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AFFINE AND QUASI-AFFINE FRAMES

FOR RATIONAL DILATIONS

MARCIN BOWNIK AND JAKOB LEMVIG

Abstract. In this paper we extend the investigation of quasi-affine systems,
which were originally introduced by Ron and Shen [J. Funct. Anal. 148
(1997), 408–447] for integer, expansive dilations, to the class of rational, ex-
pansive dilations. We show that an affine system is a frame if, and only if, the
corresponding family of quasi-affine systems are frames with uniform frame
bounds. We also prove a similar equivalence result between pairs of dual affine
frames and dual quasi-affine frames. Finally, we uncover some fundamental
differences between the integer and rational settings by exhibiting an example
of a quasi-affine frame such that its affine counterpart is not a frame.

1. Introduction

Quasi-affine systems are little known cousins of well-studied affine systems also
known as wavelet systems. Let A be an expansive dilation matrix, i.e., an n × n
real matrix with all eigenvalues |λ| > 1. The affine system generated by a function
ψ ∈ L2(Rn) is

(1.1) A (ψ) =
{
ψj,k(x) := |detA|j/2 ψ(Ajx− k) : j ∈ Z, k ∈ Z

n
}
.

The affine systems are dilation invariant, but not shift invariant. However, if the
dilation A has integer entries, that is AZ

n ⊂ Z
n, then one can modify the definition

of affine systems to obtain shift invariant systems. This leads to the notion of a
quasi-affine system

(1.2) Aq(ψ) =

{
ψ̃j,k(x) :=

{ |detA|j/2 ψ(Ajx− k) : j ≥ 0, k ∈ Z
n

|detA|j ψ(Aj(x− k)) : j < 0, k ∈ Z
n

}
,

which was introduced and investigated for integer, expansive dilation matrices by
Ron and Shen [20]. Despite the fact that the orthogonality of the affine system
cannot be carried over to the corresponding quasi-affine system due to the over-
sampling of negative scales of the affine system, it turns out that the frame property
is preserved. This important discovery is due to Ron and Shen [20] who proved that
the affine system A (ψ) is a frame if, and only if, its quasi-affine counterpart Aq(ψ)
is a frame (with the same frame bounds). Furthermore, quasi-affine systems are
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shift invariant and thus much easier to study than affine systems which are dilation
invariant.

The goal of this work is to extend the study of quasi-affine systems to the class of
expansive rational dilations. Let A be an expansive dilation with rational entries;
that is, AQ

n ⊂ Q
n. The first author [3] generalized the notion of a quasi-affine

frame for rational, expansive dilations which coincides with the usual definition in
the case of integer dilations. The main idea of Ron and Shen [20] is to oversample
negative scales of the affine system at a rate adapted to the scale in order for the
resulting system to be shift invariant, i.e., φ ∈ Aq(ψ) ⇒ Tkφ ∈ Aq(ψ) for all
k ∈ Z

n. In order to define quasi-affine systems for rational expansive dilations one
needs to oversample both negative and positive scales of the affine system (at a
rate proportional to the scale) which results in a quasi-affine system that in general
coincides with the affine system only at the scale zero. This can easily be seen in
one dimension where the quasi-affine system has a relatively simple algebraic form.
Suppose that a = p/q ∈ Q is a dilation factor, where |a| > 1, p, q ∈ Z are relatively
prime. Then, the quasi-affine system associated with a is given by

(1.3) Aq(ψ) =

{
|p|j/2 |q|−j

ψ(ajx− q−jk) : j ≥ 0, k ∈ Z

|p|j |q|−j/2 ψ(ajx− pjk) : j < 0, k ∈ Z

}
.

In the rational case it is much less clear than in the case of integer, expansive
dilations (where both systems coincide at all non-negative scales), whether there
is any relationship between affine and quasi-affine systems. Nevertheless, the first
author proved in [3] that the tight frame property is preserved when moving between
rationally dilated affine and quasi-affine systems. This result has initially suggested
that there is not much difference between integer and rational cases.

In this work we show that this belief is largely incorrect by uncovering substantial
differences between the theory of integer dilated and rationally dilated quasi-affine
systems. For any rational, non-integer dilation we give an example of an affine
system which is not a frame, but yet the corresponding quasi-affine system is a
frame. This kind of example does not exist for integer dilations due to the above
mentioned result of Ron and Shen.

To understand the broken symmetry between the integer and rational case we in-
troduce a new class of quasi-affine systems indexed by the choice of the oversampling
lattice Λ ⊂ Z

n. In short, the quasi-affine system Aq
Λ(ψ) is defined to be the smallest

shift invariant system with respect to a lattice Λ, i.e., φ ∈ Aq
Λ(ψ) ⇒ Tλφ ∈ Aq

Λ(ψ)
for λ ∈ Λ, which contains all elements of the original affine system A (ψ). In or-
der to make this definition meaningful we also need to renormalize the elements of
Aq

Λ(ψ) at a rate corresponding to the rate of oversampling as it was previously done.
Again, this is best illustrated in one dimension. We take Λ = (pq)JZ for J ∈ N0,
since this particular choice gives the oversampled quasi-affine system Aq

Λ(ψ) a nice
algebraic form:

(1.4) Aq
Λ(ψ) =

⎧⎪⎨
⎪⎩

|p|j/2 |q|−j+J/2 ψ(ajx− qJ−jk) : j > J, k ∈ Z

|a|j/2 ψ(ajx− k) : −J ≤ j ≤ J, k ∈ Z

|p|j+J/2 |q|−j/2 ψ(ajx− pj+Jk) : j < −J, k ∈ Z

⎫⎪⎬
⎪⎭

;

see Example 3. Then our main result can be stated as follows.
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Theorem 1.1. The affine system A (ψ) is a frame for L2(Rn) if, and only if, every
Λ-oversampled quasi-affine system Aq

Λ(ψ) is a frame with uniform frame bounds for
all Λ ⊂ Z

n.

In the case when the dilation A is integer-valued, the class of Λ-oversampled
quasi-affine systems reduces to the standard quasi-affine system Aq(ψ) and its di-
lates; see Example 2. Hence, the original result of Ron and Shen [20] follows im-
mediately from Theorem 1.1. The proof of Theorem 1.1 is influenced by the work
of Hernández, Labate, Weiss, and Wilson [13, 14], where the authors obtain repro-
ducibility characterizations of generalized shift invariant (GSI) systems including
affine, wave packets, and Gabor systems. The key element of these techniques is
the use of almost periodic functions which was pioneered by Laugesen [17, 18] in
his work on translational averaging of the wavelet functional. Using these methods
Laugesen [18] gave another proof of the equivalence of affine and quasi-affine frames
in the integer case. In this work we show that these techniques can be generalized
to treat rationally dilated quasi-affine systems as well.

In the next part of the paper we investigate more subtle frame properties of quasi-
affine systems. We characterize when the canonical dual frame of a Λ-oversampled
quasi-affine frame Aq

Λ(ψ) is also a quasi-affine frame. In the case of integer dila-
tions, such characterization is due to the first author and Weber [5]. Theorem 1.2
generalizes this result to the case of rational dilations. It is remarkable that the
existence of the canonical quasi-affine dual frame is independent of the choice of
the oversampling lattice Λ. Hence, if such canonical dual frame exists for some
Λ-oversampled quasi-affine system, then it must exist for all lattices Λ ⊂ Z

n.

Theorem 1.2. Suppose the quasi-affine system Aq
Λ0
(ψ) is a frame for L2(Rn) for

some lattice Λ0 ⊂ Z
n. Then, the canonical dual frame of Aq

Λ0
(ψ) is of the form

Aq
Λ0
(φ) for some φ ∈ L2(Rn) if, and only if, for all α ∈ Z

n \ {0},

(1.5) tα(ξ) :=
∑

j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) = 0 for a.e. ξ ∈ R
n,

where B = At. In this case, Aq
Λ(φ) is the canonical dual frame of Aq

Λ(ψ) for all
lattices Λ ⊂ Z

n.

We also investigate pairs of dual quasi-affine frames. Here, the theory of ra-
tionally dilated quasi-affine frames parallels quite closely that of integer dilated
systems. Hence, we have a perfect equivalence between pairs of dual affine frames
and pairs of dual quasi-affine frames, regardless of the choice of the oversampling
lattice Λ.

Theorem 1.3. Suppose that A (ψ) and A (φ) are Bessel sequences in L2(Rn). Then
the following are equivalent:

(i) A (ψ) and A (φ) are dual frames,
(ii) Aq

Λ0
(ψ) and Aq

Λ0
(φ) are dual frames for some oversampling lattice Λ0 ⊂ Z

n,

(iii) Aq
Λ(ψ) and Aq

Λ(φ) are dual frames for all oversampling lattices Λ ⊂ Z
n.

Theorem 1.3 points at a location of the broken symmetry in the equivalence
between affine and quasi-affine frames in the rational non-integer case. If such
non-equivalence exists, then it can only exhibit itself for quasi-affine frames which
do not have a dual quasi-affine frame. The last section of this work is devoted
to showing that such phenomenon does indeed exist. For any non-integer rational
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dilation factor we give an example of a quasi-affine frame Aq
Λ(ψ) such that the

corresponding affine system A (ψ) is not a frame.

Theorem 1.4. For each rational non-integer dilation factor a > 1, there exists a
function ψ ∈ L2(R) such that Aq

Λ(ψ) is a frame for any oversampling lattice Λ ⊂ Z,
but yet A (ψ) is not a frame.

Despite that each system Aq
Λ(ψ) is a frame, its lower frame bound drops to zero

as the lattice Λ gets more and more sparse. Hence, this example does not contradict
Theorem 1.1. Moreover, in the light of Theorem 1.3, none of the quasi-affine frames
Aq

Λ(ψ) can have a dual quasi-affine frame.
We end this introduction by reviewing some basic definitions. A frame sequence

is a countable collection of vectors {fj}j∈J such that there are constants 0 < C1 ≤
C2 < ∞ satisfying, for all f ∈ span{fj},

C1 ‖f‖2 ≤
∑
j∈J

|〈f, fj〉|2 ≤ C2 ‖f‖2 .

If span{fj} = H for a separable Hilbert space H, we say that the frame sequence
{fj}j∈J is a frame for H. If the upper bound in the above inequality holds, but
not necessarily the lower bound, the sequence {fj} is said to be a Bessel sequence
with Bessel constant C2. For a Bessel sequence {fj}, we define the frame operator
of {fj} by

S : H → H, Sf =
∑
j∈J

〈f, fj〉fj .

If {fj} is a frame, this operator is bounded, invertible, and positive. A frame {fj}
is said to be tight if we can choose C1 = C2. This is equivalent to S = C1I, where
I is the identity operator. If furthermore C1 = C2 = 1, the sequence {fj} is said
to be a Parseval frame.

Two Bessel sequences {fj} and {gj} are said to be dual frames if

f =
∑
j∈J

〈f, gj〉fj for all f ∈ H.

It can be shown that two such Bessel sequences indeed are frames, and we shall say
that the frame {gj} is dual to {fj}, and vice versa. At least one dual always exists;
it is given by {S−1fj} and called the canonical dual.

Let f ∈ L2(Rn) for some fixed n ∈ N. The translation by y ∈ R
n is Tyf(x) =

f(x−y); dilation by an n×n non-singular matrix B is DBf(x) = |detB|1/2 f(Bx).
These two operations are unitary as operators on L2(Rn). Let Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn) and let A be a fixed n × n expansive matrix, i.e., all eigenvalues λ of A
satisfy |λ| > 1. The affine system of unitaries A associated with the dilation A is
defined as A = {DAjTk : j ∈ Z, k ∈ Z

n}, and the affine system A(Ψ) generated by
Ψ is defined as

A(Ψ) = {ψj,k : j ∈ Z, k ∈ Z
n, ψ ∈ Ψ} ,

where ψj,k = DAjTkψ for j ∈ Z, k ∈ Z
n. We say that Ψ is a frame wavelet if A(Ψ)

is a frame for L2(Rn), and say that Ψ and Φ is a pair of dual frame wavelets if their
wavelet systems are dual frames. The transpose of the (fixed) dilation matrix A is
denoted by B = At.
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Following [12], the local commutant of a system of operators U at the point
f ∈ L2(Rn) is defined as

Cf (U) :=
{
T ∈ B(L2(Rn)) : TUf = UTf ∀U ∈ U

}
.

For f ∈ L1(Rn), the Fourier transform is defined by

F f(ξ) = f̂(ξ) =

∫

Rn

f(x)e−2πi〈ξ,x〉dx

with the usual extension to L2(Rn). We will frequently prove our results on the
following subspace of L2(Rn):

(1.6) D =
{
f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact in R

n \ {0}
}
,

and extend the result by density arguments.

2. Generalized shift invariant systems, lattices and oversampling

In this section we review some fundamental properties of lattices, shift invari-
ant systems, oversampling of shift invariant systems, mixed dual Gramians, and
generalized shift invariant systems.

2.1. Lattices in R
n. A lattice Γ in R

n is a discrete subgroup under addition gener-
ated by integral linear combinations of n linearly independent vectors {pi}ni=1 ⊂ R

n,
i.e.,

Γ = {z1p1 + · · ·+ znpn : z1, . . . , zn ∈ Z} .
In other words, it is a set of points of the form PZ

n for a non-singular n×n matrix
P . Let Γ be a lattice in R

n. If Γ = PZ
n, we say that the matrix P ∈ GLn(R)

generates the lattice Γ. A generating matrix of a given lattice is only unique up to
multiplication from the right by integer matrices with determinant one in absolute
value. In particular, if Γ = PZ

n for some P ∈ GLn(R), then also Γ = PSZn for
any S ∈ SLn(Z). The determinant of Γ is defined to be

(2.1) d(Γ) = |detP | ,

where P ∈ GLn(R) is a generating matrix for Γ; note that d(Γ) > 0 and d(Zn) = 1.
The determinant d(Γ) is independent of the particular choice of generating matrix
P and equals the volume of a fundamental domain IΓ of the lattice Γ, where

IΓ = P ([0, 1)n) = {c1p1 + · · ·+ cnpn : 0 ≤ ci < 1 for i = 1, . . . , n}

with pi denoting the ith column of a generating matrix P . Note that

R
n =

⋃
γ∈Γ

(γ + IΓ)

with the union being disjoint, and that the specific shape of IΓ depends on the
choice of the generating matrix P .

Suppose that Γ ⊂ Λ, in other words, that Γ is a sublattice of some “denser”
lattice Λ. We define the index of Γ in Λ as

(2.2) D =
d(Γ)

d(Λ)
.
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The index D is always a positive integer. It is actually the number of copies of
parallelotopes IΓ that fit inside a larger parallelotope IΛ. If D is the index of Γ in
Λ, we have from [6, §I.2.2],
(2.3) DΛ ⊂ Γ ⊂ Λ,

and, from [6, Lemma I.1],

(2.4) #{Λ/Γ} = D ≡ d(Γ)/d(Λ),

where #{Λ/Γ} is the order of the quotient group Λ/Γ. As illustrated in the following,
these simple relations are often very useful. Suppose Γ is a rational lattice, i.e.,
the points of the lattice have rational coordinates or, equivalently, the entries of
a generating matrix P are rational. In this situation we define Γ̃, the integral
sublattice of Γ, by Γ̃ = Z

n∩Γ, and the extended integral superlattice of Γ by Γ+Z
n.

Using the characterization of lattices in [6, Theorem III.VI], it is straightforward

to show that these point sets are actually lattices. Thus Γ̃ = Γ ∩ Z
n is a sublattice

of Zn with index in Z
n as

D =
d(Γ̃)

d(Zn)
= d(Γ̃),

and consequently,

(2.5) d(Γ̃)Zn ⊂ Γ̃ ⊂ Γ.

This shows that any rational lattice Γ has an integral sublattice of the form cZn,
where the constant c ∈ N can be taken to be c = d(Γ̃) = vol IΓ̃ = #{Zn/Γ̃}. Since

we also have #{Γ/Γ̃} = d(Γ̃)/d(Γ), the above calculations show that

#{Zn/Γ̃} = #{Γ/Γ̃}d(Γ).
In a similar way, we have for the extended integral superlattice of Γ

#{(Γ+ Z
n)/Zn} = d(Γ+ Z

n)−1 = vol IΓ+Zn
−1 ∈ N

and

#{(Γ+ Z
n)/Zn}(Γ+ Z

n) ⊂ Z
n.

The dual lattice of Γ is given by

(2.6) Γ∗ = {η ∈ R
n : 〈η, γ〉 ∈ Z for γ ∈ Γ} ;

thus if Γ = PZ
n, then Γ∗ = (P t)−1

Z
n. The determinants of dual lattices satisfy

the relation

d(Γ)d(Γ∗) = 1.

If Γ ⊂ Λ, then Λ∗ ⊂ Γ∗. For rational lattices Γ and Λ the dual lattice of Γ ∩ Λ and
Γ+Λ are Γ∗+Λ∗ and Γ∗∩Λ∗, respectively. Dual lattices are sometimes called polar
or reciprocal lattices. We refer to [6] for further basic properties of lattices.

2.2. Shift invariant systems.

Definition 2.1. Suppose that Γ is a (full-rank) lattice in R
n; i.e., Γ = PZ

n for
some n × n non-singular matrix P . A closed subspace W ⊂ L2(Rn) is said to be
shift invariant (SI) with respect to the lattice Γ, or simply Γ-SI, if f ∈ W implies
Tγf ∈ W for all γ ∈ Γ. Given a countable family Φ ⊂ L2(Rn) and a lattice Γ, we
define the Γ-SI system EΓ(Φ) and the Γ-SI subspace SΓ(Φ) by

EΓ(Φ) = {Tγφ : φ ∈ Φ, γ ∈ Γ} , SΓ(Φ) = spanEΓ(Φ) .
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We will need the following result on oversampling of shift invariant frame se-
quences. In case the frame sequence is actually a frame for all of L2(Rn), assertion
(i) below reduces to [14, Theorem 3.3]. Our proof is more elementary than [14,
Theorem 3.3] and is included to illustrate how well behaved shift invariant systems
are under oversampling.

Proposition 2.1. Let Γ, Γ′ be lattices in R
n and Φ,Ψ ⊂ L2(Rn) countable sets of

the same cardinality. Suppose that Γ ⊂ Γ′ and SΓ(Φ) = SΓ′
(Φ). Then the following

assertions hold:

(i) If EΓ(Φ) is a frame sequence with bounds C1, C2, then

1

#{Γ′/Γ}1/2E
Γ′
(Φ)

is a frame sequence with bounds C1, C2.
(ii) Suppose that SΓ(Φ) = SΓ(Ψ) = SΓ′

(Ψ). If EΓ(Φ) and EΓ(Ψ) are dual frames
for SΓ(Φ), then

1

#{Γ′/Γ}1/2E
Γ′
(Φ) and

1

#{Γ′/Γ}1/2E
Γ′
(Ψ)

are dual frames for SΓ(Φ).

Proof. To prove (i) assume that there are constant C1, C2 > 0 such that

C1 ‖f‖2 ≤
∑
φ∈Φ

∑
γ∈Γ

|〈f, Tγφ〉|2 ≤ C2 ‖f‖2 for all f ∈ SΓ(Φ) .

Let {d1, . . . , dq} be a complete set of representatives of the quotient group Γ′/Γ.
For each dr, r = 1, . . . , q, we then have

C1 ‖f‖2 ≤
∑
φ∈Φ

∑
γ∈Γ

|〈T−dr
f, Tγφ〉|2 ≤ C2 ‖f‖2 for all f ∈ SΓ(Φ)

using the isometry of the translation operator, i.e., ‖T−dr
f‖ = ‖f‖, and the Γ′-SI

of SΓ′
(Φ) = SΓ(Φ). Adding these q inequalities yield

qC1 ‖f‖2 ≤
∑
φ∈Φ

q∑
r=1

∑
γ∈Γ

|〈f, Tdr+γφ〉|2 ≤ qC2 ‖f‖2 ,

and thus,

C1 ‖f‖2 ≤
∑
φ∈Φ

∑
γ∈Γ′

|〈f, q−1/2Tγφ〉|2 ≤ C2 ‖f‖2 .

Since q = #{Γ′/Γ}, assertion (i) is proved.
Let Φ and Ψ be indexed by I, i.e., Φ = {φi}i∈I and Ψ = {ψi}i∈I . By our

assumption we have

f =
∑
i∈I

∑
γ∈Γ

〈f, Tγφi〉Tγψi for all f ∈ SΓ(Φ) = SΓ(Ψ) ;

hence, in particular,

‖f‖2 =
∑
i∈I

∑
γ∈Γ

〈f, Tγφi〉〈Tγψi, f〉.
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Using the same techniques as in the proof of (i) we arrive at

f =
∑
i∈I

∑
γ∈Γ′

〈f, q−1/2Tγφi〉 q−1/2Tγψi for all f ∈ SΓ(Φ) = SΓ′
(Φ) .

By (i) the sequences q−1/2EΓ′
(Φ) and q−1/2EΓ′

(Ψ) are Bessel sequences, and (ii) is
proved. �

As an immediate consequence of Proposition 2.1 we have the following useful
fact for SI frame sequences spanning all of L2(Rn).

Corollary 2.2. Let Γ be a lattice. If EΓ(Φ) is a frame for L2(Rn) with bounds
C1, C2, then, for any superlattice Γ′ of Γ, i.e., Γ ⊂ Γ′,

1

#{Γ′/Γ}1/2E
Γ′
(Φ)

is a frame for L2(Rn) with bounds C1, C2.

Corollary 2.2 is [14, Theorem 3.3] stated in terms of lattices rather than in terms
of lattice generating matrices. In the matrix version the condition Γ ⊂ Γ′ becomes
the less transparent, but equivalent, condition C−1RC ∈ GLn(Z), where Γ = CZ

n

and Γ′ = R−1CZ
n for R,C ∈ GLn(R), i.e., E

Γ(Φ) = {TCkφ : k ∈ Z
n, φ ∈ Φ} and

EΓ′
(Φ) = {TR−1Ckφ : k ∈ Z

n, φ ∈ Φ}.

2.3. Oversampling SI systems. Following [3] we introduce the notion of over-
sampling an SI system by a rational lattice.

Definition 2.2. Let Γ, Λ be rational lattices in R
n, i.e., lattices with generating

matrices in GLn(Q). Suppose Φ ⊂ L2(Rn) is a countable set. Define OΓ
Λ(Φ), the

oversampling of EΓ(Φ) by a rational lattice Λ ⊂ Q
n, as

OΓ
Λ(Φ) = EΓ+Λ

(
1

#{Λ/(Λ ∩ Γ)}1/2Φ
)
.

By definition OΓ
Λ(Φ) is always SI with respect to Λ, and if Λ ⊂ Γ, no oversampling

occurs, and the oversampled system OΓ
Λ(Φ) = EΓ(Φ). Moreover,

OΓ
Λ(Φ) ≡

{
1

#{Λ/(Λ ∩ Γ)}1/2Tωφ : φ ∈ Φ, ω ∈ Γ+ Λ

}

=

{
1

#{Λ/(Λ ∩ Γ)}1/2Td+γφ : φ ∈ Φ, d ∈ [Λ/(Λ ∩ Γ)], γ ∈ Γ

}

≡ 1

#{Λ/(Λ ∩ Γ)}1/2
⋃

d∈[Λ/(Λ∩Γ)]

Td

(
EΓ(Φ)

)
,

where the union runs over representatives of distinct cosets of the group Λ/(Λ ∩ Γ).
Indeed, the penultimate equality is a consequence of the fact that by choosing
representatives of cosets of (Γ+Λ)/Γ in Λ, we also have representatives of Λ/(Λ ∩ Γ).
Likewise, choosing the representatives of cosets of (Γ + Λ)/Λ to be in Γ yields
representatives of Γ/(Λ ∩ Γ); hence

OΓ
Λ(Φ) =

1

#{Λ/(Λ ∩ Γ)}1/2
⋃

d∈[Γ/(Λ∩Γ)]

Td

(
EΛ(Φ)

)
.(2.7)
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This equation also follows from the obvious symmetry in Definition 2.2: the Λ
oversampling of EΓ(Φ) is equal to the Γ oversampling of EΛ(Φ) up to a scaling
factor. To be precise,

d(Γ)1/2 OΓ
Λ(Φ) = d(Λ)1/2 OΛ

Γ (Φ) ,

where we have used formula (2.4) to obtain the scaling factors.

2.4. Mixed dual Gramians. Let Λ be a lattice in R
n, and let IΛ∗ denote a fun-

damental domain of Λ∗. Define the isometric, isomorphism J between L2(Rn) and
L2(IΛ∗ , 
2(Λ∗)) by

(2.8) J f : IΛ∗ → 
2(Λ∗), J f(ξ) =
{
f̂(ξ + λ)

}
λ∈Λ∗

for f ∈ L2(Rn).

Sequences of the form J f(ξ) are called fibers of 
2(Λ∗) parametrized by the base
space ξ ∈ IΛ∗ . Let {fi}i∈I and {gi}i∈I be countable collections of functions in

L2(Rn). By generalizing [1, Theorem 2.3], we have that EΛ({fi}) is a frame (or
Bessel sequence) in L2(Rn) if, and only if, {d(Λ∗)1/2J fi(ξ)}i∈I is a frame (or Bessel
sequence) in 
2(Λ∗) for a.e. ξ ∈ IΛ∗ with bounds being preserved. From this fact it
is straightforward to verify that EΛ({fi}) and EΛ({gi}) are dual frames if, and only
if, {d(Λ∗)1/2J fi(ξ)}i∈I and {d(Λ∗)1/2J gi(ξ)}i∈I are dual frames for a.e. ξ ∈ IΛ∗ .

Now, assume that EΛ({fi}) and EΛ({gi}) are Bessel sequences. For a fixed
ξ ∈ IΛ∗ set ti = d(Λ∗)1/2J fi(ξ) and ui = d(Λ∗)1/2J gi(ξ) for i ∈ I. The synthesis
operators for the fibers {ti} and {ui} are defined by

T : 
2(I) → 
2(Λ∗), T ({ci}) =
∑
i∈I

citi,

U : 
2(I) → 
2(Λ∗), U({ci}) =
∑
i∈I

ciui,

respectively. The analysis operators are the adjoint operators, and one finds

T ∗(a) = {〈a, ti〉}i∈I , U∗(a) = {〈a, ui〉}i∈I ,

for a = {aλ}λ∈Λ∗ ∈ 
2(Λ∗). The fibers {ti} and {ui} being dual frames in 
2(Λ∗)
means in terms of the analysis and synthesis operators that

TU∗ = I	2(Λ∗) or UT ∗ = I	2(Λ∗),

where I	2(Λ∗) is the identity operator on 
2(Λ∗).

The mixed dual Gramian G̃ = G̃(ξ) is defined as G̃ = UT ∗. In the standard basis

{ek}k∈Λ∗ of 
2(Λ∗) the mixed dual Gramian acts by 〈G̃ek, el〉 =
∑

i∈I ti(k)ui(l), so

(2.9) G̃(ξ) =

(
d(Λ∗)

∑
i∈I

f̂i(ξ + k)ĝi(ξ + l)

)

k,l∈Λ∗

.

By the above, the SI systems EΛ({fi}) and EΛ({gi}) are dual frames if, and only

if, G̃(ξ) = I	2(Λ∗) for a.e. ξ ∈ IΛ∗ .
The following result is a generalization of [3, Lemma 2.5]. Lemma 2.3 says that

the mixed dual Gramian of a pair of oversampled SI systems is in one part simply
the original mixed dual Gramian, whereas, in the other part, it has zero entries.
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Lemma 2.3. Let Γ and Λ be lattices, and let Ψ = {ψi}i∈I and Φ = {φi}i∈I be

countable sets in L2(Rn). Suppose OΓ
Λ(Ψ) and OΓ

Λ(Φ) are Bessel sequences. Then
the mixed dual Gramian of OΓ

Λ(Ψ) and OΓ
Λ(Φ) is given for k, l ∈ Λ∗ as

(2.10) G̃(ξ)k,l =

{
d(Γ∗)

∑
i∈I ψ̂i(ξ + k)φ̂i(ξ + l) if k − l ∈ Γ∗ ∩ Λ∗,

0 if k − l ∈ Λ∗ \ Γ∗.

Proof. We paraphrase the oversampled systems OΓ
Λ(Ψ) and OΓ

Λ(Φ) using (2.7),
which yields

OΓ
Λ(Ψ) = EΛ(Ψ′) , where Ψ′ =

⋃
d∈[Γ/(Λ∩Γ)]

{
1

#{Λ/(Λ ∩ Γ)}1/2TdΨ

}
,

and

OΓ
Λ(Φ) = EΛ(Φ′) , where Φ′ =

⋃
d∈[Γ/(Λ∩Γ)]

{
1

#{Λ/(Λ ∩ Γ)}1/2TdΦ

}
.

Hence, by (2.9),

d(Λ∗)−1G̃(ξ)k,l =
1

#{Λ/(Λ ∩ Γ)}
∑
i∈I

∑
d∈[Γ/(Λ∩Γ)]

T̂dψi(ξ + k)T̂dφi(ξ + l)

=
1

#{Λ/(Λ ∩ Γ)}

⎛
⎝ ∑

d∈[Γ/(Λ∩Γ)]

e−2πi〈k−l,d〉

⎞
⎠∑

i∈I
ψ̂i(ξ + k)φ̂i(ξ + l).

Using Lemma 3.6 and #{Γ/(Λ ∩ Γ)}/#{Λ/(Λ ∩ Γ)} = d(Λ)/d(Γ) = d(Γ∗)/d(Λ∗)
yields (2.10). �

2.5. Generalized shift invariant systems. Generalized shift invariant systems
were introduced and studied in the work of Hernández, Labate, and Wilson [13],
and independently by Ron and Shen [23].

Definition 2.3. For a collection of functions {gp}p∈P , a generalized shift invariant
(GSI) system is defined as

(2.11)
⋃
p∈P

EΓp(gp) ,

where {Γp}p∈P is a countable collection of lattices in R
n. The Γp-SI system EΓp(gp)

is said to be the pth layer of the GSI system.

Letting Φ = {gp}p∈P and Γ = Γp for each p ∈ P in (2.11) for a GSI system, we

recover the SI system EΓ(Φ). Moreover, a GSI system is SI if there exists a (sparse)
lattice Γ so that Γ ⊂ Γp for each p ∈ P. Furthermore, if Cp ∈ GLn(R) is chosen
such that Γp = CpZ

n for each p ∈ P, then the GSI system in (2.11) takes the form

(2.12)
{
TCpkgp : k ∈ Z

n, p ∈ P
}
.

We will use the following results about GSI systems from [13]. Here, we state
the results from [13] in terms of lattices in R

n rather than in terms of (2.12) and
matrices {Cp}. The reason behind this convention is that a matrix Cp satisfying
Γp = CpZ

n is not unique and most of our conditions simplify when stated in terms
of lattices rather than matrices.
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Theorem 2.4 (Theorem 2.1 in [13]). Let P be a countable set, {gp}p∈P a collection

of functions in L2(Rn) and {Γp}p∈P a collection of lattices in R
n. Assume the local

integrability condition (LIC):

(2.13) L(f) :=
∑
p∈P

∑
m∈Γ∗

p

∫

supp f̂

∣∣∣f̂(ξ +m)
∣∣∣
2

d(Γ∗p) |ĝp(ξ)|
2 dξ < ∞ for all f ∈ D .

Then the GSI system
⋃

p∈P EΓp(gp) is a Parseval frame for L2(Rn) if, and only if,

(2.14)
∑
p∈P

d(Γ∗p)ĝp(ξ)ĝp(ξ + α) = δα,0 for a.e. ξ ∈ R
n

for each α ∈
⋃

p∈P Γ∗p.

The fact that LIC, in general, is necessary can be found in [4, Example 3.2]. We
also recall the relation between the determinants of dual lattices d(Γ∗p) = 1/d(Γp).

Proposition 2.5 (Proposition 2.4 in [13]). Let P be a countable set, {gp}p∈P a

collection of functions in L2(Rn) and {Γp}p∈P a collection of lattices in R
n. Assume

that the LIC given by (2.13) holds. Then, for each f ∈ D , the function

(2.15) w(x) =
∑
p∈P

∑
k∈Γp

∣∣〈Txf, Tkgp〉
∣∣2

is a continuous function that coincides pointwise with the absolutely convergent
series

(2.16) w(x) =
∑
p∈P

∑
m∈Γ∗

p

ŵp(m)e2πi〈m,x〉 ,

where

(2.17) ŵp(m) = d(Γ∗p)

∫

Rn

f̂(ξ)f̂(ξ +m) ĝp(ξ)ĝp(ξ +m) dξ.

The function w in (2.16) is an almost periodic function. In case the GSI system
from Proposition 2.5 is a Γ-SI system for some lattice Γ, the function w is actually
Γ-periodic and can thus be considered as a regular Fourier series on the fundamental
parallelotope IΓ.

Proposition 2.6 (Proposition 4.1 in [13]). Let P be a countable set, {gp}p∈P a

collection of functions in L2(Rn) and {Γp}p∈P a collection of lattices in R
n. If the

GSI system
⋃

p∈P EΓp(gp) is a Bessel sequence with bound C2 > 0, then

(2.18)
∑
p∈P

|ĝp(ξ)|2 /d(Γp) ≤ C2 for a.e. ξ ∈ R
n.

The following result is a generalization of Proposition 5.6 in [13]. The result
states that the local integrability condition for affine systems A (ψ) is equivalent to
local integrability of a Calderón sum (2.19); hence the name of the condition.

Proposition 2.7. Let A ∈ GLn(R) be expansive and ψ ∈ L2(Rn). Then

(2.19)
∑
j∈Z

∣∣∣ψ̂(B−jξ)
∣∣∣
2

∈ L1
loc(R

n \ {0})
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if, and only if,

L(f) =
∑
j∈Z

∑
m∈Zn

∫

supp f̂

|f̂(ξ +Bjm)|2 |detAj | |F DAjψ(ξ)|2 dξ

=
∑
j∈Z

∑
m∈Zn

∫

supp f̂

|f̂(ξ +Bjm)|2 |ψ̂(B−jξ)|2 dξ < ∞ for all f ∈ D.(2.20)

In the proof of Proposition 2.7 we use the following elementary lattice counting
lemma.

Lemma 2.8. Let B ∈ GLn(R) be expansive and R > 0. Then there exists C > 0
such that

(2.21) #{(ξ+Bj
Z
n)∩B(0, R)} ≤ Cmax (1, |detB|−j

) for any j ∈ Z, ξ ∈ R
n.

Proof. Since the matrix B is expansive, there exists J ∈ Z such that

(2.22) B(0,
√
n) ⊂ B−j(B(0, R)) for all j ≤ J.

For the same reason, once J is fixed, there exists R0 > 0 such that

(2.23) B−j(B(0, R)) ⊂ B(0, R0) for all j > J.

Let

Kj = {k ∈ Z
n : ξ +Bjk ∈ B(0, R)} = {k ∈ Z

n : B−jξ + k ∈ B−j(B(0, R))}.

Using (2.22) and (2.23),

⋃
k∈Kj

(B−jξ+k+[0, 1]n) ⊂ B−j(B(0, R))+B(0,
√
n) ⊂

{
2B−j(B(0, R)) for j ≤ J,

B(0, R0 +
√
n) for j > J.

Thus,

#Kj =

∣∣∣∣
⋃

k∈Kj

(B−jξ + k + [0, 1]n)

∣∣∣∣ ≤
{
cn(2R)n |detB|−j for j ≤ J,

cn(R0 +
√
n)n for j > J,

where cn = |B(0, 1)|. This immediately implies (2.21). �

Proof of Proposition 2.7. Assume (2.19). Let f ∈ D and choose R > 1 such that

supp f̂ ⊂
{
ξ ∈ R

n :
1

R
< |ξ| < R

}
.

Since the matrix B is expansive, there exists a constant K ∈ N such that each
trajectory {Bjξ}j∈Z hits the above annulus at most K times. Thus,

#
{
j ∈ Z : ξ ∈ B−j(supp f̂)

}
≤ K.

On the other hand, by Lemma 2.8 we have that, for any ξ ∈ R
n,

#{(ξ +Bj
Z
n) ∩ supp f̂} ≤ Cmax (1, |detB|−j).
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Combining the last two estimates,

L(f) ≤
∑
j∈Z

‖f̂‖2∞Cmax (1, |detB|−j)

∫

supp f̂

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ

≤ ‖f̂‖2∞C
∑
j≥0

∫

supp f̂

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ + ‖f̂‖2∞C
∑
j<0

∫

B−j(supp f̂)

∣∣∣ψ̂(ξ)
∣∣∣
2

dξ

≤ ‖f̂‖2∞C

∫

supp f̂

∑
j≥0

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ + ‖f̂‖2∞CK

∫

Rn

∣∣∣ψ̂(ξ)
∣∣∣
2

dξ < ∞.

The last inequality is a consequence of (2.19) and ψ ∈ L2(Rn).

Conversely, if L(f) < ∞ for all f ∈ D , then in particular by choosing f̂ = χE

for a compact set E ⊂ R
n \ {0} we have∫

E

∑
j∈Z

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ =
∑
j∈Z

∫

E

∣∣∣ψ̂(B−jξ)
∣∣∣
2

dξ ≤ L(f) < ∞.

Since the set E was arbitrarily chosen, the validity of (2.19) follows. �

Remark 1. One should add that (2.19) and thus (2.20) hold if, and only if, the
Bessel-like condition holds on the dense subspace D :

(2.24)
∑
j∈Z

∑
k∈Zn

∣∣〈f, ψj,k〉
∣∣2 < ∞ for all f ∈ D .

Indeed, this fact is a consequence of [2, Lemma 3.1], which holds for real expansive
dilations.

3. Oversampling affine systems into quasi-affine systems

In this section we show that the frame property is preserved when going from
affine to quasi-affine systems. To characterize under what conditions we can also
go from quasi-affine to affine systems, we introduce a new family of oversampled
quasi-affine systems. We then show that an affine system is a frame if, and only
if, the corresponding family of quasi-affine systems are frames with uniform frame
bounds.

3.1. Properties of quasi-affine systems. For a rational lattice Λ we introduce
the notion of a Λ-oversampled quasi-affine system.

Definition 3.1. Let A ∈ GLn(Q) be a rational, expansive matrix, and let Λ be
rational lattice in R

n, i.e., Λ = PZ
n with P ∈ GLn(Q). Suppose Ψ ⊂ L2(Rn) is a

finite set. Define Aq
Λ(Ψ) the Λ-oversampled quasi-affine system by

Aq
Λ(Ψ) =

⋃
j∈Z

OA−j
Z
n

Λ (DAjΨ) .

When Λ = Z
n we often drop the subscript Λ, and we say that Aq(Ψ) = Aq

Zn(Ψ) is
the standard quasi-affine system.

By definition Aq
Λ(Ψ) is SI with respect to Λ. Note that we need to assume that

the dilation A and the lattice Λ are rational in order to guarantee lattice structure
of A−j

Z
n + Λ for each j ∈ Z. If Λ = Z

n, we recover the usual quasi-affine system,
i.e., Aq

Λ(Ψ) = Aq(Ψ), introduced in [3].
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We will use the following notation throughout this paper. The translation lattice
for the affine system at scale j ∈ Z is denoted by Γj = A−j

Z
n; its Λ-sublattice is

Γ̃j = A−j
Z
n ∩ Λ and its Λ-extended superlattice is Kj = A−j

Z
n + Λ. Note that Kj

is the translation lattice for the Λ-oversampled quasi-affine system at scale j ∈ Z.
Finally, for J ∈ N, let

MJ =
⋂

|j|≤J

Γj ≡
⋂

|j|≤J

Aj
Z
n,

and note that MJ is an integral lattice. Summarizing, we will use the following
lattices, together with their dual lattices:

Γj = A−j
Z
n, Γ∗j = Bj

Z
n,(3.1)

Γ̃j = A−j
Z
n ∩ Λ, Γ̃∗j = Bj

Z
n + Λ∗,(3.2)

Kj = A−j
Z
n + Λ, K∗

j = Bj
Z
n ∩ Λ∗,(3.3)

MJ =
⋂

|j|≤J

Aj
Z
n, M∗

J = +
|j|≤J

Bj
Z
n = B−J

Z
n + · · ·+BJ

Z
n.(3.4)

Let Ψ,Φ ⊂ L2(Rn) be finite sets. For j ∈ Z and f ∈ L2(Rn) define the affine
functionals

Kj(f) =
∑

g∈EA−jZn(DAjΨ)

|〈f, g〉|2 , N(f,Ψ) =
∑
j∈Z

Kj(f) =
∑

g∈A(Ψ)

|〈f, g〉|2(3.5)

and quasi-affine functionals

Kq
Λ,j(f) =

∑

g∈OA−jZn

Λ (DAjΨ)

|〈f, g〉|2 , Nq
Λ(f,Ψ) =

∑
j∈Z

Kq
Λ,j(f) =

∑
g∈Aq

Λ(Ψ)

|〈f, g〉|2 .
(3.6)

Whenever unambiguous, we drop the reference to the set of generators and simply
write N(f) and Nq

Λ(f).
Before going deeper into our investigation we illustrate the notion of a quasi-

affine system in a few specific situations.

Example 1. Let J ∈ N and consider the quasi-affine system obtained by oversam-
pling with respect to MJ =

⋂
|j|≤J Aj

Z
n introduced above. Since A−j

Z
n +MJ =

A−j
Z
n and A−j

Z
n ∩MJ = MJ for |j| ≤ J , we see that

(3.7) OA−j
Z
n

MJ
(DAjΨ) = EA−j

Z
n+MJ

(
#{MJ/MJ}−1/2DAjΨ

)
= EA−j

Z
n

(DAjΨ) ,

for |j| ≤ J . Hence with this oversampling lattice, the scales |j| ≤ J for the affine
system

A (Ψ) =
⋃
j∈Z

EA−j
Z
n

(DAjΨ)

and the MJ -oversampled quasi-affine system

Aq
MJ

(Ψ) =
⋃
j∈Z

OA−j
Z
n

MJ
(DAjΨ)

coincide.
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Example 2. Suppose A ∈ GLn(Z) is integer valued. Let Λ = Al
Z
n for some l ∈ Z.

Then the Λ-oversampled quasi-affine system is just a dilated version of standard
quasi-affine system (1.2). To be precise, we have the following relation:

(3.8) Aq
AlZn(Ψ) = DA−l(Aq(Ψ)).

To see this note that

A−j
Z
n + Λ = A−j

Z
n +Al

Z
n =

{
Al

Z
n, j < −l,

A−j
Z
n, j ≥ −l,

and that

#{Al
Z
n/(Al

Z
n ∩ A−j

Z
n)} =

{
#{Al

Z
n/A−j

Z
n}= d(Zn)

d(Aj+lZn)
= 1

|detAj+l| , j < −l,

#{Al
Z
n/Al

Z
n} = 1, j ≥ −l,

whereby we have

Aq
AlZn(Ψ) =

⋃
j≥−l

EA−j
Z
n

(DAjΨ) ∪
⋃

j<−l

EAl
Z
n
(
|detA|(j+l)/2DAjΨ

)
.

Recall that

Aq(Ψ) =
⋃
j≥0

EA−j
Z
n

(DAjΨ) ∪
⋃
j<0

EZ
n
(
|detA|j/2DAjΨ

)
,

and the validity of (3.8) follows by DA−lTk = TAlkDA−l and a change of variables.

Example 3. The quasi-affine system has a relatively simple algebraic form in one
dimension. Suppose a = p/q ∈ Q is a dilation factor, where |a| > 1 and p, q ∈ Z

are relatively prime. Let Λ ⊂ Z be a lattice. For simplicity, we assume that
Λ = pJ1qJ2rZ for some J1, J2 ∈ N0, r ∈ N, where pq and r are relatively prime.
Then, the quasi-affine system Aq

Λ(Ψ) associated with a is given by

Aq
Λ(Ψ) = {ψ̃j,k : j, k ∈ Z, ψ ∈ Ψ}.

Here, for ψ ∈ L2(R) and j, k ∈ Z, we set

(3.9) ψ̃j,k(x) =

⎧⎪⎨
⎪⎩

|a|j/2 |q|(J2−j)/2
ψ(ajx− qJ2−jk) if j > J2,

|a|j/2 ψ(ajx− k) if − J1 ≤ j ≤ J2,

|a|j/2 |p|(j+J1)/2 ψ(ajx− pj+J1k) if j < −J1.

Note that the above convention for ψ̃j,k in the case when Λ = Z becomes the
rationally dilated quasi-affine system (1.3) introduced by the first author in [3].
In particular, if the dilation factor a is an integer, this is the original quasi-affine
system of Ron and Shen [20]. To show (3.9) note that

a−j
Z+ Λ = a−j

Z+ pJ1qJ2rZ

=

{
p−j(qjZ+ pJ1+jqJ2rZ) = p−jqmin(j,J2)Z for j ≥ 0,

qj(p−j
Z+ pJ1qJ2−jrZ) = qjpmin(−j,J1)Z for j < 0,

=

⎧
⎪⎨
⎪⎩

p−jqJ2Z for j > J2,

a−j
Z for − J1 ≤ j ≤ J2,

pJ1qjZ for j < −J1.

Hence, one needs to oversample at a rate |q|j−J2 if j > J2 (or |p|−J1−j
if j < −J1)

to obtain the quasi-affine system Aq
Λ(Ψ) from the affine system A (Ψ). Note that
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in the intermediate range −J1 ≤ j ≤ J2, no oversampling is required and both
systems coincide at these scales. Also note that the choice J1 = J2 corresponds to
oversampling by MJ1

; see Example 1.

Remark 2. Let Λ be a rational lattice, and consider the Λ-oversampled quasi-affine
system Aq

Λ(Ψ). By definition this system is Λ-SI. Take a rational superlattice Λ′

of Λ, i.e., Λ ⊂ Λ′. Then the further oversampled system Aq
Λ′(Ψ) is obviously Λ′-SI;

moreover, it can be written in terms of Aq
Λ(Ψ) as

Aq
Λ′(Ψ) =

1

#{Λ′/Λ}1/2
⋃

d∈[Λ′/Λ]

Td (Aq
Λ(Ψ)) .

By Corollary 2.2 we have the following useful result for oversampled quasi-affine
frames:

Lemma 3.1. Let A ∈ GLn(Q). Suppose Λ ⊂ Λ′ for rational lattices Λ,Λ′. Then
if Aq

Λ(Ψ) is a frame for L2(Rn) with bounds C1, C2, Aq
Λ′(Ψ) is a frame for L2(Rn)

with bounds C1, C2.

3.2. Affine and quasi-affine systems as GSI systems. Since affine and quasi-
affine systems are GSI systems, the results from Section 2.5 can be applied to these
systems; see [13, 14]. We restate some of these results in terms of lattices in R

n.
The quasi-affine system Aq

Λ(Ψ) introduced above can be expressed as a GSI system
(2.11) by taking P = {(j, l) : j ∈ Z, l = 1, . . . , L} and

Γp = Γ(j,l) = A−j
Z
n + Λ,(3.10)

gp(x) = g(j,l)(x) = #{Λ/(Λ ∩ A−j
Z
n)}−1/2DAjψl(x)(3.11)

for all p ∈ P.
By applying Proposition 2.6 to affine and quasi-affine systems we immediately

have the following result; see also [3, Proposition 4.5].

Proposition 3.2. Suppose that Ψ ⊂ L2(Rn) and that either of the following holds:

(a) A ∈ GLn(R) is expansive and A (Ψ) is a Bessel sequence with bound C2,
(b) A ∈ GLn(Q) is expansive and Aq

Λ(Ψ) is a Bessel sequence with bound C2 for
some rational lattice Λ.

Then

(3.12)
∑
ψ∈Ψ

∑
j∈Z

|ψ̂(Bjξ)|2 ≤ C2 for a.e. ξ ∈ R
n.

For the Λ-oversampled quasi-affine systems we have the following result on the
quasi-affine functional wq

Λ defined below.

Proposition 3.3. Let A ∈ GLn(Q) be expansive, Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn),
and let Λ be a rational lattice. Suppose that each ψ ∈ Ψ satisfies condition (2.19).
Then, for each f ∈ D , the Λ-periodic function

wq
Λ(x) =

∑
g∈Aq

Λ(Ψ)

|〈Txf, g〉|2 =
L∑

l=1

∑
j∈Z

∑
k∈Kj

∣∣〈Txf, djTkDAjψl〉
∣∣2 ,(3.13)
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where dj = #{Λ/(Λ∩A−j
Z
n)}−1/2 and Kj is given by (3.3), is a continuous func-

tion that coincides pointwise with the (Λ-periodic) absolutely convergent series

(3.14) wq
Λ(x) =

L∑
l=1

∑
j∈Z

∑
μ∈K∗

j

bj,l(μ)e
2πi〈μ,x〉 ,

where

(3.15) bj,l(μ) =

∫

Rn

f̂(ξ)f̂(ξ + μ) ψ̂l(B−jξ)ψ̂l(B
−j(ξ + μ)) dξ.

Proof. The result follows by an application of Proposition 2.5 to quasi-affine sys-
tems. In order to apply Proposition 2.5 we need to verify the LIC condition (2.13)
for quasi-affine systems, i.e., that

Lq
Λ(f) :=

L∑
l=1

∑
j∈Z

∑
μ∈K∗

j

∫

supp f̂

|f̂(ξ + μ)|2 |ψ̂l(B
−jξ)|2 dξ < ∞(3.16)

holds for f ∈ D. Since each ψ ∈ Ψ satisfies condition (2.19), Proposition 2.7 tells us
that the LIC condition for affine systems is satisfied, i.e., that L(f) < ∞. Finally,
the estimate in (3.16) follows by

Lq
Λ(f) ≤

L∑
l=1

∑
j∈Z

∑
m∈Zn

∫

supp f̂

|f̂(ξ +Bjm)|2 |ψ̂l(B
−jξ)|2 dξ ≡ L(f) < ∞,

where we have used the fact that K∗
j ⊂ Bj

Z
n for all j ∈ Z. Consequently, the

expression in (3.15) follows directly from (2.17) by

1/d(K∗
j ) = d(Kj) =

∣∣detA−j
∣∣

#{Λ/(Λ ∩A−jZn)} .

�

Proposition 3.4 below states a similar result for affine systems. The result is
a generalization of [14, Proposition 2.8], where the Bessel condition on A (Ψ) is
relaxed by (2.19). Proposition 3.4 is a direct consequence of Propositions 2.5 and
2.7.

Proposition 3.4. Let A ∈ GLn(R) be expansive and Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn).
Suppose that each ψ ∈ Ψ satisfies condition (2.19). Then, for each f ∈ D , the
function

w(x) =
∑

g∈A(Ψ)

|〈Txf, g〉|2 =

L∑
l=1

∑
j∈Z

∑
k∈Zn

|〈Txf,DAjTkψl〉|2(3.17)

is an almost periodic function that coincides pointwise with the absolutely convergent
series

(3.18) w(x) =

L∑
l=1

∑
j∈Z

∑
m∈Zn

cj,l(m)e2πi〈B
jm,x〉,

where

(3.19) cj,l(m) =

∫

Rn

f̂(ξ)f̂(ξ +Bjm) ψ̂l(B−jξ)ψ̂l(B
−j(ξ +Bjm)) dξ.
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Remark 3. As noted in [14] the sum over j ∈ Z in Proposition 3.4 can be replaced
by a sum over a smaller set j ∈ J ⊂ Z. The same holds for Proposition 3.3.

The series representing w and wq
Λ are very similar. By a change of variables,

(3.14) becomes

(3.20) wq
Λ(x) =

L∑
l=1

∑
j∈Z

∑
m∈Zn∩B−jΛ∗

cj,l(m)e2πi〈B
jm,x〉 ,

where the coefficients cj,l(m) are given by (3.19). Since Z
n ∩ B−jΛ∗ ⊂ Z

n for all
j ∈ Z, we can consider the series for wq

Λ in (3.20) as the series representing w in
(3.18) with some coefficients set to zero—exactly those coefficients cj,l(m) for which
m ∈ Z

n \B−jΛ∗. We stress that this connection holds without any assumptions on
the rational lattice Λ, e.g., there is no assumption on Λ being integer valued.

3.3. From affine to quasi-affine systems. The frame property carries over when
moving from affine to Λ-oversampled quasi-affine systems for any rational lattice Λ.
This statement is the main result of this section and is contained in Theorem 3.5.

Theorem 3.5. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn), and let Λ be any
rational lattice in R

n. If the affine system A (Ψ) is a frame for L2(Rn) with frame
bounds C1, C2, then the Λ-oversampled quasi-affine system Aq

Λ(Ψ) is a frame for
L2(Rn) with frame bounds C1, C2.

The following lemma, which is needed in the proof of Theorem 3.5, is a conse-
quence of [15, Lemma 23.19].

Lemma 3.6. Suppose K,M are lattices in R
n such that K ⊂ M. Then, for m ∈ K∗,

(3.21)
1

#{M/K}
∑

d∈[M/K]

e2πi〈m,d〉 =

{
1, m ∈ M∗,

0, m ∈ K∗ \M∗.

The proof of Theorem 3.5 relies on the following key result on translational
averaging of affine functionals.

Lemma 3.7. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn), and let Λ be an integral
lattice in R

n. For each J ∈ N define

MJ =
⋂

|j|≤J

Aj
Z
n.

Suppose the affine system A (Ψ) is a frame for L2(Rn). Then

(3.22) Nq
Λ(f) = lim

J→∞

1

#{(MJ + Λ)/MJ}
∑

d∈[(MJ+Λ)/MJ ]

N(Tdf) for f ∈ D ,

where D is given by (1.6), N by (3.5) and Nq
Λ by (3.6).

Proof. Let Ψ = {ψ1, . . . , ψL}. For f ∈ D , by (3.20),

(3.23) Nq
Λ(f) = wq

Λ(0) =

L∑
l=1

∑
j∈Z

∑
m∈Zn∩B−jΛ∗

cj,l(m),

where cj,l(m) are given in equation (3.19). So fix J ∈ N and let {d1, . . . , ds(J)} be
a complete set of representatives of the quotient group (MJ + Λ)/MJ so that s(J)
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is the order of the group. We want to express Nq
Λ(f) as an average of N(Tdr

f) over
r = 1, . . . , s(J). Thus we consider

1

s(J)

s(J)∑
r=1

N(Tdr
f) =

1

s(J)

s(J)∑
r=1

L∑
l=1

∑
|j|≤J

∑
m∈Zn

cj,l(m) e2πi〈B
jm,dr〉

+
1

s(J)

s(J)∑
r=1

L∑
l=1

∑
|j|>J

∑
m∈Zn

cj,l(m) e2πi〈B
jm,dr〉

=: I1(J) + I2(J),(3.24)

which follows by (3.18). By absolute convergence of the sum above, we conclude
that I2(J) → 0 as J → ∞. Assume that the following identity holds:

(3.25) I1(J) =

L∑
l=1

∑
|j|≤J

∑
m∈Zn∩B−jΛ∗

cj,l(m).

Taking the limit J → ∞ in (3.24) and using equation (3.23) yield

lim
J→∞

1

s(J)

s(J)∑
r=1

N(Tdr
f) = lim

J→∞

(
I1(J) + I2(J)

)
= lim

J→∞

L∑
l=1

∑
|j|≤J

∑
m∈Zn∩B−jΛ∗

cj,l(m)

= Nq
Λ(f).

Hence, to complete the proof we only have left to show (3.25). Taking K = MJ and
M = MJ + Λ in Lemma 3.6 gives us for all m̃ ∈ M∗

J :

s(J)∑
r=1

e2πi〈m̃,dr〉 =

{
s(J), m̃ ∈ M∗

J ∩ Λ∗,

0, m̃ ∈ M∗
J \ Λ∗.

(3.26)

Fix j ∈ Z with |j| ≤ J . Take m̃ = Bjm. Obviously, m̃ ∈ M∗
J ∩ Λ∗ precisely when

m ∈ B−jM∗
J ∩B−jΛ∗, and m̃ ∈ M∗

J \Λ∗ precisely when m ∈ B−jM∗
J \B−jΛ∗. Since

B−jM∗
J = +

−J−j≤l≤J−j
Bl

Z
n ⊃ Z

n,

we conclude from equation (3.26) that, for all m ∈ Z
n,

s(J)∑
r=1

e2πi〈B
jm,dr〉 =

{
s(J), m ∈ Z

n ∩B−jΛ∗,

0, m ∈ Z
n \B−jΛ∗,

(3.27)

and this holds for all |j| ≤ J . Using these relations we arrive at

I1(J) ≡
L∑

l=1

∑
|j|≤J

∑
m∈Zn

cj,l(m)
1

s(J)

s(J)∑
r=1

e2πi〈B
jm,dr〉

=

L∑
l=1

∑
|j|≤J

∑
m∈Zn∩B−jΛ∗

cj,l(m),

which completes the proof of the lemma. �

Proof of Theorem 3.5. Assume that the affine system A (Ψ) is a frame for L2(Rn)
with bounds C1, C2. It suffices to prove that Aq

Λ0
(Ψ) is a frame for integer lattices

Λ0, i.e., Λ0 ⊂ Z
n, which follows from the fact that any rational lattice Λ has an
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integral sublattice of the form cZn for some c ∈ N, e.g., take c = d(Λ ∩ Z
n); see

equation (2.5). Hence, if we prove that Aq
cZn(Ψ) is a frame with bounds C1, C2,

then, by applying Lemma 3.1, Aq
Λ(Ψ) is a frame with the frame bounds being

preserved.
So let Λ0 be an integral lattice. By our hypothesis there are constants C1, C2 > 0

so that

C1 ‖f‖2 ≤ N(f) ≤ C2 ‖f‖2 ∀f ∈ L2(Rn).

Fix J ∈ N and consider MJ introduced above. For each representative d ∈ [MJ +
Λ0)/MJ ] we have

C1 ‖f‖2 ≤ N(Tdf) ≤ C2 ‖f‖2 ∀f ∈ L2(Rn),

where we have used the fact that ‖Txf‖ = ‖f‖ for x ∈ R
n. Adding these equations

for each representative d yields

#{(MJ + Λ0)/MJ}C1 ‖f‖2 ≤
∑

d∈[(MJ+Λ0)/MJ ]

N(Tdf) ≤ #{(MJ + Λ0)/MJ}C2 ‖f‖2 .

By taking the limit J → ∞, we have

C1 ‖f‖2 ≤ lim
J→∞

1

#{(MJ + Λ0)/MJ}
∑

d∈[(MJ+Λ0)/MJ ]

N(Tdf) ≤ C2 ‖f‖2

for all f ∈ L2(Rn). Since Λ0 is an integer lattice, we can apply Lemma 3.7. This
gives us

C1 ‖f‖2 ≤ Nq
Λ(f) ≤ C2 ‖f‖2

for f ∈ D . Extending these inequalities to all of L2(Rn) by a standard density
argument completes the proof. �
Remark 4. The special case of Theorem 3.5 in one dimension with Λ = Z was first
shown in [14, Theorem 2.18]. In fact, [14, Theorem 2.18] is stated for quasi-affine
systems obtained by oversampling with respect to the lattice Λ = s−1

Z, where s
is relatively prime to p and q, and a = p/q is a dilation factor. In this case the
quasi-affine system Aq

Λ(Ψ) takes a nice algebraic form:

Aq
s−1Z

(Ψ) =

{
|p|j/2 |q|−j |s|−1/2

ψ(ajx− s−1q−jk) : j ≥ 0, k ∈ Z

|p|j |q|−j/2 |s|−1/2 ψ(ajx− s−1pjk) : j < 0, k ∈ Z

}
.

Hence, the above system is obtained by further oversampling of the standard quasi-
affine system Aq

Z
(Ψ) given by (1.3). However, our Theorem 3.5 holds for oversam-

pling with respect to any rational lattice Λ, such as in (1.4) or in Example 3. The
sparser the lattice Λ is, the better result we have due to Lemma 3.1 on oversampling
of quasi-affine systems.

3.4. From quasi-affine to affine systems. When moving from quasi-affine to
affine systems the frame property only carries over if we impose stronger conditions
on the set of generators. Hence, we have only the following partial converse of
Theorem 3.5.

Theorem 3.8. Let A ∈ GLn(Q) be expansive and Ψ ⊂ L2(Rn). If the MJ -
oversampled quasi-affine system Aq

MJ
(Ψ) is a frame for L2(Rn) with uniform frame

bounds C1, C2 for all J ∈ N, where MJ is given by (3.4), then the affine system
A (Ψ) is a frame for L2(Rn) with frame bounds C1, C2.



AFFINE AND QUASI-AFFINE FRAMES 1907

Proof. Assume that

C1 ‖f‖2 ≤ Nq
MJ

(f) ≤ C2 ‖f‖2 for all f ∈ D

holds for all J ∈ N. Since scale j of the affine system and the MJ -oversampled
quasi-affine system agree whenever |j| ≤ J , we have by (3.7),

Kj(f) = Kq
MJ ,j

(f) for all |j| ≤ J, f ∈ L2(Rn).

Thus, for J ∈ N,
∑
|j|≤J

Kj(f) =
∑
|j|≤J

Kq
MJ ,j

(f) ≤ C2 ‖f‖2 .

Letting J → ∞ yields

N(f) = lim
J→∞

∑
|j|≤J

Kj(f) ≤ lim sup
J→∞

∑
|j|≤J

Kq
MJ ,j

(f) ≤ C2 ‖f‖2 ,

whereby we conclude that A (Ψ) is a Bessel sequence with bound C2. Likewise for
the lower bound:

C1 ‖f‖2 ≤
∑
|j|≤J

Kq
MJ ,j

(f) +
∑
|j|>J

Kq
MJ ,j

(f) =
∑
|j|≤J

Kj(f) +
∑
|j|>J

Kq
MJ ,j

(f).(3.28)

Suppose that

(3.29) lim
J→∞

∑
|j|>J

Kq
MJ ,j

(f) = 0 for f ∈ D .

Then, by equation (3.28),

C1 ‖f‖2 ≤ lim
J→∞

∑
|j|≤J

Kj(f) = N(f) for f ∈ D .

Since A (Ψ) satisfies the upper bound, we can extend this inequality to all of L2(Rn)
by a density argument. Hence the affine system A (Ψ) satisfies the lower bound
with constant C1.

To complete the proof we need to verify (3.29). We have already showed that
A (Ψ) is a Bessel sequence, so by Proposition 3.4 the series in (3.18) converges
absolutely and

L∑
l=1

∑
j∈Z

∑
m∈Zn

|cj,l(m)| < ∞,

where cj,l(m) is given by (3.19). Therefore, by (3.20) and Remark 3,

∑
|j|>J

Kq
MJ ,j

(f) ≡
∑
|j|>J

L∑
l=1

∑
k∈Kj

∣∣〈f, djTkDAjψl〉
∣∣2 ≤

∑
|j|>J

L∑
l=1

∑
m∈Zn∩B−jM∗

J

|cj,l(m)|

≤
∑
|j|>J

L∑
l=1

∑
m∈Zn

|cj,l(m)| → 0 as J → ∞.

This shows (3.29) and completes the proof of Theorem 3.8. �

The following result combines Theorems 3.5 and 3.8 in a more conceptually
transparent and less technical form.
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Theorem 3.9. Let A ∈ GLn(Q) be expansive and Ψ ⊂ L2(Rn). Then, the affine
system A (Ψ) is a frame for L2(Rn) with frame bounds C1, C2 if, and only if, the
Λ-oversampled quasi-affine system Aq

Λ(Ψ) is a frame for L2(Rn) with uniform frame
bounds C1, C2 for all integer lattices Λ.

3.5. Recovering known equivalence results. We end this section by illustrat-
ing the general nature of Theorems 3.5 and 3.8. In particular, we will show that
the well-known equivalence result of Ron and Shen [20] for affine and quasi-affine
frames for integer dilation A ∈ GLn(Z) is a simple consequence of these results.
Moreover, we have the following generalization of their result.

Proposition 3.10. Let A ∈ GLn(Z) be expansive and Ψ ⊂ L2(R). Then the
following assertions are equivalent:

(i) A (Ψ) is a frame with bounds C1, C2,
(ii) Aq

Λ0
(Ψ) is a frame with bounds C1, C2 for some oversampling lattice Λ0 ⊂ Z

n,

(iii) Aq
Λ(Ψ) is a frame with bounds C1, C2 for all oversampling lattices Λ ⊂ Z

n.

Proof. By Theorem 3.5, we are only left to prove (ii) ⇒ (i), but this will follow
from an application of Theorem 3.8. From Lemma 3.1 we have that Aq(Ψ) is a
frame for L2(Rn) with bounds C1, C2. Recall the identity

Aq
AlZn(Ψ) = DA−l(Aq(Ψ)) for l ∈ Z

from Example 2. This tells us, by unitarity of the dilation operator, that Aq
AlZn(Ψ)

is a frame with (uniform) bounds C1, C2 for each l ∈ Z. Since A has integer entries,
we have

MJ ≡
⋂

|j|≤J

Aj
Z
n = AJ

Z
n for J ∈ N,

and the conclusion follows from Theorem 3.8. �

4. Dual affine and quasi-affine frames

The goal of this section is to prove the equivalence between pairs of dual affine
and quasi-affine frames in the setting of rational dilations. To achieve this we will
use well-studied fundamental equations of affine systems.

Definition 4.1. Suppose that Ψ = {ψ1, . . . , ψL} ⊂ L2(Rn) and Φ = {φ1, . . . , φL}
⊂ L2(Rn) are such that

(4.1)

L∑
l=1

∑
j∈Z

(
|ψ̂l(B

−jξ)|2 + |φ̂l(B
−jξ)|2

)
< ∞ for a.e. ξ.

We say that a pair (Ψ,Φ) satisfies the fundamental equations if

t̃0(ξ) :=

L∑
l=1

∑
j∈Z

ψ̂l(B
−jξ)φ̂l(B−jξ) = 1 for a.e. ξ,(4.2)

t̃α(ξ) :=
L∑

l=1

∑
j∈Z:α∈BjZn

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) = 0 for a.e. ξ

(4.3)

and all α ∈ Z
n \ {0}.
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Remark 5. Note that the assumption (4.1) is made to guarantee that the series in
(4.2) converges absolutely, and hence the Calderón condition (4.2) is meaningful.
On the other hand, the series (4.3) converges absolutely for a.e. ξ without any
assumptions (apart from Ψ,Φ ⊂ L2(Rn), that is). Indeed, for any ψ ∈ L2(Rn) and
α ∈ R

n,
(4.4)∫

Rn

∑
j≤J

∣∣∣ψ̂(B−j(ξ + α))
∣∣∣
2

dξ =

∫

Rn

∑
j≤J

|detA|j |ψ̂(ξ)|2dξ =
|detA|J+1

|detA| − 1
‖ψ‖2 < ∞

for any J ∈ N. Since the dilation B is expansive, for any α �= 0, there exists J ∈ N

such that j ∈ Z and α ∈ Bj
Z
n implies that j ≤ J . Hence, by 2 |zw| ≤ |z|2 + |w|2

for z, w ∈ C,

∑
j∈Z:α∈BjZn

∣∣ψ̂l(B
−jξ)φ̂l(B−j(ξ + α))

∣∣ ≤ 1
2

∑
j∈Z:α∈BjZn

|ψ̂l(B
−jξ)|2

+ 1
2

∑
j∈Z:α∈BjZn

|φ̂l(B
−j(ξ + α))|2 < ∞ for a.e. ξ ∈ R

n.

The last inequality is a consequence of (4.4).

We will need the following result which was originally proved by Frazier, Gar-
rigós, Wang, and Weiss [11] in the dyadic setting. Later it was extended by the
first author [2] to the setting of integer, expansive dilations and by Chui, Czaja,
Maggioni, and Weiss [8] to the setting of real, expansive dilations. We include an al-
ternative proof of Theorem 4.1 for the sake of completeness and since its techniques
will be used later.

Theorem 4.1. Let A ∈ GLn(R) be expansive. Suppose that Ψ = {ψ1, . . . , ψL} ⊂
L2(Rn) and Φ = {φ1, . . . , φL} ⊂ L2(Rn) are such that

L∑
l=1

∑
j∈Z

(
|ψ̂l(B

−jξ)|2 + |φ̂l(B
−jξ)|2

)
∈ L1

loc(R
n \ {0}).

Then, the affine systems A (Ψ) and A (Φ) form a weak pair of frames, i.e.,

(4.5) ‖f‖2 =
L∑

l=1

∑
j∈Z

∑
k∈Zn

〈f,DAjTkψl〉〈DAjTkφl, f〉 for all f ∈ D ,

if, and only if, the fundamental equations (4.2) and (4.3) hold.

Proof. The proof is based on Proposition 3.4 on affine systems and the idea of
polarization as in [18, Section 8]. By our assumption on Ψ and Φ, we can define

(4.6) N(f,Ψ,Φ) =
L∑

l=1

∑
j∈Z

∑
k∈Zn

〈f,DAjTkψl〉〈DAjTkφl, f〉 for f ∈ D ,

where the multiple series converge absolutely. This follows immediately by Re-
mark 1 and

2 |〈f,DAjTkψl〉〈DAjTkφl, f〉| ≤ |〈f,DAjTkψl〉|2 + |〈DAjTkφl, f〉|2 .
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By the polarization identity

z̄w =
1

4

4∑
p=1

ip |ipz + w|2 for z, w ∈ C,

we have

(4.7) N(f,Ψ,Φ) =
1

4

4∑
p=1

ipN(f,Θp), where Θp = {θl,p}Ll=1, θl,p = ipψl + φl

for f ∈ D .
Since, for p = 1, 2, 3, 4,

L∑
l=1

∑
j∈Z

∣∣∣θ̂l,p(B−jξ)
∣∣∣
2

≡
L∑

l=1

∑
j∈Z

∣∣∣ipψ̂l(B
−jξ) + φ̂l(B

−jξ)
∣∣∣
2

≤ 2

L∑
l=1

∑
j∈Z

(
|ψ̂l(B

−jξ)|2 + |φ̂l(B
−jξ)|2

)
∈ L1

loc(R
n \ {0}),

we can apply Proposition 3.4 to Θp for each p. This yields

N(Txf,Θp) =

L∑
l=1

∑
j∈Z

∑
m∈Zn

bj,l,p(m)e2πi〈B
jm,x〉,

where

(4.8) bj,l,p(m) =

∫

Rn

f̂(ξ)f̂(ξ +Bjm) θ̂l,p(B−jξ)θ̂l,p(B
−j(ξ +Bjm)) dξ

for l = 1, . . . , L, j ∈ Z,m ∈ Z
n, and the integral in (4.8) converges absolutely. By

the polarization identity

z̄1w2 =
1

4

4∑
p=1

ip(ipz1 + w1)(i
pz2 + w2) for z1, z2, w1, w2 ∈ C,

we have

1

4

4∑
p=1

ipθ̂l,p(B−jξ)θ̂l,p(B
−j(ξ +Bjm))

≡ 1

4

4∑
p=1

ip (ipψ̂l(B−jξ)+φ̂l(B−jξ))
(
ipψ̂l(B

−j(ξ +Bjm)) + φ̂l(B
−j(ξ +Bjm))

)

= ψ̂l(B−jξ)φ̂l(B
−j(ξ + Bjm)).

Therefore, by (4.7),

(4.9) w̃(x) := N(Txf,Ψ,Φ) =
L∑

l=1

∑
j∈Z

∑
m∈Zn

c̃j,l(m)e2πi〈B
jm,x〉,

where

c̃j,l(m) =
1

4

4∑
p=1

ipbj,l,p(m) =

∫

Rn

f̂(ξ)f̂(ξ +Bjm) ψ̂l(B−jξ)φ̂l(B
−j(ξ +Bjm)) dξ.
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By a change of summation order, using absolute convergence of the series in (4.9),
we have

w̃(x) =
∑

α∈
⋃

j∈Z
BjZn

c̃αe
2πi〈α,x〉,(4.10)

where

c̃α =

∫

Rn

f̂(ξ)f̂(ξ + α)

L∑
l=1

∑
j∈Z:α∈BjZn

ψ̂l(B−jξ)φ̂l(B
−j(ξ + α)) dξ

=

∫

Rn

f̂(ξ)f̂(ξ + α) t̃α(ξ) dξ, for α ∈
⋃
j∈Z

Bj
Z
n.(4.11)

Assume that the affine systems A (Ψ) and A (Φ) form a weak pair of frames.
Using ‖Txf‖ = ‖f‖, this implies that the almost periodic function w̃(x) from

(4.9) is constant. To be precise, w̃(x) = ‖f‖2. By uniqueness of coefficients for
Fourier series of almost periodic functions [13, Lemma 2.5], this only happens if,
for α ∈

⋃
j∈Z

Bj
Z
n,

(4.12) c̃0 = ‖f‖2 and c̃α = 0 for α �= 0.

By (4.11), this shows that∫

Rn

∣∣∣f̂(ξ)
∣∣∣
2

t̃0(ξ) dξ = ‖f‖2 = ‖f̂‖2 for all f ∈ D .

Since D is dense in L2(Rn), this implies further that t̃0(ξ) = 1 for a.e. ξ ∈ R
n

showing that the first fundamental equation (4.2) holds.
For a non-zero α we have by (4.11) and (4.12),∫

Rn

f̂(ξ)f̂(ξ + α) t̃α(ξ) dξ = 0 for all f ∈ D ,

for α ∈
(⋃

j∈Z
Bj

Z
n
)
\ {0}. In particular, this equality holds for α ∈ Z

n \ {0}.
We need to show that t̃α = 0 almost everywhere for α ∈ Z

n \ {0}. The conclusion
is almost immediate from Du Bois-Reynold’s lemma, which says that for local
integrable functions u on R

n satisfying
∫
uv = 0 for all v ∈ C∞

0 we have u = 0. We
fix α ∈ Z

n \ {0}, and let IZn denote a fundamental domain of Zn. For arbitrary
l ∈ Z

n we consider the translated parallelotope Il = IZn + l ⊂ R
n and define f by

f̂(ξ) =

⎧
⎪⎨
⎪⎩

1 for ξ ∈ Il,

t̃α(ξ) for ξ + α ∈ Il,

0 otherwise.

This definition makes sense since
⋃

l∈Zn Il = R
n and (Il−α)∩Il = ∅ for α ∈ Z

n\{0}.
Furthermore, since t̃α is bounded by Remark 5, we have f ∈ D . Consequently,

0 =

∫

Rn

f̂(ξ)f̂(ξ + α) t̃α(ξ) dξ =

∫

Il

1 t̃α(ξ) t̃α(ξ) dξ =

∫

Il

∣∣t̃α(ξ)
∣∣2 dξ,

which implies that t̃α(ξ) vanishes almost everywhere for ξ ∈ Il. Since l ∈ Z
n was

arbitrarily chosen, we deduce that t̃α(ξ) = 0 for a.e. ξ ∈ R
n. This shows that the

second fundamental equation (4.3) holds.
Conversely, assume that the fundamental equations (4.2) and (4.3) hold. Equa-

tion (4.3) states that t̃α(ξ) = 0 for a.e. ξ ∈ R
n for α ∈ Z

n \ {0}. By a change of
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variables γ = Blξ and β = Blα (l ∈ Z), this implies t̃β(γ) = 0 for β ∈ Bl
Z
n \ {0}.

Since this holds for all l ∈ Z, we conclude t̃α = 0 almost everywhere for α ∈⋃
j∈Z

Bj
Z
n \ {0}. Hence, by (4.11), c̃α = 0 for α ∈

⋃
j∈Z

Bj
Z
n \ {0}. Therefore,

w̃(x) = c̃0 = ‖f‖2 for all x ∈ R
n, so, in particular,

N(f,Ψ,Φ) ≡ w̃(0) = ‖f‖2 for all f ∈ D .

We conclude that the affine systemsA (Ψ) andA (Φ) form a weak pair of frames. �

We are now able to prove the characterization of dual affine and quasi-affine
frames in terms of fundamental equations using the theory of mixed dual Gramians
of Ron and Shen [19, 21, 23]. An alternative proof using the ideas of polarization
of affine functionals is presented at the end of this section. In the integer case
Theorem 4.2 was first shown by Ron and Shen [20, 22] with some decay assumptions
on generators Ψ and Φ. Chui, Shi, and Stöckler [9] proved the same result without
any decay assumptions; see also [2, Theorem 4.1]. Theorem 4.2 generalizes this
result to the setting of rational dilations.

Theorem 4.2. Let A ∈ GLn(Q) be expansive. Suppose A (Ψ) and A (Φ) are Bessel
sequences in L2(Rn). Then the following assertions are equivalent:

(i) A (Ψ) and A (Φ) are dual frames.
(ii) Aq

Λ0
(Ψ) and Aq

Λ0
(Φ) are dual frames for some integer oversampling lattice

Λ0 ⊂ Z
n.

(iii) Aq
Λ(Ψ) and Aq

Λ(Φ) are dual frames for all integer oversampling lattices Λ ⊂
Z
n.

(iv) Ψ and Φ satisfy the fundamental equations (4.2) and (4.3).

Proof. The local integrability condition in Theorem 4.1 is satisfied by Proposi-
tion 3.2 since A (Ψ) and A (Φ) are assumed to be Bessel sequences. Furthermore,
weak duality (4.5) of two Bessel sequences implies “strong” duality [2, Lemma 2.7],
i.e., that A (Ψ) and A (Φ) are dual frames. Hence, by Theorem 4.1, we have (i) ⇔
(iv); this equivalence is well known, even for real dilations [8, Theorem 4].

The proof of the equivalences (ii) ⇔ (iii) ⇔ (iv) is based on the approach used in

[3, Theorem 3.4]. Let G̃j(ξ)k,l denote the mixed dual Gramian of OA−j
Z
n

Λ (DAjΨ)

and OA−j
Z
n

Λ (DAjΦ) for j ∈ Z; see Section 2.4. By Lemma 2.3 with Γ = A−j
Z
n,

this mixed dual Gramian is given as

G̃j(ξ)k,l =

{
|detA|j

∑L
l=1 D̂Ajψ(ξ + k)D̂Ajφ(ξ + l), k − l ∈ Γ∗ ∩ Λ∗,

0, k − l ∈ Λ∗ \ Γ∗,

=

{∑L
l=1 ψ̂l(ξ + k)φ̂l(ξ + l), k − l ∈ Bj

Z
n ∩ Λ∗,

0, k − l ∈ Λ∗ \Bj
Z
n,

for k, l ∈ Λ∗. The mixed dual Gramian of Aq
Λ(Ψ) and Aq

Λ(Φ) is found by additivity

of the jth layer mixed dual Gramian G̃j(ξ) as

G̃(ξ)k,l =
∑
j∈Z

G̃j(ξ)k,l

=

L∑
l=1

∑
j∈Z

ψ̂l(B
−j(ξ + k))φ̂l(B−j(ξ + l))×

{
1, k − l ∈ Bj

Z
n ∩ Λ∗,

0, k − l ∈ Λ∗ \Bj
Z
n,
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for k, l ∈ Λ∗. We only consider k, l ∈ Λ∗, so k − l ∈ Λ∗ is trivially satisfied. Thus,
we arrive at the following expression for the mixed dual Gramian:

G̃(ξ)k,l =

L∑
l=1

∑
j∈Z:k−l∈BjZn

ψ̂l(B
−j(ξ + k))φ̂l(B−j(ξ + l)) ≡ t̃l−k(ξ + k).(4.13)

Assume (ii) holds. This implies that the mixed dual Gramian G̃(ξ) is the identity

operator on 
2(Λ∗
0) for a.e. ξ ∈ IΛ∗

0
; hence G̃(ξ)k,l = δk,l for a.e. ξ ∈ IΛ∗

0
. By

equation (4.13), for α ∈ Λ∗
0,

(4.14) δα,0 =

L∑
l=1

∑
j∈Z:α∈BjZn

ψ̂l(B
−jξ)φ̂l(B−j(ξ + α)) ≡ t̃α(ξ) for a.e. ξ ∈ R

n.

This implies (iv) since Z
n ⊂ Λ∗

0.

Assume (iv) holds. We will show that this implies (iii), i.e., that G̃(ξ)k,l = δk,l
for a.e. ξ ∈ IΛ∗ and all k, l ∈ Λ∗, where Λ is any integer lattice satisfying Λ ⊂ Z

n. By
a change of variables, we see that t̃α(ξ) = 0 for a.e. ξ and all α ∈

⋃
j∈Z

Bj
Z
n \ {0}.

If α ∈ Λ∗ \
⋃

j∈Z
Bj

Z
n, then obviously t̃α = 0; hence equation (4.14) holds for

α ∈ Λ∗. This shows that the mixed dual Gramian G̃(ξ) is the identity operator on

2(Λ∗) for a.e. ξ ∈ IΛ∗

0
, which is equivalent to assertion (iii).

The last implication (iii) ⇒ (ii) is obvious. �
It is possible to give an alternative proof of Theorem 4.2 using the ideas of

polarization from the proof of Theorem 4.1. Since the equivalence (i) ⇔ (iv) in
Theorem 4.2 is well known, we will only (re)prove (ii) ⇔ (iii) ⇔ (iv) here.

Another proof of Theorem 4.2. Let Λ ⊂ Z
n. For f ∈ D , we define the Λ-periodic

function w̃q
Λ(x) by

(4.15) w̃q
Λ(x) = Nq

Λ(Txf,Ψ,Φ) =
L∑

l=1

∑
j∈Z

∑
k∈Kj

〈Txf, djTkDAjψl〉〈djTkDAjφl, Txf〉,

where dj = #{Λ/(Λ ∩ A−j
Z
n)}−1/2 and Kj is given by (3.3). The series in (4.15)

converges absolutely since Aq
Λ(Ψ) and Aq

Λ(Φ) are Bessel sequences. Applying po-
larization identities as in the proof of Theorem 4.1 yields

w̃q
Λ(x) =

∑
α∈∪j∈ZBjZn∩Λ∗

c̃αe
2πi〈α,x〉,(4.16)

where the coefficients {c̃α} are given in (4.11).
Assume (ii) holds. It is well known that under the Bessel condition the weak

duality of frames is equivalent to the duality of frames; see for example [7, Theorem

5.6.2]. Hence, (ii) is equivalent to Nq
Λ0
(f,Ψ,Φ) = ‖f‖2 for all f ∈ L2(Rn). Since

‖Txf‖ = ‖f‖, this implies that w̃q
Λ0
(x) = ‖f‖2. By uniqueness of coefficients of the

Fourier series of w̃q
Λ0
, this happens only when

c̃α = ‖f‖2 δα,0 for α ∈
⋃
j∈Z

Bj
Z
n ∩ Λ∗.

Following the proof of Theorem 4.1, we immediately have that this implies t̃α = δα,0
almost everywhere for α ∈

⋃
j∈Z

Bj
Z
n ∩ Λ∗. In particular, since Z

n ⊂ Λ∗, we have

t̃α(ξ) = δα,0 for a.e. ξ and α ∈ Z
n. This is precisely assertion (iv).
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Assume (iv) holds. By a change of variables, this implies that t̃α(ξ) = δα,0 for
a.e. ξ and all α ∈

⋃
j∈Z

Bj
Z
n. Therefore,

c̃α = ‖f‖2 δα,0 for α ∈
⋃
j∈Z

Bj
Z
n,

and we note that these equations are independent of Λ. Hence, by (4.16), for any
Λ ⊂ Z

n,

Nq
Λ(f,Ψ,Φ) = w̃q

Λ(0) = c̃0 = ‖f‖2 for all f ∈ D .

By a density argument, this equality holds for all f ∈ L2(Rn), and assertion (iii)
follows. �

Remark 6. It is apparent from the proof above that the equivalence of (ii), (iii), and
(iv) in Theorem 4.2 holds under the weaker assumption that Aq

Λ0
(Ψ) and Aq

Λ0
(Φ)

are Bessel sequences in L2(Rn) for some Λ0 ⊂ Z
n.

5. Diagonal affine systems

In this section we study a particularly interesting subclass of generators where
the equivalence between affine and quasi-affine frames exhibits the largest degree
of symmetry. This is a class of diagonal affine systems for which the off-diagonal
functions tα defined below vanish. We show that the class of diagonal affine frames
consists precisely of quasi-affine frames having a canonical dual quasi-affine frame.
This extends a result of Weber and the first author [5] from the setting of integer
dilations to that of rational dilations.

Definition 5.1. For a given dilation matrix A and Ψ ⊂ L2(Rn) we introduce the
family of functions {tα}α∈Zn on R

n by

(5.1) tα(ξ) =
∑
ψ∈Ψ

∑
j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) for ξ ∈ R
n.

In particular,

t0(ξ) =
∑
ψ∈Ψ

∑
j∈Z

|ψ̂(Bjξ)|2.

We say that the affine system A (Ψ) is diagonal if tα(ξ) = 0 a.e. for all α ∈ Z
n \{0}.

Note that the series in (5.1) converges absolutely for a.e. ξ in light of Remark 5.
In addition, if Ψ ⊂ L2(Rn) generates an affine Bessel sequence A (Ψ) with bound
C2, or a quasi-affine Bessel sequence Aq

Λ(Ψ) for some lattice Λ, then each tα is well
defined and essentially bounded in light of Proposition 3.2 and

∑
ψ∈Ψ

∑
j∈Z:α∈BjZn

∣∣ψ̂(B−jξ)ψ̂(B−j(ξ + α))
∣∣ ≤ 1

2

∑
ψ∈Ψ

∑
j∈Z:α∈BjZn

|ψ̂(B−jξ)|2

+ 1
2

∑
ψ∈Ψ

∑
j∈Z:α∈BjZn

|ψ̂(B−j(ξ + α))|2≤C2.

Now, with the extra assumption tα(ξ) = 0 a.e. for α ∈ Z
n \ {0}, we have the

following equivalence result.
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Theorem 5.1. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn) and let C1, C2 > 0 be
constants. Suppose that the affine system A (Ψ) is diagonal. Then the following
assertions are equivalent:

(i) the affine system A (Ψ) is a frame for L2(Rn) with bounds C1, C2;
(ii) the quasi-affine system Aq

Λ0
(Ψ) is a frame for L2(Rn) with bounds C1, C2 for

some integer lattice Λ0 ⊂ Z
n;

(iii) the quasi-affine system Aq
Λ(Ψ) is a frame for L2(Rn) with bounds C1, C2 for

all integer lattices Λ ⊂ Z
n;

(iv)

C1 ≤
∑
ψ∈Ψ

∑
j∈Z

|ψ̂(Bjξ)|2 ≤ C2 for a.e. ξ ∈ R
n.

Proof. Let Λ ⊂ Z
n be a lattice in R

n. For fixed f ∈ D , let w and wq
Λ be the

functions introduced in (3.13) and (3.17). By a change of summation order, using
absolute convergence of the series, these functions can be written as

w(x) =
∑

α∈
⋃

j∈Z
BjZn

cα e2πi〈α,x〉, wq
Λ(x) =

∑
α∈

⋃
j∈Z

BjZn∩Λ∗

cα e2πi〈α,x〉,(5.2)

where

cα =

∫

Rn

f̂(ξ)f̂(ξ + α)
∑
ψ∈Ψ

∑
j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) dξ

=

∫

Rn

f̂(ξ)f̂(ξ + α) tα(ξ) dξ, for α ∈
⋃
j∈Z

Bj
Z
n.(5.3)

Our standing assumption in this theorem is that tα(ξ) = 0 a.e. for α ∈ Z
n \ {0}.

By a change of variables, this implies tα(ξ) = 0 a.e. for α ∈
⋃

j∈Z
Bj

Z
n \ {0}. Thus

the expressions in (5.2) reduce to

w(x) = wq
Λ(x) = c0 =

∫

Rn

∣∣∣f̂(ξ)
∣∣∣
2

t0(ξ)dξ for all x ∈ R
n;

hence w and wq
Λ are equal and constant functions of x. Therefore

N(f) = w(0) = wq
Λ(0) = Nq

Λ(f)

for f ∈ D . Since D is dense in L2(Rn), we find that (i) ⇔ (ii) ⇔ (iii). Note that
(i) ⇒ (iii) also follows directly from Theorem 3.5.

We will verify that (i) ⇔ (iv). In terms of the tα-functions, assertion (iv) reads
as C1 ≤ t0(ξ) ≤ C2 almost everywhere. By the above and an application of the
Plancherel theorem, assertion (i) is equivalent to

(5.4) C1〈f̂ , f̂〉 ≤ 〈t0f̂ , f̂〉 ≤ C2〈f̂ , f̂〉 for f ∈ L2(Rn).

This implies that
C1 ≤ t0(ξ) ≤ C2 for a.e. ξ ∈ R

n,

which, on the other hand, clearly implies (5.4). �
As a corollary we have the following converse of Theorem 3.5.

Corollary 5.2. Let A ∈ GLn(Q) be expansive, Ψ ⊂ L2(Rn), and let A (Ψ) be
diagonal. Suppose that the Λ0-oversampled quasi-affine system Aq

Λ0
(Ψ) is a frame

for L2(Rn) with bounds C1, C2 for some integer lattice Λ0 ⊂ Z
n. Then, the affine

system A (Ψ) is a frame for L2(Rn) with bounds C1, C2.
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As a direct consequence of Theorem 3.5 and Corollary 5.2 we generalize the
equivalence of affine and quasi-affine Parseval frames due to the first author [3,
Theorem 3.4]; see also [14, Theorem 2.17].

Theorem 5.3. Suppose A ∈ GLn(Q) is expansive and Ψ ⊂ L2(Rn). Then the
following assertions are equivalent:

(i) the affine system A (Ψ) is a Parseval frame for L2(Rn);
(ii) the quasi-affine system Aq

Λ0
(Ψ) is a Parseval frame for L2(Rn) for some

integer lattice Λ0 ⊂ Z
n;

(iii) the quasi-affine system Aq
Λ(Ψ) is a Parseval frame for L2(Rn) for all integer

lattices Λ ⊂ Z
n.

Proof. The implication (i) ⇒ (iii) is a special case of Theorem 3.5, and (iii) ⇒ (ii)
is obvious. Proposition 3.2 and the proof of Proposition 3.3 show that the local
integrability condition (3.16) for the quasi-affine system is satisfied; hence we can
apply Theorem 2.4 to Aq

Λ(Ψ). By equations (2.14), (3.10) and (3.11) this implies
that tα = 0 for α ∈ Z

n \ {0}; hence the affine system is diagonal. An application
of Corollary 5.2 gives us (ii) ⇒ (i). �

5.1. Canonical dual quasi-affine frames. Our next aim is to characterize when
the canonical dual of a quasi-affine frame is also a quasi-affine frame. To achieve
this we need the following result resembling [5, Proposition 1].

Theorem 5.4. Let A ∈ GLn(Q) be expansive. Suppose the Aq
Λ0
(Ψ) is a frame

for some Λ0 ⊂ Z
n, which has a dual quasi-affine frame Aq

Λ0
(Φ). Then, for any

S ∈ B(L2(Rn)) we have

S ∈ Cψ(Aq
Λ0
) for all ψ ∈ Ψ ⇔ S ∈ {DA, Tλ : λ ∈ Λ0}′ .

Note that we need to assume a much stronger hypothesis than the assumption
of [5, Proposition 1], saying that the quasi-affine system Aq

Zn(Ψ) is complete in
L2(Rn).

Proof. The fact that Aq
Λ0
(Ψ) and Aq

Λ0
(Φ) are dual frames implies that the funda-

mental equations (4.2) and (4.3) hold; see Remark 6. By Theorem 4.1, the affine
system A (Ψ) is complete in L2(Rn).

Suppose that S ∈ Cψ(Aq
Λ0
). Since the quasi-affine system Aq

Λ0
(Ψ) is Λ0-SI, S

must commute with translations Tλ, λ ∈ Λ0. Likewise, since the affine system
A (Ψ) is a part of the quasi-affine system Aq

Λ0
(Ψ) (up to normalizing constants),

S ∈ Cψ(A). Since the affine system A (Ψ) is complete in L2(Rn) and A (Ψ) is
dilation-invariant, S must commute with the dilation operator DA.

Conversely, if S ∈ {DA, Tλ : λ ∈ Λ0}′, then clearly S belongs to the local com-
mutant Cψ(Aq

Λ0
) for any choice of ψ ∈ L2(Rn). �

Remark 7. Note that if S ∈ {DA, Tλ : λ ∈ Λ0}′, then S commutes with all trans-
lation Tλ, λ ∈ R

n. Indeed, by TAjλ = DA−jTλDAj , S must commute with TAjλ

for j ∈ Z and λ ∈ Λ0. Since A is expansive,
⋃

j∈Z
AjΛ0 is dense in R

n. Hence, by

continuity of x �→ Txf for f ∈ L2(Rn), we have S ∈ {DA, Tλ : λ ∈ R
n}′. In fact, we

have the following lemma which is a straightforward generalization of [5, Lemma
2].
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Lemma 5.5. Let A ∈ GLn(R) be expansive, Λ a lattice, and S ∈ B(L2(Rn)). Then,
S ∈ {DA, Tλ : λ ∈ Λ}′ if, and only if, S is a B-dilation periodic Fourier multiplier,
i.e., there exists a function s ∈ L∞(Rn) such that

Ŝf(ξ) = s(ξ)f̂(ξ) for a.e. ξ,

where s(ξ) = s(Bξ) for a.e. ξ.

Proof. Assume S ∈ {DA, Tλ : λ ∈ Λ}′. By TAjλ = DA−jTλDAj , S commutes with
TAjλ for j ∈ Z and λ ∈ Λ, i.e.,

(5.5) STk = TkS for k ∈
⋃
j∈Z

AjΛ.

The union
⋃

j∈Z
AjΛ is dense in R

n since A is expansive. For x ∈ R
n take {kn}n∈N

from
⋃

j∈Z
AjΛ such that kn → x. By continuity of x �→ Txf for f ∈ L2(Rn),

kn → x implies Tkn
f → Txf in the L2 norm, i.e., Tkn

→ Tx in the strong operator
topology. Hence, by equation (5.5), we have STx = TxS, proving that S is a Fourier
multiplier. Finally, by DAS = SDA,

F DASf(ξ) =

∫

Rn

DASf(x)e
−2πix·ξdx = |detA|−1/2

s(B−1ξ)f̂(B−1ξ),

and

F SDAf(ξ) = s(ξ)

∫

Rn

DAf(x)e
−2πix·ξdx = |detA|−1/2 s(ξ)f̂(B−1ξ),

we have B-periodicity of the symbol s.
Conversely, assume S is a Fourier multiplier with a B-dilation periodic symbol.

The operator S commutes with all translations by the Fourier multiplier property
and with dilations DA by the B-dilation periodicity of the symbol and the two
displayed equations above. �

Theorem 5.6. Let A ∈ GLn(Q) be expansive. Suppose the oversampled quasi-
affine system Aq

Λ0
(Ψ) is a frame for L2(Rn) for some integer lattices Λ0 ⊂ Z

n.

Then the canonical dual frame of Aq
Λ0
(Ψ) has the form Aq

Λ0
(Φ) for some set of

functions Φ ⊂ L2(Rn) with cardinality #Φ = #Ψ if, and only if,

(5.6) tα(ξ) =
∑
ψ∈Ψ

∑
j∈Z:α∈BjZn

ψ̂(B−jξ)ψ̂(B−j(ξ + α)) = 0 for all α ∈ Z
n \ {0}.

Moreover, in the positive case Aq
Λ(Ψ) is a frame for all integer lattices Λ ⊂ Z

n and
its canonical dual frame is Aq

Λ(Φ).

Proof. Let Sq
Λ0

be the frame operator of the quasi-affine system Aq
Λ0
(Ψ). Since

Aq
Λ0
(Ψ) is a frame, equation (3.12) is satisfied. Hence the expression for wq

Λ0
in

(5.2) holds for f ∈ D .
Assume that the canonical dual of Aq

Λ0
(Ψ) has the form Aq

Λ0
(Φ), i.e., Sq

Λ0
∈

Cψ(Aq
Λ0
) for all ψ ∈ Ψ. By Theorem 5.4 and Remark 7, Sq

Λ0
∈ {DA, Tλ : λ ∈ R

n}′.
Hence

wq
Λ0
(x) =

〈
Sq
Λ0
Txf, Txf

〉
=
〈
TxS

q
Λ0
f, Txf

〉
=
〈
Sq
Λ0
f, f
〉

∀x ∈ R
n,

which shows that wq
Λ0

is constant for every f ∈ D .
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For each f ∈ D we express wq
Λ0

as the Λ0-periodic Fourier series (5.2). Such a
Fourier series is identically constant if, and only if,

cα ≡
∫

Rn

f̂(ξ)f̂(ξ + α) tα(ξ) dξ = 0 for all α ∈
(⋃

j∈Z

Bj
Z
n ∩ Λ ∗

0

)
\ {0} ,

by the uniqueness of the Fourier coefficients. In particular, this equality holds for
α ∈ Z

n \ {0} since Z
n ⊂ Λ ∗

0 . Fix α ∈ Z
n \ {0}. Let IΛ ∗

0
denote a fundamental

domain of Λ ∗
0 and, for l ∈ Λ ∗

0 , let Il = IΛ ∗
0
+ l. Define f by

f̂(ξ) :=

⎧⎪⎨
⎪⎩

1 for ξ ∈ Il,

tα(ξ) for ξ + α ∈ Il,

0 otherwise.

Since tα is bounded by the Bessel bound C2, we have f ∈ D . Now,

0 =

∫

Rn

f̂(ξ)f̂(ξ + α) tα(ξ)dξ =

∫

Il

tα(ξ)tα(ξ)dξ =

∫

Il

|tα(ξ)|2 dξ

for each l ∈ Λ ∗
0 . Since

⋃
l∈Λ ∗

0
Il = R

n we deduce that tα(ξ) = 0 for a.e. ξ ∈ R
n, and

the theorem is half proved.
Conversely, assume tα(ξ) = 0 for α ∈ Z

n \ {0}. Then tα(ξ) = 0 for α ∈(⋃
j∈Z

Bj
Z
n
)
\ {0} by a change of variables. In particular, tα(ξ) = 0 for α ∈(⋃

j∈Z
Bj

Z
n ∩ Λ ∗

0

)
\ {0}. Hence wq

Λ0
(x) = c0 for every x ∈ R

n, i.e., wq
Λ0

is constant

on R
n for every f ∈ D . Therefore, for every x ∈ R

n,〈
Sq
Λ0
Txf, Txf

〉
= wq

Λ0
(x) = wq

Λ0
(0) =

〈
Sq
Λ0
f, f
〉

for f ∈ D .

This equality extends to all f ∈ L2(Rn) by a density argument; hence〈(
T−xS

q
Λ0
Tx − Sq

Λ0

)
f, f
〉
= 0 for f ∈ L2(Rn).

We conclude that Sq
Λ0
Tx = TxS

q
Λ0

for all x ∈ R
n, in other words, Sq

Λ0
is a Fourier

multiplier:

(5.7) Ŝq
Λ0
f(ξ) = s(ξ)f̂(ξ) for a.e. ξ ∈ R

n and all f ∈ L2(Rn),

for some symbol s ∈ L∞(Rn). We claim the symbol of Sq
Λ0

is

s(ξ) = t0(ξ) =
∑
ψ∈Ψ

∑
j∈Z

∣∣∣ψ̂(Bjξ)
∣∣∣
2

.

This function is obviously a B-dilation periodic function; that is, s(ξ) = s(Bξ). By
Proposition 3.2 the function is bounded by the upper frame bound s(ξ) ≤ C2 for
a.e. ξ, so s ∈ L∞(Rn). By the Plancherel theorem, we see

wq
Λ0
(0) = 〈Sq

Λ0
f, f〉 =

〈
Ŝq
Λ0
f, f̂
〉

for all f ∈ D ,

and, by (5.3) with α = 0, that

c0 =

∫

Rn

f̂(ξ)f̂(ξ)
∑
ψ∈Ψ

∑
j∈Z

∣∣∣ψ̂(Bjξ)
∣∣∣
2

dξ.

Since wq
Λ0
(x) = c0 for all x ∈ R

n, we have, in particular,

〈
Ŝq
Λ0
f, f̂
〉
= wq

Λ0
(0) = c0 = 〈sf̂ , f̂〉 for all f ∈ D .
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Therefore, s is a B-dilation periodic symbol of Sq
Λ0

implying that Sq
Λ0

commutes with

DA; see Lemma 5.5. The frame operator Sq
Λ0

therefore belongs to {DA, Tλ : λ ∈ Λ0}′.
As a result we find that (Sq

Λ0
)−1 ∈ Cψ(Aq

Λ0
) for ψ ∈ Ψ. This is equivalent to the

canonical dual of Aq
Λ0
(Ψ) having the quasi-affine structure with the same number

of generators. �

6. Broken symmetry between the integer and rational case

The goal of this section is to illustrate fundamental differences between integer
and rational cases. That is, a mere fact that a quasi-affine system is a frame does
not imply that an affine system must be a frame as well. This kind of phenomenon
cannot happen for integer dilations where we have a perfect equivalence of the frame
property between affine and quasi-affine systems. Moreover, this cannot happen
for Parseval frames due to Theorem 5.3 or, more generally, for affine frames having
duals by Theorem 4.2. Moreover, Theorem 6.1 shows the optimality of our results.
That is, the assumption of uniformity of frame bounds of quasi-affine systems in
Theorem 3.8 cannot be removed in general.

Theorem 6.1. Let 1 < a ∈ Q \ Z be a rational non-integer dilation factor. Then
there exists a function ψ ∈ L2(R) such that Aq

Λ(ψ) is a frame for any oversampling
lattice Λ ⊂ Z, but yet A (ψ) is not a frame.

Remark 8. In light of Theorem 3.8, the frame bounds of the quasi-affine systems
Aq

Λ(ψ) are not uniform for all lattices Λ ⊂ Z. In fact, we will see that the lower frame
bound of Aq

Λ(ψ) drops to 0 as a lattice Λ gets sparser and sparser. Consequently,
in the limiting case, when no oversampling is present, we obtain an affine system
A (ψ) which is not a frame due to the failure of the lower frame bound.

We will need the following well-known result; see [16, Theorem 13.0.1] or the
proof of [10, Lemma 3.4].

Theorem 6.2. Suppose that ψ ∈ L2(R) is such that ψ̂ ∈ L∞(R) and

ψ̂(ξ) =O(|ξ|δ) as ξ → 0,

ψ̂(ξ) =O(|ξ|−1/2−δ
) as |ξ| → ∞,

for some δ > 0. Then the affine system A (ψ) is a Bessel sequence.

We define the space Ľ2(K), invariant under all translations, by

Ľ2(K) = {f ∈ L2(R) : supp f̂ ⊂ K}

for measurable subsets K of R.

Proof of Theorem 6.1. Choose δ > 0 so that 1
a(a+1) < δ < 1

2a < 1
a2+1 . Define

ψ ∈ L2(R) as ψ̂ = 1(−a2δ,−δ)∪(δ,a2δ). First, we shall show that the affine system
A (ψ) is not a frame. To achieve this we will follow the idea from [5, Example 2]. We
will need the following standard identity, which can be shown by the periodization
argument

(6.1)
∑
k∈Z

|〈f, Tkψ〉|2 =

∫ 1

0

∣∣∣
∑
k∈Z

f̂(ξ + k)ψ̂(ξ + k)
∣∣∣
2

dξ for any f ∈ L2(R).
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Let Kδ = (1− a2δ, a2δ). By the restriction on δ, we have

Kδ ⊂ (δ, a2δ) ⊂ (δ, 1− δ) and Kδ − 1 ⊂ (−a2δ,−δ) ⊂ (−1 + δ,−δ).

Hence, by a direct calculation using (6.1) we have for any f ∈ L2(R),
(6.2)∑
k∈Z

|〈f, Tkψ〉|2=
∫

Kδ

|f̂(ξ−1)+f̂(ξ)|2dξ+
∫

(δ,1−a2δ)

|f̂(ξ)|2dξ+
∫

(a2δ,1−δ)

|f̂(ξ−1)|2dξ.

In particular, by restricting (6.2) to a subspace Ľ2(Lδ), where

Lδ = (−∞,−1 + δ) ∪ (Kδ − 1) ∪ (−δ, δ) ∪Kδ ∪ (1− δ,∞),

we obtain a convenient formula

(6.3)
∑
k∈Z

|〈f, Tkψ〉|2 =

∫

Kδ

|f̂(ξ − 1) + f̂(ξ)|2dξ for any f ∈ Ľ2(Lδ).

For any natural number N and sufficiently small ε = ε(N) > 0, we define a
function fN ∈ L2(R) by

(6.4) f̂N =
N∑

k=0

(1I+
k
− 1I−

k
),

where

(6.5) I+k =

(
a−k

a+ 1
− ε,

a−k

a+ 1

)
, I−k =

(
− a−k

a+ 1
− ε,− a−k

a+ 1

)
.

Intuitively, one might think of f̂N as a linear combination of point masses

ε
N∑

k=0

(δa−k/(a+1) − δ−a−k/(a+1)).

We claim that

(6.6) DajfN ∈ Ľ2(Lδ) for all j ∈ Z.

Indeed, (6.6) follows immediately from

aj(I+k ∪ I−k ) ⊂

⎧⎪⎨
⎪⎩

(−δ, δ), j ≤ k − 1,

(Kδ − 1) ∪Kδ, j = k, k + 1,

(−∞,−1 + δ) ∪ (1− δ,∞), j ≥ k + 2,

for k = 0, . . . , N and for sufficiently small ε = ε(N) > 0, i.e.,

0 < ε < min

{
a−N+1

(
δ − 1

a(a+ 1)

)
, a−N−2

(
a2

a+ 1
− 1 + δ

)}
.

Let S be the frame operator corresponding to the affine system A (ψ). Note that
by Theorem 6.2, S is bounded. Our goal is to show that S is not bounded from
below. Combining (6.3)–(6.6) we have

‖SfN‖2 =
∑
j∈Z

∑
z∈Z

|〈fN , DajTzψ〉|2 =
∑
j∈Z

∑
z∈Z

|〈DajfN , Tzψ〉|2

=

N+1∑
j=0

a−j

∫

Kδ

|f̂N (a−j(ξ − 1)) + f̂N (a−jξ)|2dξ = 4ε.
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Here, we used that for ξ ∈ Kδ

f̂N (a−j(ξ − 1)) + f̂N (a−jξ) =

⎧
⎪⎨
⎪⎩

1I+
0
(ξ)− 1I−

0
(ξ − 1), j = 0,

0, j = 1, . . . , N,

1aN+1I+
N
(ξ)− 1aN+1I−

N
(ξ − 1), j = N + 1.

The presence of cancellations at scales j = 1, . . . , N is due to translation-dilation
linkage of the quadruple of points {±a/(a+ 1),±1/(a+ 1)}. On the other hand,

‖fN‖2 = ‖f̂N‖2 = 2ε(N + 1).

Since N is arbitrary, this shows that the frame operator S is not bounded from
below. Consequently, A (ψ) is not a frame.

Next, we will show that Aq
Λ(ψ) is a frame for any choice of lattice Λ ⊂ Z. Since

A (ψ) is a Bessel sequence, Theorem 3.5 yields that Aq
Λ(ψ) is a Bessel sequence as

well. Hence, it remains to establish the lower frame bound for Aq
Λ(ψ).

Let a = p/q, where p, q ∈ N are relatively prime, and l ∈ N be such that Λ = lZ.
Let

J1 = max{j ∈ N0 : pj divides l}, J2 = max{j ∈ N0 : qj divides l}.

Take any j ∈ Z. Then we have the equality of lattices a−j
Z+ Λ = a−j

Z ⇔ l is an
integer multiple of a−j . Clearly, this is equivalent to l being divisible by qj if j > 0
or l divisible by p−j if j < 0. Therefore,

(6.7) a−j
Z+ Λ = a−j

Z ⇔ −J1 ≤ j ≤ J2.

Consequently,

(6.8) a−j
Z+ Λ =

1

cj
a−j

Z for some cj ≥ 2, where j < −J1 or j > J2.

The properties (6.7) and (6.8) enable us to identify the quasi-affine systemAq
Λ(ψ).

At the scales −J1 ≤ j ≤ J2, the quasi-affine system Aq
Λ(ψ) coincides with the affine

system A (ψ). However, outside of this finite range of scales the quasi-affine system
is obtained by oversampling the affine system at a rate cj ≥ 2. This will lead to a
simple form of the frame operator Sq

Λ of the quasi-affine system Aq
Λ(ψ).

Indeed, suppose that j < −J1 or j > J2. By Definition 3.1 and (6.8) the quasi-
affine system Aq

Λ(ψ) at the scale j is

Oa−j
Z

Λ (Dajψ) = Ea−j
Z+Λ

(
1

|Λ/(Λ ∩ a−jZ)|1/2Dajψ

)
= Ea−j/cjZ((cj)

−1/2Dajψ).

Hence,

∑

g∈Oa−jZ
Λ (Dajψ)

|〈f, g〉|2 =
1

cj

∑
k∈Z

|〈f, Ta−jk/cjDajψ〉|2

=
∑
k∈Z

1

cjaj

∣∣∣∣
∫

R

f̂(ξ)ψ̂(a−jξ)e2πikξ/(a
jcj)dξ

∣∣∣∣
2

=

∫

R

|f̂(ξ)|2|ψ̂(a−jξ)|2dξ.
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The last step is a consequence of the fact that supp ψ̂(a−j ·) ⊂ (−aj , aj) and that
cj ≥ 2. Combining this with (6.7) yields

‖Sq
Λf‖

2
=

J2∑
j=−J1

∑
k∈Z

|〈f,DajTkψ〉|2

+

( ∑
j<−J1

+
∑
j>J2

)∫

(−aj+2δ,−ajδ)∪(ajδ,aj+2δ)

|f̂(ξ)|2dξ

≥
J2∑

j=−J1

|〈Da−jf, Tkψ〉|2 +
(∫

|ξ|<a−J1+1δ

+

∫

|ξ|>aJ2+1δ

)
|f̂(ξ)|2dξ.

(6.9)

By (6.2),

(6.10)
∑
k∈Z

|〈Da−jf, Tkψ〉|2

= aj
∫

Kδ

|f̂(aj(ξ−1))+f̂(ajξ)|2dξ+aj
∫ 1−a2δ

δ

|f̂(ajξ)|2dξ+aj
∫ 1−δ

a2δ

|f̂(aj(ξ−1))|2dξ

=

∫

ajKδ

|f̂(ξ − aj) + f̂(ξ)|2dξ +
∫

ajδ<|ξ|<aj(1−a2δ)

|f̂(ξ)|2dξ.

We claim that for all j ∈ Z,

(6.11)

Ij ≤ 2Ij+1 + 2

∫

ajKδ

|f̂(ξ − aj) + f̂(ξ)|2dξ +
∫

ajδ<|ξ|<aj(1−a2δ)

|f̂(ξ)|2dξ,

where Ij :=

∫

ajδ<|ξ|<aj+1δ

|f̂(ξ)|2dξ.

Indeed, by aj(aδ − 1) < −aj+1δ, we have that

∫ aj+1δ

aj(1−a2δ)

|f̂(ξ)|2dξ ≤ 2

∫ aj+1δ

aj(1−a2δ)

(|f̂(ξ − aj)|2 + |f̂(ξ − aj) + f̂(ξ)|2)dξ

≤ 2

∫ aj+1δ

aj(1−a2δ)

|f̂(ξ − aj) + f̂(ξ)|2dξ + 2

∫ −aj+1δ

−aj+2δ

|f̂(ξ)|2dξ.

Likewise,

∫ −aj(1−a2δ)

−aj+1δ

|f̂(ξ)|2dξ ≤ 2

∫ −aj(1−a2δ)

−aj+1δ

(|f̂(ξ + aj)|2 + |f̂(ξ + aj) + f̂(ξ)|2)dξ

≤ 2

∫ aj+2δ

aj+1δ

|f̂(ξ − aj) + f̂(ξ)|2dξ + 2

∫ aj+2δ

aj+1δ

|f̂(ξ)|2dξ.

Adding the last two inequalities yields∫

aj(1−a2δ)<|ξ|<aj+1δ

|f̂(ξ)|2dξ ≤ 2Ij+1 + 2

∫

ajKδ

|f̂(ξ − aj) + f̂(ξ)|2dξ,

which, together with δ < 1− a2δ < aδ, shows (6.11).

Take any f ∈ L2(R) with ‖f‖ = 1 and let η = ‖Sq
Λ(f)‖

2
. By (6.9)

∫

Z

|f̂ |2 ≤ η, where Z = {ξ : |ξ| < a−J1+1δ} ∪ {ξ : |ξ| > aJ2+1δ}.(6.12)
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On the other hand, combining (6.9), (6.10), (6.11) shows that

Ij ≤ 2(Ij+1 + η) for − J1 ≤ j ≤ J2.

By (6.12) we also have that IJ2+1 ≤ η. Therefore, Ij ≤ 3 ·2J2−jη for −J1 ≤ j ≤ J2.
Consequently,

‖f‖2 =

∫

Z

|f̂(ξ)|2dξ +
J2∑

j=−J1+1

Ij ≤ 3 · 2J1+J2η.

This proves that the frame operator Sq
Λ of Aq

Λ(ψ) is bounded from below by a
constant depending only on J1 and J2, thus completing the proof of Theorem
6.1. �

Remark 9. By Theorem 3.8, the frame bounds of the quasi-affine systems Aq
Λ(ψ)

are not uniform for all Λ ⊂ Z. More precisely, the lower frame bound of Aq
Λ(ψ) must

approach 0 for some choice of sparser and sparser lattices Λ. By analyzing the proof
of Theorem 6.1 it is not difficult to show that this happens for the family of lattices
ΛJ = (pq)JZ as J → ∞. This is due to the fact that in this case the quasi-affine
system Aq

Λ(ψ) coincides with the affine system A (ψ) at the scales −J ≤ j ≤ J and
that the same argument as in the first part of the proof of Theorem 6.1 applies.

Theorem 6.1 says that the lower frame bound is not preserved in general when
we move from a quasi-affine system Aq

Λ(Ψ) to the corresponding affine system A (Ψ)
for rational non-integer dilations. It is not known whether the same could happen
with the upper bound. This leads to the following open problem.

Question 1. Let Ψ ⊂ L2(Rn) and A ∈ GLn(Q). Suppose that Aq
Λ0
(Ψ) is a Bessel

sequence for some oversampling lattice Λ0 ⊂ Z
n. Is A (Ψ) necessarily a Bessel

sequence?
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