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Abstract. We show that frames with frame bounds A and B are images of orthonor-
mal bases under positive operators with spectrum contained in f0gW ½

ffiffiffiffi
A

p
;

ffiffiffiffi
B

p
�. Then, we

give an explicit characterization of the diagonals of such operators, which in turn gives a
characterization of the sequences which are the norms of a frame. Our result extends the
tight case result of Kadison [15], [16], which characterizes diagonals of orthogonal projec-
tions, to a non-tight case. We illustrate our main theorem by studying the set of possible
lower bounds of positive operators with prescribed diagonal.

1. Introduction

Definition 1.1. A sequence f figi A I in a Hilbert space H is called a frame if there
exist 0 < AeB < y such that

Ak f k2
e

P
jh f ; fiij2 eBk f k2 for all f A H:ð1:1Þ

The numbers A and B are called the frame bounds. The supremum over all A’s and infimum
over all B’s which satisfy (1.1) are called the optimal frame bounds. If A ¼ B, then f fig is
said to be a tight frame. In addition, if A ¼ B ¼ 1, then f fig is called a Parseval frame.

The goal of this paper is to characterize all possible sequences of norms of a frame
with prescribed optimal bounds A and B. This question can be reformulated to an equiva-
lent problem asking for a characterization of diagonals of self-adjoint operators E with
spectrum A;B A sðEÞL f0gW ½A;B�. This reformulation is due to Antezana, Massey, Ruiz,
and Stojano¤ [1] who established the relationship of the frame norm problem with the
Schur–Horn theorem. Consequently, a characterization of norms of finite frames follows
from the Schur–Horn theorem. The special tight case A ¼ B is a celebrated Pythagorean
theorem of Kadison [15], [16], which gives a complete characterization of diagonals of
projections.

The problem of characterizing norms of frames with prescribed frame operator
attracted a significant number of researchers. Casazza and Leon [7], [8] gave explicit and
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algorithmic construction of finite tight frames with prescribed norms. Moreover, Casazza,
Fickus, Kovačević, Leon, and Tremain [9] characterized norms of finite tight frames in
terms of their ‘‘fundamental frame inequality’’ using frame potential methods of Benedetto
and Fickus [6]. An alternative approach using projection decomposition was undertaken
by Kornelson and Larson [11], [19], which yields some necessary and some su‰cient con-
ditions for infinite dimensional Hilbert spaces. Antezana, Massey, Ruiz, and Stojano¤ [1]
established the connection of this problem with the infinite dimensional Schur–Horn prob-
lem and gave refined necessary conditions and su‰cient conditions. Finally, Kadison [15],
[16] gave the complete answer for Parseval frames, which easily extends to tight frames by
scaling.

The equivalent problem of characterizing diagonals of self-adjoint operators remains
open in infinite dimensions despite remarkable recent progress. The finite Schur–Horn
theorem was extended to positive trace class operators by Gohberg and Markus [12] and
by Arveson and Kadison [5], and to compact positive operators by Kaftal and Weiss [18].
Moreover, its extensions to II1 factors [2], [3] and normal operators [4] were also studied.
The infinite dimensional version of the Schur–Horn theorem due to Neumann [20], which
is phrased in terms of ly-completion of the convexity condition, is too crude for our
purposes. For detailed survey of recent progress on infinite Schur–Horn majorization the-
orem we refer to the paper of Kaftal and Weiss [17].

Our main result can be thought as the infinite Schur–Horn theorem for a class of self-
adjoint operators with prescribed lower and upper bounds and with the zero in the spec-
trum. Note that the assumption of fdig being non-summable in Theorem 1.1 is not a true
limitation. Indeed, the summable case requires more restrictive conditions reflected in
Theorem 3.4.

Theorem 1.1. Let 0 < A < B < y and fdigi A I be a non-summable sequence in ½0;B�.
Define

C ¼
P

di<A

di and D ¼
P

difA

ðB � diÞ:ð1:2Þ

Then, there is a positive operator E on a Hilbert space H with fA;BgL sðEÞL f0gW ½A;B�
and diagonal fdig if and only if one of the following holds: (i) C ¼ y, (ii) D ¼ y, (iii)
C;D < y and

bn A NW f0g nAeC eA þ Bðn � 1Þ þ D:ð1:3Þ

As a corollary of Theorem 1.1 we obtain the characterization of sequences of frame
norms.

Corollary 1.2. Let 0 < A < B < y and fdig be a non-summable sequence in ½0;B�.
There exists a frame f fig for some Hilbert space with optimal frame bounds A and B and

di ¼ k fik2
if and only if (i), (ii), or (iii) hold.

We would like to emphasize that the non-tight case is not a mere generalization of the
tight case A ¼ B established by Kadison [15], [16], see Theorem 4.2. Indeed, the non-tight
case is qualitatively di¤erent from the tight case, since by setting A ¼ B in Theorem 1.1
we do not get the correct necessary and su‰cient condition (4.2) previously discovered by
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Kadison. Furthermore, the non-tight summable and non-summable cases require di¤erent
characterization conditions. This is again unlike the tight case when the same condition
(4.2) works in either case.

The proof of Theorem 1.1 breaks into 3 distinctive parts. The summable case does
not require much new techniques since it reduces to the study of trace class operators. It
can be deduced from the work of Arveson–Kadison [5] and Kaftal–Weiss [18]. However,
the non-summable case is much more involved. The su‰ciency part of Theorem 1.1 re-
quires special techniques of ‘‘moving’’ diagonal entries to more favorable configurations,
where it is possible to construct required operators. This is done in Section 4 by considering
a variety of cases, some of which are tight in the sense that the required operator has a 3
point spectrum. It is worth adding that our construction is quite explicit and algorithmic
leading always to diagonalizable operators. Finally, Section 5 contains the necessity proof
of Theorem 1.1. This part is shown using arguments involving trace class operators and
Kadison’s Theorem 4.2.

Theorem 1.1 has an analogue for operators without the zero in the spectrum, see
Theorem 6.3. This result is much easier to show and it leads to a characterization of norms
of Riesz bases with prescribed bounds. Finally, in the last section we illustrate how our
main theorem can be applied to determine the set A of possible lower bounds of positive
operators with fixed diagonal fdig. While we show that it is always closed, A can take dis-
tinct configurations depending on the choice of a diagonal.

2. Reformulation of frames by positive operators

In this section we reformulate the problem of characterizing norms of frames to an
equivalent problem of characterizing diagonals of positive operators with prescribed lower
and upper bounds. We start with the following basic fact.

Proposition 2.1. Let H be a Hilbert space with an orthonormal basis feigi A I and

0 < AeB < y. If E is a positive operator with sðEÞL f0gW ½A;B�, then fEeig is a frame

for the Hilbert space EðHÞ with frame bounds A2 and B2.

Proof. Let f A EðHÞ, then we have

P
i A I

jh f ;Eeiij2 ¼
P
i A I

jhEf ; eiij2 ¼ kEf k2:

This clearly implies that B2 is an upper frame bound. Since f A EðHÞ we have
kEf kfAk f k, which shows that A2 is a lower frame bound. r

Our goal is to establish the converse statement. That is, any frame in H is an image
of an orthonormal basis of a larger Hilbert space KIH under a positive operator. This
generalizes the standard result saying that Parseval frames are images of orthonormal bases
under orthogonal projections [13]. We will use the following standard terminology.

Definition 2.1. If f figi A I is a frame we call the operator T : H ! l2ðIÞ, given by

Tf ¼ fh f ; fiigi A Ið2:1Þ
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the analysis operator. The adjoint T � : l2ðIÞ ! H given by

T �ðfaigi A IÞ ¼
P
i A I

ai fið2:2Þ

is called the synthesis operator. The operator S ¼ T �T given by

Sf ¼
P
i A I

h f ; fii fið2:3Þ

is called the frame operator.

The following is a standard fact about frames [10]:

Proposition 2.2. If f figi A I is a frame for H and S is the frame operator, then

fS�1=2figi A I is a Parseval frame for H.

The following result is an extension of the classical dilation theorem for Parseval
frames due to Han and Larson [13], Proposition 1.1. Proposition 2.3 is essentially contained
in the work of Antezana, Massey, Ruiz, and Stojano¤ [1], Proposition 4.5. In particular,
the authors of [1] established the relationship of our problem with the Schur–Horn theorem
of majorization theory which we state in a convenient form in Theorem 2.4.

Proposition 2.3. Let f figi A I be a frame for H with optimal frame bounds A2 and B2.

Then, there exist an isometry F : H ! l2ðIÞ and a positive operator E : l2ðIÞ ! FðHÞ
such that fA;BgL sðEÞL f0gW ½A;B� and Eei ¼ Ffi, where feigi A I is the coordinate basis

of l2ðIÞ. If S is the frame operator of f figi A I and 0e is the zero operator on FðHÞ?, then

E2 is unitarily equivalent to S l 0e.

Proof. Let S be the frame operator of f fig. By Proposition 2.2, fS�1=2fig is a
Parseval frame. Set pi ¼ S�1=2fi, and let F be the analysis operator of fpig. Since fpig is
a Parseval frame, F is an isometry. Let P be the orthogonal projection onto FðHÞ. As a
consequence of the Han–Larson dilation theorem for Parseval frames [13], Proposition
1.1, we have Pei ¼ Fpi for all i A I . Hence, we also have F�ei ¼ pi. Define the operator
E ¼ FS1=2F�. Clearly, E is a self-adjoint operator on l2ðIÞ. Observe that

Eei ¼ FS1=2F�ei ¼ FS1=2pi ¼ FS1=2S�1=2fi ¼ Ffi:

Thus,

kEf k2 ¼
P
i A I

jhEf ; eiij2 ¼
P
i A I

jh f ;Eeiij2 ¼
P
i A I

jh f ;Ffiij2:

Since F is unitary, fFfigi A I is a frame for FðHÞ with optimal frame bounds A2 and B2.
The frame property now implies A2k f k2

e kEf k2
eB2k f k2, which in turn implies that

fA;BgL sðEÞL f0gW ½A;B�.

Finally, define U : HlFðHÞ? ! l2ðIÞ by

Uf ¼ Ff ; f A H;

f ; f A FðHÞ?:

�
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It is clear that U is unitary, since F : H ! FðHÞ is an isometric isomorphism. Note that
F�F is the identity on H, thus

E2 ¼ FS1=2F�FS1=2F� ¼ FSF�:

Finally, for f A H

E2Uf ¼ E2Ff ¼ FSf ¼ USf ;

and for f A FðHÞ?

E2Uf ¼ E2f ¼ FSF�f ¼ 0 ¼ U0e f :

This proves the last part of Proposition 2.3. r

One should remark that Han and Larson [13] gave a di¤erent extension of their frame
dilation result than Proposition 2.3. [13], Proposition 1.6, says that any frame is an image
of a Riesz basis under an orthogonal projection, and the frame and Riesz bounds are the
same.

Theorem 2.4. Suppose 0 < AeB < y, H is a Hilbert space, and feigi A I is the co-

ordinate basis of l2ðIÞ. The following sets are equal:

N ¼ ffk fik2gi A I j f figi A I is a frame for H with optimal bounds A and Bg;

D ¼ ffhEei; eiigi A I jE is self-adjoint on l2ðIÞ with rank ¼ dimH

and fA;BgL sðEÞL f0gW ½A;B�g:

Proof. First we show DLN. Let fdigi A I A D be the diagonal of E. Since E f 0, it

has a positive square root E1=2 with f
ffiffiffiffi
A

p
;

ffiffiffiffi
B

p
gL sðE1=2ÞL f0gW ½

ffiffiffiffi
A

p
;

ffiffiffiffi
B

p
�. By Proposi-

tion 2.1 the sequence fE1=2eigi A I is a frame for the Hilbert space E1=2
�
l2ðIÞ

�
with frame

bounds A and B. Since f
ffiffiffiffi
A

p
;

ffiffiffiffi
B

p
gL sðE1=2Þ it is clear that the bounds A and B are opti-

mal. Since

kE1=2eik2 ¼ hE1=2ei;E
1=2eii ¼ hEei; eii ¼ di;

this shows that fdig A N.

Next, we will show that NLD. Let f figi A I be a frame for H with optimal frame
bounds A and B. By Proposition 2.3 there is an isometry F : H ! l2ðIÞ and a positive op-
erator E : l2ðIÞ ! FðHÞ with f

ffiffiffiffi
A

p
;

ffiffiffiffi
B

p
gL sðEÞL f0gW ½

ffiffiffiffi
A

p
;

ffiffiffiffi
B

p
� such that Eei ¼ Ffi.

Since fA;BgL sðE2ÞL f0gW ½A;B�, and

hE2ei; eii ¼ hEei;Eeii ¼ kEeik2 ¼ kFfik2 ¼ k fik2;

this shows that fk fik2gi A I A D. r

A similar result holds for Riesz bases.
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Definition 2.2. A sequence f figi A I in a Hilbert space H is called a Riesz basis if it is
complete and there exist 0 < AeB < y such that

A
P

jaij2 e k
P

ai fik2
eB

P
jaij2ð2:4Þ

for all finitely supported sequences faigi A I . The numbers A and B are called the Riesz

bounds. The supremum over all A’s and infimum over all B’s which satisfy (2.4) are called
the optimal Riesz bounds.

Equivalently, a Riesz basis is a frame such that its synthesis operator T �, and thus
analysis operator T , is an isomorphism. Moreover, optimal Riesz and frame bounds are
the same. Therefore, an analogue of Proposition 2.3 for Riesz bases involves operators E

without zero in the spectrum. Consequently, we have the following analogue of Theorem
2.4:

Theorem 2.5. Suppose 0 < AeB < y, H is a Hilbert space, and feigi A I is the co-

ordinate basis of l2ðIÞ. The following sets are equal:

N ¼ ffk fik2gi A I j f figi A I is a Riesz basis for H with optimal bounds A and Bg;

D ¼ ffhEei; eiigi A I jE is self-adjoint on l2ðIÞ and fA;BgL sðEÞL ½A;B�g:

3. The summable case

The goal of this section is to establish the summable case of our main Theorem 1.1.
This special case can be deduced from a finite rank version of the Schur–Horn theorem.

Theorem 3.1 (Schur–Horn theorem). Let fligN
i¼1 and fdigN

i¼1 be real sequences with

non-increasing order. If

Pn

i¼1

di e
Pn

i¼1

li En ¼ 1; . . . ;N;

PN
i¼1

li ¼
PN
i¼1

di;

ð3:1Þ

then there is a self-adjoint operator E : RN ! RN with eigenvalues flig and diagonal fdig.

Conversely, if E : CN ! CN is a self-adjoint operator with eigenvalues flig and diago-

nal fdig, then (3.1) holds.

The analogue of the Schur–Horn theorem for trace class operators was proved by
Arveson and Kadison in [5]. It was further generalized to compact operators by Kaftal
and Weiss in [18]. The following is a special case of Arveson–Kadison theorem [5], Theo-
rem 4.1, for finite rank operators. Theorem 3.2 can also be deduced from the Kaftal and
Weiss infinite dimensional extension of the Schur–Horn theorem [18], Theorem 6.1, which
also considers the real case.
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Theorem 3.2 (finite rank Horn’s theorem). Let fligN
i¼1 and fdigyi¼1 be positive non-

increasing sequences. If

Pn

i¼1

di e
Pn

i¼1

li EneN;

Py
i¼1

di ¼
PN
i¼1

li;

ð3:2Þ

then there is a positive rank N operator E on a real Hilbert space H with eigenvalues fligN
i¼1

and diagonal fdigyi¼1.

The necessity of majorization condition (3.2) is a classical result of Schur [21].

Theorem 3.3 (Schur). If E : H ! H is a positive compact operator with eigenvalues

(with multiplicity) fligyi¼1 in non-increasing order, then for any orthonormal basis feigyi¼1 of

H we have

Pn

i¼1

hEei; eiie
Pn

i¼1

li En A N:ð3:3Þ

Using Theorems 3.2 and 3.3 we can prove the summable variant of Theorem 1.1.

Theorem 3.4. Suppose 0 < AeB < y and M A NW fyg. Let fdigM
i¼1 be a sum-

mable sequence in ½0;B�. There is a positive, rank N þ 1 operator E on a Hilbert space H
with diagonal fdig and fA;BgL sðEÞL f0gW ½A;B� if and only if

PM
i¼1

di A ½AN þ B;A þ BN�;ð3:4Þ

P
di<A

di fAðN � m0 þ 1Þ; m0 ¼ jfi : di fAgj:ð3:5Þ

Proof. Assume an operator E is as in Theorem 3.4. Because each of the
N þ 1 non-zero eigenvalues of E is at most B, and A is an eigenvalue, we haveP

di ¼ trðEÞeA þ BN. Similarly, since each of the N þ 1 non-zero eigenvalues of E is
at least A, and B is an eigenvalue, we have

P
di ¼ trðEÞfAN þ B. After rearranging

fdig in non-increasing order Theorem 3.3 yields

P
di<A

di ¼
Py

i¼m0þ1

di f
Py

i¼m0þ1

li ¼
PNþ1

i¼m0þ1

li fAðN � m0 þ 1Þ;

where flig are eigenvalues of E in non-increasing order (with multiplicity). This shows that
(3.4) and (3.5) are necessary.

Conversely, assume we have a sequence fdigM
i¼1 which satisfies (3.4) and (3.5). IfP

di < A þ BN then there exist unique n0 A f1; 2; . . . ;Ng and x A ½A;BÞ such that

PM
i¼1

di ¼ AðN � n0Þ þ x þ Bn0:ð3:6Þ
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We set

li ¼
B; i A f1; . . . ; n0g;
x; i ¼ n0 þ 1;

A; i A fn0 þ 2; . . . ;N þ 1g:

8<
:

If
P

di ¼ A þ BN, simply let n0 ¼ N � 1 and x ¼ B. By Theorem 3.2, we only need to
check that the majorization property (3.2) holds for fdig and flig.

Combining (3.5) and (3.6), we have

Pm0

i¼1

di eBn0 þ x þ Aðm0 � n0 � 1Þ:ð3:7Þ

For mem0, we have

Pm
i¼1

di ¼
Pm0

i¼1

di �
Pm0

i¼mþ1

di e
Pm0

i¼1

di þ Aðm � m0Þ:

For m0 < meN þ 1, we have

Pm
i¼1

di ¼
Pm0

i¼1

di þ
Pm

i¼m0þ1

di e
Pm0

i¼1

di þ Aðm � m0Þ:

In either case, combining these with (3.7), yields

Pm
i¼1

di eBn0 þ x þ Aðm � n0 � 1Þe
Pm
i¼1

li for n0 þ 1emeN þ 1:

Finally, for m > N þ 1 and m < n0 þ 1 the majorization property is trivial. r

As a corollary of Theorems 2.4 and 3.4 we have

Corollary 3.5. Suppose 0 < AeB < y and M A NW fyg. Let fdigM
i¼1 be a sum-

mable sequence in ½0;B�. There exists a frame f fig for an ðN þ 1Þ-dimensional space with

optimal frame bounds A and B and di ¼ k fik2
if and only if (3.4) and (3.5) hold.

In the non-summable case the condition (3.4) makes no sense. However, we can give
an alternate set of conditions which will generalize.

Theorem 3.6. Suppose 0 < AeB < y and M A NW fyg. Let fdigM
i¼1 be a sum-

mable sequence in ½0;B�. Define the numbers

C ¼
P

di<A

di and D ¼
P

difA

ðB � diÞ:
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There is a positive, rank N þ 1 operator E on a Hilbert space H with diagonal fdig and

fA;BgL sðEÞL f0gW ½A;B� if and only if

C A ½AðN � m0 þ 1Þ;A þ BðN � m0Þ þ D�; m0 ¼ jfi : di fAgj;ð3:8Þ

PM
i¼1

di fAN þ B:ð3:9Þ

Proof. Assuming (3.4) and (3.5) we have

C � D ¼
P

di<A

di �
P

difA

ðB � diÞ ¼
PM
i¼1

di � m0BeA þ BN � m0B

which shows C eA þ BðN � m0Þ þ D, and the other parts of (3.8) and (3.9) are obvious.
Similarly, assuming (3.8) and (3.9) we see

PM
i¼1

di ¼ C � D þ m0BeA þ BðN � m0Þ þ D � D þ m0B ¼ A þ BN;

and the other parts of (3.4) and (3.5) are obvious. r

Note that if fdig is not summable, then (3.9) is trivially satisfied. Thus it is a reason-
able and correct guess that a variant of (3.8) is the necessary and su‰cient condition.

4. The non-summable case of Carpenter’s theorem

The goal of this section is to prove the su‰ciency part of our main theorem. In the
terminology of Kadison [15], [16], this is a non-tight version of Carpenter’s theorem.

Theorem 4.1. Suppose 0 < A < B < y. Let fdigi A I be a non-summable sequence in

½0;B� and

C ¼
P

di<A

di; D ¼
P

difA

ðB � diÞ:

If

C A
Sy

n¼0

½An;A þ Bðn � 1Þ þ D�W fyg;ð4:1Þ

then there is a positive diagonalizable operator E on a Hilbert space H with

fA;BgL sðEÞL f0gW ½A;B� and diagonal fdigi A I .

Remark 4.1. In Theorem 4.1, the index set I may or may not be countable and
H may or may not be separable. The case of H being non-separable can be reduced to
the separable case. We will use the convention that a ‘‘sequence’’ fdigi A I can have an index-
ing set of any cardinality. Note that, if D ¼ y, then the first interval in the union is ½0;y�
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so (4.1) is always satisfied. Similarly, if C ¼ y, then (4.1) is always satisfied. Moreover, if
A � B þ D < 0, then we interpret the interval ½0;A � B þ D� to be j, which means that if
D < B � A, then C ¼ 0 does not satisfy (4.1). Finally, note that the set in (4.1) reduces to a
finite union of intervals since it always contains an infinite interval ½ðn þ 1ÞA;y�, where
n ¼ dB=ðB � AÞe.

In the tight case A ¼ B, the condition (4.1) is necessary but not su‰cient. The correct
condition was discovered by Kadison [15], [16]. We state it in a form convenient for our
purposes, since it plays a prominent role in our arguments. The necessity part of Theorem
4.2 is referred in [15], [16] as the Pythagorean theorem, whereas the su‰ciency part is the
Carpenter theorem.

Theorem 4.2 (Kadison). Let fdigi A I be a sequence in ½0;B�. For a A ð0;BÞ define

a ¼
P

di<a

di; b ¼
P

difa

ðB � diÞ:

Then, there is an orthogonal projection P such that BP has a diagonal fdigi A I if and only if

a � b A BZW fGygð4:2Þ

with the convention that y�y ¼ 0.

Remark 4.2. Note that the condition (4.2) is independent of the choice of a A ð0;BÞ.
That is, if (4.2) holds for some a, then it must hold for all a A ð0;BÞ. To see that conditions
(4.1) and (4.2) are di¤erent in the tight case, consider the sequence fdig which contains the

terms fn�2gyn¼2 and f1 � 2�ngyn¼1. For B ¼ 1 and a ¼ 1=2 we have a ¼ p2 � 6

6
and b ¼ 1,

thus b � a B Z. By Theorem 4.2 there is no projection with diagonal fdig, although (4.1) is
satisfied since C ¼ y.

Secondly, note that the indexing set I is not assumed to be countable. In [15], [16] the
possibility that I is an uncountable set is addressed in all but the most di‰cult case where
fdig and fB � dig are non-summable [16], Theorem 15. However, the case where I is un-
countable is a simple extension of the countable case, as we will now explain.

Proof of the reduction of Theorem 4.2 to the countable case. By normalizing, we may
assume B ¼ 1. First, we consider a projection P with diagonal fdigi A I with respect to some
orthonormal basis feig. If a or b is infinite then there is nothing to show, so we may assume
a; b < y. Set J ¼ fi A I j di ¼ 0gW fi A I j di ¼ 1g, and let P 0 be the operator P acting on
spanfeigi A InJ . Since ei is an eigenvector for each i A J, P 0 is a projection with diagonal

fdigi A InJ . The assumption that a; b < y implies InJ is at most countable. Thus, the count-
able case of Theorem 4.2 applied to the operator P 0 yields a � b A Z. This shows that (4.2)
is necessary.

To show that (4.2) is su‰cient, we claim that it is enough to assume that all of the
di’s are in ð0; 1Þ. If we can find a projection P with only these di’s, then we take I to be
the identity and 0 the zero operator on Hilbert spaces with dimensions chosen so that
Pl I l 0 has diagonal fdig. Since a and b do not change when we restrict to ð0; 1Þ, we
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may assume that fdigi A I has uncountably many terms and is contained in ð0; 1Þ. There is
some n A N such that J ¼ fi A I j 1=n < di < 1 � 1=ng has the same cardinality as I . Thus,
we can partition I into a collection of countable infinite sets fIkgk AK such that Ik X J is
infinite for each k A K . Each sequence fdigi A Ik

contains infinitely many terms bounded
away from 0 and 1, thus (4.2) holds with a or b infinite. Again, by the countable case of
Theorem 4.2 for each k A K there is a projection Pk with diagonal fdigi A Ik

. Thus,
L

k AK

Pk

is a projection with diagonal fdigi A I . r

The following elementary ‘‘moving toward 0-1’’ lemma plays a key role in the proof
of Theorem 4.1.

Lemma 4.3. Let faigN
i¼1 and fbigM

i¼1 be sequences in ½0;B� with maxfaigeminfbig.

Let h0 f 0 and

h0 emin

�PN
i¼1

ai;
PM
i¼1

ðB � biÞ
�
:

Then, there exist sequences f~aaigN
i¼1 and f~bbigM

i¼1 in ½0;B� satisfying

~aai e ai; i ¼ 1; . . . ;N; and bi e
~bbi; i ¼ 1; . . . ;M;ð4:3Þ

h0 þ
PN
i¼1

~aai ¼
PN
i¼1

ai and h0 þ
PM
i¼1

ðB � ~bbiÞ ¼
PM
i¼1

ðB � biÞ:ð4:4Þ

Proof. By scaling the sequences, we can reduce Lemma 4.3 to the case B ¼ 1. Set

fa
ð0Þ
i gN

i¼1 ¼ faigN
i¼1 and fb

ð0Þ
i gM

i¼1 ¼ fbigM
i¼1:

Define a series of new sequences by applying the following algorithm:

Step i. If hi�1 ¼ 0 then we are done. Otherwise set

aði�1Þ
ni

¼ maxfaði�1Þ
n g and bði�1Þ

mi
¼ minfbði�1Þ

m g:

Then define

di ¼ minfaði�1Þ
ni

; 1 � bði�1Þ
mi

; hi�1g:

Now define the sequences fa
ðiÞ
n g and fb

ðiÞ
m g by

aðiÞ
n ¼ a

ði�1Þ
ni � di; n ¼ ni;

a
ði�1Þ
n otherwise;

(
bðiÞ

m ¼ b
ði�1Þ
mi þ di; m ¼ mi;

b
ði�1Þ
m otherwise:

(

Define

hi ¼ hi�1 � di

and proceed to step i þ 1.
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We claim that the above algorithm will stop after K eN þ M � 1 steps. Notice that
if di ¼ hi�1, then hi ¼ 0 and the algorithm stops. So, assume di ¼ ani

or 1 � bmi
for all i. If

di ¼ ani
, then the sequence fa

ðiÞ
n g will have one more zero than fa

ði�1Þ
n g. If di ¼ 1 � bmi

, then
the sequence fb

ðiÞ
m g will have one more 1 than fb

ði�1Þ
m g. If fa

ðiÞ
n g is a sequence of zeros then

the algorithm must have stopped, since hi e
PN
n¼1

a
ðiÞ
n . Similarly, if fb

ðiÞ
m g is a sequence of

ones, then the algorithm must have stopped, since hi e
PM

m¼1

ð1 � b
ðiÞ
m Þ. Thus, the algorithm

can continue for at most N þ M � 1 steps. Finally, set ~aai ¼ a
ðKÞ
i and ~bbj ¼ b

ðKÞ
j for all i

and j. r

The operational version of the ‘‘moving toward 0-1’’ lemma takes the following form:

Lemma 4.4. Let faig, fbig, f~aaig, and f~bbig be sequences in ½0;B� as in Lemma 4.3. If

there is a self-adjoint operator ~EE with diagonal

f~aa1; . . . ; ~aaN ; ~bb1; . . . ; ~bbM ; c1; c2; . . .g;

then there exists an operator E on H unitarily equivalent to ~EE with diagonal

fa1; . . . ; aN ; b1; . . . ; bM ; c1; c2; . . .g:

Here, fcig is either a finite or an infinite bounded sequence of real numbers.

Proof. Let feig be the orthonormal basis, with respect to which ~EE has diagonal

f~bb1; . . . ; ~bbM ; ~aa1; . . . ; ~aaN ; c1; c2; . . .g:

We may assume f~bb1; . . . ; ~bbM ; ~aa1; . . . ; ~aaNg is written in non-increasing order. Let P be
the orthogonal projection onto the finite dimensional Hilbert space H0 ¼ spanfeigNþM

i¼1 ,

and let ~EE0 : H0 ! H0 be the operator P ~EE restricted to H0. In other words, ~EE0 is the
ðN þ MÞ � ðN þ MÞ corner of ~EE with diagonal f~bb1; . . . ; ~bbM ; ~aa1; . . . ; ~aaNg.

Let fligNþM
i¼1 be the eigenvalues of ~EE0, written in non-increasing order. By Theorem

3.1 we have the majorization property (3.1) majorization for the diagonal of ~EE0 and flig.
Using (4.3) and (4.4) yields

Pk

i¼1

bi e
Pk

i¼1

~bbi for k ¼ 1; . . . ;M;

PM
i¼1

bi þ
Pk

i¼1

ai ¼
PM
i¼1

~bbi � h0 þ
Pk

i¼1

ai e
PM
i¼1

~bbi þ
Pk

i¼1

~aai for k ¼ 1; . . . ;N:

This shows that the majorization property also holds for fb1; . . . ; bM ; a1; . . . ; aNg and flig.
By Theorem 3.1 there is an operator E0 : H0 ! H0 with diagonal fb1; . . . ; bM ; a1; . . . ; aNg
and eigenvalues flig, and thus there is a unitary U0 : H0 ! H0 such that E0 ¼ U �

0
~EE0U0.

Define the unitary U ¼ U0 l I , where I is the identity operator on spanfeigi>NþM .
Hence, the operator E ¼ U � ~EEU has diagonal

fa1; . . . ; aN ; b1; . . . ; bM ; c1; c2; . . .g: r
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We are ready to give the proof of Theorem 4.1 which breaks into several cases.

Proof of Theorem 4.1. Throughout this proof let faig and fbig be the subsequences
of di’s in ½0;AÞ and ½A;B�, respectively.

Case 1. Assume C ¼ y.

Partition faig into a countable number of sequences fa
ðkÞ
i g for each k A N, each with

infinite sum. For each k A N we apply Theorem 4.2 on 0;A þ B � A

k

� �
with a ¼ A. Since

P
a
ðkÞ
i

<a

a
ðkÞ
i ¼ y;

there is a projection Pk 3 I on a Hilbert space Hk such that the diagonal of

A þ B � A

k

� 	
Pk is fa

ðkÞ
i g. Let S be the diagonal operator with the diagonal fbig on a

Hilbert space H0. Then, the operator

E ¼ S l
Ly
k¼1

A þ B � A

k

� 	
Pk

on the Hilbert space H ¼
Ly
k¼0

Hk has diagonal fdig. By construction sðEÞ is the closure of

f0gW A þ B � A

k
: k A N

� �
W fbig, thus fA;BgL sðEÞL f0gW ½A;B�.

Case 2. Assume D ¼ y.

First, suppose that A is not an accumulation point of fbig. Partition fbig into two

sequences fb
ð1Þ
i g and fb

ð2Þ
i g such that

Py
i¼1

ðB � b
ðkÞ
i Þ ¼ y for i ¼ 1; 2:ð4:5Þ

Let fcig be the sequence consisting of faig and fb
ð1Þ
i g. By Theorem 4.2 on ½0;B� with a ¼ A

and

P
cifa

ðB � ciÞ ¼ y;

there is a projection P1 on a Hilbert space H1 such that BP1 has diagonal fcig.

Define

ki ¼
b
ð2Þ
i � A

B � A
:
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The sequence fkig is in ½0; 1� and 0 is not an accumulation point. Thus, there exists
a A ð0; 1Þ such that P

kifa

ð1 � kiÞ ¼ y:

By Theorem 4.2 there is a projection P2 on a Hilbert space H2 with diagonal fkig. The oper-

ator S ¼ ðB � AÞP2 þ AI is diagonalizable with eigenvalues A and B, and diagonal fb
ð2Þ
i g.

Thus, the operator E ¼ BP1 lS on H1 lH2 has diagonal fdig and sðEÞ ¼ f0;A;Bg.

Finally, suppose that A is an accumulation point of fbig. Partition fbig into two
infinite sequences fb

ð1Þ
i g and fb

ð2Þ
i g each with infimum A. Then, (4.5) holds. Let P1 be

a projection on H1 as before. Let S be the diagonal operator on a Hilbert space H2

with fb
ð2Þ
i g on the diagonal. The operator E ¼ BP1 lS has diagonal fdig. Clearly,

sðSÞL ½A;B�, and since inffb
ð2Þ
i g ¼ A we have A A sðSÞ. We also have f0;Bg ¼ sðBP1Þ,

thus fA;BgL sðEÞ ¼ sðBP1ÞW sðSÞL f0gW ½A;B�, as desired.

Case 3. Assume C;D < y and C A ½An;A þ Bðn � 1Þ þ D� for some n A N.

We claim that it is enough to prove Case 3 when fdig is countable. The fact that
C;D < y implies that the sequence fdig contains at most countably many terms in ð0;BÞ.
Assume that there exists an operator E with the desired spectrum and diagonal consisting
of only the terms of fdig in ð0;BÞ. Let I be the identity operator on a Hilbert space of
dimension jfi : di ¼ Bgj, and let 0 be the zero operator on a Hilbert space of dimension
jfi : di ¼ 0gj. The operator E lBI l 0 has the same spectrum as E and diagonal fdig.
However, it may happen that the sequence of terms contained in ð0;BÞ is summable. This
would imply that fdig must contain infinitely many terms equal to B (since fdig is assumed
to be non-summable). In this case we consider the sequence of terms in ð0;BÞ together with
a countable infinite sequence of B’s. If we can find an operator E with this diagonal
sequence and the desired spectrum, then E lBI l 0 is again the desired operator. This
proves our claim.

Let n A N be the largest such that C A ½An;A þ Bðn � 1Þ þ D�. Since fdig is not sum-
mable, fbig is an infinite sequence. First, assume C ¼ An. By Theorem 4.2 on ½0;A� there
is a projection P on a Hilbert space H1 such that AP has diagonal faig. Let H2 be an infi-
nite dimensional Hilbert space, and S be a diagonal operator with fbig on the diagonal.
Since fbig is an infinite sequence in ½A;B� and D < y we clearly have B A sðSÞ and thus
E ¼ APlS is the desired operator.

Next, assume C A
�
An;A þ Bðn � 1Þ



and set C ¼ An þ x. Since supfbig ¼ B, there

is some i0 A N such that bi0 þ xfB. Define the sequence f~aaig to be the sequence consisting
of faig and bi0 . This sequence is summable and

P
~aai ¼ C þ bi0 ¼ An þ x þ bi0 fAn þ B;P
~aai ¼ C þ bi0 eA þ Bðn � 1Þ þ bi0 eA þ Bn:

Since P
~aai<A

~aai ¼ C f nA;
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and there is exactly one term in f~aaig which is fA, the sequence meets the conditions of
Theorem 3.4. Thus there is an operator S1 with A and B as eigenvalues,

sðS1ÞL f0gW ½A;B�

and diagonal f~aaig. Define f~bbig to be the sequence fbigi3i0
. Let S2 be the diagonal operator

with f~bbig on the diagonal. The operator E ¼ S1 lS2 is the desired operator.

Next, assume C A
�
A þ Bðn � 1Þ;A þ Bðn � 1Þ þ D

�
and set C ¼ A þ Bðn � 1Þ þ x.

Since x < D and x < C, there are N;M A N such that

PN
i¼1

ai f x and
PM
i¼1

ðB � biÞf x:

Apply Lemma 4.3 to the sequences faigN
i¼1 and fbigM

i¼1 with h0 ¼ x to get new sequences

f~aaigN
i¼1 and f~bbigM

i¼1 satisfying (4.3) and (4.4). Let f~bbigyi¼1 be the sequence consisting of

f~bbigN
i¼1 and fbigyi¼Nþ1 and similarly define f~aaig. We purposely omit indexing for f~aaig since

the original sequence faig might be either finite or infinite. Set

~CC ¼
P

~aai and ~DD ¼
P

ðB � ~bbiÞ:ð4:6Þ

We have ~CC ¼ A þ Bðn � 1Þ and we can apply the previous case to get an operator ~EE with
fA;BgL sð ~EEÞL f0gW ½A;B� with diagonal consisting of f~aaig and f~bbig. Then, Lemma 4.4
yields an operator E with the same spectrum as ~EE and diagonal faigW fbig.

Finally, assume C ¼ A þ Bðn � 1Þ þ D. First, we look at the case where C ¼ A. This
implies n ¼ 1 and D ¼ 0. Thus, fbig is an infinite sequence of B’s. By Theorem 4.2 there is
a projection P, such that AP has diagonal faig. Let F be the diagonal operator with fbig on
the diagonal, then APlF has the desired spectrum and diagonal. Now, we may assume
C > A.

Arrange the sequence faig in non-increasing order and define

M0 ¼ max

�
m :

Pm
i¼1

ai eA

�
and x ¼ A �

�PM0

i¼1

ai

	
:

Observe that M0 f 1 and there is N fM0 þ 1 such that

PN
i¼M0þ1

ai f x:

It is also clear that

PM0

i¼1

ðA � aiÞf x:
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Apply Lemma 4.3 to the sequences faigN
i¼M0þ1 and faigM0

i¼1 on the interval ½0;A� with h0 ¼ x

to get new sequences f~aaigN
i¼M0þ1 and f~aaigM0

i¼1 satisfying (4.3) and (4.4). Let f~aaig be the

sequence consisting of f~aaigN
i¼1 and faigifNþ1. By (4.4) observe that

PM0

i¼1

~aai ¼
PM0

i¼1

ai þ x ¼ A; and
P

ifM0þ1

~aai ¼
P

ifM0þ1

ai � x ¼ C � A:

Thus, by Theorem 4.2 we can construct a rank one projection P such that the operator AP

has diagonal f~aaigM0

i¼1. Define

a ¼
P

ifM0þ1

~aai and b ¼
Py
i¼1

ðB � biÞ;

and note that a � b ¼ C � A � D ¼ ðn � 1ÞB. Thus, by Theorem 4.2 there is a projection
Q such that BQ has diagonal consisting of f~aaigifM0þ1 and fbig. Now, ~EE ¼ APlBQ has
diagonal consisting of f~aaig and fbig and sð ~EEÞ ¼ f0;A;Bg. Then, Lemma 4.4 yields an op-
erator E with the same spectrum as ~EE and diagonal faigW fbig.

Case 4. Assume C A ½0;A � B þ D�.

Using the same argument as in Case 3, it su‰ces to consider only countable sequences
fdig. Note that it is implicitly assumed that DfB � A > 0. First, assume D ¼ B � A, this
implies C ¼ 0 and all ai’s are 0. Since

P
ðB � biÞ ¼ B � A, by Theorem 4.2, there exists a

projection P such that ðB � AÞP has diagonal fB � big. Thus, E ¼ BI � ðB � AÞP has the
desired spectrum and diagonal fbig. For the rest of Case 4 we may assume D > B � A.

Now, assume C ¼ 0. Let b1 ¼ minfbig and h0 ¼ b1 � A. We have

Py
i¼2

ðB � biÞ ¼ D � ðB � b1Þ > B � A � B þ b1 ¼ h0:

So there is some N such that

PN
i¼2

ðB � biÞf h0:

Apply Lemma 4.3 to fb1g and fbigN
i¼2 on the interval ½0;B� to obtain new sequences

f~bb1 ¼ Ag and f~bbigN
i¼2. Let f~bbigyi¼1 be the sequence consisting of f~bbigN

i¼1 and fbigyi¼Nþ1.

Let ~EE be the operator with f~bbig on the diagonal (recall all ai’s are 0). Clearly,
fA;BgL sð ~EEÞL ½A;B�. Using Lemma 4.4 there exists an operator E with the desired diag-
onal and spectrum.

Finally, we assume C > 0. Again, let b1 ¼ minfbig. Fix any 0 < e < minðA;CÞ. Since

eþ B � A < C þ B � AeD ¼
Py
i¼2

ðB � biÞ þ ðB � b1Þ;
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by subtracting ðB � b1Þ from both sides we have

eþ b1 � A <
Py
i¼2

ðB � biÞ:

Thus, there exists M f 2 such that

PM
i¼2

ðB � biÞ > eþ b1 � A:

Apply Lemma 4.3 to the sequences fb1g and fbigM
i¼2 on the interval ½0;B�, with

h0 ¼ eþ b1 � A, to obtain sequences f~bb1g and f~bbigM
i¼2. By Lemma 4.3 we have

~bb1 ¼ b1 � ðeþ b1 � AÞ ¼ A � e;

and

PM
i¼2

ðB � ~bbiÞ ¼
PM
i¼2

ðB � biÞ � ðeþ b1 � AÞ:

Let f~ddig be the sequence consisting of faig, f~bbigM
i¼1, and fbigyi¼Mþ1. Set

~CC ¼
P
~ddi<A

~ddi ¼ C þ A � e;

and

~DD ¼
P
~ddi fA

ðB � ~ddiÞ ¼
PM
i¼2

ðB � ~bbiÞ þ
Py

i¼Mþ1

ðB � biÞ

¼ D � ðB � b1Þ � ðeþ b1 � AÞ ¼ D � B þ A � e:

Observe that ~CC > A. We also have

~CC ¼ A þ e ¼ ~DD � D þ B þ C e ~DD � D þ B þ A � B þ D ¼ ~DD þ A;

so that ~CC A ½A;A þ ~DD�. By the argument in Case 3, there is an operator ~EE with diagonal
f ~ddig and the desired spectrum. By Lemma 4.4 there is an operator E unitarily equivalent
to E with diagonal fdig. This completes the proof of Theorem 4.1. r

5. The non-summable case of the Pythagorean theorem

The goal of this section is to prove the necessity part of our main theorem. The sum-
mable case was already shown in Section 3. The non-summable case requires special argu-
ments involving trace-class operators and Kadison’s Theorem 4.2. In the terminology of
Kadison [15], [16], this is a non-tight version of the Pythagorean theorem.
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Theorem 5.1. Suppose 0 < A < B < y. Let E be a positive operator with

fA;BgL sðEÞL f0gW ½A;B�. Let feigi A I be an orthonormal basis for H and di ¼ hEei; eii.

If

C ¼
P

di<A

di < y and D ¼
P

difA

ðB � diÞ < y;ð5:1Þ

then

C A
Sy

n¼0

½nA;A þ Bðn � 1Þ þ D�:

Furthermore, K :¼ BðI � PÞ � E is a positive trace class operator on H, where P is the

orthogonal projection onto kerðEÞL kerðKÞ.

Observe that Theorem 5.1 does not require the assumption that fdig is non-
summable. However, if fdig is summable, Theorem 5.1 gives only necessary, but not su‰-
cient, condition, see Theorem 3.6.

Proof. We claim that it is su‰cient to consider the case where fdig is at most count-
able. The condition (5.1) implies that the sequence fdig contains at most countably many
terms in ð0;BÞ. Thus, we only need consider sequences fdig which contain an uncountable
number of 0’s or B’s. Let feigi A I be the orthonormal basis with respect to which E has
diagonal fdigi A I . Let J ¼ fi : di ¼ 0gW fi : di ¼ Bg. Since E is a positive operator with
kEk ¼ B, for each i A J, ei is an eigenvector of E. Let E 0 be E acting on spanfeigi A InJ .
Note that E acting on spanfeigi A J is B times some projection Q. Thus, we have the orthog-
onal decomposition E ¼ E 0 lBQ. The operator E 0 has countable (possibly finite) diagonal
consisting of the terms of fdig contained in ð0;BÞ. Thus, E 0 has the same values of C and D

as E. If the conclusions of the theorem hold for E 0, then by E ¼ E 0 lBQ, they also hold
for E.

By the above, we can take an indexing set to be I ¼ Znf0g. For convenience, we re-
order the basis so that di A ½A;B� for i > 0 and di A ½0;AÞ for i < 0. The case when there are
only finitely many di A ½A;B�, or di A ½0;AÞ, does not cause any extra di‰culties, and it is
left to the reader.

Let ki ¼ hKei; eii and ni ¼ hPei; eii be the diagonal entries of K and P, respectively.
Observe that K is a positive operator and thus

ki ¼ Bð1 � niÞ � di f 0 for all i A Znf0g:ð5:2Þ

Since Bni eB � di, we have

Py
i¼1

Bni e
Py
i¼1

ðB � diÞeD < y:

Hence,

Py
i¼1

ki ¼
Py
i¼1

ðB � diÞ � B
Py
i¼1

ni eD < y:ð5:3Þ
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Since sðEÞL f0gW ½A;B�, we have AðI � PÞeE. Thus, B � Bni e ðB=AÞdi, which imme-
diately shows

Py
i¼1

ðB � Bn�iÞe
B

A

Py
i¼1

d�i ¼
BC

A
< y:

Using (5.2),

Py
i¼1

k�i ¼
Py
i¼1

�
Bð1 � n�iÞ � d�i

�
e

BC

A
� C < y:ð5:4Þ

Since K is a positive operator, (5.3) and (5.4) show that K is a trace class. Observe that the
diagonal entries of P satisfy

a ¼
Py
i¼1

ni < y and b ¼
Py
i¼1

ð1 � n�iÞ < y:

Despite the fact that the above splitting of fnig may not be the same as in Theorem 4.2, it
di¤ers only by a finite number of terms from the standard splitting such that ni < a for
i < 0 and ni f a for i > 0, where 0 < a < 1. And this change does not a¤ect the property
of a � b being an integer. Thus, by Theorem 4.2 applied to the projection P we have
n0 :¼ b � a A Z. Using (5.3), and (5.4) again we have

trðKÞ ¼
P

i AZnf0g
ki ¼ D � C þ Bn0 eD þ BC

A
� C:ð5:5Þ

This immediately yields the lower bound for C:

An0 eC:ð5:6Þ

Since A A sðEÞ we know that B � A is an eigenvalue of K and thus ðB � AÞe trðKÞ. Again
using (5.5) we see that

B � AeD � C þ Bn0:

This yields the upper bound

C eA þ Bðn0 � 1Þ þ D:ð5:7Þ

If n0 f 0 then (5.6) and (5.7) show that C A ½n0A;A þ Bðn0 � 1Þ þ D� as desired. If n0 e�1
then Bðn0 � 1Þe�B and thus (5.7) and the fact that C f 0 shows C A ½0;A � B þ D� as
desired. This completes the proof of Theorem 5.1. r

As a corollary of Theorems 2.4, 4.1, and 5.1 we obtain

Corollary 5.2. Let 0 < A < B < y and fdigi A I be a non-summable sequence in ½0;B�.
The following are equivalent:
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(i) fdigi A I satisfies (4.1).

(ii) There is a positive operator E on a Hilbert space l2ðIÞ with

fA;BgL sðEÞL f0gW ½A;B�

and diagonal fdigi A I .

(iii) There exists a frame f figi A I for some infinite dimensional Hilbert space H with

optimal frame bounds A and B and di ¼ k fik2.

Proof. The equivalence (i) , (ii) follows directly from Theorems 4.1 and 5.1. As-
sume (ii). By Theorem 2.4, there exists a frame f figi A I with optimal frame bounds A and
B and di ¼ k fik2. This frame lives on a Hilbert space H with dimH equal to the rank of E.
Since E is positive with infinite trace, H is infinite dimensional, which shows (iii). The
implication (iii) ) (ii) similarly follows from Theorem 2.4. r

6. Without zero in the spectrum

The goal of this section is to establish an analogue of Theorem 1.1 for positive oper-
ators without zero in the spectrum. This result turns out to be less involved than our main
theorem. As a consequence, we obtain a characterization of norms of Riesz bases with
optimal bounds A and B. In the finite case, we obtain this result immediately from the
Schur–Horn theorem.

Theorem 6.1. Let 0 < AeB < y. Let fdigNþ1
i¼1 be a sequence in ½A;B�. There is a

positive operator E : RNþ1 ! RNþ1 with fA;BgL sðEÞL ½A;B� with diagonal fdig if and

only if

PNþ1

i¼1

di A ½AN þ B;A þ BN�:ð6:1Þ

Without zero in the spectrum the diagonal must be in ½A;B�, and thus there is no sum-
mable infinite dimensional case. We can reformulate the condition (6.1) to something that
generalizes to the infinite dimensional case.

Corollary 6.2. Let 0 < AeB < y. Let fdigNþ1
i¼1 be a sequence in ½A;B�. Define the

numbers

C ¼
PNþ1

i¼1

ðdi � AÞ; D ¼
PNþ1

i¼1

ðB � diÞ:ð6:2Þ

There is a positive operator E : RNþ1 ! RNþ1 with fA;BgL sðEÞL ½A;B� with diagonal

fdig if and only if

C;DfB � A:ð6:3Þ
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Proof. The condition (6.1) implies

C ¼
PNþ1

i¼1

di � ðN þ 1ÞAfAN þ B � NA � A ¼ B � A;

D ¼ ðN þ 1ÞB �
PNþ1

i¼1

di fNB þ B � A � NB ¼ B � A:

Conversely, it is also clear that these inequalities imply (6.1). r

We can now state the infinite dimensional case.

Theorem 6.3. Let 0 < AeB < y. Let fdigi A I be a sequence in ½A;B�. Define

C ¼
P
i A I

ðdi � AÞ; D ¼
P
i A I

ðB � diÞ:ð6:4Þ

There is a positive operator E with fA;BgL sðEÞL ½A;B� with diagonal fdig if and only if

C;DfB � A:ð6:5Þ

Proof. We can assume that I is countable, since the non-separable case follows from
simple modifications as in the proof of Theorem 4.1. Suppose that E is a positive operator
as in Theorem 6.3. First, we assume D < y. The operator BI � E is a positive trace class
with trace D. This implies that D ¼

P
ðB � lÞ, where the sum runs over all eigenvalues l of

E, repeated according to multiplicity. We also see that each l A sðEÞnfBg is an eigenvalue
of E. Thus, A is an eigenvalue of E and DfB � A. Next, we assume C < y. The operator
E � AI is a trace class with trace C. Since B is in the spectrum of E, it is an eigenvalue of
E, and thus C fB � A. Finally, if C ¼ D ¼ y, then (6.5) trivially holds.

Conversely, suppose that fdig is a sequence in ½A;B� satisfying (6.5). If we assume
C;D > B � A, then we can find some N A N such that both

PNþ1

i¼1

ðB � diÞfB � A and
PNþ1

i¼1

ðdi � AÞfB � A:

By Corollary 6.2, there is an operator E1 on an N þ 1-dimensional Hilbert space HNþ1

such that fA;BgL sðE1ÞL ½A;B� and diagonal fdigNþ1
i¼1 . Let E2 be the diagonal operator

on the infinite dimensional Hilbert space Hy with fdigyi¼Nþ2 on the diagonal. Now,
E ¼ E1 lE2 on HNþ1 lHy is the desired operator. Next, we assume D ¼ B � A. By
Theorem 4.2 there is a rank 1 operator K with eigenvalue B � A and diagonal fB � digyi¼1.
Then, E ¼ BI � K is the desired operator. Finally, assume C ¼ B � A. By Theorem 4.2
there is a rank 1 operator K with eigenvalue B � A and diagonal fdi � Agyi¼1. Then,
E ¼ K þ AI is the desired operator. r

As a corollary of Theorem 2.5 we have

Corollary 6.4. Let 0 < AeB < y and fdig be a sequence in ½A;B�. There exists a

Riesz basis f fig with optimal bounds A and B and di ¼ k fik2
if and only if (6.5) holds.
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7. Examples

The goal of this section is to illustrate our main theorem. We start with the definition
of the set of possible lower bounds of positive operators with a fixed diagonal.

Definition 7.1. Let fdigi AN be a given non-summable sequence in ½0; 1�. Define

A ¼ fA A ð0; 1� : bE positive with diagonal fdigi AN and A A sðEÞL f0gW ½A; 1�g:

Without loss of generality we can assume that sup di ¼ 1. Indeed, if sup di < 1,
then by Theorem 1.1 there exists a positive operator E with diagonal fdig and
fA; 1gL sðEÞL f0gW ½A; 1� for any 0 < Ae 1. This fact can also be deduced from a
result of Kornelson and Larson [19], Theorem 6. Thus, we have always A ¼ ð0; 1� and
this case is not interesting.

Example 1. Take any 0 < b < 1 and define di ¼ 1 � b i for i A N. First, we deter-
mine the set A near 0. We claim that

ð0; 1 � b�LA for 1=2e b < 1;

AX ð0; 1 � b� ¼ ½ð1 � 2bÞ=ð1 � bÞ; 1 � b� for 0 < b < 1=2:
ð7:1Þ

Indeed, if A A ð0; 1 � b�, we have C ¼ 0 and D ¼
Py
i¼1

b i ¼ b=ð1 � bÞ. The condition (4.1)

holds if and only if A � 1 þ Df 0 and thus Af ð1 � 2bÞ=ð1 � bÞ. This shows the first
claim. Next, we claim

bd ¼ dðbÞ > 0 ð1 � d; 1ÞXA ¼ j:ð7:2Þ

Moreover, 1 A A if and only if b is of the form b ¼ N=ðN þ 1Þ for some N A N by a simple
application of Theorem 4.2.

Indeed, assume that A A ð1 � b i; 1 � b iþ1� for some i A N. Then,

C ¼ i þ b iþ1 � b

1 � b
; D ¼ b iþ1

1 � b
:

Suppose that C A ½nA;A þ Bðn � 1Þ þ D� for some n A N. Then,

ð1 � b iÞneAneC eA þ Bðn � 1Þ þ De n þ b iþ2

1 � b
:

The upper bound on C yields ie n þ b

1 � b
� b iþ1 and thus ie n þ b

1 � b

� �
. On the other

hand, the lower bound ð1 � b iÞ i � b

1 � b

� �� 	
eC yields

if
b

1 � b

� �
ðb�i � 1Þ;ð7:3Þ
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where f�g is the fractional part. Obviously, (7.3) must fail for su‰ciently large i provided
that b3N=ðN þ 1Þ for some N A N. In the special case of b ¼ N=ðN þ 1Þ, the upper

bound on C actually yields ie n þ b

1 � b
� 1. A similar argument as before shows that the

lower bound for C must fail for su‰ciently large i (depending on b). Therefore, in either
case we have (7.2).

Finally, we claim that

A ¼ ½ð1 � 2bÞ=ð1 � bÞ; 1 � b� for 0 < b < 1=2:ð7:4Þ

By (7.1), it su‰ces to consider A > 1 � b. Since (7.3) fails for 0 < b < 1=2 and if 2,
we have that ð1 � b2; 1ÞXA ¼ j. Moreover, 1 B A by Theorem 4.2. Finally, if

A A ð1 � b; 1 � b2�, then C ¼ 1 � b, D ¼ b2

1 � b
. It is easy to see that A � 1 þ D < C < A.

Thus, AX ð1 � b; 1 � b2� ¼ j, which shows (7.4).

Example 2. Let bA0:57 be the real root of b3 � ð1 � bÞ2 ¼ 0, and take di ¼ 1 � b i

for i A N. We will show that

A ¼ ð0; 1 � b�W 1 � b2;
1

3
ð2 þ 2b � b2Þ

� �
:ð7:5Þ

By previous consideration we have ð0; 1 � b�LA. Moreover, a simple numerical calcula-
tion shows that the inequality (7.3) fails for if 5. Thus, ð1 � b5; 1�XA ¼ j.

Assume that A A ð1 � b; 1 � b2Þ. We have C ¼ 1 � b and D ¼ b2

1 � b
. Note that

C < A, but

A � 1 þ D <
b2

1 � b
� b2 ¼ b3

1 � b
¼ 1 � b ¼ C

and thus AX ð1 � b; 1 � b2Þ ¼ j. But, if A ¼ 1 � b2 then we have A � 1 þ D ¼ C, so that
1 � b2 A A.

Next, assume that A A ð1 � b2; 1 � b3�. We have

C ¼ 2 � b � b2 and D ¼ b3

1 � b
¼ 1 � b:

Since b < 3=5 we see that 2b < 2 � b and

Ae 1 � b3 ¼ 2b � b2 < 2 � b � b2 ¼ C:

Now,

A þ Df 1 � b2 þ 1 � b ¼ C
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so that C A ½A;A þ D� and ð1 � b2; 1 � b3�LA. A similar calculation shows that

ð1 � b3; 1 � b4�LA.

Now, assume that A A

�
1 � b4;

1

3
ð2 þ 2b � b2Þ

�
, we have C ¼ 2 þ 2b � b2, so that

3AeC. We have D ¼ 2b � 1, and using the fact that b > 1=2 we easily see that

A þ 2 þ Df 1 � b4 þ 2 þ 2b � 1 ¼ 1 þ 3b þ b2
f 2 þ 2b � b2 ¼ C:

Thus C A ½3A;A þ 2B þ D� and

�
1 � b4;

1

3
ð2 þ 2b � b2Þ

�
LA. Finally, assume

A A

�
1

3
ð2 þ 2b � b2Þ; 1 � b5

�
:

Again, we have C ¼ 2 þ 2b � b2, so that 3A > C. Using the numerical estimates

b A

�
1

2
;
3

5

	
we easily obtain 2AeC. However,

A þ 1 þ De 1 � b5 þ 1 þ 2b � 1 ¼ 2 � b þ 2b2 < 2 þ 2b � b2 ¼ C

which shows that C A ðA þ 1 þ D; 3AÞ and thus

�
1

3
ð2 þ 2b � b2Þ; 1 � b5

�
XA ¼ j. This

shows (7.5).

In general, determining the set A for sequences satisfying (5.1) is not an easy task
since it boils down to checking condition (4.1) for all possible values of 0 < A < 1. This
often leads to computing countably many infinite series (1.2) and verifying whether (4.1)
holds or not. In the above examples involving geometric series this task actually reduces
to checking a finite number of conditions using properties (7.1) and (7.2). Nevertheless,
we have the following general fact about A:

Theorem 7.1. Let fdigi AN L ½0; 1� with sup di ¼ 1. The set AW f0; 1g is closed.

Proof. For any A A ð0; 1� define the numbers

CðAÞ ¼
P

di<A

di; DðAÞ ¼
P

difA

ð1 � diÞ:

By Theorem 1.1, A B A if and only if CðAÞ;DðAÞ < y and

bn A N A þ n � 2 þ DðAÞ < CðAÞ < An:ð7:6Þ

Let A0 A ð0; 1ÞnA. First, assume A0 3 di for all i A N. This implies there is some e > 0 such
that for all A A ðA0 � e;A0 þ eÞ we have CðAÞ ¼ CðA0Þ and DðAÞ ¼ DðA0Þ. By continuity,
there exists d > 0 such that (7.6) holds for jA � A0j < d. Thus, ðA0 � d;A0 þ dÞXA ¼ j.

Now, assume A0 ¼ di for some i A N, and let k A N be the number of terms in the
sequence fdig equal to A0. There is some e > 0 such that ðA0 � e;A0 þ eÞ contains no
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di 3A0. Note that for A A ðA � e;A0� we have CðAÞ ¼ CðA0Þ and DðAÞ ¼ DðA0Þ. The
same argument as above shows that there is some d > 0 such that ðA0 � d;A0�XA ¼ j.
Finally, for each A A ðA0;A0 þ eÞ we have

CðAÞ ¼ CðA0Þ þ kA0 and DðAÞ ¼ DðA0Þ � k þ kA0;

and (7.6) is equivalent to

bn A N A þ n � k � 2 þ DðA0Þ < CðA0Þ < Aðn � kÞ þ ðA � A0Þk:

Since (7.6) holds for A ¼ A0 with n ¼ n0, the above holds with n ¼ n0 þ k and
A A ðA0;A0 þ dÞ for some d > 0. This shows that ðA0;A0 þ dÞXA ¼ j. r

We end this section by comparing our results with the characterization of the closure
of the collection of diagonals of a self-adjoint operator due to A. Neumann [20]. While
Neumann’s results also apply to non-diagonalizable operators, see [20], Section 4, they
take the simplest form for diagonalizable operators.

Suppose that E is a diagonalizable operator with the eigenvalue list LðEÞ ¼ fligi AN.
Let S ¼ SðNÞ be the group of bijections on N. Let DðEÞ be the set of all possible diag-
onals of E. Then, Neumann’s result asserts that

DðEÞy ¼ convS:LðEÞy;ð7:7Þ

with the closure taken in ly-norm. For example, take an operator E0 with 3 point spec-
trum f0;A;Bg, such that the eigenvalue A has finite multiplicity, and 0 and B have infinite
multiplicities. A simple calculation shows that the sequence d ¼ ð0;B; 0;B; . . .Þ belongs to
the closure of the convex hull in (7.7). However, d can not be a diagonal of E0 in light of
Theorem 1.1. In fact, any operator E with sðEÞH ½0;B� and diagonal d is actually a diag-
onal operator. Thus, A B sðEÞ ¼ f0;Bg.
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