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Abstract

The paper develops construction procedures for tight framelets and wavelets using matrix mask functions
in the setting of a generalized multiresolution analysis (GMRA). We show the existence of a scaling vector
of a GMRA such that its first component exhausts the spectrum of the core space near the origin. The cor-
responding low-pass matrix mask has an especially advantageous form enabling an effective reconstruction
procedure of the original scaling vector. We also prove a generalization of the Unitary Extension Principle
for an infinite number of generators. This results in the construction scheme for tight framelets using low-
pass and high-pass matrix masks generalizing the classical MRA constructions. We prove that our scheme
is flexible enough to reconstruct all possible orthonormal wavelets. As an illustration we exhibit a pathwise
connected class of non-MSF non-MRA wavelets sharing the same wavelet dimension function.
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1. Introduction and preliminaries

The main aim of this work is to develop a constructive procedure for constructing tight
framelets and wavelets from more primitive objects given by low-pass and high-pass matrix mask
functions. We should add that all of our results are shown in the general setting of expansive in-
teger dilations in R

n. The novelty of our approach lies in its versatility allowing construction of
all possible orthonormal wavelets without the customary restrictions on smoothness or decay in
time or frequency domains. Hence, it applies to all sorts of exotic and little understood wavelets
such as those with unbounded wavelet dimension function. In the case of multiresolution analysis
(MRA) wavelets such procedure is well studied and understood.

Usually, an MRA construction starts with a 1-periodic measurable function m, also called a
low-pass mask and satisfying the quadrature-mirror equation

∣∣m(ξ)
∣∣2 + ∣∣m(ξ + 1/2)

∣∣2 = 1 for a.e. ξ ∈ R. (1.1)

Under small regularity assumptions, such as m is Hölder continuous at 0 and m(0) = 1, one
defines a refinable function ϕ ∈ L2(R) by

ϕ̂(ξ) =
∞∏

j=1

m
(
2−j ξ

)
. (1.2)

While ϕ might fail to be an orthogonal scaling function of an MRA, one can always obtain a
tight frame wavelet ψ ∈ L2(R) using a high-pass mask h by

ψ̂(ξ) = h(ξ/2)ϕ̂(ξ/2), where h(ξ) = e2πiξm(ξ + 1/2), (1.3)

see [20,26]. The fact that ψ is a tight framelet can be shown directly by employing the character-
ization equations [25, Section 7.1]. Alternatively, it is also a consequence of a Unitary Extension
Principle of Ron and Shen [21,29].

While Hölder continuity of m at 0 is a relatively weak assumption, some MRA wavelets
cannot be obtained by this scheme [18]. To circumvent this problem, Paluszyński, Šikić, Weiss,
and Xiao [27] introduced the class of low-pass filters satisfying

lim
n→∞

∞∏
j=n

∣∣m(2−j ξ
)∣∣= 1 for a.e. ξ ∈ R.

This is obviously a much weaker condition than Hölder continuity. Moreover, any low-pass
mask m of an MRA scaling function must satisfy it by the characterization of scaling func-
tions of MRAs [25]. While the infinite product (1.2) might not be convergent, the authors of [27]
proved that one can always construct a refinable function ϕ satisfying

ϕ̂(ξ) = m(ξ/2)ϕ̂(ξ/2) a.e. ξ ∈ R.

This is because the product (1.2) converges after taking absolute values and one must only
recover the phase factor of ϕ̂ by using a multiplier argument. As a consequence, the proce-
dure of constructing MRA tight frame wavelets from [27] recovers all possible MRA wavelets.
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Similar ideas were used to prove the connectivity result for MRA wavelets by the Wutam Con-
sortium [34].

Since MRA wavelets form only a special class among all orthonormal wavelets, one could ask
whether similar construction and reconstruction procedures are possible for non-MRA wavelets.
The most natural way of classifying non-MRA wavelets uses the wavelet dimension function

Dψ(ξ) =
∞∑

j=1

∑
k∈Z

∣∣ψ̂(2j (ξ + k)
)∣∣2.

The wavelet dimension function has many interesting properties that were investigated by sev-
eral authors [1,2,17,25,28,30]. One of its fundamental properties says that Dψ can be identified
with the multiplicity function of the core space of a GMRA generated by the wavelet ψ . In par-
ticular, ψ is an MRA wavelet if and only if Dψ ≡ 1. Moreover, by the result of Speegle and
the authors [17] all possible wavelet dimension functions D are characterized by the following
4 conditions:

(D1) D : R → N ∪ {0} is a measurable 1-periodic function,
(D2) D(ξ) + D(ξ + 1/2) = D(2ξ) + 1 for a.e. ξ ∈ R,
(D3)

∑
k∈Z

1Δ(ξ + k) � D(ξ) for a.e. ξ ∈ R, where

Δ = {ξ ∈ R: D
(
2−j ξ

)
� 1 for j ∈ N ∪ {0}},

(D4) lim infj→∞ D(2−j ξ) � 1 for a.e. ξ ∈ R.

Note that we have intentionally omitted the integrability condition on D, since it is a consequence
of (D1) and (D2) by Lemma 3.1 proved in this paper.

The above characterization opens the possibility of constructing wavelets and framelets from
more general low-pass matrix masks than the standard scalar masks satisfying (1.1). In general,
one starts with a measurable matrix-valued 1-periodic function M satisfying

M(ξ)M∗(ξ) + M(ξ + 1/2)M∗(ξ + 1/2) = Ω(2ξ) for a.e. ξ ∈ R, (1.4)

where

Ω(ξ) = diag
(
1S1(ξ),1S2(ξ), . . .

)
, Sj = {ξ ∈ R: D(ξ) � j

}
, j ∈ Z.

More precisely, the values of M(ξ) are infinite size matrices (doubly indexed by N) with only
finitely many non-zero entries, which can be identified with bounded operators on �2(N). Fur-
thermore, in the case when the multiplicity function is bounded by N ∈ N, we can safely assume
that the values of M(ξ) are N × N matrices.

Baggett, Jorgensen, Merrill, and Packer [4] showed that if the multiplicity function D is
bounded and M satisfies some weak regularity assumptions then one can define a refinable vector
function Φ = (ϕj )j∈J ⊂ L2(R), J = {1, . . . ,N}, by

Φ̂(ξ) =
[ ∞∏

M
(
2−j ξ

)]
e, (1.5)
j=1
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where e = (1,0, . . . ,0). To make sure that the above product converges the authors of [4] assume
that M is Lipschitz continuous at 0 and M(0) is a matrix having all zero entries except a single 1
in the upper-left corner. In general, Φ might not be a scaling vector of some GMRA in the sense
that each ϕj is a quasi-orthogonal generator of

S(ϕj ) = span
{
ϕj (· − k): k ∈ Z

}
and S(ϕi) ⊥ S(ϕj ) for i 
= j . Nevertheless, the authors of [4] proved that by choosing an ap-
propriate high-pass matrix mask H , one can always obtain a tight frame wavelet ψ ∈ L2(R) by
setting

ψ̂(ξ) = H(ξ/2)Φ̂(ξ/2) a.e. ξ ∈ R. (1.6)

More precisely, H is 1-periodic measurable 1 × N matrix-valued function satisfying

H(ξ)H ∗(ξ) + H(ξ + 1/2)H ∗(ξ + 1/2) = 1 a.e. ξ ∈ T, (1.7)

M(ξ)H ∗(ξ) + M(ξ + 1/2)H ∗(ξ + 1/2) = 0 a.e. ξ ∈ T. (1.8)

This naturally leads to a fundamental problem of the theory of non-MRA wavelets, which asks
whether it is possible to use the above scheme of low-pass and high-pass matrix masks to con-
struct all orthonormal wavelets.

The goal of this paper is to give an affirmative answer to this problem. To give the idea of
the level of difficulty behind this project one should realize that, a priori, no regularity assump-
tion on the low-pass matrix mask functions can be assumed. Furthermore, an example in [17]
demonstrates that the multiplicity function D could be unbounded which leads to a matrix-valued
low-pass mask M of infinite size. Hence, the infinite product in (1.5) might not converge and spe-
cial convergence procedures are needed to interpret such ill-defined expressions.

The starting point of this paper is the investigation of the properties of scaling vectors corre-
sponding to the core space of a GMRA. Unlike the case of an MRA, where the scaling function
is unique (up to a unimodular 1-periodic phase factor in the Fourier domain), there are many
possible choices for scaling vectors for a GMRA. This has been traditionally considered as an
impediment of a successful theory, since different choices of a scaling vector Φ could lead to
totally different low-pass masks M satisfying

Φ̂(ξ) = M(ξ/2)Φ(ξ/2) a.e. ξ ∈ R. (1.9)

It might seem that the only useful information extracted from (1.9) is a matrix analogue of the
quadrature-mirror equation (1.4). Nevertheless, we show that abundance of choice is also a bless-
ing if one carefully chooses generators of the scaling vector. The key idea is to choose the first
generator ϕ1 such that it exhausts the entire spectrum of the core space near the origin. Con-
sequently, the remaining generators ϕ2, ϕ3, . . . must be supported away from the origin in the
Fourier domain. This leads to an especially advantageous form of the low-pass matrix mask M

such that the first column of M(ξ) has zeros in every entry, except the first where it has absolute
value “almost equal” to 1 for ξ ≈ 0. For a precise statement see Theorem 2.2.

In the case when a GMRA is associated with an orthonormal wavelet ψ , it is easy to verify
that the high-pass mask H given by (1.6) must satisfy (1.7) and (1.8). The crux of our approach
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is the assertion claiming that one can reverse the above process. That is, given a low-pass mask
in the above advantageous form and a high-pass matrix mask satisfying (1.7) and (1.8), we can
construct an associated tight frame wavelet ψ . This leads to Theorem 4.3 which is the main
construction result of our paper. The first key ingredient in the proof of this result is the existence
of a refinable vector Φ , which is a result of a special convergence procedure making sense out
of potentially divergent infinite product in (1.5). The second ingredient is a generalization of
the Unitary Extension Principle to a situation when a refinable vector Φ has infinitely many
components.

The last part of the paper proves that the above scheme is flexible enough to reconstruct all
possible wavelets ψ . A pivotal role in the reconstruction scheme is played by the concept of a
multiplier. We say that a unimodular function ν is a multiplier associated to M = (mi,j ) if it
satisfies

ν(2ξ)ν(ξ)
∣∣m1,1,(ξ)

∣∣= m1,1(ξ) for a.e. ξ ∈ R.

Then, our main reconstruction Theorem 5.4 says that the scaling vector Φ can be recovered by

Φ̂(ξ) = lim
N→∞ν

(
2−Nξ

)[ N∏
j=1

M
(
2−j ξ

)]
e for a.e. ξ, (1.10)

and then the wavelet ψ can be recovered by (1.6).
Finally, the paper ends with examples illustrating the inner workings of our construction and

reconstruction procedures. In particular, we give an example of a class Wnik of non-MSF and
non-MRA wavelets such that all of its members share the same Journé dimension function. Re-
call that a wavelet ψ is said to be minimally supported frequency (MSF), if the Lebesgue measure
of the support of ψ̂ is smallest possible, that is equal to 1. The classes of MSF wavelets and MRA
wavelets are already well studied and understood. However, the class of non-MSF and non-MRA
wavelets is the least understood and has inhibited the growth of L2 theory of wavelets. Never-
theless, we prove that our class Wnik is pathwise connected indicating that our techniques have
a potential of attacking a recalcitrant problem of the connectivity of the set of all orthonormal
wavelets.

Despite the fact that all of our results are motivated by the classical case of dyadic dilations
in R, we will adopt a more general setting of expansive integer-valued dilations in R

n. More
specifically, we shall assume that we are given an n×n integer-valued matrix A that is expansive,
i.e., all its eigenvalues have modulus greater than 1. For simplicity, its transpose will be denoted
by B .

We recall that a sequence {Dj(V ): j ∈ Z} of closed subspaces of L2(Rn) is called a general-
ized multiresolution analysis (GMRA) if

(M1) TkV = V for all k ∈ Z
n,

(M2) V ⊂ D(V ),
(M3)

⋃
j∈Z

Dj(V ) = L2(Rn),

(M4)
⋂

j∈Z
Dj(V ) = {0}.

Here, the dilation operator D is given by Df (x) = |detA|1/2f (Ax) for some n × n expansive
integer-valued matrix A and the translation operator Tkf (x) = f (x − k) for some k ∈ Z

n.
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As we can see, a GMRA is based on the core space V . Condition (M1) means that V is a
shift-invariant (SI) space. If V satisfies (M2), then we call it refinable. Also, we shall often write
Vj instead of Dj(V ).

We say that a finite family Ψ = {ψ1, . . . ,ψN } ⊂ L2(Rn) is a wavelet if its associated affine
system

ψj,k(x) = |detA|j/2ψ
(
Ajx − k

)
, j ∈ Z, k ∈ Z

n, ψ ∈ Ψ,

is an orthonormal basis of L2(Rn). In the more general case, when the affine system is a tight
frame (with constant 1), we say that Ψ is a tight framelet. The latter are characterized by the well-
known equations that we list in (3.7) and (3.8). Moreover, a framelet Ψ is called semi-orthogonal
if

⊕
j∈Z

Dj(W) = L2(
R

n
)
, where W = span

{
ψ(· − k): k ∈ Z

n, ψ ∈ Ψ
}
.

It turns out that every semi-orthogonal tight framelet comes from a GMRA. Indeed, for a finite
family Ψ ⊂ L2(Rn) we define its space of negative dilates V by

V = span
{
ψj,k: j < 0, k ∈ Z

n, ψ ∈ Ψ
}
.

We say that a framelet Ψ is associated with a GMRA (or that it generates a GMRA) if its space
of negative dilates V satisfies (M1)–(M4). It is not hard to check that if Ψ is a semi-orthogonal
tight framelet then conditions (M1)–(M4) hold and, therefore, V is a core space of a GMRA.

2. Scaling vectors for GMRA

The main goal of this section is to provide a constructive procedure for selecting a suitable
set of generators Φ for the core space V0 of a GMRA {Vj }j∈Z. The result of this procedure is
a collection of (mutually orthogonal) quasi-orthogonal generators Φ = (ϕj )j∈J called a scaling
vector for V0. (In particular, if {Vj }j∈Z is a usual MRA, we obtain a single orthogonal generator
of V0, usually called a scaling function.) Quasi-orthogonality means that integer shifts of the gen-
erator form a tight frame for the corresponding SI space. Such a space, that is generated by just
one function, say ϕ, is called a principal shift-invariant (PSI) space and is denoted by S(ϕ). First,
we shall review some basic results about SI spaces and the dimension and spectral functions.

Every shift-invariant space V ⊂ L2(Rn) has a set of generators Φ , that is, a countable family
of functions whose integer shifts form a tight frame (with constant 1) for V , see [10, Theo-
rem 3.3]. Although this family is not unique, the function

σV (ξ) =
∑
ϕ∈Φ

∣∣ϕ̂(ξ)
∣∣2

does not depend (except on a set of measure zero) on the choice of the family of generators,
see [15, Lemma 2.3]. Here, the Fourier transform is defined by

f̂ (ξ) =
∫
n

f (x)e−2πi〈x,ξ〉 dx.
R
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We call σV the spectral function of V . This notion was introduced by the authors in [15]. The
basic property of σ is that it is additive on countable orthogonal sums and that σL2(Rn) = 1. The
spectral function also behaves nicely under dilations since σD(V )(ξ) = σV (B−1ξ). Moreover, if
V is generated by a single function ϕ then

σV (ξ) =
{ |ϕ̂(ξ)|2(∑k∈Zn |ϕ̂(ξ + k)|2)−1 for ξ ∈ supp ϕ̂,

0 otherwise.

There are several other equivalent ways of defining the spectral function. The original one
involves the range function J , that is, a mapping from the torus T

n to the set of closed subspaces
of �2(Zn). It turns that there is a 1–1 correspondence between SI spaces and measurable range
functions J given by

V = {f ∈ L2(
R

n
)
: T f (ξ) ∈ J (ξ) for a.e. ξ ∈ T

n
}
,

see [10, Proposition 1.5]. Here, T : L2(Rn) → L2(Tn, �2(Zn)) is an isometric isomorphism
given by T f (ξ) = (f̂ (ξ + k))k∈Zn , where T

n is identified with [−1/2,1/2)n. The spectral func-
tion σV can be equivalently defined by

σV (ξ + k) = ∥∥PJ (ξ)ek

∥∥2 for ξ ∈ T
n and k ∈ Z

n,

where {ek}k∈Zn denotes the standard basis of �2(Zn) and PJ (ξ) is an orthogonal projection
of �2(Zn) onto J (ξ).

The spectral function also allows us to define the dimension function of V ,

dimV (ξ) =
∑
k∈Zn

σV (ξ + k).

The dimension function (also called the multiplicity function) is integer-valued and additive on
countable orthogonal sums as well. Moreover, the minimal number of functions needed to gen-
erate V is equal to the L∞ norm of dimV . Again, we refer the reader to [10,15] for the proofs of
all these facts.

The main feature of our generator selecting procedure is that it distinguishes the first gen-
erator ϕ1 as having a dominating effect on all remaining generators. More precisely, the first
generator ϕ1 is chosen so that it exhausts the entire spectrum of the core space V0 in some neigh-
borhood of the origin. The fact that the space V0 is refinable and this exhaustion property of ϕ1
leads to a very special form of a matrix mask of Φ , whose first column has zeros in every, but
the first entry, near the origin, see Theorem 2.2.

Our procedure is somewhat reminiscent of the superfunction theory in the study of finitely
generated shift-invariant (FSI) spaces by de Boor, DeVore, and Ron [22,23]. Among other things,
the authors proved [23, Result 1.2] that an approximation order of an FSI space can be realized
by some PSI space generated by a single function ψ , called a “superfunction.” Therefore, ψ has a
dominating effect by providing the same approximation order as the whole FSI space generated
by some finite collection of generators. This is analogous to our construction, where the first
generator ϕ1 makes all other generators to be innocuous near the origin in the Fourier domain,
thus producing a special form of a matrix mask.
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To achieve the above dominating effect we show the existence of a quasi-generator ϕ0 of an
SI space V0 having the same spectral function as that of V0 in a pre-specified localized region of
the Fourier domain. Therefore, the generator ϕ0 exhausts locally the space V0 in that region.

Lemma 2.1. Assume that V0 ⊂ L2(Rn) is SI. Let K be a measurable subset of Rn such that

∣∣K ∩ (K + l)
∣∣= 0 for all l ∈ Z

n \ {0}.

Let ϕ = PV0(1̌K), where PV0 is the orthogonal projection onto V0, and 1̌K is the inverse Fourier
transform of the characteristic function 1K . Define ϕ0 ∈ L2(Rn) by

ϕ̂0(ξ) =
{

ϕ̂(ξ)(
∑

k∈Zn |ϕ̂(ξ + k)|2)−1/2, ξ ∈ supp ϕ̂,

0, otherwise.
(2.1)

Then ϕ0 ∈ V0 is a quasi-orthogonal generator of S(ϕ0) and

σS(ϕ0)(ξ) = ∣∣ϕ̂0(ξ)
∣∣2 = σV0(ξ) for a.e. ξ ∈ K. (2.2)

Proof. Let ϕK ∈ L2(Rn) be given by ϕ̂K = 1K , and hence ϕ = PV0ϕK . Clearly, ϕ0 is a quasi-
orthogonal generator of the PSI space S(ϕ0) = S(ϕ) ⊂ V0. In particular,

∣∣ϕ̂0(ξ)
∣∣2 = σS(ϕ0)(ξ) = σS(ϕ)(ξ).

Let J be the range function of V0 with the corresponding orthogonal projections PJ (ξ). Then
for any f ∈ L2(Rn) we have

T (PV0f )(ξ) = PJ (ξ)
(

T f (ξ)
)

for a.e. ξ ∈ T
n.

Hence, for a.e. ξ ∈ T
n,

T ϕ(ξ) = T (PV0ϕK)(ξ) = PJ (ξ)
(

T ϕK(ξ)
)= {PJ (ξ)ek, ξ + k ∈ K, k ∈ Z

n,

0, otherwise.

Fix k ∈ Z
n. If ξ + k ∈ K , ξ ∈ T

n, and T ϕ(ξ) 
= 0, then we necessarily have

σS(ϕ)(ξ + k) = |ϕ̂(ξ + k)|2
‖T ϕ(ξ)‖2

= |〈T ϕ(ξ), ek〉|2
‖T ϕ(ξ)‖2

= |〈PJ (ξ)ek, ek〉|2
‖PJ (ξ)ek‖2

= |〈PJ (ξ)2ek, ek〉|2
‖PJ (ξ)ek‖2

= |〈PJ (ξ)ek,PJ (ξ)ek〉|2
‖PJ (ξ)ek‖2

= ∥∥PJ (ξ)ek

∥∥2 = σV0(ξ + k).

On the other hand, if ξ + k ∈ K , ξ ∈ T
n, and T ϕ(ξ) = 0, then

σS(ϕ)(ξ + k) = 0 = ∥∥PJ (ξ)ek

∥∥2 = σV0(ξ + k).

Since k ∈ Z
n is arbitrary, this proves (2.2). �
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The next result provides a decomposition of any SI space V0 as an orthogonal sum of carefully
chosen PSI spaces, such that the first PSI space exhausts the spectrum of V0 near the origin.

Theorem 2.1. Assume that V0 ⊂ L2(Rn) is SI. Then there exists an orthogonal decomposition

V0 =
∞⊕

j=1

S(ϕj ) (2.3)

such that each ϕj is a quasi-orthogonal generator of S(ϕj ) and

supp dimS(ϕj ) = {ξ ∈ R
n: dimV0(ξ) � j

}
for every j ∈ N. (2.4)

Furthermore, the spectral function of S(ϕ1) coincides with that of V0 near the origin, i.e.,

σS(ϕ1)(ξ) = ∣∣ϕ̂1(ξ)
∣∣2 = σV0(ξ) for a.e. ξ ∈ T

n, (2.5)

Proof. The existence of a decomposition satisfying (2.3) and (2.4) is already known, see [10].
The novelty of Theorem 2.1 lies in the fact that the first quasi-orthogonal generator ϕ1 can be
chosen to satisfy (2.5).

Let ϕ0 ∈ V0 be a quasi-orthogonal generator guaranteed by Lemma 2.1 with K = T
n. That is,

σS(ϕ0)(ξ) = ∣∣ϕ̂0(ξ)
∣∣2 = σV0(ξ) for a.e. ξ ∈ T

n.

Define E = supp dimV0 \ supp dimS(ϕ0). Consider two possible cases. If |E| > 0, then define an
SI space V = V0 ∩ Ľ2(E). Here,

Ľ2(E) = {f ∈ L2(
R

n
)
: supp f̂ ⊂ E

}
.

Let ϕ be a quasi-orthogonal generator of V such that

supp dimS(ϕ) = {ξ ∈ R
n: dimV (ξ) � 1

}= {ξ ∈ E: dimV0(ξ) � 1
}= E.

Since ϕ0 ∈ Ľ2(Rn \ E), ϕ ∈ Ľ2(E), and the set E is invariant under translations by Z
n, ϕ1 =

ϕ0 + ϕ is a quasi-orthogonal generator of S(ϕ1). Moreover, ϕ1 ∈ V0 since ϕ0, ϕ ∈ V0, and

supp dimS(ϕ1) = supp dimS(ϕ0) ∪ supp dimS(ϕ) = supp dimS(ϕ0) ∪E = supp dimV0 .

Hence, (2.4) holds for j = 1. Since S(ϕ0) ⊂ S(ϕ1) ⊂ V0, we have that for a.e. ξ ∈ T
n,

σV0(ξ) � σS(ϕ0)(ξ) � σS(ϕ1)(ξ) � σV0(ξ),

which proves (2.5). In the case of |E| = 0, we let ϕ1 = ϕ0. Trivially, (2.4) holds for j = 1
and (2.5) also holds.

Finally, it suffices to consider an SI space V0 � S(ϕ1) and its decomposition guaranteed by
the first part of Theorem 2.1. That is we have
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V0 � S(ϕ1) =
∞⊕

j=2

S(ϕj ),

supp dimS(ϕj ) = {ξ ∈ R
n: dimV0�S(ϕ1)(ξ) � j − 1

}= {ξ ∈ R
n: dimV0(ξ) � j

}
for j � 2.

Therefore, {ϕj }∞j=1 is the sequence of quasi-orthogonal generators fulfilling (2.3)–(2.5). �
Theorem 2.1 leads naturally to the definition of an exhausting quasi-orthogonal vector for

general SI spaces and an exhausting scaling vector for refinable SI spaces.

Definition 2.1. Suppose that V0 is SI and for j ∈ N let

Sj = {ξ ∈ R
n: dimV0(ξ) � j

}
. (2.6)

Let J = {j ∈ N: |Sj | > 0}. Naturally,

J =
{ {1, . . . ,L} if L = ess supξ∈Rn dimV0(ξ) < ∞,

N otherwise.
(2.7)

A quasi-orthogonal vector for V0 is defined as

Φ = (ϕj )j∈J ,

where {ϕj }j∈J are quasi-orthogonal generators as in Theorem 2.1 satisfying (2.3) and (2.4) only.
In addition, if (2.5) holds, then we say that Φ is an exhausting quasi-orthogonal vector for V0.
The Fourier transform of Φ ,

Φ̂(ξ) = (ϕ̂j (ξ)
)
j∈J

is treated as a column vector with values in �2(J ), since

∥∥Φ̂(ξ)
∥∥2

�2(J )
= σV0(ξ) � 1. (2.8)

Also, define the diagonal matrix function of V0 as

Ω(ξ) =

⎡
⎢⎢⎢⎢⎣

1S1(ξ) 0 0 . . .

0 1S2(ξ) 0 . . .

0 0 1S3(ξ) . . .

...
...

...
. . .

⎤
⎥⎥⎥⎥⎦ . (2.9)

Suppose that Φ = (ϕj )j∈J is a quasi-orthogonal vector for V0. Since each ϕj is a quasi-
orthogonal generator of S(ϕj ) and S(ϕj ) ⊥ S(ϕj ′) for j 
= j ′, we have that for a.e. ξ ∈ R

n,
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∑
k∈Zn

∣∣ϕ̂j (ξ + k)
∣∣2 = 1Sj

(ξ),

∑
k∈Zn

ϕ̂j (ξ + k)ϕ̂j ′(ξ + k) = 0 for j 
= j ′.

Hence, in short

∑
k∈Zn

Φ̂(ξ + k)Φ̂∗(ξ + k) = Ω(ξ) for a.e. ξ ∈ R
n. (2.10)

Definition 2.2. Suppose that an SI space V0 is refinable, that is V0 ⊂ D(V0). In this case a quasi-
orthogonal vector Φ = (ϕj )j∈J for V0 is called a scaling vector for V0. In addition, if (2.5) holds,
then Φ is an exhausting scaling vector for V0.

The next result provides a characterization of elements of an SI space in terms of its quasi-
orthogonal vector. Proposition 2.1 is an immediate consequence of the corresponding well-
known result for PSI spaces; for example, see [27, Theorem 5.9].

Proposition 2.1. Suppose that an SI space V0 is decomposed as in (2.3) and each ϕj is a quasi-
orthogonal generator of S(ϕj ). Then f ∈ V0 if and only if

f̂ (ξ) =
∑
j∈N

rj (ξ)ϕ̂j (ξ), (2.11)

where convergence is in L2, each rj is Z
n-periodic function in L2(Sj ), and

‖f ‖2 =
∑
j∈J

‖rj‖2.

Moreover, the sequence {rj }j∈N of such functions is unique.

Consequently, note that the series (2.11) converges a.e. after choosing a suitable subsequence.
In particular, if the fibers of the SI space V0 are finitely dimensional, meaning that (2.12) holds,
the convergence in (2.11) is also in the almost everywhere sense. This observation leads to a
simple characterization of refinability of such SI spaces.

Lemma 2.2. Suppose that V0 is an SI space such that

dimV0(ξ) < ∞ for a.e. ξ. (2.12)

Suppose that Φ is a quasi-orthogonal vector of V0, and {Sj }j∈J is given by (2.6) with J as
in (2.7). Then the space V0 is refinable with respect to the dilation A if and only if

Φ̂(Bξ) = M(ξ)Φ̂(ξ), (2.13)

where B = AT and M is Z
n-periodic matrix function with entries mi,j ∈ L2(Sj ), i, j ∈ J . More-

over, if such an M exists, then it is unique.
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Proof. Note that condition (2.12) guarantees that Φ̂(ξ) has finitely many non-zero entries and the
matrix product in (2.13) is meaningful. By Proposition 2.1, (2.13) implies that each ϕj ∈ D(V0).
Since D(V0) is SI, we must have V0 ⊂ D(V0) and V0 is refinable.

Conversely, if V0 is refinable then the matrix M satisfying (2.13) is uniquely determined with
the use of Proposition 2.1 for f = D−1ϕj , j ∈ N. �

A matrix function M satisfying (2.13) is often called a matrix mask function of Φ or a
low-pass matrix mask. We are now ready to prove the main result of this section providing a
description of a matrix mask corresponding to an exhausting scaling vector Φ for V0.

Theorem 2.2. Suppose that {Vj }j∈Z is a GMRA such that (2.12) holds. Let Φ be an exhausting
scaling vector for V0 and M be the matrix mask function as in Lemma 2.2. Then

∑
d∈D

M(ξ + d)M∗(ξ + d) = Ω(Bξ), (2.14)

where D consists of representatives of distinct cosets of B−1
Z

n/Z
n. Moreover, the first column

of M(ξ) has zeros in every, but the first entry, near the origin in the sense that for a.e. ξ ∈ R
n,

there exists N = N(ξ) such that

mi,1
(
B−j ξ

)= 0 for i � 2, j > N. (2.15)

Furthermore, the upper-left corner of M(ξ) has absolute value “almost equal” to 1 near the
origin, i.e.,

lim
k→∞

∞∏
j=k

∣∣m1,1
(
B−j ξ

)∣∣= 1 for a.e. ξ ∈ R
n. (2.16)

Proof. The condition on the support of M implies that M(ξ)Ω(ξ) = M(ξ). Hence, by (2.10),

Ω(Bξ) =
∑
k∈Zn

Φ̂(Bξ + k)Φ̂∗(Bξ + k)

=
∑
k∈Zn

M
(
ξ + B−1k

)
Φ̂
(
ξ + B−1k

)
Φ̂∗(ξ + B−1k

)
M∗(ξ + B−1k

)

=
∑
d∈D

M(ξ + d)Ω(ξ + d)M∗(ξ + d) =
∑
d∈D

M(ξ + d)M∗(ξ + d),

which proves (2.14).
To show (2.15) we will use the fact [15, Lemma 2.7] that

lim
j→∞

∣∣ϕ̂1
(
B−j ξ

)∣∣2 = lim
j→∞σV0

(
B−j ξ

)= lim
j→∞σVj

(ξ) = 1 a.e. ξ ∈ R
n. (2.17)

Combining this with (2.8) yields that there exists N = N(ξ) such that the first coordinate
of Φ̂(B−j ξ) is non-zero and all others are zero for all j � N . By (2.13),
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ϕ̂i

(
B−j+1ξ

)= mi,1
(
B−j ξ

)
ϕ̂1
(
B−j ξ

)
for j � N, i ∈ N.

Since ϕ̂i (B
−j+1ξ) = 0 for i � 2 and ϕ̂1(B

−j ξ) 
= 0 for j > N , we have (2.15).
To show (2.16) it suffices to observe that for every l > k � N ,

ϕ̂1
(
B−kξ

)= ϕ̂1
(
B−lξ

) l∏
j=k+1

m1,1
(
B−j ξ

)
.

By (2.17),

∣∣ϕ̂1
(
B−kξ

)∣∣= lim
l→∞

∣∣ϕ̂1
(
B−lξ

)∣∣ l∏
j=k+1

∣∣m1,1
(
B−j ξ

)∣∣= ∞∏
j=k+1

∣∣m1,1
(
B−j ξ

)∣∣,
which proves (2.16) by letting k → ∞. �

The fact that M satisfies the condition (2.14), which is also called a generalized low-pass filter
or generalized conjugate mirror filter, is due Baggett, Courter, and Merrill [3, Theorem 2.3]. This
condition holds for all scaling vectors Φ (not necessarily exhausting) and it is an analogue of
the usual quadrature-mirror equation (1.1). The additional assumption that Φ is an exhausting
scaling vector implies that the first column of M must be of a special form (m1,1(ξ),0,0, . . .)

with |m1,1(ξ)| ≈ 1 for ξ near 0. Moreover, (2.14) implies that

∑
d∈D

∣∣m1,1(ξ + d)
∣∣2 � 1S1(Bξ) � 1 for a.e. ξ ∈ T

n.

For these reasons m1,1(ξ) plays a role similar to that of a usual low-pass filter and it has a domi-
nating effect on the entire matrix mask function M . These issues are further explored in Section 4,
where the procedure for reconstructing a scaling vector from its matrix mask is presented. We
should also emphasize that conditions (2.14)–(2.15) are only necessary and not sufficient for
guaranteeing that M is a matrix mask of some scaling vector. This is a simple consequence of
the usual MRA case, where (1.1) and (2.16) alone are not enough to produce the scaling function
and some extra conditions, such as Lawton’s or Cohen’s conditions are needed [25,27].

Next, we will look at semi-orthogonal wavelets associated to a GMRA. In [16] we pointed out
that one can always find a semi-orthogonal wavelet (possibly with infinite number of generators)
associated to any GMRA. To be more precise, let us state the following

Theorem 2.3. Suppose that {Vj }j∈Z is a GMRA such that (2.12) holds. Then there exists a semi-
orthogonal wavelet (ψj )

j∈J̃
⊂ L2(Rn) such that

W0 := V1 � V0 =
⊕
j∈J̃

S(ψj ), (2.18)

supp dimS(ψj ) = S̃j := {ξ ∈ R
n: dimW0(ξ) � j

}
.

Here, J̃ is either {1, . . . ,N} or N.
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Conversely, suppose that we have a semi-orthogonal wavelet Ψ = (ψj̃ )
j̃∈J̃

, where J̃ =
{1, . . . ,N} is finite, which is associated with a GMRA {Vj }j∈Z; that is (2.18) holds. Equiva-
lently, a GMRA {Vj }j∈Z associated to Ψ is given by

Vj = span
{
DiTkψ

j̃ : i < j, k ∈ Z
n, j̃ ∈ J̃

}
for j ∈ Z.

Let Ψ be the column vector defined as Ψ = (ψj )
j∈J̃

. By Proposition 2.1, there exists a matrix
function H(ξ) = (hi,j (ξ))

i∈J̃ ,j∈J
such that

Ψ̂ (Bξ) = H(ξ)Φ̂(ξ),

and hi,j ∈ L2(Sj ). Let Ω̃ be the diagonal matrix function corresponding to Ψ , i.e.,

Ω̃(ξ) = diag
{
1
S̃j

(ξ ): j ∈ J̃
}
, where S̃j = supp dimS(ψj ) . (2.19)

Then we have the following description of a matrix mask function H corresponding to a semi-
orthogonal wavelet Ψ , called a high-pass matrix mask or complementary conjugate mirror filter
in [3].

Proposition 2.2. Suppose Ψ is a semi-orthogonal wavelet associated with a GMRA {Vj }j∈Z. Let
M and H be the low-pass and high-pass matrix mask functions as above. Then∑

d∈D
H(ξ + d)H ∗(ξ + d) = Ω̃(Bξ), (2.20)

∑
d∈D

M(ξ + d)H ∗(ξ + d) =
∑
d∈D

H(ξ + d)M∗(ξ + d) = 0. (2.21)

Proof. The condition on the support of H implies that H(ξ)Ω(ξ) = H(ξ). Hence, by (2.10),

Ω̃(Bξ) =
∑
k∈Zn

Ψ̂ (Bξ + k)Ψ̂ ∗(Bξ + k)

=
∑
k∈Zn

H
(
ξ + B−1k

)
Φ̂
(
ξ + B−1k

)
Φ̂∗(ξ + B−1k

)
H ∗(ξ + B−1k

)

=
∑
d∈D

H(ξ + d)Ω(ξ + d)H ∗(ξ + d) =
∑
d∈D

H(ξ + d)H ∗(ξ + d),

which proves (2.20). Likewise,

0 =
∑
k∈Zn

Φ̂(Bξ + k)Ψ̂ ∗(Bξ + k)

=
∑
k∈Zn

M
(
ξ + B−1k

)
Φ̂
(
ξ + B−1k

)
Φ̂∗(ξ + B−1k

)
H ∗(ξ + B−1k

)

=
∑
d∈D

M(ξ + d)Ω(ξ + d)H ∗(ξ + d) =
∑
d∈D

M(ξ + d)H ∗(ξ + d),

which proves (2.21). �
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We can now summarize the procedure of generating low-pass M and high-pass H ma-
trix masks as follows. Given a semi-orthogonal wavelet Ψ , we consider its associated GMRA
{Vj }j∈Z. Theorem 2.1 provides an exhausting scaling vector Φ for V0. Then, Theorem 2.2
and Proposition 2.2 yield a low-pass matrix mask M and a high-pass matrix mask H satisfy-
ing (2.14)–(2.16) and (2.20)–(2.21), respectively. Since the decomposition of Theorem 2.1 is not
unique, the above procedure yields a multitude of low-pass and high-pass matrix masks for a
fixed semi-orthogonal wavelet. This fact makes the problem of reconstructing scaling vector and
semi-orthogonal wavelet from their corresponding low-pass and high-pass matrix masks a highly
non-trivial task. Fortunately, the exhausting property of Φ will counterbalance such inherent
non-uniqueness. This will be explored in Sections 4 and 5, where the appropriate reconstruction
procedure is provided, see Theorem 5.4.

We end this section with two remarks involving orthogonality of columns versus rows for
combined low-pass and high-pass matrix masks. Remark 2.1 is a slight refinement of [4, Theo-
rem 2.5], where matrix mask functions M and H were assumed to have finite size.

Remark 2.1. Let T be the combined matrix mask function of a scaling vector Φ and the associ-
ated semi-orthogonal wavelet Ψ given by

T (ξ) =
[

M(ξ + d1) . . . M(ξ + dq)

H(ξ + d1) . . . H(ξ + dq)

]
,

where d1, . . . , dq are representatives of distinct cosets of B−1
Z

n/Z
n. Note that for a.e.

ξ ∈ T
n, T (ξ) has only a finite number of non-zero entries. More precisely, there are only∑

d∈D dimV0(ξ +d) non-zero columns and dimV0(Bξ)+dimW0(Bξ) non-zero rows. Let T̃ (ξ) be
a finite sub-matrix of T (ξ) consisting of only these columns and rows. The consistency equation
of Baggett, see [6,7,15], says that

dimV1(Bξ) =
∑
d∈D

dimV0(ξ + d) = dimV0(Bξ) + dimW0(Bξ) for a.e. ξ ∈ T
n, (2.22)

which implies that the matrix T̃ (ξ) is square for a.e. ξ ∈ T
n. Moreover, Theorem 2.2 and Propo-

sition 2.2 imply that the rows of the matrix T̃ (ξ) are mutually orthogonal and normalized, that
is T̃ (ξ) is a unitary matrix. Consequently, the columns of T̃ (ξ) are mutually orthogonal and
normalized.

Remark 2.2. One could consider the combined matrix mask function T (ξ) corresponding to a
more general situation when Ψ is a framelet obtained by a similar procedure. In this case, the
rows of T (ξ) do not have to be mutually orthogonal, anymore. In fact, the sub-matrix of non-zero
rows and columns T̃ (ξ) does not have to be square, since we can have many more generators
in Ψ , and hence more rows in the matrix mask function H(ξ). It turns out that unlike the situation
of semi-orthogonal wavelets, where orthogonality of rows of T (ξ) is necessary, orthogonality of
columns plays a critical role for general framelets. This will be explored in the next section.

3. Unitary Extension Principle

The Unitary Extension Principle, and its generalizations such as Oblique Extension Principle,
are powerful tools in constructing tight framelets [8,9,21,29]. Since these techniques are used
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for constructing framelets with many desired properties such as smoothness, compact support,
vanishing moments, etc., the Unitary Extension Principle is very often stated with some very
mild and convenient regularity assumptions on a refinable function ϕ.

Since the interest of our work lies mainly in L2 theory of framelets and wavelets, it is imper-
ative to avoid any regularity assumptions, regardless of their mildness, limiting the applicability
of our results. Furthermore, we are also forced to study situations where we are given a refinable
vector consisting of infinite number of functions. Since these two problems were not adequately
addressed yet, we provide an extension of Unitary Extension Principle, that is perfectly adapted
to the L2 theory. We start with a definition of a refinable vector consisting of potentially infinitely
many functions.

Definition 3.1. We say that Φ = (ϕj )j∈J ⊂ L2(Rn) is a refinable vector, where J = {1, . . . ,N}
or J = N, if

Φ̂(Bξ) = M(ξ)Φ̂(ξ) for a.e. ξ ∈ R
n, (3.1)

where B = AT and M = (mi,j )i,j∈J is a matrix of Z
n-periodic, measurable functions.

In order to make sense of (3.1) in the case when J = N, we assume additionally that

∑
j∈J

1Rj
(ξ) < ∞ for a.e. ξ ∈ T

n, (3.2)

where

Rj = supp dimS(ϕj ) .

Note that we can always assume that suppmi,j ⊂ Rj , since the values of mi,j outside of Rj

do not affect (3.1).

Remark 3.1. Condition (3.2) is a technical matter that allows us to talk meaningfully about
Eq. (3.1). However, if the matrix M(ξ) has only finitely many non-zero entries for a.e. ξ ∈ R

n,
then (3.1) makes sense right away. Moreover, in this simple case, (3.2) follows from (3.1).

Theorem 3.1 is a generalization of the Unitary Extension Principle of Ron and Shen [29] to
a situation when a refinable vector Φ is infinite. We note that the original result of Ron and
Shen, in the case when Φ is finite, requires certain mild decay assumptions on Φ , see [21,29].
Nevertheless, Theorem 3.1 shows that these decay assumptions are unnecessary and they can be
safely removed.

Theorem 3.1. Suppose Φ = (ϕj )j∈J is a refinable vector with a mask M such that

∑
j∈J

‖ϕj‖2 =
∫
Rn

∥∥Φ̂(ξ)
∥∥2

�2(J )
dξ < ∞ (3.3)

and

lim
∥∥Φ̂(B−j ξ

)∥∥= 1 for a.e. ξ ∈ R
n. (3.4)
j→∞



M. Bownik, Z. Rzeszotnik / Journal of Functional Analysis 256 (2009) 1065–1105 1081
Suppose also that Ψ = (ψj )
j∈J̃

, where J̃ = {1, . . . ,N} is finite, is given by

Ψ̂ (Bξ) = H(ξ)Φ̂(ξ), (3.5)

where H = (hi,j )i∈J̃ , j∈J
is Z

n-periodic, measurable matrix function satisfying

M∗(ξ)M(ξ + d) + H ∗(ξ)H(ξ + d) = Ω(ξ)δ0,d for a.e. ξ, (3.6)

and for any d ∈ D.
Then Ψ ⊂ L2(Rn) is a tight framelet.

Proof. It suffices to verify that Ψ ⊂ L2(Rn) satisfies the characterization equations for tight
framelets [11,24]

∑
j∈Z

∥∥Ψ̂ (Bjξ
)∥∥2 = 1 for a.e. ξ, (3.7)

∞∑
j=0

Ψ̂ ∗(Bjξ
)
Ψ̂
(
Bj (ξ + q)

)= 0 for a.e. ξ, and all q ∈ Z
n \ BZ

n. (3.8)

Note that for any j ∈ Z,

∥∥Ψ̂ (Bjξ
)∥∥2 + ∥∥Φ̂(Bjξ

)∥∥2 = Ψ̂ ∗(Bjξ
)
Ψ̂
(
Bjξ

)+ Φ̂∗(Bjξ
)
Φ̂
(
Bjξ

)
= Φ̂∗(Bj−1ξ

)
H ∗(Bj−1ξ

)
H
(
Bj−1ξ

)
Φ̂
(
Bj−1ξ

)
+ Φ̂∗(Bj−1ξ

)
M∗(Bj−1ξ

)
M
(
Bj−1ξ

)
Φ̂
(
Bj−1ξ

)
= Φ̂∗(Bj−1ξ

)
Ω
(
Bj−1ξ

)
Φ̂
(
Bj−1ξ

)= ∥∥Φ̂(Bj−1ξ
)∥∥2

, (3.9)

where in the last step we used that supp ϕ̂i ⊂ Si . Therefore,

∫
Rn

∥∥Ψ̂ (ξ)
∥∥2

dξ = (|detA| − 1
)∫
Rn

∥∥Φ̂(ξ)
∥∥2

dξ < ∞,

and the fact that Ψ ⊂ L2(Rn) is forced by (3.5) and (3.6).
Next, we claim that

lim
j→∞

∥∥Φ̂(Bjξ
)∥∥= 0 for a.e. ξ ∈ R

n. (3.10)

Otherwise, due to monotonicity of the sequence (‖Φ̂(Bj ξ)‖)j∈Z, we could find δ > 0 such that

E = {ξ ∈ R
n:
∥∥Φ̂(Bjξ

)∥∥> δ for all j ∈ Z
}

has a positive measure. Since BE = E, E must have infinite Lebesgue measure and consequently
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∫
Rn

∥∥Φ̂(ξ)
∥∥2

dξ �
∫
E

∥∥Φ̂(ξ)
∥∥2

dξ = ∞,

which contradicts (3.3). Thus, (3.10) holds and together with (3.4), (3.9) it implies (3.7).
Likewise for any j � 1 and q ∈ Z

n \ BZ
n,

Ψ̂ ∗(Bjξ
)
Ψ̂
(
Bj (ξ + q)

)+ Φ̂∗(Bjξ
)
Φ̂
(
Bj (ξ + q)

)
= Φ̂∗(Bj−1ξ

)
H ∗(Bj−1ξ

)
H
(
Bj−1(ξ + q)

)
Φ̂
(
Bj−1(ξ + q)

)
+ Φ̂∗(Bj−1ξ

)
M∗(Bj−1ξ

)
M
(
Bj−1(ξ + q)

)
Φ̂
(
Bj−1(ξ + q)

)
= Φ̂∗(Bj−1ξ

)
Ω
(
Bj−1ξ

)
Φ̂
(
Bj−1(ξ + q)

)
= Φ̂∗(Bj−1ξ

)
Φ̂
(
Bj−1(ξ + q)

)
,

where in the penultimate step we used Z
n-periodicity of M and H . The same calculation for

j = 0 together with the observation that

H ∗(B−1ξ
)
H
(
B−1(ξ + q)

)+ M∗(B−1ξ
)
H
(
B−1(ξ + q)

)= 0

yields that

Ψ̂ ∗(ξ)Ψ̂ (ξ + q) + Φ̂∗(ξ)Φ̂(ξ + q) = 0.

Combining these identities with

lim
j→∞

∣∣Φ̂∗(Bjξ
)
Φ̂
(
Bj (ξ + q)

)∣∣� lim
j→∞

∥∥Φ̂(Bjξ
)∥∥∥∥Φ̂(Bj (ξ + q)

)∥∥= 0 for a.e. ξ ∈ R
n,

proves (3.8). �
Remark 3.2. The Unitary Extension Principle in the form of Theorem 3.1 yields not only a tight
framelet Ψ but also two GMRAs. Indeed, every function Φ satisfying (3.1)–(3.4) generates a
GMRA with a core space V0 generated by the integer shifts of the functions ϕj , j ∈ J . The other
GMRA is the one, whose core space Ṽ0 is the space of negative dilates of the tight framelet Ψ ,
see Theorem 6.1. While we always have Ṽ0 ⊂ V0, it is not clear whether we have the converse in-
clusion, i.e., whether these two GMRAs are the same. This open question was raised by Baggett,
Jorgensen, Merrill, and Packer in [4].

In the next section we will use Theorem 3.1 to give a general construction procedure of tight
framelets. To this end, it is convenient to prove the following fact about functions satisfying an
inequality reminiscent of Baggett’s consistency equation.

Lemma 3.1. Suppose that m : R
n → [0,∞) is Z

n-periodic, measurable function such that

∑
m(ξ + d) � m(Bξ) + M for a.e. ξ ∈ T

n, (3.11)

d∈D
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for some M � 0. Then m is integrable over its period and

∫
Tn

m(ξ) dξ � M/
(|detA| − 1

)
. (3.12)

Heuristically, Lemma 3.1 seems to be trivial. Integrating (3.11) over T
n yields

|detA|
∫
Tn

m(ξ) dξ �
∫
Tn

m(ξ) dξ + M.

Unfortunately, we do not know a priori whether m is integrable and a much more complicated ar-
gument is necessary. Despite its simplicity, we could not find Lemma 3.1 in the existing literature
and therefore we provide its proof.

Proof. For an integer N � 0, let RN(ξ) be the “Riemann sum” of m of depth N given by

RN(ξ) = Rm
N(ξ) := 1

|detA|N
∑

ε0,...,εN−1∈D
m

(
ξ +

N−1∑
i=0

B−iεi

)
.

It is clear that RN(ξ) is measurable and B−N
Z

n-periodic, since all the sums of the form∑N−1
i=0 B−iεi , where ε0, . . . , εN−1 ∈ D, are representatives of distinct cosets of B−N

Z
n/Z

n.
Here, D consists as usual of representatives of distinct cosets of B−1

Z
n/Z

n. By (3.11),

|detA|RN(ξ) � RN−1(Bξ) + M for any N � 1.

Hence, by iteration,

m
(
BNξ

)= R0
(
BNξ

)
� |detA|NRN(ξ) − M

|detA|N − 1

|detA| − 1
.

Take any C > M/(|detA| − 1) and let δ = C − M/(|detA| − 1). Then

{
ξ ∈ R

n: RN(ξ) � C
}⊂ {ξ ∈ R

n: m
(
BNξ

)
� δ|detA|N}.

For a fixed K > 0, let R′
N(ξ) = Rm′

N (ξ), where m′ is a truncation of m at height K given by
m′(ξ) = min(m(ξ),K). It is clear that each R′

N(ξ) is B−N
Z

n-periodic, measurable and bounded
by K . Furthermore,

∣∣{ξ ∈ T
n: R′

N(ξ) � C
}∣∣� ∣∣{ξ ∈ T

n: m
(
BNξ

)
� δ|detA|N}∣∣

= ∣∣{ξ ∈ T
n: m(ξ) � δ|detA|N}∣∣→ 0 as N → ∞. (3.13)

Since R′
N ’s are bounded, there exists a subsequence {Ni} such that {R′

Ni
(ξ)} converges pointwise

a.e. to some f (ξ). Since f (ξ) must be periodic with respect to every lattice B−N
Z

n ⊂ B−N+1
Z

n,
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and
⋃∞

N=0 B−N
Z

n is dense, f (ξ) must be a constant function, f (ξ) = C0. By (3.13), 0 � C0 �
M/(|detA| − 1). Moreover,

C0 =
∫
Tn

f (ξ) dξ = lim
i→∞

∫
Tn

R′
Ni

(ξ) dξ =
∫
Tn

m′(ξ) dξ =
∫
Tn

min
(
m(ξ),K

)
dξ.

Hence, letting K → ∞ allows to obtain (3.12) by the monotone convergence theorem. �
4. Construction of tight framelets

The main goal of this section is to provide a general reconstruction procedure for scaling
vectors and semi-orthogonal wavelets from their corresponding low-pass and high-pass matrix
masks. Hence, the goal is to reverse the flow of Section 2 by starting with a low-pass matrix
mask function M satisfying conditions (2.14)–(2.16). Theorem 2.2 shows that this is a perfectly
reasonable assumption, since any matrix mask function of an exhausting scaling vector must
satisfy them. The key ingredient of our approach is a rather complicated procedure yielding a
refinable vector Φ corresponding to the mask M , see Theorem 4.2. This, combined with the
Unitary Extension Principle and appropriate conditions on a high-pass mask H , yields a tight
framelet Ψ (see Theorem 4.3).

In general, we can only expect that Ψ is a tight framelet. However, if we know a priori that
our low-pass and high-pass matrix masks correspond to some semi-orthogonal wavelet Ψ , then
we prove that our procedure is flexible enough to recover Ψ itself. In particular, every orthogonal
wavelet Ψ can be obtained by our recovery procedure via low-pass and high-pass matrix masks
manipulations. This will be shown in the following section.

To start the construction of tight framelets we must recall a characterization of the dimension
function associated to a GMRA proved in [15].

Theorem 4.1. Suppose {Vj }j∈Z is a GMRA. Then the dimension function of the core space V0,
m(ξ) = dimV0(ξ), satisfies the following conditions:

(D1) m : R
n → N ∪ {0,∞} is a measurable Z

n-periodic function;
(D2)

∑
d∈D m(ξ + d) � m(Bξ) for a.e. ξ ∈ R

n;
(D3)

∑
k∈Zn 1Δ(ξ + k) � m(ξ) for a.e. ξ ∈ R

n, where

Δ = {ξ ∈ R
n: m

(
B−j ξ

)
� 1 for j ∈ N ∪ {0}};

(D4) lim infj→∞ m(B−j ξ) � 1 for a.e. ξ ∈ R
n.

Conversely, if m satisfies (D1)–(D4), then there exists a GMRA {Vj }j∈Z such that
dimV0(ξ) = m(ξ).

Our construction is based on a function m that satisfies conditions (D1)–(D4) of the above
theorem. However, to ensure the existence of a tight framelet we shall add two more assumptions.
Namely,

(D5) m ∈ L1(Tn);
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and

(D6) m is finite a.e. and there is N ∈ N such that for a.e. ξ ∈ T
n we have

∑
d∈D

m(ξ + d) � m(Bξ) + N.

To motivate these final conditions we include the following

Proposition 4.1. Let Ψ = {ψ1, . . . ,ψN } ⊂ L2(Rn) be a tight framelet and V0 its space of nega-
tive dilates. If {Vj }j∈Z forms a GMRA, then m = dimV0 satisfies (D5) and (D6).

Proof. First we conduct the standard orthogonalization procedure. That is, for j ∈ Z we define
Wj := Vj+1 � Vj and observe that

⊕
j∈Z

Wj = L2(
R

n
)
. (4.1)

Clearly, W0 is a shift-invariant space generated by {ψ −PV0ψ}ψ∈Ψ , where PV0 is the orthogonal
projection on V0. By Theorem 2.1 we can find quasi-orthogonal generators Φ = {ϕ1, ϕ2, . . .}
for W0 as in Theorem 2.1. Since our tight framelet Ψ consists of N of functions, Φ has � N

of non-zero elements as well. Condition 4.1 assures that Φ is a semi-orthogonal wavelet. This
allows us to calculate the spectral function of V0 in terms of Φ . Indeed, a formula from [15] gives
us

σV0(ξ) =
∑
ϕ∈Φ

∑
j>0

∣∣ϕ̂(Bjξ
)∣∣2.

After integrating the above formula and using the fact that ‖ϕ‖ � 1 for all ϕ ∈ Φ , we obtain that∫
Rn

σV0 =
∑
ϕ∈Φ

‖ϕ‖2/
(|detA| − 1

)
� N/

(|detA| − 1
)
.

Since
∫

Rn σV0 = ∫
Tn m, this shows that (D5) is satisfied.

In order to justify (D6) we use basic properties of the dimension function that are given in [15].
Since V1 = V0 ⊕ W0, we get that

∑
d∈D m(B−1ξ + d) = m(ξ) + dimW0(ξ). But W0 has N gen-

erators, therefore dimW0 � N and (D6) follows. �
Remark 4.1. In order to construct our GMRA only conditions (D1)–(D5) are going to be used.
We shall also show that (D6) is necessary and sufficient to guarantee the existence of a “high
pass filter” that will be used to define our framelet. We also want to point out, that (D5) follows
from (D6), as was shown in Lemma 3.1.

In short, our construction is guided by the standard procedure. We are going to consider a
matrix mask function M that satisfies conditions (2.14)–(2.16). Then we will construct a corre-
sponding refinable vector Φ and use Unitary Extension Principle to obtain an associated tight
framelet Ψ .
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We start equipped with a function m that satisfies conditions (D1)–(D5). Then, we define the
sets Sj , for j ∈ N, by a formula analogous to (2.6), that is

Sj = {ξ ∈ R
n: m(ξ) � j

}
. (4.2)

Let J = {i ∈ N: |Sj | > 0}. Hence, J = {1,2, . . . ,L} or J = N. The sets Sj , j ∈ J , are used
to define the diagonal matrix function Ω as in (2.9). This allows us to consider a matrix mask
function M with periodic entries mi,j ∈ L2(Sj ), i, j ∈ J , that satisfies conditions (2.14)–(2.16).
In order to find the corresponding refinable vector we shall use the ideas of [27]. First, we will
modify M to assure that the product of the dilates of M is convergent. Then, we shall use mul-
tipliers to recover the solution to the original problem. To proceed in this direction we need the
following basic lemma about multipliers.

Lemma 4.1. Let μ be a unimodular measurable function on R
n (that is, μ : R

n → S1 =
{z ∈ C: |z| = 1}). If B is an expansive matrix, then there exists a unimodular measurable function
ν such that

ν(Bξ)ν(ξ) = μ(ξ) for a.e. ξ ∈ R
n. (4.3)

Proof. It is well known, that for any expansive matrix B there is an ellipsoid E such
that E ⊂ B(E ), see e.g. [12, Lemma 2.2]. It follows, that for W = B(E ) \ E we have⋃

j∈Z
Bj (W) = R

n. Therefore, it is enough to define a unimodular function ν on W and then
extend it to R

n using Eq. (4.3). �
The mentioned modification of the matrix mask function M is very simple. The most impor-

tant entry of M is m1,1. Let μ be a phase of m1,1. That is, μ is a unimodular measurable function
such that

μ(ξ)
∣∣m1,1(ξ)

∣∣= m1,1(ξ) for a.e. ξ ∈ R
n. (4.4)

A multiplier associated to the mask M is any unimodular measurable function ν satisfying (4.3)
and (4.4). The modified mask is

M ′ := μ̄M (4.5)

and the corresponding refinable vector is given by

Φ̂ ′(ξ) := lim
N→∞

[
N∏

j=1

M ′(B−j ξ
)]

e, (4.6)

where e is the vector (1,0,0, . . .). Finally, the refinable vector Φ corresponding to the mask M

will be given by Φ̂ := νΦ̂ ′. In order to establish that Φ is refinable we use the following series
of lemmas.

Lemma 4.2. The vector function Φ̂ ′ in (4.6) is well defined.
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Proof. We need to show, that the limit in (4.6) does exist for a.e. ξ ∈ R
n. We want to point out,

that although
∏∞

j=1 M ′(B−j ξ) may not exist, we are only interested in the first column of this
matrix. Later, we will prove that under some natural assumptions this product matrix exists and
all of its columns but the first must be zero, see (5.1).

By (2.15), for a.e. ξ ∈ R
n we can find N(ξ) such that the first column of M ′(B−j ξ) has only

one non-zero entry (the first one) for all j > N(ξ). Therefore, for N > N(ξ) we have

[
N∏

j=1

M ′(B−j ξ
)]

e =
[

N(ξ)∏
j=1

M ′(B−j ξ
)][ N∏

j=N(ξ)+1

∣∣m1,1
(
B−j ξ

)∣∣]e.

Thus,

Φ̂ ′(ξ) := lim
N→∞pN(ξ)v(ξ),

where v(ξ) = [∏N(ξ)
j=1 M ′(B−j ξ)]e and pN(ξ) = ∏N

j=N(ξ)+1 |m1,1(B
−j ξ)|. Since condi-

tion (2.14) guarantees that |m1,1| � 1, we see that {pN(ξ)} is a bounded decreasing sequence
and our claim follows. �
Lemma 4.3. The vector function Φ̂ ′ in (4.6) satisfies Φ̂ ′(Bξ) = M ′(ξ)Φ̂ ′(ξ).

Proof. From (D5) it follows that our function m is finite a.e. Therefore, condition (2.14) implies
that for a.e. ξ ∈ T

n the matrix M ′(ξ) has only finitely many non-zero terms. This allows us to
see that

Φ̂ ′(Bξ) = lim
N→∞

(
M ′(ξ)

[
N∏

j=1

M ′(B−j ξ
)]

e

)
= M ′(ξ) lim

N→∞

([
N∏

j=1

M ′(B−j ξ
)]

e

)

= M ′(ξ)Φ̂ ′(ξ). �
Lemma 4.4. The vector function Φ̂ ′ in (4.6) satisfies limN→∞ ‖Φ̂ ′(B−Nξ)‖ = 1, for a.e. ξ ∈ R

n.

Proof. By (2.15), for a.e. ξ ∈ R
n we can find N(ξ) such that for all N > N(ξ) we have

Φ̂ ′(B−Nξ
)=

( ∞∏
j=N+1

∣∣m1,1
(
B−j ξ

)∣∣)e.

Therefore, our claim follows from (2.16). �
Lemma 4.5. The vector function Φ̂ ′ in (4.6) satisfies

∫
Rn ‖Φ̂ ′(ξ)‖2 dξ < ∞.

Proof. For N ∈ N and a.e. ξ ∈ R
n let us consider the following matrix

MN(ξ) =
[

N∏
M ′(B−j ξ

)]
1BN(Tn)(ξ). (4.7)
j=1
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We claim that for all N ∈ N and a.e. ξ ∈ R
n,

∑
k∈Zn

MN(ξ + k)M∗
N(ξ + k) = Ω(ξ). (4.8)

Indeed, for N = 1 we use (2.14) to obtain

∑
k∈Zn

M1(ξ + k)M∗
1 (ξ + k) =

∑
k∈Zn

M
(
B−1(ξ + k)

)
M∗(B−1(ξ + k)

)
1B(Tn)(ξ + k)

=
∑
d∈D

M
(
B−1ξ + d

)
M∗(B−1ξ + d

)= Ω(ξ).

To proceed with the induction we observe that

MN+1(ξ) = M ′(B−1ξ
)
M ′

N

(
B−1ξ

)
,

for N ∈ N and a.e. ξ ∈ R
n. Therefore,

∑
k∈Zn

MN+1(ξ + k)M∗
N+1(ξ + k)

=
∑
k∈Zn

M
(
B−1(ξ + k)

)
MN

(
B−1(ξ + k)

)
M∗

N

(
B−1(ξ + k)

)
M∗(B−1(ξ + k)

)

=
∑
d∈D

∑
l∈Zn

M
(
B−1ξ + d

)
MN

(
B−1ξ + d + l

)
M∗

N

(
B−1ξ + d + l

)
M∗(B−1ξ + d

)

=
∑
d∈D

M
(
B−1ξ + d

)
Ω
(
B−1ξ + d

)
M∗(B−1ξ + d

)

=
∑
d∈D

M
(
B−1ξ + d

)
M∗(B−1ξ + d

)= Ω(ξ),

what proves our claim (4.8). In order to use it, we observe that for all k ∈ Z
n and a.e. ξ ∈ R

n,

∥∥MN(ξ + k)e
∥∥2 �

∥∥MN(ξ + k)
∥∥2 �

∥∥MN(ξ + k)
∥∥2

HS
= tr

[
MN(ξ + k)M∗

N(ξ + k)
]
, (4.9)

where ‖ · ‖HS denotes the Hilbert–Schmidt operator norm. The above estimate and (4.8) give us

∑
k∈Zn

∥∥MN(ξ + k)e
∥∥2 � tr

[
Ω(ξ)

]= m(ξ). (4.10)

Since limN→∞(MN(ξ)e) = Φ̂ ′(ξ), we can use Fatou’s lemma to conclude that

∑
n

∥∥Φ̂ ′(ξ + k)
∥∥2 � m(ξ). (4.11)
k∈Z
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By (D5) the function m(ξ) is integrable over T
n, thus∫

Rn

∥∥Φ̂ ′(ξ)
∥∥2

dξ =
∫
Tn

∑
k∈Zn

∥∥Φ̂ ′(ξ + k)
∥∥2

dξ �
∫
Tn

m(ξ) dξ < ∞. � (4.12)

Remark 4.2. We have that Φ̂ ′ = (ϕ̂′
j )j∈J . Since

∫
Rn ‖Φ̂ ′(ξ)‖2 dξ = ∑

j∈J ‖ϕ̂j‖2, the above
lemma shows that Φ̂ ′ ⊂ L2(Rn).

To reverse the procedure given in (4.5) we use Lemma 4.1 to find a multiplier ν associated
to M and define our refinable vector Φ by setting

Φ̂ := νΦ̂ ′. (4.13)

The following result assures that such Φ has all of the properties that we need.

Theorem 4.2. The vector function Φ̂ given in (4.13) satisfies conditions (3.1)–(3.4).

Proof. By Lemma 4.3 and (4.3) together with (4.5) we get that

Φ̂(Bξ) = ν(Bξ)Φ̂ ′(Bξ) = ν(Bξ)M ′(ξ)Φ̂ ′(ξ) = ν(Bξ)μ̄(ξ)M(ξ)ν̄(ξ)Φ̂(ξ) = M(ξ)Φ̂(ξ),

therefore, (3.1) holds. As we mentioned before, (2.14) implies that the mask matrix M(ξ)

has only finitely many non-zero terms. Thus, condition (3.2) is satisfied, by Remark 3.1.
Since ‖Φ̂(ξ)‖ = ‖Φ̂ ′(ξ)‖ a.e., properties (3.3) and (3.4) follow immediately from Lemmas 4.4
and 4.5. �

As an immediate consequence of Theorem 4.2 and the Unitary Extension Principle from the
previous section, we obtain our framelet construction result. The precursor of Theorem 4.3 is a
result of Baggett, Jorgensen, Merrill, and Packer [4, Theorem 3.4] where a low-pass matrix mask
M is assumed to be finite and Lipschitz continuous near 0 (instead of satisfying our assump-
tions (2.15) and (2.16)).

Theorem 4.3. Let m be a function that satisfies (D1)–(D5) with the sets Sj given by (4.2) and
the corresponding matrix function Ω defined in (2.9). Let M = (mi,j )i,j∈J be a matrix mask
function with periodic entries mi,j ∈ L2(Sj ), that satisfies (2.14)–(2.16). Then there is a refinable
vector Φ such that

Φ̂(Bξ) = M(ξ)Φ̂(ξ) for a.e. ξ ∈ R
n. (4.14)

Moreover, if a matrix function H = (hi,j )i∈J̃ ,j∈J
with J̃ = {1, . . . ,N} finite and with periodic

entries hi,j ∈ L2(Sj ) satisfies

M∗(ξ)M(ξ + d) + H ∗(ξ)H(ξ + d) = Ω(ξ)δ0,d for any d ∈ D and a.e. ξ ∈ R
n, (4.15)

then Ψ = (ψj )
j∈J̃

given by

Ψ̂ (Bξ) = H(ξ)Φ̂(ξ) (4.16)

is a tight framelet for L2(Rn).
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Proof. The existence of a refinable vector Φ satisfying (4.14) is a consequence of Theorem 4.2.
In addition, if a matrix function H satisfies (4.15), then by Theorem 3.1, Ψ given by (4.16) is a
tight framelet for L2(Rn). �

The next theorem gives the necessary and sufficient conditions for the existence of the high-
pass matrix mask H that satisfies (4.15). Some of the implications in Theorem 4.4 are already
known. Indeed, (i) ⇒ (ii) is due to Baggett, Courter, and Merrill [3, Theorem 2.5], whereas
(ii) ⇒ (iii) is due to Baggett, Jorgensen, Merrill, and Packer [4, Theorem 2.5] in the case of
bounded m. We shall give the full proof of Theorem 4.4 for the sake of completeness.

Theorem 4.4. Let m be any function satisfying (D1)–(D5). Let m̃ : R
n → N∪{0} be a measurable

Z
n-periodic function satisfying

∑
d∈D

m(ξ + d) = m(Bξ) + m̃(Bξ) for a.e. ξ ∈ R
n. (4.17)

Define the sets

Sj = {ξ ∈ R
n: m(ξ) � j

}
, S̃j = {ξ ∈ R

n: m̃(ξ) � j
}

and the corresponding matrix functions Ω and Ω̃ by (2.9). Assume that M = (mi,j )i,j∈J is a
matrix mask function with periodic entries mi,j ∈ L2(Sj ) that satisfies (2.14). Then the following
are equivalent:

(i) m satisfies (D6).
(ii) There exists a matrix function H = (hi,j )i∈J̃ ,j∈J

with J̃ finite and with periodic entries

hi,j ∈ L2(Sj ) satisfying

∑
d∈D

H(ξ + d)H ∗(ξ + d) = Ω̃(Bξ) a.e. ξ ∈ R
n, (4.18)

∑
d∈D

H(ξ + d)M∗(ξ + d) = 0 a.e. ξ ∈ R
n. (4.19)

(iii) There exists a matrix function H = (hi,j )i∈J̃ ,j∈J
with J̃ finite and with periodic entries

hi,j ∈ L2(Sj ) satisfying (4.15).

Moreover, if a matrix function H satisfies (4.18) and (4.19) then it also satisfies (4.15). How-
ever, the converse is in general false.

Remark 4.3. Note that m̃ as in (4.17) always exists, since

m̃(ξ) =
∑
d∈D

m
(
B−1ξ + d

)− m(ξ)

is clearly Z
n-periodic and non-negative by (D2). Moreover, let E be any measurable subset of T

n

such that {E + d: d ∈ D} is a partition of T
n (modulo null sets). Then, it is easy to see using the
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periodicity of M and H that if (4.18) and (4.19) hold for a.e. ξ ∈ E, then they must hold for a.e.
ξ ∈ R

n.

Proof. First, suppose that a matrix function H = (hi,j )i∈J̃ ,j∈J
has periodic entries hi,j ∈

L2(Sj ), satisfies (4.15) and the index set J̃ has N elements. Consider the combined matrix func-
tion

T (ξ) =
[

M(ξ + d1) . . . M(ξ + dq)

H(ξ + d1) . . . H(ξ + dq)

]
. (4.20)

By the support conditions and (4.15), the matrix T (ξ) has precisely
∑

d∈D m(ξ + d) non-zero
columns. Condition (4.15) says that these non-zero columns form an orthonormal system. On
the other hand, (2.14) and the fact that J̃ has N elements imply that the matrix T (ξ) has at
most m(Bξ) + N non-zero rows. Clearly, any collection of orthonormal vectors must be smaller
than the dimension of the space where they live in. Consequently, (D6) must hold. This shows
(iii) ⇒ (i).

Conversely, suppose that (D6) holds and consider a matrix function

T ′(ξ) = [M(ξ + d1) . . . M(ξ + dq) ] . (4.21)

It is convenient to fix ξ ∈ E, where E is the same as in Remark 4.3. As before, by the support
conditions, the matrix T ′(ξ) has at most

∑
d∈D m(ξ + d) non-zero columns. On the other hand,

the matrix T ′(ξ) has m(Bξ) non-zero rows forming an orthonormal system by (2.14). Therefore,
for a fixed ξ , we have a finite submatrix T ′′(ξ) with c =∑d∈D m(ξ + d) columns and r =
m(Bξ) orthonormal rows. Now, it suffices to find an extension of this submatrix to a unitary
c × c matrix. Since m̃(Bξ) = c − r � N by (D6), at most N extra rows must be added. Define
[H(ξ + d1) . . . H(ξ + dq)] to be a matrix with rows indexed by J̃ = {1, . . . ,N} such that the
first m̃(Bξ) = c − r rows of [H(ξ + d1) . . . H(ξ + dq)] are formed by inserting the extra rows
from a finite submatrix T ′′(ξ) interspersed by zero columns, which were previously removed
from the matrix T ′(ξ). The remaining rows (if any) of [H(ξ + d1) . . . H(ξ + dq)] are defined
to be zero. It is not hard to see that the these extra rows can be chosen in such a way that
the resulting matrix function [H(ξ + d1) . . . H(ξ + dq)] has measurable entries as a function
of ξ ∈ E. As a result, the combined matrix function T (ξ) has the same number of non-zero
columns equal to

∑
d∈D m(ξ + d) as the number of non-zero rows equal to m(Bξ) + m̃(Bξ)

by (4.17). Furthermore, since the non-zero rows of T (ξ) form an orthonormal sequence, the
finite submatrix consisting of non-zero columns and rows must be unitary. Consequently, the
constructed matrix H satisfies (4.18) and (4.19) for a.e. ξ ∈ E. By Remark 4.3 this shows that
(i) ⇒ (ii).

Next, if H is any matrix function as in (ii), then (2.14), (4.18), and (4.19) imply that the
non-zero rows of the combined matrix function T (ξ) form an orthonormal sequence. By (4.17)
a finite submatrix consisting of non-zero columns and rows of T (ξ) has the same number of
non-zero columns as the number of non-zero rows and hence must be unitary. Since the rows
of this finite submatrix are orthonormal, so are the columns, which implies that (4.15) holds.
Therefore, (4.18) and (4.19) always imply (4.15). The converse implication is obviously false
in general, since the combined matrix T (ξ) may have a larger number of non-zero rows than
non-zero columns and as a consequence the orthonormality of columns does not translate into
orthonormality of rows. This proves (ii) ⇒ (iii) and completes the proof of Theorem 4.4. �
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Remark 4.4. The origin of Eq. (4.17) is hidden in the consistency equation (2.22). Once we take
m = dimV0 and m̃ = dimW0 , the connection becomes clear.

As a consequence of Theorems 4.3 and 4.4 we can deduce that any low-pass matrix mask
function M satisfying (2.14)–(2.16) associated with the dimension function m satisfying (D1)–
(D6) corresponds to some tight framelet Ψ via (4.14) and (4.16). To achieve this we must choose
a high-pass mask matrix H such that the corresponding combined matrix function (4.20) has
orthogonal columns, that is, (4.15) holds. Naturally, if we count on obtaining a semi-orthogonal
wavelet Ψ , then the high-pass matrix mask H must satisfy more restrictive conditions (4.18)–
(4.19) resulting in row orthogonality of the combined matrix (4.20), see Theorem 5.2.

We would like to point out, that a refinable vector Φ in Theorem 4.3 is not unique. Indeed,
the explicit formula for our choice of Φ is

Φ̂(ξ) = ν(ξ) lim
N→∞

[
N∏

j=1

μ̄
(
B−j ξ

)
M
(
B−j ξ

)]
e = lim

N→∞ν
(
B−Nξ

)[ N∏
j=1

M
(
B−j ξ

)]
e, (4.22)

where e = (1,0,0, . . .), μ is the phase of m1,1 and ν is an arbitrary multiplier, i.e., a measur-
able unimodular function such that ν(Bξ)ν(ξ) = μ(ξ). Recall that Lemma 4.1 guarantees the
existence of such multipliers. Equivalently, we can define a multiplier associated to the mask
M = (mi,j ) as any function ν satisfying

ν(Bξ)ν(ξ)
∣∣m1,1,(ξ)

∣∣= m1,1(ξ) for a.e. ξ ∈ R
n. (4.23)

Indeed, if ν satisfies (4.23), then μ(ξ) = ν(Bξ)ν(ξ) is a phase of m1,1 and ν is its corresponding
multiplier. Note that a phase μ satisfying (4.4) might not be unique if m1,1 does not have a full
support.

Since there are many possibilities for multipliers ν satisfying (4.23) we obtain a lot of choices
for Φ . Moreover, these different choices generate distinct GMRA’s. In general, if P is a matrix
function such that P(Bξ)−1M(ξ)P (ξ) = M(ξ) a.e., then our Φ̂ can be replaced by PΦ̂ . Nev-
ertheless, we can loosely think that Φ is given by the standard product

∏∞
j=1 M(B−j ξ) that is

applied to the vector e. Even better, it turns out that if the product is convergent, then this standard
choice of Φ is valid.

Proposition 4.2. If M is as in Theorem 4.3 and the product
∏∞

j=1 M(B−j ξ) is convergent for
a.e. ξ ∈ R

n, then Φ from Theorem 4.3 can be taken as

Φ̂(ξ) :=
[ ∞∏

j=1

M
(
B−j ξ

)]
e. (4.24)

Proof. Since
∏∞

j=1 M(B−j ξ) is convergent a.e., we have that
∏∞

j=1 m1,1(B
−j ξ) is convergent

a.e. as well. In particular,

lim
N→∞

∞∏
m1,1

(
B−j ξ

)= 1 a.e. (4.25)

j=N
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By (4.3) this is equivalent to

lim
N→∞ν

(
B−Nξ

)
exists for a.e. ξ ∈ R

n. (4.26)

Let Φ be a refinable vector as in Theorem 4.3 and ν be any function as in Lemma 4.1. Define
another function ν′ satisfying the conclusions of Lemma 4.1 by

ν′(ξ) = α(ξ)ν(ξ), where α(ξ) = lim
N→∞ν

(
B−Nξ

)
.

Indeed,

ν′(Bξ)ν′(ξ) = μ(ξ), lim
N→∞ν′(B−Nξ

)= 1 for a.e. ξ ∈ R
n.

Therefore, by (4.22),

Φ̂ ′(ξ) =
[ ∞∏

j=1

M
(
B−j ξ

)]
e

is a refinable vector function obtained by the procedure of Theorem 4.3 with the multiplier ν′.
This proves (4.24). �
5. Reconstruction of wavelets

The main goal of this section is to prove that every orthogonal wavelet can be reconstructed
from its carefully chosen low-pass and high-pass matrix masks by the procedure described in the
previous section. In order to achieve this, we will explore in more depth some subtle properties
of the refinable vector Φ from Theorem 4.3.

Recall that by starting from a dimension function m and an appropriate matrix mask M ,
we obtained a refinable vector Φ in Section 4 and, therefore, also the associated GMRA. The
standard issue in this type of constructions is the problem of “vanishing mass.” In short, it may
happen that

∫
Rn ‖Φ̂(ξ)‖2 dξ <

∫
Rn m(ξ) dξ . In particular, Φ need not to be a scaling vector

since quasi-orthogonality may fail. Also, the GMRA that results from such procedure can have a
strictly smaller dimension function (of its core space) than the original one that was used to start
the construction. This feature was already observed in the classical MRA case on R with dilation
by 2. The familiar Cohen’s condition is one of the ways to assure that “no mass gets lost.” It is
crucial if one hopes to obtain a wavelet. However, as pointed in [27] in the dyadic scalar case,
even if “some of the mass does vanish” one can still construct corresponding tight framelet. In
the general case, the problem gains on complexity. Below, we give a simple necessary condition
that is needed for preserving the “mass.”

In order to achieve this preservation, one has to impose that the matrix M ′ given in (4.5)
satisfies

lim
N→∞

N∏
j=1

M ′(B−j ξ
)=

⎡
⎢⎣

∗ 0 0 . . .

∗ 0 0 . . .
.. .. .. . .

⎤
⎥⎦ . (5.1)
. . . .
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More precisely, for a.e. ξ ∈ R
n the limit does exist and is equal to a matrix whose only non-zero

entries are in the first column. This also sheds a new light on (4.6), where we defined Φ̂ ′ as the
first column of such a product.

We will show the necessity of the above condition in the following

Proposition 5.1. Let m and Φ be as in Theorem 4.3. If

∫
Rn

∥∥Φ̂(ξ)
∥∥2

dξ =
∫
Tn

m(ξ) dξ, (5.2)

then (5.1) holds.

Proof. Let us show (5.1) by using calculations given in the proof of Lemma 4.5. First, we ob-
serve that (5.1) is equivalent to saying that limN→∞ ‖MN(ξ)ei‖ → 0 for a.e. ξ ∈ R

n, and every
vector ei , i � 2, of the standard basis. Also, we can use Φ ′ instead of Φ in our considerations.

By (4.12), the assumption (5.2) forces the inequality (4.11) to become an equality. Tracing
back this fact through (4.10) and (4.9) we see that, eventually, one must have

lim
N→∞

(
tr
[
MN(ξ)M∗

N(ξ)
]− ∥∥MN(ξ)e

∥∥2)= 0,

for a.e. ξ ∈ R
n. However, since tr[CD] = tr[DC], the above becomes

lim
N→∞

∑
i�2

∥∥MN(ξ)ei

∥∥2 = 0.

This shows the necessity of (5.1) and concludes the proof. �
In the next result we present the full connection between the “mass preservation” and the

properties of our refinable vector Φ .

Theorem 5.1. Let m and Φ be as in Theorem 4.3. Then, Φ is a scaling vector that generates a
GMRA with the same dimension function as m if and only if (5.2) holds.

Proof. Again, we can consider Φ ′ instead of Φ . If Φ ′ is a scaling vector then the dimension
function of the corresponding GMRA is equal to

∑
k∈Zn ‖Φ̂ ′(ξ + k)‖2. Clearly, the assumption

that this dimension function is the same as m implies that (5.2) holds.
On the other hand, assume that (5.2) is satisfied. From (4.12) and (4.11) it follows that

∑
k∈Zn

∥∥Φ̂ ′(ξ + k)
∥∥2 = m(ξ), (5.3)

for a.e. ξ ∈ T
n. By Proposition 5.1, applying Fatou’s lemma to (4.8) yields

∑
n

Φ̂ ′(ξ + k)Φ̂ ′∗(ξ + k) � Ω(ξ), (5.4)

k∈Z
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in the operator sense, for a.e. ξ ∈ T
n. However, condition (5.3) simply says that

tr

[ ∑
k∈Zn

Φ̂ ′(ξ + k)Φ̂ ′∗(ξ + k)

]
= tr

[
Ω(ξ)

]
a.e.

Therefore, we must have an equality in (5.4). This shows that Φ ′ is a scaling vector. More-
over, (5.3) assures that the GMRA generated by Φ ′ has the dimension function equal to m. �

As a consequence of Theorem 5.1 we show that the procedure of Theorem 4.3 can result
in a semi-orthogonal wavelet (with the expected size of generators) only if the combined ma-
trix (4.20) has orthogonal rows. As a corollary, we conclude that the necessary condition for
constructing orthogonal wavelets is that the high-pass filter H satisfies (4.18) and (4.19) with the
diagonal matrix function Ω̃ constantly equal to the identity matrix.

Theorem 5.2. Suppose that m is a function that satisfies (D1)–(D6) and m̃ is given by (4.17).
Suppose that M and H are low-pass and high-pass matrix masks as in Theorem 4.3. Let Ψ be
the corresponding tight framelet. Then

∫
Rn

∥∥Ψ̂ (ξ)
∥∥2

dξ �
∫
Tn

m̃(ξ) dξ. (5.5)

Moreover, if Ψ is a semi-orthogonal wavelet such that the equality holds in (5.5), then the high-
pass filter H necessarily satisfies (4.18) and (4.19) with the diagonal matrix function Ω̃ given
by (2.19).

Proof. Let Φ be the refinable vector constructed in Theorem 4.3. Recall that the proof of Theo-
rem 3.1 yields

∫
Rn

∥∥Ψ̂ (ξ)
∥∥2

dξ = (|detA| − 1
)∫
Rn

∥∥Φ̂(ξ)
∥∥2

dξ < ∞. (5.6)

On the other hand, since (D6) holds, condition (4.17) implies that m̃ is bounded. Therefore, we
can integrate (4.17) over T

n to obtain

∫
Tn

m̃(ξ) dξ = (|detA| − 1
)∫
Tn

m(ξ) dξ < ∞. (5.7)

Combining (4.12), (5.6), and (5.7) yields (5.5).
In addition, suppose that Ψ is a semi-orthogonal wavelet such that the equality holds in (5.5).

By Theorem 5.1, Φ is a scaling vector generating a GMRA {Vj }j∈Z with the dimension function
dimV0 = m. On the other hand, Ψ also generates a GMRA {V ′

j }j∈Z given by

V ′
j = span

{
DiTkψ

j̃ : i < j, k ∈ Z
n, j̃ ∈ J̃

}
for j ∈ Z.
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By [15, Corollary 4.3] the dimension function dimV ′
0

of the core space V ′
0 can be computed

explicitly and equals the wavelet dimension function DΨ . Consequently,

∫
Tn

dimV ′
0
(ξ) dξ = 1

|detA| − 1

∫
Rn

∥∥Ψ̂ (ξ)
∥∥2 =

∫
Rn

∥∥Φ̂(ξ)
∥∥2 =

∫
Tn

dimV0(ξ) dξ < ∞. (5.8)

On the other hand, by (4.16) Ψ ⊂ V1 and hence V ′
0 ⊂ V0. Thus, dimV ′

0
(ξ) � dimV0(ξ) for a.e. ξ

and (5.8) implies that

dimV ′
0
(ξ) = dimV0(ξ) < ∞ for a.e. ξ,

and hence V ′
0 = V0. Therefore, the semi-orthogonal wavelet ψ is associated with the GMRA

{Vj }j∈Z. By Proposition 2.2 the high-pass matrix mask H satisfies claimed properties. �
As an immediate consequence of Theorem 5.2 we have

Corollary 5.1. In addition to the assumptions of Theorem 5.2, assume that the equality holds
in (D6). Hence, there is N ∈ N such that

∑
d∈D

m(ξ + d) = m(Bξ) + N for a.e. ξ ∈ R
n.

Let Ψ be the tight framelet as in Theorem 4.3. If Ψ = {ψ1, . . . ,ψN } is an orthonormal wavelet,
then the high-pass filter H necessarily satisfies (4.18) and (4.19) with the diagonal matrix func-
tion Ω̃(ξ) ≡ IdN×N .

Proof. Our hypotheses imply that m̃(ξ) ≡ N a.e. ξ ∈ T
n. If Ψ = (ψj )Nj=1 is an orthonormal

wavelet, then

∫
Rn

∥∥Ψ̂ (ξ)
∥∥2

dξ = N =
∫
Tn

m̃(ξ) dξ.

By Theorem 5.2 and (2.19) H satisfies claimed properties since S̃j = supp dimS(ψj ) = R
n for

j = 1, . . . ,N . �
Finally, we will show that every exhausting scaling vector of a GMRA (that has an integrable

dimension function of the core space) can be obtained by the procedure of Theorem 4.3 with an
appropriate choice of a multiplier ν.

Theorem 5.3. Suppose {Vj }j∈Z is a GMRA such that dimV0 ∈ L1(Tn). Let M be the low-pass
matrix mask function of an exhausting scaling vector Φ for the core space V0.

(i) Any multiplier ν′ associated to M corresponds by Theorem 4.3 to some scaling vector Φ ′
with the same mask M (but generating not necessarily the same space V0).
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(ii) There exists a multiplier ν associated to M such that the scaling vector Φ is recovered via
Theorem 4.3 by the product formula (4.22), that is

Φ̂(ξ) = lim
N→∞ν

(
B−Nξ

)[ N∏
j=1

M
(
B−j ξ

)]
e for a.e. ξ. (5.9)

Proof. Note that the dimension function m = dimV0 of the core space V0 satisfies the as-
sumptions (D1)–(D5). Moreover, by Theorem 2.2, the matrix mask function M of Φ satisfies
conditions (2.14)–(2.16). Therefore, a fixed multiplier ν′ produces a refinable vector Φ ′ by the
procedure of Theorem 4.3.

We are going to prove (i) and (ii) simultaneously. Observe that both Φ and Φ ′ satisfy the same
refinable equation, which takes the form

Φ̂
(
B−Nξ

)= m1,1
(
B−N−1ξ

)
Φ̂
(
B−N−1ξ

)
,

Φ̂ ′(B−Nξ
)= m1,1

(
B−N−1ξ

)
Φ̂ ′(B−N−1ξ

)
, (5.10)

for sufficiently large N > N(ξ) dependent on the choice of ξ ∈ R
n. This is a simple consequence

of the special form of the matrix mask M near the origin. Let ϕ̂1 and ϕ̂′
1 be the first entries of Φ̂

and Φ̂ ′, respectively. By (5.10), the sequence {ϕ̂′
1(B

−Nξ)/ϕ̂1(B
−Nξ)}N>N(ξ) must be constant

whenever it is well defined. Let α(ξ) be the constant value of this sequence. It is clear that
α(Bξ) = α(ξ). Moreover, the fact that Φ̂ and Φ̂ ′ have zeros in all but the first entry near the
origin, (2.17), and Lemma 4.4, imply that |α(ξ)| = 1.

Define another multiplier ν corresponding to the same matrix mask function M by

ν(ξ) = α(ξ)ν′(ξ).

Finally, let Φ ′′ be the refinable vector obtained by the procedure of Theorem 4.3 with the mul-
tiplier ν. By (5.10) and the previously mentioned special form of Φ and Φ ′ near the origin we
have ε > 0 such that

Φ̂ ′(ξ) = α(ξ)Φ̂(ξ) for a.e. |ξ | < ε.

On the other hand, by the product formula (4.22) we have that

Φ̂ ′(ξ) = α(ξ)Φ̂ ′′(ξ) for a.e. ξ ∈ R
n. (5.11)

Since all functions Φ , Φ ′, and Φ ′′ satisfy the refinable equation with respect to the same matrix
mask function M , we must necessarily have that Φ = Φ ′′. This completes the proof of part (ii).

To deduce part (i) observe that Φ = Φ ′′ together with (5.11) yields

Φ̂ ′(ξ) = α(ξ)Φ̂(ξ) for a.e. ξ ∈ R
n,

for some α such that |α(ξ)| = 1 and α(Bξ) = α(ξ) a.e. Therefore, we conclude that the refin-
able vector Φ ′ must be necessarily a scaling vector. Obviously, there is no guarantee that the SI
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space V ′
0 generated by Φ ′ coincides with V0 unless function α is Z

n-periodic. This completes the
proof of part (i) of Theorem 5.3. �

As an immediate consequence of Theorem 5.3 we have that every semi-orthogonal wavelet Ψ

can be recovered by the procedure of Theorem 4.3. This is our main wavelet reconstruction result.

Theorem 5.4. Suppose Ψ is a semi-orthogonal wavelet. Let {Vj }j∈Z be the GMRA generated
by Ψ , and let Φ be an exhausting scaling vector for V0. Let M and H be the matrix mask
functions of Φ and Ψ , respectively. Then there exists a multiplier ν associated to M such that
the scaling vector Φ is recovered by the product formula (5.9) and Ψ is recovered by (4.16).

Proof. Theorem 5.3 guarantees that we can recover Φ . To get back Ψ we use Proposition 2.2.
It implies that the matrix mask functions M and H satisfy (2.20) and (2.21). As we pointed out
in Theorem 4.4, these two conditions force H to satisfy (4.15). Thus, we can use such H to
obtain Ψ via (4.16). �
6. Examples and comments

We shall construct examples of tight framelets and wavelets using the procedure that was
described in Section 4. We remind the reader that the whole process starts from choosing a
dimension function. In order to find a specific dimension function one can construct a wavelet
set and calculate the associated dimension function. In this way all dimension functions can be
obtained by the result of Speegle and the authors [17].

It is customary to test GMRA constructions on the original “non-MRA object,” that is, the
Journé wavelet ψ given by ψ̂ = 1W , where W = [− 16

7 ,−2] ∪ [− 1
2 ,− 2

7 ] ∪ [ 2
7 , 1

2 ] ∪ [2, 16
7 ]. The

associated dimension function, called here the Journé dimension function, is

m(ξ) =

⎧⎪⎨
⎪⎩

2 for ξ ∈ [− 1
7 , 1

7 ],
1 for ξ ∈ [− 1

2 ,− 3
7 ] ∪ [− 2

7 ,− 1
7 ] ∪ [ 1

7 , 2
7 ] ∪ [ 3

7 , 1
2 ],

0 for ξ ∈ [− 3
7 ,− 2

7 ] ∪ [ 2
7 , 3

7 ].
(6.1)

Since m is Z-periodic we list only its values on the torus T identified with [−1/2,1/2). The
same convention shall be used for other periodic objects that appear in this section albeit with
the identification T = [−3/7,4/7). Clearly, m satisfies conditions (D1)–(D6) that are stated in
Theorem 4.1 and thereafter. The corresponding sets Sj of (4.2) are S1 and S2, where S1 is the
periodization of [− 1

2 ,− 3
7 ]∪[− 2

7 , 2
7 ]∪[ 3

7 , 1
2 ] and S2 is the periodization of [− 1

7 , 1
7 ]. The diagonal

matrix function Ω of (2.9) is, therefore,

Ω(ξ) =
[

1[− 1
2 ,− 3

7 ]∪[− 2
7 , 2

7 ]∪[ 3
7 , 1

2 ](ξ) 0

0 1[− 1
7 , 1

7 ](ξ)

]
,

for ξ ∈ T. All of this provides the ground for constructing tight framelets and wavelets by choos-
ing appropriate low-pass and high-pass matrix mask functions.

We should mention that there are already several interesting constructions of wavelets and
tight framelets with the Journé dimension function in the literature. For example, Baggett,
Courter, and Merrill [3] constructed an orthonormal wavelet ψ with the dimension function (6.1)
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such that ψ̂ is C∞ on an arbitrarily large interval. Later, Baggett, Jorgensen, Merrill, and
Packer [4,5] gave an impressive construction of a tight framelet ψ with a prescribed smooth-
ness ψ ∈ Cr for r � 0, and a global smoothness in the frequency ψ̂ ∈ C∞.

Our goal is to present another construction resulting in a large class of non-MSF wavelets
sharing the same Journé dimension function. Unlike the previous constructions in [3–5], we
shall insist that the first row of a low-pass matrix mask M remains unchanged compared with
that of the Journé wavelet.

Example 6.1. Consider the low-pass matrix mask function M given by

M(ξ) =
[

1F1(ξ) 0

m1(ξ) m2(ξ)

]
, (6.2)

where F1 is the periodization of [− 2
7 ,− 1

4 ]∪ [− 1
7 , 1

7 ]∪ [ 1
4 , 2

7 ] and m1, m2 are Z-periodic measur-
able functions. Condition (2.14) imposes certain restrictions on possible functions m1 and m2.
That is, we must stipulate that for ξ ∈ T,

1F1(ξ)m1(ξ) + 1F1(ξ + 1/2)m1(ξ + 1/2) = 0, (6.3)∣∣m1(ξ)
∣∣2 + ∣∣m2(ξ)

∣∣2 + ∣∣m1(ξ + 1/2)
∣∣2 + ∣∣m2(ξ + 1/2)

∣∣2 = 1[− 1
14 , 1

14 ]∪[ 3
7 , 4

7 ](ξ). (6.4)

Here and subsequently, we are using the identification T = [−3/7,4/7). Since F1 and F1 + 1/2
are disjoint, m1 must vanish on F1 by (6.3) and consequently m1 must be supported on the
periodization of the interval [− 1

14 , 1
14 ] + 1/2 = [ 3

7 , 4
7 ] by (6.4). Consequently, we must have for

ξ ∈ T,

m1(ξ) = v(ξ)1[ 3
7 , 4

7 ](ξ), m2(ξ) = v(ξ)1[− 1
14 , 1

14 ](ξ), (6.5)

where v is an arbitrary Z-periodic measurable function satisfying

∣∣v(ξ)
∣∣2 + ∣∣v(ξ + 1/2)

∣∣2 = 1[− 1
14 , 1

14 ](ξ), for a.e. ξ ∈ (−1/4,1/4). (6.6)

It is easy to verify that as long as conditions (6.5) and (6.6) hold, the matrix mask function M

satisfies (2.14)–(2.16). Thus, we can apply Theorem 4.3. The corresponding refinable vector Φ̂

is the first column of the infinite product

∞∏
j=1

M
(
2−j ξ

)= [1E1(ξ) 0

∗ ∏∞
j=1 m2(2−j ξ)

]
, (6.7)

where E1 = ⋂∞
j=1 2j (F1) = [− 4

7 ,− 1
2 ] ∪ [− 2

7 , 2
7 ] ∪ [ 1

2 , 4
7 ]. The lower left entry of the above

matrix is represented by a more complicated infinite product which can be computed for some
specific choices of the function v satisfying (6.6), see the next example.

The corresponding framelet can be found by choosing a high-pass matrix mask H satisfy-
ing (3.6). In addition, if we hope on obtaining a wavelet we should apply Theorem 5.2. Since
in our case m̃ = 1 a.e., we see that H has to be 1 × 2 matrix-valued and must satisfy condi-
tions (4.18), (4.19), with the diagonal matrix function Ω̃(ξ) = [1]. Then, a direct but tedious
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calculation shows, that modulo a unimodular Z-periodic function, the high-pass matrix mask H

is given by

H(ξ) = [1[− 1
4 ,− 1

7 ]∪[ 1
7 , 1

4 ](ξ) 1[− 1
7 ,− 1

14 ]∪[ 1
14 , 1

7 ](ξ)
]

+ e2πiξ v(ξ + 1/2)
[

1[ 3
7 , 4

7 ](ξ) 1[− 1
14 , 1

14 ](ξ)
]

for ξ ∈ T.

Define ψ ∈ L2(R) by ψ̂ = H(ξ)Φ̂(ξ). Then, by Theorem 4.3, ψ is a tight framelet for any choice
of Z-periodic function v satisfying (6.6).

Note that the choice of v = 1[− 1
14 , 1

14 ], corresponds to the matrix mask

M(ξ) =
[

1F1(ξ) 0

0 1F2(ξ)

]
,

where F2 is the Z-periodization of [− 1
14 , 1

14 ]. A direct calculation shows that we obtain a tight

framelet ψ given by |ψ̂ | = 1[− 8
7 ,−1]∪[− 1

2 ,− 2
7 ]∪[ 2

7 , 1
2 ]∪[1, 8

7 ]. Thus, ψ is not a wavelet. This fact

can also be deduced as a consequence of Proposition 5.1. That is, the procedure of constructing
refinable vector from low-pass matrix mask can only result in a scaling vector (with the same
dimension function) if all but the first column of the product matrix

∏∞
j=1 M(2−j ξ) are zeros.

Indeed, if ψ were a wavelet, then by (5.6), condition (5.2) would hold as well. Therefore, the
mentioned proposition would imply that (5.1) must be satisfied. However, in our case (5.1) fails.
Thus, ψ is a tight framelet, but not a wavelet.

On the other hand, if we choose v = 1[ 3
7 , 4

7 ], then

M(ξ) =
[

1F1(ξ) 0

1F3(ξ) 0

]
,

where F3 is the periodization of [ 3
7 , 4

7 ]. A direct calculation shows that we obtain the usual

Journé wavelet ψ modified by a negligible unimodular phase factor, i.e., |ψ̂ | = 1W , see also [3,
Example 4.3].

In the next example we construct a large class of non-MSF non-MRA wavelets by an appro-
priate choice of functions v satisfying (6.6). Naturally, each wavelet in this class must share the
dimension function of the Journé wavelet given by (6.1).

Example 6.2. Let w be an arbitrary Z-periodic measurable function satisfying

∣∣w(ξ)
∣∣2 + ∣∣w(ξ + 1/2)

∣∣2 = 1[− 1
14 ,− 1

28 ]∪[ 1
28 , 1

14 ](ξ) for a.e. ξ ∈ (−1/4,1/4). (6.8)

Then, v given for ξ ∈ T by v(ξ) = w(ξ)+ 1[ 13
28 , 15

28 ](ξ) satisfies (6.6). Define Z-periodic functions

m1(ξ) = w(ξ)1[ 3
7 , 13

28 ]∪[ 15
28 , 4

7 ](ξ) + 1[ 13
28 , 15

28 ](ξ), m2(ξ) = w(ξ)1[− 1
14 ,− 1

28 ]∪[ 1
28 , 1

14 ](ξ). (6.9)

Finally, let M be given by (6.2). The same argument as in Example 6.1 shows that M satis-
fies (2.14)–(2.16) and hence, it is a low-pass matrix mask function. In fact, we obtain a proper
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subclass of low-pass matrix masks considered in the previous example. We can also choose a
high-pass matrix mask H by emulating Example 6.1. That is, we define

H(ξ) = [1[− 1
4 ,− 1

7 ]∪[ 1
7 , 1

4 ](ξ) 1[− 1
7 ,− 1

14 ]∪[− 1
28 , 1

28 ]∪[ 1
14 , 1

7 ](ξ)
]

+ e2πiξw(ξ + 1/2)
[

1[ 3
7 , 13

28 ]∪[ 15
28 , 4

7 ](ξ) 1[− 1
14 ,− 1

28 ]∪[ 1
28 , 1

14 ](ξ)
]

for ξ ∈ T.

The advantage of our choice of low-pass and high-pass matrix masks is twofold. First, the
corresponding refinable vector Φ can be easily computed. Second, it can be shown that Φ is a
scaling vector and the resulting tight framelet ψ is a wavelet. Indeed, note that

M(ξ/2)M(ξ/4) =
[

1F1(ξ/2)1F1(ξ/4) 0

m1(ξ/2)1F1(ξ/4) + m2(ξ/2)m1(ξ/4) 0

]
, (6.10)

since m2(ξ)m2(ξ/2) = 0 for a.e. ξ ∈ R. Moreover,

∞∏
j=3

M
(
2−j ξ

)= [1E1(ξ/4) 0

∗ 0

]
, (6.11)

where E1 = [− 4
7 ,− 1

2 ] ∪ [− 2
7 , 2

7 ] ∪ [ 1
2 , 4

7 ]. Consequently,

Φ̂(ξ) =
[

ϕ̂1(ξ)

ϕ̂2(ξ)

]
=
[

1E1(ξ)

(m1(ξ/2)1F1(ξ/4) + m2(ξ/2)m1(ξ/4))1E1(ξ/4)

]
.

Finally, a direct but tedious calculation shows that

ϕ̂2(ξ) = 1[− 15
14 ,−1]∪[1, 15

14 ] + w(ξ/2)1[− 15
7 ,− 29

14 ]∪[− 8
7 ,− 15

14 ]∪[ 15
14 , 8

7 ]∪[ 29
14 , 15

7 ]. (6.12)

To see that Φ is indeed a scaling vector it suffices to observe that

∑
k∈Z

∣∣ϕ̂2(ξ + k)
∣∣2 = 1[− 1

7 , 1
7 ](ξ) for a.e. ξ ∈ T,

and check that (2.10) holds.
Finally, one can compute the formula for the corresponding wavelet ψ = ψw ,

ψ̂(ξ) = 1[− 29
14 ,−2]∪[− 1

2 ,− 2
7 ]∪[ 2

7 , 1
2 ]∪[2, 29

14 ](ξ) + w(ξ/4)1[− 30
7 ,− 29

7 ]∪[− 16
7 ,− 15

7 ]∪[ 15
7 , 16

7 ]∪[ 29
7 , 30

7 ](ξ)

+ eπiξw(ξ/2 + 1/2)1[− 15
7 ,− 29

14 ]∪[− 8
7 ,− 15

14 ]∪[ 15
14 , 8

7 ]∪[ 29
14 , 15

7 ](ξ). (6.13)

Figs. 1 and 2 show graphs of a typical scaling vector Φ̂ and the corresponding wavelet ψ̂ . We
should also add that once the formula (6.13) is established, one can deduce that a wavelet ψw

can be also obtained using interpolation pairs of wavelet sets [19,32].
Observe that the family of wavelets

Wnik = {ψw: w satisfies (6.8)
}
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Fig. 1. The graphs of ϕ̂1 (solid line) and a typical ϕ̂2 (dashed line).

Fig. 2. The graph of ψ̂ (dashed line corresponds to the part that contains the phase factor eπiξ ).

is pathwise connected in L2(R). Indeed, given two Z-periodic measurable functions w0 and w1

both satisfying (6.8), it is not difficult to construct a family {wt }t∈[0,1] of functions satisfying (6.8)
such that

ws(ξ) → wt(ξ) for a.e. ξ ∈ T as s → t.

Then, by (6.13), we see that

ψ̂ws (ξ) → ψ̂wt (ξ) for a.e. ξ ∈ R as s → t.

Since ‖ψwt ‖ = 1 for all t ∈ [0,1], the map t �→ ψwt is the required continuous path.

Example 6.2 shows that a large class of wavelets can be constructed by the procedure of Theo-
rem 4.3. Moreover, Theorem 5.4 shows that technically every imaginable wavelet can be obtained
in that way. However, it is an open problem whether the same is true for all tight framelets.

Two serious difficulties arise when one wants to design a constructive method for obtaining all
tight framelets on R

n. The first problem is that it is not known if all such framelets are associated
to a GMRA. This is often referred to as the “Baggett’s problem” [13]. Baggett observed that a
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tight framelet Ψ generates a GMRA if and only if its space of negative dilates V satisfies

⋂
j∈Z

Dj(V ) = {0}. (6.14)

We have treated this problem with detail in [16]. An earlier result of the second author [31]
assures that if the spectral function of V is integrable, then the above condition is satisfied. It
turns out that we can use Lemma 3.1 to improve on this result in the setting of the space of
negative dilates. Theorem 6.1 can be also deduced as a consequence of a general result on the
intersection of dilates of SI spaces due to the first author [14].

Theorem 6.1. Let Ψ be a tight framelet on Rn with its space of negative dilates V . If the set
{ξ ∈ R

n: dimV (ξ) < ∞} has a positive (Lebesgue) measure, then (6.14) holds and Ψ generates
a GMRA.

Proof. As in the proof of Proposition 4.1, let W = D(V ) � V and observe that since Ψ consists
of a finite number of functions, W has a finite number of generators. That is, we have dimW � N

for some N ∈ N. The equation D(V ) = V ⊕ W implies that

∑
d∈D

m
(
B−1ξ + d

)= m(ξ) + dimW(ξ) � m(ξ) + N, (6.15)

where m = dimV . Thus, condition (3.11) of Lemma 3.1 is satisfied for such m. However, to
apply Lemma 3.1 we need to show that m is finite a.e. This can be done using a simple ergodic
argument.

Indeed, since the matrix B : R
n → R

n preserves the lattice Z
n, it induces a measure preserving

endomorphism B̃ : T
n → T

n. Moreover, B̃ is ergodic by [33, Corollary 1.10.1] because B is
expansive. Define the set

E = {ξ ∈ T
n: m(ξ) < ∞}.

The condition (6.15) implies that B̃−1E ⊂ E. Since B̃ is measure preserving we must have
B̃−1E = E (modulo null sets). Finally, by the ergodicity of B̃ , we have either |E| = 0 or |E| = 1.
Combining this with our hypothesis |E| > 0, proves that m(ξ) < ∞ for a.e. ξ ∈ R

n.
Since all the assumptions of Lemma 3.1 are satisfied for our m, we get that m ∈ L1(Tn).

Equivalently, we have σV ∈ L1(Rn). As we mentioned before, the latter implies that (6.14) holds
by the result of the second author [31]. Therefore, Ψ generates a GMRA. �

If we consider an easier scenario and want to construct all tight framelets associated to a
GMRA, we encounter the second difficulty. It is an open problem whether every tight framelet Ψ

generating some GMRA {Vj }j∈Z can be obtained by the procedure of Theorem 4.3 via the Uni-
tary Extension Principle. In other words, is it possible to find appropriate matrix mask functions
M and H resulting by the procedure of Theorem 4.3 in a tight framelet Ψ ? This problem remains
open even for tight framelets Ψ associated to an MRA, i.e., when dimV ≡ 1.
0
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