelet sets for all positive
dilation factors. Finally, we give an example of a rationally dilated wavelet dimension
function for which the conventional algorithm for constructing integer dilated wavelet
sets fails.
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1 Introduction

The wavelet dimension function is an important subject in the theory of wavelets.
For a given orthonormal wavelet � = {ψ1, . . . ,ψL} ⊂ L2(RN) associated with an
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integer expansive dilation A ∈ MN(Z), its dimension function is defined as

D�(ξ) =
L∑

�=1

∞∑

j=1

∑

k∈ZN

|ψ̂�((Aᵀ)j (ξ + k))|2. (1.1)

Initially, the wavelet dimension function was introduced in the one dimensional
dyadic case by Lemarié-Rieusset [28, 29] to prove that all compactly supported
wavelets are associated with a multiresolution analysis (MRA). After that Gripenberg
[25] and Wang [35] used it to characterize all wavelets arising from an MRA. A fur-
ther application of the wavelet dimension function is due to Auscher [2] who proved
two fundamental results: (i) there are no regular wavelet bases for the Hardy space
H 2(R), and (ii) any mildly regular wavelet basis of L2(RN) must arise from an MRA
(possibly of higher multiplicity). Furthermore, Auscher established that the wavelet
dimension function D� describes dimensions of certain subspaces of �2(ZN), and
hence it is integer-valued.

A systematic study of properties of the wavelet dimension function (often called
multiplicity function) was initiated by Baggett, Medina, and Merrill [3, 5] who intro-
duced the concept of a generalized multi-resolution analysis (GMRA), and studied
its relation to wavelets. In particular, they established the consistency equation for a
multiplicity function

∑

ω∈[(Aᵀ)−1ZN/ZN ]
D(ξ +ω) = L+D(Aᵀξ) for a.e. ξ ∈ R

N, (1.2)

where we use the convention that [G/H ] denotes a transversal (a set of repre-
sentatives of distinct cosets) of a quotient group G/H . In a related development,
Bownik, Rzeszotnik, and Speegle [22] characterized all possible integer-valued func-
tions which are dimension functions of a wavelet. It turns out that every wavelet
dimension function must satisfy an additional condition,

∑

k∈ZN

1�(ξ + k) ≥ D�(ξ) for a.e. ξ ∈ R
N, (1.3)

where � = {ξ ∈ R
N : D�((Aᵀ)−j ξ) ≥ 1 for all j ∈ N ∪ {0}}. A similar result in

the context of GMRAs was obtained by Baggett and Merrill [4], and then further
generalized by Bownik and Rzeszotnik in [18]. In addition, the wavelet dimension
function was extensively studied by a number of other authors including Behera [8],
Paluszyński, Šikić, Weiss, and Xiao [30], Ron and Shen [33], and Weber [36]. As a
result, the wavelet dimension function found a natural interpretation using the theory
of shift-invariant spaces.

However, up to the present time, the wavelet dimension function has been stud-
ied exclusively for the class of integer dilations. The only exception is the work of
Bownik and Speegle [21], who introduced an analogue of the wavelet dimension
function for real dilations factors in one dimension. The goal of this paper is to ini-
tiate the study of the wavelet dimension functions in higher dimensions. We will
concentrate on the class of rational expansive dilations A ∈ MN(Q), since most non-
rational dilations admit only minimally supported frequency (MSF) wavelets due to
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results of Chui and Shi [24] and Bownik [13]. For every rational expansive dilation
A there exists a plenty of non-MSF wavelets by a result of Bownik and Speegle [21].
Moreover, in one dimension Auscher [1] constructed rationally dilated wavelets with
nice localization and smoothness properties. On the other hand, every MSF wavelet
(or more generally combined MSF wavelet) has its space of negative dilates invariant
under all translations. Hence, one can easily define the wavelet dimension function
for such wavelets. However, this is rarely done since more information is carried by
the wavelet set itself than by the wavelet dimension function.

There are some significant differences in the theory of dimension functions be-
tween the already well-understood case of integer dilations and that of rational dila-
tions. The most prominent manifestation of that is a surprising gain of shift-invariance
of GMRAs associated with wavelets. Namely, any GMRA associated with rationally
dilated wavelet � must be �-SI with � = AZ

N + Z
N . Note that in the classical case

of A ∈ MN(Z), this self-improvement is non-existent. In addition, the corresponding
multiplicity function must satisfy an analogue of the consistency equation (1.2). This
leads to a characterization of GMRAs associated with rationally dilated wavelets ex-
tending the earlier result of Baggett, Medina, and Merrill [5]. As a consequence of
this result we establish the formula for the wavelet dimension function as

D�(ξ) =
L∑

�=1

∞∑

j=1

∑

k∈�∗
|ψ̂�((Aᵀ)j (ξ + k))|2, (1.4)

where �∗ = (Aᵀ)−1
Z

N ∩ Z
N is a dual lattice to � = AZ

N + Z
N . It turns out the

function D� satisfies a collection of properties, including analogues of the consis-
tency equation (1.2) and property (1.3), as in the case of integer dilations. While
this collection of conditions characterizes all wavelet dimension functions in the in-
teger case [22], it remains an open question whether the same is true in the rational
case. Nevertheless, we show that the construction procedure for wavelet sets in [22],
which is used in the sufficiency part of this characterization, fails for rational dila-
tions already in one dimension. Finally, we also show that any mildly regular wavelet
must necessarily come from an MRA (possibly of higher multiplicity). This extends
Auscher’s result [2] from the setting of integer dilations to that of rational dilations.

The paper is organized as follows. In Sect. 2 we recall the necessary facts about the
spectral function of shift-invariant (SI) spaces, the concept of a GMRA, and quasi-
affine systems for rational dilations. In the next section we establish an explicit for-
mula for the spectral function of rationally dilated wavelets extending the result of
Bownik and Rzeszotnik [18]. In Sect. 4 we generalize a theorem of Baggett, Medina,
and Merrill [5] characterizing GMRAs which are associated with wavelets. We also
give a sufficient condition on a dilation A, which guarantees that every wavelet as-
sociated with A comes from a GMRA. In Sect. 5 we derive properties of dimension
functions of GMRAs. In the next section we introduce and derive the properties of
dimension functions of rationally dilated wavelets. As an application we derive the
extension of Auscher’s result [2]. Section 7 is devoted to the characterization of all 3
interval wavelet sets for all positive dilation factors. Finally, in the last section we give
an example of a wavelet dimension function for which the algorithm for constructing
wavelet sets from [22] fails.
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2 Preliminaries

In this section we recall some necessary results about shift invariant (SI) systems, the
spectral function, the GMRA, and the quasi-affine systems for rational dilations. We
start by establishing some necessary terminology. The translation operator by y ∈ R

N

is Tyf (x) = f (x − y); the dilation operator by the N × N invertible matrix A ∈
MN(R) is DAf (x) = √|detA|f (Ax). For simplicity we shall write Df = DAf .
The Fourier transform of f ∈ L1(RN) ∩L2(RN) is

f̂ (ξ) =
∫

RN

f (x)e−2πi〈x,ξ〉dx for ξ ∈ R
N.

Given a measurable set E ⊂ R
N , we define the translation-invariant space

Ľ2(E) = {f ∈ L2(RN) : supp f̂ ⊂ E}.

Definition 2.1 Suppose � = {ψ1, . . . ,ψL} ⊂ L2(RN) and A ∈ MN(R) is an ex-
pansive matrix, i.e., all eigenvalues λ of A satisfy |λ| > 1. The affine system A(�)

associated with the dilation A is defined as

A(�) = {ψj,k : j ∈ Z, k ∈ Z
N, ψ ∈ �},

where ψj,k(x) = |detA|j/2ψ(Ajx − k). We say that � is a wavelet if A(�) is an
orthonormal basis of L2(RN). More generally, we say that � is a semi-orthogonal
wavelet if A(�) is a Parseval frame for L2(RN), i.e.,

‖f ‖2 =
L∑

�=1

∑

j∈Z

∑

k∈ZN

|〈f,ψ�
j,k〉|2 for all f ∈ L2(RN),

and different scales of A(�) are mutually orthogonal, i.e.,

〈ψ�
j,k,ψ

�′
j ′,k′ 〉 = 0 for all �, �′ = 1, . . . ,L, j �= j ′ ∈ Z, k, k′ ∈ Z

N.

2.1 Shift-invariant Spaces and the Spectral Function

The general properties of SI spaces were studied by a number of authors, see [11, 12,
31]. Here, we only list the results that will be used later on.

Definition 2.2 Suppose that � is a (full rank) lattice, i.e., � = PZ
N , where P ∈

MN(R) is an N × N invertible matrix. We say that a closed subspace V ⊂ L2(RN)

is shift invariant (SI) with respect to the lattice �, if

f ∈ V �⇒ Tγ f ∈ V for all γ ∈ �.

Given a countable family � ⊂ L2(RN) and the lattice � we define the �-SI system
E�(�) by

E�(�) = {Tγ ϕ : ϕ ∈ �, γ ∈ �}.
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When � = Z
N , we often drop the superscript �, and we simply say that V is SI.

Likewise, E(�) means EZ
N
(�).

The spectral function of SI spaces, which was introduced by Bownik and Rzeszot-
nik in [18], can be defined in several equivalent ways using range functions or dual
Gramians. The following result, see [19, Lemma 2.5], can also serve as a definition.

Lemma 2.3 If V ⊂ L2(RN) is �-SI and � ⊂ V is a countable family such that
E�(�) is a Parseval frame for V , then its spectral function is

σ�
V (ξ) = 1

|RN/�|
∑

ϕ∈�

|ϕ̂(ξ)|2, (2.1)

where |RN/�| is the Lebesgue measure of the fundamental domain of R
N/�, i.e.,

|RN/�| = |detP | if � = PZ
N . In particular, (2.1) does not depend on the choice of

� as long as E�(�) is a Parseval frame for V .

Clearly, if V ⊂ L2(RN) is �-SI, then V is also �′-SI for any lattice �′ ⊂ �. Hence,
one can also talk about the spectral function σ�′

V with respect to a sparser lattice �′.
Nevertheless, by a result of Bownik and Rzeszotnik [19, Corollary 2.7] both of these
spectral functions coincide.

Theorem 2.4 Suppose �′ ⊂ � are two lattices and V ⊂ L2(RN) is �-SI. Then,

σ�
V (ξ) = σ�′

V (ξ) for a.e. ξ ∈ R
N.

Consequently, we can drop the dependence of the spectral function of V on a
lattice � and simply write σV instead of σ�

V . This shows that the spectral function is a
very fundamental notion of “size” of SI spaces which is independent of the underlying
lattice �. In contrast, when working with the dimension function of a shift-invariant
space, one needs to use the formula (2.2) when considering a sublattice �′ ⊂ �, see
[16, Lemma 2.4].

We recall that dim�
V : R

N → N ∪ {0,∞} is the multiplicity function of the
projection-valued measure coming from the representation of � on V via translations
by Stone’s Theorem [3, 5]. Alternatively, one can define

dim�
V (ξ) = dim span{(ϕ̂(ξ + k))k∈�∗ : ϕ ∈ �},

where � ⊂ V is a countable set of generators of V , i.e., V = spanE�(�).

Lemma 2.5 Suppose �′ ⊂ � are two lattices and V ⊂ L2(RN) is �-SI. Then,

dim�′
V (ξ) =

∑

ω∈[(�′)∗/�∗]
dim�

V (ξ +ω) for a.e. ξ ∈ R
N. (2.2)

Here,

�∗ = {x ∈ R
N : 〈x, k〉 ∈ Z for all k ∈ �}
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is the dual lattice of �, and [(�′)∗/�∗] is a transversal of (�′)∗/�∗.

The following theorem summarizes properties of the spectral function.

Theorem 2.6 Let S be the collection of all possible SI subspaces of L2(RN), i.e.,
V ∈ S if and only if there exists a lattice � such that V is �-SI. The spectral function
satisfies the following properties: (V,W ∈ S)

(a) σV : RN →[0,1] is a measurable function,
(b) V =⊕N

i=1 Vi , where Vi ∈ S �⇒ σV (ξ) =∑N
i=1 σVi

(ξ),
(c) V =⊕i∈N

Vi , where Vi is �-SI for a fixed lattice � �⇒ σV (ξ) =∑i∈N
σVi

(ξ),
(d) V ⊂ W �⇒ σV (ξ) ≤ σW(ξ),
(e) V ⊂ W �⇒ (V = W ⇐⇒ σV (ξ) = σW(ξ)),
(f) σV (ξ) = 1E(ξ) ⇐⇒ V = Ľ2(E), where E ⊂ R

N is a measurable set.
(g) V ⊂ Ľ2(E), where E = suppσV ,
(h) σDAV (ξ) = σV ((Aᵀ)−1ξ), where A ∈ MN(R) is invertible,
(i) if V is �-SI then dim�

V (ξ) =∑k∈�∗ σV (ξ + k).

Proof The proof of Theorem 2.6 can be found in [18, 19] with the exception of (g).
To see (g), let � be the same as in Lemma 2.3. Take any f ∈ V . Then, f̂ is an L2

limit of functions of the form
∑

ϕ∈� rϕ(ξ)ϕ̂(ξ), where only finitely many of the �∗-

periodic trigonometric polynomials rϕ are non-zero. Consequently, f̂ (ξ) = 0 for all
ξ �∈ suppσV , which proves (g). �

2.2 Generalized Multiresolution Analyses

The concept of a generalized multiresolution analysis (GMRA) was introduced by
Baggett, Medina, and Merrill in their seminal work [5]. Its original formulation re-
quires that the expansive dilation A preserves the underlying lattice �, i.e., A� ⊂ �.
By a standard dilation argument this can be reduced to the case of the standard lattice
Z

N and an integer dilation A.
In this work we are interested in a larger class of expansive dilations which do

not necessarily preserve the lattice �, but nevertheless A ∩ A� is a (full rank) lat-
tice. A reduction to the case of the standard lattice � = Z

N corresponds precisely
to the class of rational dilations A. While the definition below does not mention this
assumption explicitly, all of our results involve only rationally dilated GMRAs.

Definition 2.7 A sequence {Vj }j∈Z of closed subspaces of L2(RN) is called a gen-
eralized multiresolution analysis (GMRA) if

(M1) Vj ⊂ Vj+1 for all j ∈ Z,
(M2)

⋂
j∈Z

Vj = {0},
(M3)

⋃
j∈Z

Vj = L2(RN),

(M4) f ∈ V0 ⇐⇒ Djf ∈ Vj for all j ∈ Z,
M(5) V0 is Z

N -SI.
In addition, if (M6) holds,

(M6) ∃� = {ϕ1, . . . , ϕm} ⊂ V0 such that E(�) is an orthonormal basis of V0,
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then {Vj }j∈Z is a multiresolution analysis (MRA) of multiplicity m. In the case when
m = 1, we simply say that {Vj }j∈Z is an MRA.

The space V0 is called the core space of the GMRA. Condition (M5) allows us
to use the theory of shift-invariant spaces for understanding the connections between
the GMRA structure and wavelets or framelets. This is a subject of an extensive study
by several authors, e.g. [4–7, 10, 18, 36].

For a family � ⊂ L2(RN) we define its space of negative dilates by

V (�) = span{ψj,k : j < 0, k ∈ Z
N,ψ ∈ �}. (2.3)

We say that a (semi-orthogonal) wavelet � is associated with a GMRA {Vj }j∈Z, if
the core space V0 = V (�). In addition, if V0 satisfies (M6), then we say that � is
associated with an MRA.

2.3 Quasi-Affine Systems

Quasi-affine systems are a variant of the usual wavelet (affine) systems that play an
important role in the theory of wavelets. Originally quasi-affine systems have been
introduced and investigated for integer expansive dilation matrices by Ron and Shen
[32]. The importance of quasi-affine systems stems from the fact that the frame prop-
erty carries over when moving from an affine system to its corresponding quasi-affine
system, and vice versa. Furthermore, quasi-affine systems are shift-invariant and thus
much easier to study than affine systems which are dilation invariant.

Bownik [14] extended the notion of quasi-affine frames to the class of rational
expansive dilations in a manner which overlaps with the usual definition in the case
of integer dilations. In order to introduce a quasi-affine system, we need to recall the
concept of oversampling of shift-invariant systems which was introduced in [14].

Definition 2.8 Suppose that � ⊂ L2(RN) is a countable collection, and the lattice �

is rational. We define the oversampled system of E�(�) by

O�(�) = EZ
N+�

(
1

|ZN/(ZN ∩ �)|1/2
�

)
= E

(⋃

θ∈�

{
1

|ZN/(ZN ∩ �)|1/2
Tθ�

})
,

where � is a transversal of (ZN + �)/Z
N .

The main idea of Ron and Shen is to oversample negative scales of the affine sys-
tem at a rate adapted to the scale in order for the resulting system to be shift invari-
ant. In order to define quasi-affine systems for rational expansive dilations we need
to oversample both negative and positive scales of the affine system (at a rate pro-
portional to the scale) which results in a quasi-affine system that in general coincides
with the affine system only at the scale zero.

Definition 2.9 Suppose that � = {ψ1, . . . ,ψL} ⊂ L2(RN) and A is a rational dila-
tion. We define the quasi-affine system associated with (�,A) by

Aq(�) =
⋃

j∈Z

OA−j
Z

N

(Dj�)
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= E

(⋃

j∈Z

⋃

θ∈�j

{
1

|ZN/(ZN ∩A−jZN)|1/2
TθD

j�

})
, (2.4)

where �j is a transversal of (ZN +A−j
Z

N)/Z
N .

Even though the orthogonality of an affine system is not preserved by the cor-
responding quasi-affine system, it turns out the Parseval frame property still carries
over between affine and quasi-affine systems. This result was first established in [14,
Theorem 3.4]. A different proof of Theorem 2.10 was given in [27, Theorem 2.17].

Theorem 2.10 Suppose that � = {ψ1, . . . ,ψL} ⊂ L2(RN). The affine system A(�)

is a Parseval frame if and only if its quasi-affine counterpart Aq(�) is a Parseval
frame.

We define the negative part of the quasi-affine system Aq(�) as

A
q
−(�) =

⋃

j<0

OA−j
Z

N

(Dj�)

= E

(⋃

j<0

⋃

θ∈�j

{
1

|ZN/(ZN ∩A−jZN)|1/2
TθD

j�

})
, (2.5)

where �j is the same as in Definition 2.9. We will need the following result about
A

q
−(�).

Lemma 2.11 Suppose that � = {ψ1, . . . ,ψL} ⊂ L2(RN) is a rationally dilated
semi-orthogonal wavelet such that its space of negative dilates

V (�) = span {ψ�
j,k : j < 0, k ∈ Z

N, � = 1, . . . ,L} (2.6)

is Z
N -shift invariant. Then the system A

q
−(�) forms a Parseval frame for V (�).

Proof Define the lattice �j for each j ∈ Z by �j = Z
N + A−j

Z
N and let Mj ∈

MN(Q) be such that MjZ
N = �j . Then we can express the quasi-affine system as

Aq(�) = {ψ̃�
j,k : j ∈ Z, k ∈ Z

N, � = 1, . . . ,L},

where for each j ∈ Z, k ∈ Z
N , and � = 1, . . . ,L, we define

ψ̃�
j,k(x) = |detA|j/2

|ZN/(ZN ∩A−jZN)|1/2
ψ�(Aj (x +Mjk)).

In addition to A
q
−(�), we consider the positive part of the quasi-affine system

A
q
+(�) = {ψ̃�

j,k : j ≥ 0, k ∈ Z
N, � = 1, . . . ,L}.
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We claim that

V (�) = span A
q
−(�),

(V (�))⊥ = span A
q
+(�).

(2.7)

Indeed, by the semi-orthogonality of � we have

(V (�))⊥ = span {ψ�
j,k : j ≥ 0, k ∈ Z

N, � = 1, . . . ,L}. (2.8)

Given any k1 ∈ Z
N , we have A−j k1 ∈ A−j

Z
N ⊂ Z

N + A−j
Z

N = �j and so
there is some k2 ∈ Z

N such that AjMjk2 = k1, implying that ψ�
j,k1

= |ZN/(ZN ∩
A−j

Z
N)|1/2ψ̃�

j,k2
. Thus, we obtain the inclusions ⊂ in (2.7). On the other hand,

since Z
N ⊂ M−1

j �j = M−1
j Z

N + M−1
j A−j

Z
N , then there are γ,β ∈ Z

N such that

M−1
j γ + M−1

j A−j β = k1, implying that ψ̃�
j,k1

= 1
|ZN/(ZN∩A−j ZN)|1/2 Tγ ψ�

j,β . Since

V (�) is shift invariant, so is (V (�))⊥. This yields that ψ̃�
j,k1

∈ V (�) when j < 0,

and ψ̃�
j,k1

∈ (V (�))⊥ when j ≥ 0. Thus, we obtain the reverse inclusions ⊃ in (2.7).

By our hypothesis, the affine system A(�) is a Parseval frame for L2(RN). This
implies by Theorem 2.10 that Aq(�) is also a Parseval frame. Since Aq(�) =
A

q
−(�) ∪ A

q
+(�), (2.7) implies that A

q
−(�) and A

q
+(�) are Parseval frames for

V (�) and (V (�))⊥, respectively. �

3 Spectral Function of Wavelets

The goal of this section is to establish the formula for the spectral function of ra-
tionally dilated wavelets. Hence, we wish to show the following generalization of a
result of Bownik and Rzeszotnik [18, Theorem 4.2].

Theorem 3.1 Suppose that � = {ψ1, . . . ,ψL} ⊂ L2(RN) is a rationally dilated
semi-orthogonal wavelet such that its space of negative dilates V (�) is Z

N -shift
invariant. Then,

σV (�)(ξ) =
L∑

�=1

∞∑

j=1

|ψ̂�((Aᵀ)j ξ)|2. (3.1)

In the proof of Theorem 3.1 we will need the following elementary result about
rational lattices.

Lemma 3.2 Suppose that � is a rational lattice, i.e., � = PZ
N for some invertible

P ∈ MN(Q). Then, we have the isomorphism

(ZN + �)/Z
N � �/(ZN ∩ �). (3.2)

Moreover,

|ZN/(ZN ∩ �)| = |detP | · |�/(ZN ∩ �)|. (3.3)
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Proof To see (3.2) one can use the second isomorphism theorem for groups, whereas
(3.3) follows from the elementary properties of the volume d(�) = |detP | of a lattice
� = PZ

N . In particular, if �′ ⊂ � are two lattices, then the quotient group �/�′ has
the order d(�′)/d(�), see [23]. �

Proof of Theorem 3.1 Using Lemmas 2.3 and 2.11, we can compute the spectral
function as

σZ
N

V (�)(ξ) = 1

|RN/ZN |
L∑

�=1

∑

j<0

∑

θ∈�j

1

|ZN/(ZN ∩ A−jZN)| |
̂(TθDjψ�)(ξ)|2, (3.4)

where �j is the same as in Definition 2.9. Lemma 3.2 yields

|(ZN + A−j
Z

N)/Z
N | = |A−j

Z
N/(ZN ∩A−j

Z
N)|,

|ZN/(ZN ∩A−j
Z

N)| = |detA|−j |A−j
Z

N/(ZN ∩A−j
Z

N)|.
Hence, we conclude that |�j | = |ZN/(ZN ∩A−j

Z
N)| · |detA|j . This, along with the

fact that

| ̂(TθDjψ�)(ξ)| = |detA|−j/2|ψ̂�((Aᵀ)−j ξ)|
allows for the simplification

1

|ZN/(ZN ∩ A−jZN)|
∑

θ∈�j

| ̂(TθDjψ�)(ξ)|2

= |�j |
|ZN/(ZN ∩A−jZN)‖detA|j |ψ̂

�((Aᵀ)−j ξ)|2

= |ψ̂�((Aᵀ)−j ξ)|2.
Therefore, (3.4) becomes

σV (�)(ξ) =
L∑

�=1

∑

j<0

|ψ̂�((Aᵀ)−j (ξ))|2 =
L∑

�=1

∞∑

j=1

|ψ̂�((Aᵀ)j (ξ))|2.
�

Theorem 3.1 and Lemma 2.3 could be used to extend the definition of the wavelet
dimension function to the case of rational dilations. Namely, if � is a semi-orthogonal
wavelet as in Theorem 3.1, then we could use Theorem 2.6(i) to define the wavelet
dimension function as the dimension function of Z

N -SI space V (�),

dimZ
N

V (�)(ξ) =
∑

k∈ZN

σV (�)(ξ + k) =
L∑

�=1

∞∑

j=1

∑

k∈ZN

|ψ̂�((Aᵀ)j (ξ + k))|2. (3.5)

Note that (3.5) is exactly the same formula (1.1) as for the well-studied wavelet di-
mension function for integer dilations. Hence, one might think that the rationally
dilated dimension function will enjoy similar properties as its integer dilated coun-
terpart. As we will see later, this is not the case. In fact, it turns out that (3.5) is not
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the right way of extending the wavelet dimension function to the rational case despite
that it coincides nicely with the usual formula in the integer case. Indeed, in Section
6 we will define the wavelet dimension function in such a way that it is concurrently:

• an extension of the usual integer dilated dimension function, and
• an encompassment of more information about a wavelet � than (3.5).

The reason behind its existence is a somewhat unexpected gain of the shift-invariance
of GMRAs associated with rationally dilated wavelets which will be explored in the
next section. Consequently, the rationally dilated wavelet dimension function will be
defined in terms of a SI space dimension function using the greater shift-invariance.

4 GMRAs and Wavelets

The following result is quite surprising, since it shows the self-improving property
of GMRAs associated with rationally dilated wavelets. Namely, the core space V0
of such a GMRA enjoys more shift-invariance than the ordinary Z

N -SI. We should
mention here that the study of integer dilated wavelets with improved shift-invariance
goes back to Weber [37], see also [9, 34]. Note that in the case when A is integer-
valued, no such improvement exists. This might explain why this rather elementary
phenomenon remained unnoticed until this work.

Lemma 4.1 Suppose a GMRA {Vj }j∈Z associated with an arbitrary real dilation A

gives rise to a semi-orthogonal wavelet � , i.e., V0 is the space of negative dilates
V (�) of � . Then, V0 is �-SI, where � = AZ

N + Z
N .

One should note that for a general dilation A ∈ MN(R), � = AZ
N +Z

N need not
be a lattice, that is a discrete subgroup of R

N . In this case, Lemma 4.1 says that V0 is
invariant under translations Ty by y ∈ �, and hence also by y ∈ �.

Proof Since V0 is Z
N -SI, the space V1 is A−1

Z
N -SI. Since

V1 = V0 ⊕W0, where W0 = spanE(�), (4.1)

V1 is Z
N -SI as well. Hence, V1 is (A−1

Z
N + Z

N)-SI. Consequently, V0 is (AZ
N +

Z
N)-SI. �

Lemma 4.1 enables us to show the following extension of a theorem due to
Baggett, Medina, and Merrill [5] to the case of rational dilations.

Theorem 4.2 Suppose that a dilation A ∈ MN(Q) and � is a semi-orthogonal
wavelet with L generators associated with a GMRA {Vj }j∈Z. Then,

V0 is �-SI, where � = AZ
N + Z

N, (4.2)

and its �-dimension function D(ξ) = dim�
V0

(ξ) satisfies

D(ξ) < ∞ for a.e. ξ, (4.3)



596 J Fourier Anal Appl (2009) 15: 585–615

and the consistency inequality

∑

ω∈[(Aᵀ)−1ZN/�∗]
D(ξ + ω) ≤ L+

∑

ω′∈[ZN/�∗]
D(Aᵀξ + ω′) for a.e. ξ. (4.4)

In addition, if � is a wavelet, then we have equality in (4.4), i.e.,

∑

ω∈[(Aᵀ)−1ZN/�∗]
D(ξ +ω) = L+

∑

ω′∈[ZN/�∗]
D(Aᵀξ + ω′) for a.e. ξ. (4.5)

Conversely, if a GMRA {Vj }j∈Z satisfies (4.2), (4.3), and (4.4), then there exists a
semi-orthogonal wavelet � (with at most L generators) associated with this GMRA.
In addition, if (4.5) holds, then � is a wavelet with L generators.

Proof Suppose that � is semi-orthogonal wavelet with L generators which is as-
sociated with {Vj }j∈Z. Lemma 4.1 guarantees that V0 is �-SI. On the other hand,
Theorem 3.1 gives an explicit formula for the spectral function of V0. Thus, Theo-
rem 2.6(i) yields

dim�
V0

(ξ) =
∑

k∈�∗
σV0(ξ + k). (4.6)

Consequently,

∫

RN/�∗
dim�

V0
(ξ) =

∫

RN

σV0(ξ)dξ =
L∑

�=1

∞∑

j=1

∫

RN

|ψ̂�((Aᵀ)j ξ)|2dξ

=
L∑

�=1

∞∑

j=1

‖ψ�‖2|detA|j ≤ L/(|detA| − 1) < ∞.

Hence, (4.3) holds.
By (4.1) and Theorem 2.6(h) we have

σV0(ξ) + σW0(ξ) = σV1(ξ) = σD(V0)(ξ) = σV0((A
ᵀ)−1ξ).

In particular,

∑

k∈ZN

σV0(ξ + k) +
∑

k∈ZN

σW0(ξ + k) =
∑

k∈ZN

σV0((A
ᵀ)−1(ξ + k)). (4.7)

It remains to describe the quantities appearing in (4.7) in terms of D(ξ) = dim�
V0

(ξ).

By the isomorphism Z
N � (ZN/�∗) × �∗,

∑

k∈ZN

σV0(ξ + k) =
∑

ω′∈[ZN/�∗]

∑

γ ∗∈�∗
σV0(ξ +γ ∗ +ω′) =

∑

ω′∈[ZN/�∗]
D(ξ +ω′). (4.8)
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Since EZ
N
(�) forms a Parseval frame for W0, and � has L generators, we have

∑

k∈ZN

σW0(ξ + k) = dimZ
N

W0
(ξ) ≤ L. (4.9)

Finally, the isomorphism (Aᵀ)−1
Z

N � ((Aᵀ)−1
Z

N/�∗) × �∗ yields
∑

k∈ZN

σV0((A
ᵀ)−1(ξ + k)) =

∑

ω∈[(Aᵀ)−1ZN/�∗]

∑

γ ∗∈�∗
σV0((A

ᵀ)−1ξ + γ ∗ +ω)

=
∑

ω∈[(Aᵀ)−1ZN/�∗]
D((Aᵀ)−1ξ +ω). (4.10)

Combining (4.7)–(4.10) yields
∑

ω′∈[ZN/�∗]
D(ξ +ω′) + L ≥

∑

ω∈[(Aᵀ)−1ZN/�∗]
D((Aᵀ)−1ξ +ω),

which is equivalent with (4.4). In addition, if � is a wavelet, then E(�) is a ortho-
normal basis for W0. Since � has L generators, we have

∑

k∈ZN

σW0(ξ + k) = dimZ
N

W0
(ξ) = L. (4.11)

Consequently, we obtain (4.5).
Conversely, let {Vj }j∈Z be a GMRA satisfying (4.2), (4.3), and (4.4). Define the

space W0 = V1 � V0. Since V0 is �-SI, V1 = D(V0) is A−1
Z

N -SI, and hence both
spaces are Z

N -SI. Thus, W0 must be Z
N -SI as well. The fact that V1 = V0 ⊕ W0

together with (4.7), (4.8), and (4.10) implies that

dimZ
N

W0
(ξ) =

∑

k∈ZN

σW0(ξ + k)

=
∑

ω∈[(Aᵀ)−1ZN/�∗]
D((Aᵀ)−1ξ +ω)

−
∑

ω′∈[ZN/�∗]
D(ξ +ω′) ≤ L. (4.12)

The last inequality and the fact that we can take the difference above follow from
(4.3) and the consistency inequality (4.4). By [12, Theorem 3.3], the space W0 has a
set � of at most L generators, such that EZ

N
(�) is a Parseval frame for W0. Since

V0 =
⊕

j≤−1

Dj(W0),

we infer that � is a semi-orthogonal wavelet associated with the GMRA {Vj }j∈Z. In

addition, if (4.5) holds, then we have equality in (4.12). Thus, EZ
N
(�) is an ortho-

normal basis of W0. Consequently, � is a wavelet associated with {Vj }j∈Z. �
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Note that Theorem 4.2 only applies to rationally dilated wavelets associated with
a GMRA. Thus, the following fundamental question remains open.

Question 1 Is every rationally dilated wavelet � necessarily associated with a
GMRA?

In the case when � is integer dilated, the classical theory says that the answer is
indeed positive. In general, this problem remains open and we shall only give a partial
answer to it.

One may think of Question 1 as an analogue of the Baggett’s problem for Parseval
wavelets. For the background and importance of this problem we refer the reader
to [17, 20]. Here, we shall only say that this problem asks whether every (integer
dilated) Parseval wavelet � must necessarily come from a GMRA. This problem can
be reformulated in terms of the space V (�) of negative dilates of � . One can show
that the spaces Vj = Dj(V (�)) satisfy all properties of a GMRA with a hypothetical
exception of the intersection property (M2).

In our setting of rationally dilated wavelets, we face an analogous problem as for
integer dilated Parseval wavelets. Indeed, if � is a wavelet with respect to any real
dilation A, then the spaces Vj = Dj(V (�)) satisfy all properties of a GMRA with
a possible exception of the SI property (M5). In the case A is not a rational dilation,
the property (M5) may indeed fail. For an example of such wavelet associated with
a dilation

√
2 in L2(R), see [20]. However, if A is a rational dilation, then no such

counterexample is known to exist. In fact, we have only a positive evidence about
validity of (M5). Finally, we should mention that if � is a rationally dilated Parse-
val wavelet, then we encounter an accumulation of Baggett’s problem together with
Question 1. That is, both (M2) and (M5) are not certain to hold.

While Question 1 remains open, we will give a sufficient condition on a real dila-
tion A, which guarantees that any wavelet (�,A) is associated with a GMRA. To do
this we need an elementary lemma.

Lemma 4.3 Suppose � = {ψ1, . . . ,ψL} ⊂ L2(RN) is a wavelet associated with a
dilation A ∈ MN(R). Then, its space of negative dilates V (�) is shift invariant if and
only if

Tkψ
�
h,m ⊥ ψ�′

j,n (4.13)

for all h < 0, j ≥ 0, k,m,n ∈ Z
N , �, �′ = 1, . . . ,L.

Proof Suppose that (4.13) holds. Then we can go one step further and say that for all
h < 0, j ≥ 0, k1, k2,m,n ∈ Z

N , �, �′ = 1, . . . ,L, we have

〈Tk1ψ
�
h,m,Tk2ψ

�′
j,n〉 = 〈Tk1−k2ψ

�
h,m,ψ�′

j,n〉 = 0.

Hence, the SI spaces

W1 = span {Tkψ
�
j,n : j < 0, k, n ∈ Z

N, � = 1, . . . ,L},
W2 = span {Tkψ

�
j,n : j ≥ 0, k, n ∈ Z

N, � = 1, . . . ,L}
are orthogonal W1 ⊥ W2.
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Recall that V (�) = span {ψ�
j,n : j < 0, n ∈ Z

N, � = 1, . . . ,L} and, hence,

(V (�))⊥ = span {ψ�
j,n : j ≥ 0, n ∈ Z

N, � = 1, . . . ,L}. Clearly, we have V (�) ⊂ W1

and (V (�))⊥ ⊂ W2. Furthermore, since V (�)⊕ (V (�))⊥ = L2(RN) and W1 ⊥ W2,
we must have W1 = V (�) and W2 = (V (�))⊥. Since W1 is, by definition, shift in-
variant, then so is V (�).

Conversely, if V (�) is SI, then so is (V (�))⊥. Thus, W1 = V (�) and W2 =
(V (�))⊥, and W1 ⊥ W2. This implies (4.13). �

Theorem 4.4 Suppose � = {ψ1, . . . ,ψL} ⊂ L2(RN) is a wavelet associated with a
dilation A ∈ MN(R). Then, V (�) is shift invariant if for all h < 0 and j > 0 we have

Z
N ⊂ Ah

Z
N +Aj

Z
N. (4.14)

Proof Take any h < 0, j ≥ 0, k,m,n ∈ Z
N , �, �′ = 1, . . . ,L. If j = 0, then

〈Tkψ
�
h,m,ψ�′

j,n〉 = 〈Tkψ
�
h,m,Tnψ

�′ 〉 = 〈ψ�
h,m,Tn−kψ

�′ 〉 = 〈ψ�
h,m,ψ�′

j,n−k〉 = 0.

If, on the other hand, j > 0 then we choose γ,β ∈ Z
N such that k = A−hγ +A−j β .

We are guaranteed the existence of such γ,β ∈ Z
N by (4.14). Then,

〈Tkψ
�
h,m,ψ�′

j,n〉 = 〈TA−hγ+A−j βDhTmψ�,DjTnψ
�′ 〉

= 〈DhTm+γ ψ�,DjTn−βψ�′ 〉 = 〈ψ�
h,m+γ ,ψ�′

j,n−β〉 = 0.

Therefore, V (�) is shift invariant by Lemma 4.3. �

As an illustration we demonstrate how Theorem 4.4 can provide for the shift in-
variance of wavelets associated with certain classes of dilations. For instance, it is
well known that the space of negative dilates of any wavelet associated with an in-
teger dilation is shift invariant. Theorem 4.4 provides a very quick proof of this fact
by simply noting that if A ∈ MN(Z), then Z

N ⊂ Ah
Z

N for all h < 0. Slightly more
interesting, however, is the case of diagonal rational dilations as we see below.

Proposition 4.5 Suppose � = {ψ1, . . . ,ψL} ⊂ L2(RN) is a wavelet associated with
a dilation A ∈ MN(Q). If A is diagonal, then V (�) is shift invariant.

Proof Suppose A = diag(
p1
q1

, . . . ,
pN

qN
) where pi, qi ∈ Z with gcd(pi, qi) = 1 for each

i = 1, . . . ,N . Given any k = (k1, . . . , kN) ∈ Z
N and any h < 0 and j > 0, choose

ω = (ω1, . . . ,ωN) ∈ Z
N satisfying the two following conditions for each i =

1, . . . ,N ,

ωi ≡ −ki (mod p−h
i ),

ωi ≡ 0 (mod q
j
i ).

Then for each i = 1, . . . ,N , we have (
pi

qi
)h(ωi + ki) ∈ Z and (

pi

qi
)jωi ∈ Z. Hence,

Ah(ω + k) ∈ Z
N and Ajω ∈ Z

N . Thus, for each m,n ∈ Z
N and �, �′ = 1, . . . ,L we
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have

〈Tkψ
�
h,m,ψ�′

j,n〉 = 〈TkDhTmψ�,DjTnψ
�′ 〉 = 〈Tω+kDhTmψ�,TωDjTnψ

�′ 〉
= 〈DhTAh(ω+k)+mψ�,DjTAj ω+nψ

�′ 〉 = 〈ψ�
h,Ah(ω+k)+m

,ψ�′
j,Aj ω+n

〉
= 0.

Therefore, V (�) is shift invariant by Lemma 4.3. �

It is important to understand, however, that Theorem 4.4 does not guarantee the
shift invariance of V (�) for every rationally dilated wavelet � . The following simple
example was communicated to us by Daniel Chan of the University of New South
Wales, Australia.

Example 4.6 If A = ( 1 2
3/2 −1

)
, then A is an expansive matrix that does not satisfy

(4.14) for h =−1 and j = 1.

Proof Note that A is expansive, since A2 = 4Id . We claim that (4.14) fails for h =
−1 and j = 1. Indeed, A−1 = 1

4A implies that

A−1
Z

2 +AZ
2 = 1

4
AZ

2 +AZ
2 = 1

4
AZ

2.

Assuming that Z
2 ⊂ 1

4AZ
2, we have AZ

2 ⊂ 1
4A2

Z
2 = Z

2, which is a contradic-
tion. �

5 Dimension Function of GMRAs

The goal of this section is to derive the properties satisfied by a dimension function
of any rationally dilated GMRA.

Theorem 5.1 Suppose that {Vj }j∈Z is a GMRA associated with the dilation A ∈
MN(Q). Then, its dimension function D(ξ) = dimZ

N

V0
(ξ) satisfies the following four

conditions:

(D1) D : RN → N ∪ {0,∞} is a measurable Z
N -periodic function,

(D2) D satisfies the consistency inequality

∑

ω∈[(Aᵀ)−1�̃/ZN ]
D(ξ +ω) ≥

∑

ω′∈[�̃/ZN ]
D(Aᵀξ + ω′) for a.e. ξ ∈ R

N (5.1)

where �̃ = Z
N +Aᵀ

Z
N ,

(D3)
∑

k∈ZN 1�(ξ + k) ≥ D(ξ) for a.e. ξ ∈ R
N , where

� = {ξ ∈ R
N : D((Aᵀ)−j ξ

)≥ 1 for all j ∈ N ∪ {0}}.
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(D4) lim infn→∞ D((Aᵀ)−nξ) ≥ 1 for a.e. ξ ∈ R
N .

Proof Clearly, the dimension function of any Z
N -SI space V0 must satisfy (D1).

To show (D2) observe that the space V1 is A−1
Z

N -SI. Hence, the spaces V0 and
V1 are SI with respect to the common lattice � = Z

N ∩ (A−1
Z

N). Note that �∗ =
Z

N + Aᵀ(ZN) = �̃. The inclusion, V0 ⊂ V1 implies that

dim�
V1

(ξ) ≥ dim�
V0

(ξ) for a.e. ξ.

By Theorem 2.6 parts (h) and (i)

dim�
V1

(ξ) =
∑

γ∈�̃

σV1(ξ + γ ) =
∑

γ∈�̃

σV0((A
ᵀ)−1ξ + (Aᵀ)−1γ )

=
∑

ω∈[(Aᵀ)−1�̃/ZN ]

∑

k∈ZN

σV0((A
ᵀ)−1ξ + k +ω)

=
∑

ω∈[(Aᵀ)−1�̃/ZN ]
D((Aᵀ)−1ξ + ω).

On the other hand, Lemma 2.5 implies that

dim�
V0

(ξ) =
∑

ω′∈[�̃/ZN ]
D(ξ +ω′).

Combining the last three results yields (D2).
To show the remaining two properties, note that V0 ⊂ V1 implies that

σV0(ξ) ≤ σV1(ξ) = σV0((A
ᵀ)−1ξ), for a.e. ξ (5.2)

by Theorem 2.6(d) and (h). Thus, for a.e. ξ , σV0(ξ) �= 0 implies σV0((A
ᵀ)−j ξ) �= 0

for all j ∈ N ∪ {0}. Moreover, Theorem 2.6(i) yields

σV0(ξ) �= 0 �⇒ D(ξ) = dimV0(ξ) ≥ 1.

Hence,

suppσV0 = {ξ ∈ R
N : σV0((A

ᵀ)−j ξ) �= 0 for all j ∈ N ∪ {0}}⊂ �. (5.3)

Therefore, by Theorem 2.6(a) and (i),

∑

k∈ZN

1�(ξ + k) ≥
∑

k∈ZN

σV0(ξ + k) = D(ξ),

which shows (D3).
Finally, to see (D4) let

G =
{
ξ ∈ R

N : lim inf
n→∞ D((Aᵀ)−nξ) ≥ 1

}
.
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By (5.3) we have that E = suppσV0 ⊂ G. Since Aᵀ(G) = G, we have E∞ =⋃
j∈Z

(Aᵀ)j (E) ⊂ G. On the other hand, Theorem 2.6(g) implies that V0 ⊂ Ľ2(E).

Hence, each Vj ⊂ Ľ2(E∞). By property (M3) of a GMRA this implies that E∞ =
R

N modulo null sets. This shows G = R
N , and completes the proof of Theo-

rem 5.1. �

In the case when the dilation A ∈ MN(Z), the consistency inequality (D2) reduces
to

∑

ω∈[(Aᵀ)−1ZN/ZN ]
D(ξ +ω) ≥ D(Aᵀξ) for a.e. ξ ∈ R

N. (5.4)

Hence, Theorem 5.1 is a generalization of a characterization of GMRA dimension
functions due to Baggett and Merrill [4] and Bownik and Rzeszotnik [18, Theo-
rem 3.6]. That is, a function D is a dimension function of some integer dilated GMRA
if and only if D satisfies (D1)–(D4). However, Theorem 5.1 covers only the necessity
of conditions (D1)–(D4). The sufficiency of (D1)–(D4) for rational dilations remains
an open problem.

To establish the sufficiency of (D1)–(D4) for integer dilations, Bownik, Rzes-
zotnik, and Speegle [18, 22] have devised the following algorithm. A similar al-
gorithm was given by Baggett and Merrill in [4]. Given any subset E ⊂ R

N , let
EP =∑

k∈ZN (E + k). Let τ : R
N → [−1/2,1/2)N be the translation projection,

τ(ξ) = ξ + k, where k ∈ Z
N is the unique element such that ξ + k ∈ [−1/2,1/2)N .

Finally, given any measurable subset Ẽ ⊂ R
N , let E ⊂ Ẽ be any measurable set such

that τ(E) = τ(Ẽ) and τ |E is injective.

Algorithm 1 Assume that D satisfies the conditions (D1)–(D4). For m ∈ N, let

Am = {ξ ∈ [−1/2,1/2)N : D(ξ) ≥ m}.
(1) Let Q be any measurable subset of R

N satisfying the following four properties:
(i) Q ⊂ AᵀQ,

(ii) limn→∞ 1Q((Aᵀ)−nξ) = 1 for a.e. ξ ∈ R
N ,

(iii) τ |Q is injective,
(iv) D(ξ) ≥ 1 for all ξ ∈ Q.

(2) Suppose that Si ’s are already defined for all i = 1, . . . ,m−1 and some m ∈ N. In
the case when m = 1 (meaning that none of Si ’s were defined yet) let F̃m,1 = Q.
Otherwise, let F̃m,1 = (AᵀPm−1 \ Pm−1) ∩AP

m, where Pm−1 =⋃m−1
i=1 Si .

(3) For each n ∈ N, define iteratively F̃m,n+1 = (AᵀFm,n \⋃n
i=1 FP

m,i) ∩ AP
m. Then,

let Sm =⋃∞
n=1 Fm,n.

(4) Finally, let S =⋃m∈N
Sm.

Then, we have the following result due to [18, 22].

Theorem 5.2 Assume that A ∈ MN(Z), and a function D, which is not ∞ constantly
a.e., satisfies the conditions (D1)–(D4). Let S be the result of the above Algorithm.
Define the spaces Vj = Ľ2((Aᵀ)j S) for j ∈ Z. Then, {Vj }j∈Z is a GMRA such that

its dimension function dimZ
N

V0
≡ D.
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In particular, if D satisfies the consistency equation (1.2), then the Algorithm pro-
duces a generalized scaling set S. Thus, defining W to be AᵀS \ S gives a wavelet
set associated with A. Nevertheless, it turns out that Theorem 5.2 is false for rational
dilations A. For a counterexample see Sect. 8.

6 Dimension Function of Wavelets

The goal of this section is to establish the formula for the dimension function of ra-
tionally dilated wavelets. Moreover, we derive the necessary properties which every
wavelet dimension function must satisfy. Theorem 4.2 suggests the following defini-
tion.

Definition 6.1 Suppose that � = {ψ1, . . . ,ψL} ⊂ L2(RN) is a semi-orthogonal
wavelet associated with a GMRA and the dilation A ∈ MN(Q). Define the wavelet
dimension of � as

D�(ξ) :=
L∑

�=1

∞∑

j=1

∑

k∈�∗
|ψ̂�((Aᵀ)j (ξ + k))|2, (6.1)

where �∗ = (Aᵀ)−1
Z

N ∩ Z
N is a dual lattice to � = AZ

N + Z
N .

Theorem 6.2 Suppose that � = {ψ1, . . . ,ψL} ⊂ L2(RN) is a semi-orthogonal
wavelet associated with a GMRA {Vj }j∈Z. Then, its dimension function D� satis-
fies the following five conditions:

(W1) D� : RN → N ∪ {0} is a measurable �∗-periodic function,
(W2) D� satisfies the consistency inequality (equality if � is a wavelet)

∑

ω∈[(Aᵀ)−1ZN/�∗]
D�(ξ +ω) ≤ L +

∑

ω′∈[ZN/�∗]
D�(Aᵀξ +ω′) for a.e. ξ.

(6.2)
(W3)

∑
k∈�∗ 1�(ξ + k) ≥ D�(ξ) for a.e. ξ ∈ R

N , where

� = {ξ ∈ R
N : D�

(
(Aᵀ)−j ξ

)≥ 1 for all j ∈ N ∪ {0}}.

(W4) lim infn→∞ D�((Aᵀ)−nξ) ≥ 1 for a.e. ξ ∈ R
N ,

(W5)
∫

RN/�∗ D�(ξ)dξ ≤ L
|detA|−1 (with equality if � is a wavelet).

Proof By Theorem 4.2, the core space V0 is �-SI. Moreover, Theorem 3.1 and (4.6)
yields

dim�
V0

(ξ) =
∑

k∈�∗
σ�

V0
(ξ + k) =

L∑

�=1

∞∑

j=1

∑

k∈�∗
|ψ̂�((Aᵀ)j (ξ + k))|2 = D�(ξ). (6.3)

Thus, (4.3) implies that D�(ξ) takes values in N∪ {0} for a.e. ξ . Hence, (W1) holds.
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The consistency inequality (W2) can be verified directly from the definition (6.1).
However, it follows immediately from (4.4), (4.5), and (6.3).

To verify (W3), we simply repeat the proof of (D3) in Theorem 5.1. Indeed, (5.3)
implies that σV0(ξ) ≤ 1�(ξ) for a.e. ξ ∈ R

N . Therefore, by Theorem 2.6(i),

∑

k∈�∗
1�(ξ + k) ≥

∑

k∈�∗
σ�

V0
(ξ + k) = D�(ξ),

which shows (W3).
Condition (W4) follows from the fact that for each n ∈ N and ξ ∈ R

N we have

D�

(
(Aᵀ)−nξ

)≥
L∑

�=1

∞∑

j=1

∣∣ψ̂�
(
(Aᵀ)j−nξ

)∣∣2 =
L∑

�=1

∞∑

j=1−n

∣∣ψ̂�
(
(Aᵀ)j ξ

)∣∣2,

and by the Calderón condition, see [14],

lim inf
n→∞ D�

(
(Aᵀ)−nξ

)≥
L∑

�=1

∑

j∈Z

∣∣ψ̂�
(
(Aᵀ)j ξ

)∣∣2 = 1 for a.e. ξ.

Finally, (W5) is verified by the argument

∫

RN/�∗
D�(ξ)dξ =

L∑

�=1

∞∑

j=1

∑

k∈ZN

∫

RN/�∗

∣∣ψ̂�
(
(Aᵀ)j (ξ + k)

)∣∣2dξ

=
L∑

�=1

∞∑

j=1

∫

RN

∣∣ψ̂�
(
(Aᵀ)j ξ

)∣∣2dξ =
∞∑

j=1

|detA|−j ·
L∑

�=1

‖ψ̂�‖2

≤ L

|detA| − 1
.

In the case when � is a wavelet, the last step is an equality which proves (W5). �

As an application of Theorem 6.2, we will prove a generalization of Auscher’s
result on regular wavelets [2]. We say that a function ψ ∈ L2(RN) satisfies the regu-
larity condition (�0), see [26, Sect. 7.6], if there exist C and δ > 0, such that

|ψ̂ | is continuous on R
N and

|ψ̂(ξ)| ≤ C|ξ |−N/2−δ for all ξ ∈ R
N.

(6.4)

Lemma 6.3 Suppose that � = {ψ1, . . . ,ψL} ⊂ L2(RN) satisfies (�0). Then D� is
a �∗-periodic function which is continuous on R

N \ �∗.

Proof The fact that A is expansive implies that there exists λ > 1 such that
|Ajx| ≥ cλj |x| for all j ∈ N. Using this and (6.4) one can show that s(ξ) =∑L

�=1
∑∞

j=1 |ψ̂�((Aᵀ)j ξ)|2 is continuous except possibly at ξ = 0 and s(ξ) ≤
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C|ξ |−N−2δ . Therefore, its �∗-periodization
∑

k∈�∗ s(ξ + k) is continuous on R
N

except possibly on �∗. �

Theorem 6.4 Suppose that � = {ψ1, . . . ,ψL} ⊂ L2(RN) is a wavelet associated
with a GMRA {Vj }j∈Z. If � satisfies the regularity (�0), then {Vj }j∈Z is an MRA
(possibly of higher multiplicity).

Proof By Lemma 6.3, the dimension function D� is continuous except possibly at
some discrete number of points. By Theorem 6.2, D� is integer-valued, and hence
D�(ξ) = m for some m ∈ N. By Lemma 2.5,

dimZ
N

V0
(ξ) =

∑

ω∈[ZN/�∗]
dim�

V0
(ξ +ω) =

∑

ω∈[ZN/�∗]
D�(ξ + ω) = m|ZN/�∗|.

Hence, {Vj }j∈Z is an MRA of multiplicity m|ZN/�∗|. �

Note that Theorem 6.4 imposes a restriction on the number of generators that
(�0)-regular wavelet � = {ψ1, . . . ,ψL} can have. Indeed, by the property (W5),

∫

RN/�∗
D�(ξ)dξ = m|ZN/�∗| = L

|detA| − 1
. (6.5)

Thus, the number L ∈ N of generators of � must be an integer multiple of
|ZN/�∗|(|detA| − 1). Hence, we obtain the following corollary which extends one
dimensional result of Bownik and Speegle [21, Theorem 4.3].

Corollary 6.5 Suppose that A is a diagonal dilation as in Proposition 4.5. Then, the
minimal number of generators of (�0)-regular wavelet � = {ψ1, . . . ,ψL} is

Lmin =
N∏

j=1

|pj | −
N∏

j=1

|qj |.

Proof If A is as in Proposition 4.5, then �∗ = (Aᵀ)−1
Z

N ∩ Z
N = q1Z × · · · × qNZ.

Since |detA| =∏N
j=1 |pj/qj |, (6.5) immediately yields that L must be an integer

multiple of Lmin. �

7 Characterization of 3 Interval Wavelet Sets

In this section we characterize all possible wavelet sets consisting of 3 intervals for all
dilation factors a > 1. While such characterization is of interest by itself, it also leads
to a large class of examples of dimension functions. This direction will be explored
in the next section.
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7.1 Two Interval Wavelet Sets

As a preliminary, we first characterize 2 interval wavelet sets. We say that a mea-
surable set W ⊂ R is a wavelet set associated with the dilation a > 1 if and only
if

∑

k∈Z

1W(ξ + k) = 1 for a.e. ξ ∈ R, (7.1)

∑

j∈Z

1W(aj ξ) = 1 for a.e.ξ ∈ R. (7.2)

Notice that (7.2) implies that W cannot contain any intervals of positive length
containing 0, even as an endpoint. Indeed, if I ⊂ W is an interval with 0 ∈ I ,
then for every ξ > 0, or ξ < 0, we would have ξ ∈ aj I for infinitely many j ∈ Z

and, hence,
∑

j∈Z
1W(aj ξ) = ∞. Furthermore, it also implies that W must have

at least one negative component of positive measure and at least one positive com-
ponent of positive measure. If, for instance, |W ∩ (−∞,0)| = 0, then we would
have

∑
j∈Z

1W(aj ξ) = 0 for all ξ < 0. Thus, if we wish to construct a wavelet
set W that is composed of exactly two intervals, we must have W = [b, c] ∪ [d, e]
with b < c < 0 < d < e. Clearly, (7.2) is equivalent to [b, c] and [d, e] partitioning
(−∞,0) and (0,∞), respectively, by dilations (modulo null sets) as shown in Fig. 1.
Note that in Figs. 1 & 2 we have I1 = [b, c] and I2 = [d, e].

On the other hand, (7.1) is equivalent to the fact that d is an integer shift of c and
the lengths of the two intervals sum to 1, as shown in Fig. 2.

In other words, (7.2) is equivalent to b = ac and e = ad , while (7.1) is equivalent
to (a − 1)(d − c) = 1 and d = c + n for some n ∈ N with c + n > 0. Solving for a

yields a = n+1
n

. Hence, we obtain the following theorem.

Fig. 1 Dilation partition condition for two intervals

Fig. 2 Translation partition condition for two intervals
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Theorem 7.1 There exist two interval wavelet sets corresponding to the dilation a if
and only if a = n+1

n
for some n ∈ N. Furthermore, if a = n+1

n
for some n ∈ N, then

W is a two interval wavelet set corresponding to a if and only if:

W = [ax, x] ∪
[
x + 1

a − 1
, ax + a

a − 1

]

for some x ∈ ( −1
a−1 ,0).

7.2 Construction of Three Interval Wavelet Sets

In [15] one can find an example of Speegle which provides a formula for a family of
wavelet sets in R consisting of three intervals and depending on the dilation a > 1
(see [15], Remark 3). Our goal is to extend this example to a more general form,
characterizing all wavelet sets in R consisting of three intervals.

We consider W = [b, c]∪[d, e]∪[f,g] where b < c < 0 < d < e < f < g. This is
sufficient since W satisfies (7.1) and (7.2) if and only if −W does. Notice that in the
case of three intervals (7.2) implies a slightly more complicated relationship. This
condition is satisfied if and only if [b, c] partitions (−∞,0) by dilations (modulo
null sets) and [d, e] and [f,g] partition (0,∞) by dilations (modulo null sets) in an
interlacing pattern as shown in Fig. 3. Note that in Figs. 3–5 we have I1 = [b, c],
I2 = [d, e], and I3 = [f,g]. The number p ∈ N is called an interlacing parameter.

On the other hand, the relationship implied by (7.1) is similar to the two interval
case, with the exception that there are now two ways in which it can be satisfied.
These are shown in Figs. 4 and 5. Initially we will concern ourselves only with three
interval wavelet sets that satisfy the translation partition condition as shown in Fig. 4.
Let us construct all such wavelet sets. Notice that each one represents a solution to

Fig. 3 Dilation partition condition for three intervals

Fig. 4 Translation partition condition for three intervals (Option 1)
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Fig. 5 Translation partition condition for three intervals (Option 2)

the following system of equations for some set of values m,n,p ∈ N.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m = g − d

n = e − b

1 = c − b + e − d + g − f

0 =−b + ac

0 = ape − f

0 = ap+1d − g

(7.3)

For each fixed set of values m,n,p ∈ N, (7.3) has a solution given by

[b, c] =
[
a
(
m − n(ap − 1) − 1

)

ap+1 − 1
,
m − n(ap − 1) − 1

ap+1 − 1

]
,

[d, e] =
[

m

ap+1 − 1
,
a(m − 1)+ n(a − 1)

ap+1 − 1

]
, (7.4)

[f,g] =
[
ap
(
a(m − 1)+ n(a − 1)

)

ap+1 − 1
,

ap+1m

ap+1 − 1

]
.

Furthermore, the conditions b < c < 0 < d < e < f < g impose the added condi-
tions on m,n:

0 < n <
a

a − 1
, (7.5)

a

a − 1
− n < m < n(ap − 1) + 1. (7.6)

Next we will investigate three interval wavelet sets that satisfy the translation par-
tition condition as shown in Fig. 5. Each of these sets represents a solution to the
following system of equations for some set of values m,n,p ∈ N.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m = f − e

n = d − c

1 = c − b + e − d + g − f

0 =−b + ac

0 = ape − f

0 = ap+1d − g

(7.7)
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For each fixed set of values m,n,p ∈ N, (7.7) has a solution given by

[b, c] =
[
m − n(ap+1 − 1) + 1

ap − 1
,
m − n(ap+1 − 1) + 1

a(ap − 1)

]
,

[d, e] =
[
m − n(a − 1)+ 1

a(ap − 1)
,

m

ap − 1

]
, (7.8)

[f,g] =
[

apm

ap − 1
,
ap
(
m − n(a − 1) + 1

)

ap − 1

]

and the corresponding conditions on m,n are

0 < n <
1

a − 1
, (7.9)

1

a − 1
− n < m < n(ap+1 − 1) − 1. (7.10)

We are now ready to present our main result regarding three interval wavelet sets.

Theorem 7.2 If W ⊂ R is comprised of three intervals, then W is a wavelet set if
and only if W or −W is as in (i) or (ii) below:

(i) [ a(m−n(ap−1)−1)

ap+1−1
,

m−n(ap−1)−1
ap+1−1

] ∪ [ m

ap+1−1
,

a(m−1)+n(a−1)

ap+1−1
] ∪ [ ap(a(m−1)+n(a−1))

ap+1−1
,

ap+1m

ap+1−1
] for some a > 1, p ∈ N, and (n,m) ∈ Z

2 satisfying (7.5) and (7.6).

(ii) [m−n(ap+1−1)+1
ap−1 ,

m−n(ap+1−1)+1
a(ap−1)

]∪[m−n(a−1)+1
ap−1 , m

ap−1 ]∪[ apm
ap−1 ,

ap(m−n(a−1)+1)
ap−1 ]

for some 1 < a < 2, p ∈ N, and (n,m) ∈ Z
2 satisfying (7.9) and (7.10).

Proof This is a direct consequence of the fact that W is a wavelet set if and only if
−W is a wavelet set, and the fact that the matrices

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0 0 1

−1 0 0 1 0 0

−1 1 −1 1 −1 1

−1 a 0 0 0 0

0 0 0 ap −1 0

0 0 ap+1 0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 1 0

0 −1 1 0 0 0

−1 1 −1 1 −1 1
−1 a 0 0 0 0

0 0 0 ap −1 0

0 0 ap+1 0 0 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

are non-singular for all a > 1, making the solutions to (7.3) and (7.7) unique. More-
over, the restriction 1 < a < 2 in (ii) is a consequence of feasibility regions below. �

7.3 Analysis of the Feasible Regions

In (7.5) and (7.6) we are given a feasible region for (m,n) which depends only on
the parameters a and p. We will denote this by F1(a,p). One notices that F1(a,p)

is the interior of the triangle shown in Fig. 6.
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Fig. 6 F1(a,p). Feasible region defined by (7.5) & (7.6)

Since (7.4) only gives us a wavelet set for integers n,m satisfying (7.5) and (7.6),
it is of interest to know for what values of a,p is the intersection of F1(a, b) ∩ Z

2

nonempty.
First we consider the case when a

a−1 /∈ Z. That is, a �= k+1
k

for all k ∈ N. In

this case, it is easy to see that F1(a,p) ∩ Z
2 �= ∅ for all p ∈ N. Indeed, we clearly

have � a
a−1 < a

a−1 and ∂2(1) = a
a−1 − 1 < � a

a−1 . Furthermore, ∂3(1) = 0 < � a
a−1 .

Therefore, (1, � a
a−1 ) ∈ F1(a,p) regardless of p. Note, however, that when p = 1

we have ∂1(2) − ∂3(2) = 1 in addition to ∂1(1) − ∂2(1) = 1. Thus, (1, � a
a−1 ) and

(2, � a
a−1 ) are the only points in F1(a,1).

Suppose now that a = k+1
k

for some k ∈ N and, hence, a
a−1 ∈ Z. In this case, we

have a
a−1 − 1 = ∂2(1) and a

a−1 − 1 = ∂3(2) since a
a−1 − 1 = 1

a−1 . Hence, (1, n) /∈
F1(a,1) and (2, n) /∈ F1(a,1) for any n ∈ Z. Furthermore, for all m ∈ Z with 3 ≤
m ≤ a+1 we have ∂1(m)− ∂3(m) ≤ ∂1(2)− ∂3(2) = 1 and, hence, (m,n) /∈ F1(a,1)

for any 3 ≤ m ≤ a + 1 and n ∈ Z. Therefore, F1(a,1) ∩ Z
2 = ∅. However, if p > 1

then we have ∂3(2) = 1
ap−1 < 1

a−1 = a
a−1 − 1 and so in this case we have (2, 1

a−1 ) ∈
F1(a,p).

We can summarize this discussion in the following statement:

F1(a,p) ∩ Z
2 �= ∅ ⇐⇒ 1

a − 1
/∈ N or p ≥ 2. (7.11)

On the other hand, conditions (7.9) and (7.10) give us a feasible region for (m,n)

pictured as the interior of the triangle in Fig. 7. We wish to know for what values of
a and p do we have F2(a,p) ∩ Z

2 �= ∅.
Notice that the value a = 2 plays an even more critical role this time. Indeed, if

a ≥ 2, then 1
a−1 ≤ 1 and so F2(a,p)∩Z

2 = ∅. Therefore, we can only have wavelet
sets of this type for dilations 1 < a < 2.

Let us now investigate the case p = 1 separately. Because 1
a

< 1 and the slope
of ∂3 is positive, it is clear that F2(a,1) ∩ Z

2 �= ∅ if and only if (1, n) ∈ F2(a,1)

for some n ∈ N. Since ∂1(1) − ∂3(1) = 1
a−1 − 2

a2−1
= a−1

a2−1
< 1, this can only occur
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Fig. 7 F2(a,p). Feasible region defined by (7.9) & (7.10)

for n = � 1
a−1 . Thus, we wish to characterize the values of a for which we have

2
a2−1

< � 1
a−1 < 1

a−1 . With this in mind, let n = � 1
a−1 . Notice that 2

a2−1
< n < 1

a−1

if and only if
√

1 + 2
n

< a < n+1
n

. Therefore, (1, n) ∈ F2(a,1) for some n ∈ N if

and only if
√

1 + 2
n

< a < n+1
n

, in which case we have n = � 1
a−1 . We conclude that

F2(a,1) ∩ Z
2 �= ∅ if and only if a ∈⋃n∈N

(

√
1 + 2

n
, n+1

n
).

The case p ≥ 2 is most efficiently handled by splitting into two subcases: 1 < a ≤
3
2 and 3

2 < a < 2. We deal with the second of these cases first since it is by far the
easiest. Notice that 3

2 < a < 2 implies that ∂2(1) < 1 < ∂1(1). Furthermore, for such
a we have that p ≥ 2 > log 3

2
(2) implies ∂3(1) = 2

ap+1−1
< 2

(3/2)p+1−1
< 1. Thus,

(1,1) ∈ F2(a,p). We conclude that F2(a,p) ∩ Z
2 �= ∅ for all a and p satisfying

3
2 < a < 2 and p ≥ 2.

The last remaining case is p ≥ 2 and 1 < a < 3
2 . First note that when p ≥ 2 we

have 1 < ap−1
ap(a−1)

. Thus, (1, n) ∈ F2(a,p) if and only if ∂2(1) < n < ∂1(1). Since

∂2(1) = ∂1(1) − 1, then this occurs if and only if 1
a−1 /∈ Z (which is to say a �= k+2

k+1

for all k ∈ N). Suppose, then, that a = k+2
k+1 for some k ∈ N. Then one wishes to know

for what values of p we have (2, � 1
a−1 ) ∈ F2(a,p). Indeed, ∂2(2) = 1

a−1 − 2 <

� 1
a−1 < ∂1(2), thus (2, � 1

a−1 ) ∈ F2(a,p) whenever, ∂3(2) < 1
a−1 − 1. We see that

this holds whenever p > loga(
2a−1
2−a

). But for all a satisfying 1 < a ≤ 3
2 we have

loga(
2a−1
2−a

) ≤ log 3
2
(4) < 3. Therefore, we conclude that F2(a,p) ∩ Z

2 �= ∅ for all

p ≥ 3 when a = k+2
k+1 for some k ∈ N.

We summarize these results below which can be compared with the results for
F1(a,p).
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Fig. 8 The dimension function D

F2(a,p) ∩ Z
2 �= ∅ ⇐⇒

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a ∈⋃n∈N

(√
1 + 2

n
, n+1

n

)
p = 1,

1 < a < 2 and 1
a−1 /∈ N p = 2,

1 < a < 2 p ≥ 3.

(7.12)

8 An Example of Wavelet Dimension Function

In this section we provide an example of a dimension function of a rationally dilated
wavelet for which Algorithm 1 fails to provide a wavelet set corresponding to that
dimension function.

Consider the wavelet set W as given in Theorem 7.2(i) with the parameters a =
11
9 ,p = 3, n = 5,m = 1. That is, W = [−3311

808 , −2709
808 ] ∪ [ 6561

8080 , 729
808 ] ∪ [ 1331

808 , 14641
8080 ].

Define the wavelet ψ ∈ L2(R) by ψ̂ = 1W . We wish to calculate the dimension func-
tion of ψ using (6.1). Since �∗ = 9Z, we have Dψ(ξ) =∑

k∈9Z
1S(ξ + k), where

S =⋃∞
j=1 a−jW = [−2709

808 , 6561
8080 ] ∪ [ 729

808 , 8019
8080 ] ∪ [ 891

808 , 9801
8080 ] ∪ [ 1089

808 , 11979
8080 ]. Conse-

quently, the wavelet ψ is associated with the GMRA Vj = Ľ2(ajS). In order to apply

Algorithm 1 we must look at D(ξ) = dimZ
N

V0
(ξ) =∑

k∈Z
1S(ξ + k). A calculation

shows that

D(ξ) =
{4 if ξ + k ∈ X for some k ∈ Z,

5 otherwise,

where X = [−1
2 , −285

808 ] ∪ [−1519
8080 , −79

808 ] ∪ [ −61
8080 , 83

808 ] ∪ [ 1721
8080 , 281

808 ] ∪ [ 3899
8080 , 1

2 ]. One
period of D is shown in Fig. 8. By Theorem 5.1, D satisfies conditions (D1)–
(D4).
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We begin the algorithm by defining Q = [−ε,1 − ε) for some 0 < ε < 61
8080a−7.

Clearly, Q satisfies conditions (i)–(iv) of Algorithm 1. Since |F1,1| = 1, it follows that
EP

1 = R and, hence, F1,n = ∅ for all n ≥ 2. Thus, P1 = S1 = [−ε,1−ε). Continuing
with the algorithm, we have

F2,n =

⎧
⎪⎨

⎪⎩

[−anε,−an−1ε)∪ [an−1(1 − ε), an(1 − ε)) if n ≤ 3,

[a3(1 − ε),2 − a3ε) if n = 4,

∅ if n ≥ 5.

(8.1)

This gives S2 = [−( 11
9 )3ε,−ε)∪ [1− ε,2− ( 11

9 )3ε) and, hence, P2 = [−( 11
9 )3ε,2−

( 11
9 )3ε). Likewise, the next two iterations yield

S3 = [−a5ε , −a3ε
)∪ [2 − a3ε , 3 − a5ε),

S4 = [−a6ε ,−a5ε
)∪ [3 − a5ε , 4 − a6ε).

(8.2)

Now, one must use caution when approaching the fifth iteration due to the fact that
AP

5 �= R, unlike AP
2 , . . . ,AP

4 . Note that

F̃5,1 = (AP
5 ∩ [−a7ε ,−a6ε)) ∪ (AP

5 ∩ [4 − a6ε ,4a − a7ε)).

Since −61
8080 < −a7ε, the above reduces to

F̃5,1 = AP
5 ∩ [4 − a6ε ,4a − a7ε).

Furthermore, a direct calculation shows that

5 − 1519

8080
< 4a − a7ε < 5 − 79

808
.

Therefore, we are left with

F5,1 =
[

4 + 83

808
, 4 + 1721

8080

]
∪
[

4 + 281

808
, 4 + 3899

8080

]
∪
[

5 − 285

808
, 5 − 1519

8080

]
.

Finally, we claim that F5,2 = ∅ and, hence, F5,n = ∅ for all n ≥ 2. This is true be-
cause 5− 61

8080 < 11
9 (4+ 83

808 ) and 11
9 (5+ −1519

8080 ) < 6− 79
808 . Therefore, the algorithm

stops, giving the output

S′ = [−a6ε,4 − a6ε) ∪ F5,1.

Define the spaces V ′
j = Ľ2(ajS′) for j ∈ Z. While {V ′

j }j∈Z is a GMRA, its dimen-

sion function D′(ξ) = dimZ
N

V ′
0
(ξ) =∑k∈Z

1S′(ξ + k) is different from D. Indeed, we

have

D
′(ξ) =

{
4 if ξ + k ∈ X̄ for some k ∈ Z,

5 otherwise,

where X̄ = [−1
2 , −285

808 ] ∪ [−1519
8080 , 83

808 ] ∪ [ 1721
8080 , 281

808 ] ∪ [ 3899
8080 , 1

2 ]. Thus, D′ �= D and
Algorithm 1 fails, see Fig. 9.
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Fig. 9 The dimension function D′
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