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Abstract We introduce a class of pseudodifferential operators in the anisotropic setting
induced by an expansive dilation A which generalizes the classical isotropic class S}’/’f s of
inhomogeneous symbols. We extend a well-known L?-boundedness result to the anisotropic
class Sg 5(A),0 <& < 1. As a consequence, we deduce that operators with symbols in the

anisotropic class S?O(A) are bounded on L? spaces, 1 < p < oco.
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1 Introduction: definitions and statement of main result

The study of pseudodifferential operators draws lots of its motivation from its applicability to
approximate inverses or regularity of solutions in partial differential equations. A systematic
study of these operators led to the introduction of the classical (isotropic, inhomogeneous)
classes of symbols S)’,’f s and their tightly connected homogeneous counterparts denoted by

S;” 5- For example, as it is well known, the characteristic polynomial of a partial differential
operator of order m and with constant coefficients represents a symbol in the class S7'.
The adjective isotropic we use here points out that the spatial and frequency variables of the
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156 A. Bényi, M. Bownik

symbol have the same homogeneity. However, in several examples (such as the heat opera-
tor) there exists another natural scaling (such as parabolic) and thus we fall in the realm of
anisotropic symbols. In our previous paper [1] we were interested in the study of multiplier,
and more generally, pseudodifferential operators, with anisotropic homogeneous symbols
S;”’ 5(A).

This paper is a natural continuation of the investigations initiated in [1] for the general
anisotropic setting. We will mainly concern ourselves with inhomogeneous symbols in the
classes Sg’ 5(A), in particular with the extension of a classical boundedness result for aniso-

tropic pseudodifferential operators with symbols Sg’ 5(A4), 0 < § < 1. This result, in turn,
implies the L”-boundedness of the smaller class S?’ 5(A),0 <4 < 1. An example of symbol

belonging to § (1)’0 (A), for an appropriately chosen matrix A, is presented in detail in Example
3.1.

Let us now briefly recall the notation, the definition, and some of the results about the
anisotropic homogeneous classes of pseudodifferential symbols. We follow the notation in
Bownik’s monograph [2]; see also [3,4]. Given an expansive matrix A, that is a matrix for
which all its eigenvalues A satisfy |[A| > 1, we can first define a canonical quasi-norm p4
associated to it. Specifically, if we let P be some non-degenerate n X n matrix, and | - | the
standard norm of R”, there exists an ellipsoid A = {x € R" : |Px| < 1} such that |A| =1
and for somer > 1, A C rA C AA. Then, we can define a family of balls around the origin
By = A*A k€ Z, that satisfy

By CrB; C Byy1 and |By| = b,
where b = |det A|. The step homogeneous quasi-norm induced by A is defined by
p(x)=b/, xe€Bji1\Bj, and p(0)=0.

It is straightforward to verify that p satisfies a triangle inequality up to a constant and the
homogeneity condition p(Ax) = bp(x), x € R". Since any two homogeneous quasi-norms
associated to a dilation A are equivalent, we can talk about a canonical quasi-norm associated
to A, which will be denoted by p4. Similarly, we shall also consider a family of dilated balls
B, k € Z, and a canonical quasi-norm p 4+ associated to the adjoint (or transpose) matrix
A*. We are now ready to state the definition of anisotropic inhomogeneous symbols which
is a natural modification of the homogeneous one, see [1].

Definition 1.1 We say thata symbol o (x, &) belongs to the anisotropic inhomogeneous class
S;,” s(A) if it satisfies the estimates

9% 0L To (A0, (A2 )](ARx, (A)7R8)| < Cop(l + par(EN™, (1.1)
for all multi-indices «, 8 and (x, §) € R” x R". Here, k1, k> € Ny are given by
ky = k8],  ky = lky], (1.2)
where k € Ny is such that 1 4+ pa=(£) ~ | det A|¥, and || denotes the floor function.
The derivatives above should be interpreted as
090f 5 (AMx, (A)TRg),
where

G(x, &) = o(A Mx, (AMkg),
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Anisotropic inhomogeneous pseudodifferential symbols 157

and ki, ko € Ny are as in (1.2). The notation ~ has the following interpretation: we pick
k to be the unique non-negative integer such that the frequency variable & belongs to the
annulus B, \ B} if k > 0, or the ball B} if k = 0. Consequently, we require estimates
on the derivatives of a symbol o that hold uniformly after appropriate rescaling depending
on the location of the frequency variable £. Recall from [1] that in the homogeneous variant
S)’/’fs(A) of Definition 1.1, k is the unique integer such that 0 # & € B | \ By, and hence k
can take negative values as well.

As explained in [1], Definition 1.1 recovers not only the well-known isotropic classes
Sl’f" 5= S;:f 5(21,), but also the so-called anisotropic classes S;’f V.6 previously investigated in
the works of Leopold [14] and Garello [9]. Moreover, the generality of our definition is very
useful when dealing with a general, non-diagonal anisotropy. Furthermore, we proved in the
general anisotropic setting that the class S'? 1 (A) corresponds to operators with Calder6n—
Zygmund kernels which are bounded on anfsotropic Triebel-Lizorkin and Besov spaces. In
particular, we recovered the results of Grafakos—Torres [10] for the homogeneous isotropic
class S’T]; see [1].

We remark right away that Definition 1.1 implies that the anisotropic Calderén—Vaillan-
court class SgyO(A) is independent of the matrix A, and, as such, it coincides with the isotropic
version S(O) o- Therefore, we conclude that Sg o(A) is bounded (in general, only) on L2. This
is a well known result of Calderén—Vaillancourt [6]; see also Stein’s monograph [16, Section
VIL.2.4]. By contrast, the L? boundedness of the class S?,I(A) fails. A standard counter-
example of a pseudodifferential symbol in the (isotropic) class S(f, | that yields unbounded
operator on L? can be found in [16, Section VIL.1.2]. This example can be extended to the
generic anisotropic setting, see Example 3.2.

In analogy with the isotropic setting, the Schwarz kernel of an operator with symbol in
S? 1 (A) is Calderén—Zygmund, and thus L? boundedness fails forall 1 < p < oo. The com-
pu’tations that verify the anisotropic Calderén—-Zygmund estimates are left to the interested
reader. They are essentially the same as the ones detailed in [1, Theorem 4.3] for the homo-
geneous class S? 1 (A) with the obvious modifications implied by using the inhomogeneous
Littlewood—Paley decomposition (2.2).

The comments above beg a natural question: what happens for the symbols in Sg s(A)?

Recall that, by Definition 1.1, a symbol o € Sg’ 5 (A) satisfies the following inequalities:
0997 [0 (A -, (A¥ 1A x, (4") ¥ 8)| < Cap. (1.3)

for all multi-indices «, B, (x, £) € R" x R", and k € Ny such that 1 4+ pa«(£) ~ | det A[¥,
where k' = |k8]. Associated to such a symbol o (x, &), we have a pseudodifferential operator,
a priori defined on S:

To‘f(x) = 0(x, D)f(_x) = /O’()C, é)‘f/‘\(é—)elké' d%.
R

Our main result is the anisotropic extension of the following well known boundedness
result for the isotropic class S(? 5

Theorem 1.1 Let o € Sg s(A) for some 0 < § < 1. Then, the pseudodifferential operator

Ty extends to a bounded operator on L2(R™).
The inhomogeneous classes of symbols are nested: S;’i[sl (A) C S;ZZ,BZ (A) if m; < my,

2 < y1, and §; < 8. Thus, Theorem 1.1 also holds for the class SB,S(A)’ where 0 < § <
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158 A. Bényi, M. Bownik

y < 1 and § < 1. This condition on the indices defining the classes of symbols is known to
be sharp in the isotropic setting, see the works of Hérmander [11] and Kumano-go [13].

Section 2 of our paper is devoted to the proof of Theorem 1.1. We divide this proof into
several steps in which we explain our strategy leading to the conclusion we wish to achieve.
Our approach is inspired by Stein’s book [16, Theorem 2 in Section VII.2] albeit with some
necessary changes reflecting a more complicated nature of symbols in anisotropic classes.

In Sect. 3 we give a couple of examples of anisotropic symbols. We also give an alternative
proof of the boundedness of the class S?_O(A) using a reduction to elementary symbols. Our
approach is guided by Coifman and Meyer’s work [5] and the nice exposition in Journé’s
monograph [12].

2 Proof of Theorem 1.1 via almost orthogonality

We begin with the following elementary lemma.

Lemma 2.1 Suppose that A is an expansive matrix, and let ._ = minj ey (a) |A|. Let {— =
InA_/Inb, where b = | det A|. Finally, suppose that N > 1/(2¢_). Then, there exists some
C > 0 such that for all j € Z we have

/(1 +1A7zHNdz < Ch.

er

Proof Let2N > 1/¢ > 1/¢_. By Lemma [2, Lemma 3.2], there exists a constant ¢ > 0
such that

1+ x| = c(14 pax))’~  forall x € R".
Using the previous inequality and a change of variables, we get
/(1 + A7) Nz < C/(l + pa(Al2) N dz
RV[ R’l

<Ccb™/ /(1 + pa2) Nz < ch.
Rn

The last inequality is a consequence of 2N¢ > 1. O

The proof of Theorem 1.1 is divided into several steps.
Step 1. First, we perform a reduction to symbols o with compact support in R” x R". Take
¢ a fixed smooth function with compact support with ¢ (0, 0) = 1. For each j € N define

0j(x,8) =0 (x,)$p(A ™ x, (A")/¢).

Using support considerations and the chain rule, we can show that the symbols o; € Sg, s(A)
uniformly for j € N. Furthermore, for all f € S,

Ip,f > Tof as j— oo,

in the topology of S, see [16, Section VI.1.3]. The reduction to symbols with compact support
will allows us to automatically justify all operations appearing below such as integration by
parts. The explicit dependence on j will be suppressed and all of our estimates will be inde-
pendent of j. In the rest of the proof we shall simply assume that o € Sg 5(A) has compact
support.
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Anisotropic inhomogeneous pseudodifferential symbols 159

Step 2. We decompose now the operator 7, in the frequency domain as

S e [ ovanTe), =0,
T, = Z(:)Taj7 where oj(x,§) = [O(X,.f)(p(é), iZo 2.1)
Here, ¢, ¥ € S satisfy suppp C B, suppy C B} \ B*, and
&)+ Zw((A*)_/s) =1 forall& eR. (2.2)

j=1
As in Step 1, one can show that the symbols o; are uniformly in Sg’ s(A).
Step 3. We establish that the operators T5; are very close to being mutually orthogonal. Fix

a sufficiently large w € N, which will be determined in the next step. We break the sum (2.1)
into a finite sum of infinite series

It suffices to prove the boundedness of each series separately corresponding to some fixed
r=1,..., .
Observe that T,;; = T A j, where A j is the multiplier operator given by

FEVAHTE), j=0,
F®p®), j=0.

By the support condition on i we have that

A f)E) = [

Ty, (Tp)" = TaAj(Ak)*(TG)* =0 for |j —k| =2

Step 4. This is the key part where we estimate the kernel of ( ng)* T5, . By adirect calculation,
as in the proof of [16, Theorem 2 in VII.2.5], we have

(Ty)* Ty f () = / K, y) f()dy,
Rn

where the kernel

K(x,y) = / G (z, Mo (z, €)' S EN=rCE=I g7 gy de. (2.3)
R xR" xR
We will estimate the kernel K by exploiting the oscillatory nature of the exponential and the
relative smoothness of symbols oy and o;. This will be achieved by integration by parts in
all three variables z, n, £. Unlike the isotropic setting, we need to change variables first. This
is necessary since the anisotropic condition (1.3) involves derivatives of a dilated symbol.
Assume that j < k belong to the same sum as in Step 3, i.e., j = k mod w. Define
j' = 1j8], k" = |k8]. By a change of variables in (2.3) we have

K(A™¥x, A y) = b / (A2 (A oy (A2, (A7) 8)
R xR" xR”?

AV e =gz anae. (2.4)
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160 A. Bényi, M. Bownik

Indee_d, this is a consequence of the changes of variables z — A*k/z, n (A*)k/n, &
(A™)7 & and using the identity

ADg (A2 — a7y — (a9 (4 - A )
= (A*)j’—k’g =) —n-(z—x).
Now set
ezm = k(A2 (A, 552 &) = oA 2, (41 6).
By support considerations we have
Skzm) #0 = par(n) ~ b7,
5j(2,6) #0 = pa=(§) ~ /17,

Now, since suppoy C R" x (B

(2.5)

*

el \ B} _,), the condition (1.3) satisfied by oy reduces to

1020 [0 (A7, (A)¥ ))(A¥x, (A") )| < Cup for all multi-indices , B,

Z

and for all (z, n) € R" x R”. This is due to the fact that only one dilate of oy, that is 6y, can
give a non-zero contribution in (1.3). Thus, we have

[0 aﬁ&knoo < Cq,p  forall multi-indices o, 8. (2.6)
In the same way we can deduce that
020L [0 (A7, (A% ))(AT' 2. (A T'€)| < Cap for all multi-indices o, B,
and for all (z, §) € R" x R". Thus, using the chain rule and recalling that j* < k', we have
102005 (z. )] < CllAT | ja20f [0 (AT, (A% )1(AT K 2. 8)] < Cap.
This shows that
182005 lloc < Cap for all multi-indices o, B. Q2.7)

Since
(I = A)N
(L+ (AT K — )V ©
integrating by parts in the z variable in (2.4) yields

(a9 K-z _ i(an) ez

karaty =o' [ a0 [Fens e o)
R" xR xR"
AN e e—y)=n-(—x0)]
(1 + (A =Kg — )N
Next, we integrate by parts in (2.8) with respect to the £ and 7 variables, respectively. Simi-
larly to our computation above, we use

dzdndég. (2.8)

N
- A’I)2 N —in-(x—z) _ e—in~(x—z)
I+ x—2z? ’
and
N - ! s ’
(I = Ag) oA emy) _ i ey

(1 + AT K (@ = )N
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The end result of these integrations by parts is the identity

I (I — AN (I =AY
KA x, A y)=b / [(1+|AJ'—k’<z—y>|2)N 1+ |x —zHN

R xR xR"
(I — A)N[6k(z, 15 (z, )]
(14 (AT =g — )N
Since j < kand j =k mod w, we have j + w < k. Take any 7 and £ as in (2.5). Thus,
for some ¢ > 0,

]ei[(A*)f/—"’e(zfy)fn(rx)]dz dnds. (2.9)

pae() = cb® D0 p(a) K,
By the anisotropic version of the triangle inequality, there exists a constant wp € N such that
pax(m) = b pa<(§) == b pas(n) = pax(E —n) = b pax(n).
Hence, by choosing w such that cb®1=9 > p@0 we have
par (A K g — ) ~ 0170
and
(A% 7K =l = pas (A F g =it ~ B (2.10)

where ¢_ = In A_/In b. Therefore, whenever the expression (1 + |(A*)j/_k/§-‘ - Nis
hit by derivatives in 5 it will remain bounded by Cb*(1=9¢- The same is true for derivatives
in & with the additional application of the chain rule and the fact that j' — k’ < 0.

Inserting the estimates (2.5), (2.6), (2.7), and (2.10) into (2.9) and integrating over vari-
ables & and n yields

KA x, a8 y)| < cp/HEFDO= k=N / QA 2=y - 2)dz,
R}’l
where Q(v) = (1 + |v[?)~V. Thus,
K (x, y)| < CpIHEFNA=D—kI=02N / QAT ™z — AT y)Q(AF x — 2)dz. (2.11)
R}l

Step 5. Estimate (2.11) allows us to control both

/|K(x,y)|dy and /|K(x,y)|dx. 2.12)
Rn Rn

Indeed, by Lemma 2.1, we first obtain

oAz - AT y)0(A¥ x — pydydz < bV’ / Q(A¥x —2)dz < Cb™/'
R xR™ R~

QAT ¥z — Al'y)0(A¥ x = 2)dx dz < CbF / QAT x = 2)dz
R xRN R"

-/

<Ccb M-I = cp .

@ Springer



162 A. Bényi, M. Bownik

Thus, by (2.11)

/|K(x, Wldy < Chk+DI=—k(1=5:2N
]Rn

and the same estimate holds for f]R" |K (x, y)|dx. Therefore, Schur’s lemma yields
(T, Ty || < CHEFNUD=HAZDE2N,
for all j <k + w. Furthermore, by taking adjoints, we also have
Ty, T | < CHMNEDI-DAEN o 41 = g,

Step 6. In this last step, we apply a “cruder” version of Cotlar’s lemma, see [16, p. 282]. By
Step 5, we have

I(To) Tl < v (Dy k) for|j —k| = o,

where y (j) = Cb~% ande = (1—8)(¢_N —1) > 0. Moreover, by Step 3, T5;(To,)* = Ofor
|j —k| > 2. Hence, it suffices to show that the operators 7, are uniformly bounded. By (2.6),
the symbols 63 belong to Sg,O(A) uniformly in k. Recall that the anisotropic class Sg,O(A)
coincides with its isotropic counterpart 58,0~ Therefore, the L boundedness of the class 58‘0
implies that the pseudodifferential operators T3, are bounded uniformly in k. Moreover, by
a dilation argument, we have

Tak = DAk T&k DA—k.

Here, D4 f(x) = |det AV 2f (Ax) denotes the dilation operator, which is an isometry on
L?(R™). Consequently, the operators T,, are bounded uniformly in k. By the above men-
tioned variant of Cotlar’s lemma, each operator ZkEr mod @ Tows ¥ =1,..., o, is bounded
on L%(R™). By Step 3, this completes the proof of Theorem 1.1.

Remark 2.1 We remark that the proof of Theorem 1.1 requires the estimates (1.3) on the
derivatives |«|, |8] < N of a symbol in Sg 5(A) up to the order N > 2/¢_. Note that, for
any dilation A, we always have 0 < ¢_ < 1/n. In the isotropic case, we have the equal-
ity - = 1/n. Moreover, by the result of Coifman and Meyer [5, p. 30], it is known that
N > n/2 is enough to guarantee the L? boundedness for pseudodifferential operators in the
isotropic class Sg 5»0 < 8 < 1, and this is optimal; see also cordes’ work [7]. Hence, it is
tempting to conjecture that Theorem 1.1 holds with a weaker requirement on the order of
partial derivatives N > 1/(2¢-).

3 Examples and elementary symbols

In this section we give another proof for the boundedness of symbols in so-called aniso-
tropic Coifman—Meyer class S?qo(A). Because pseudodifferential operators with symbols

o € S?’O(A) have (anisotropic) Calder6n—Zygmund kernels, by Theorem 1.1 we also get
that o (x, D) is bounded on all L”, 1 < p < oo.

Theorem 3.1 Let 0 € S?’O(A). Then, o (x, D) extends to a bounded operator on LP,
1< p<oo
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By Definition 1.1, a symbol o € S?,O(A) satisfies the following inequalities:

10200 10 (-, (A )1(x. (A*)76)] < Cup. (3.1)

for all multi-indices &, B, (x, &) € R x R”, and k € N such that 1+ p4+ (&) ~ bF. An exam-
ple of symbol satisfying these inequalities can be obtained by an appropriate modification of
[1, Example 2.1].

Example 3.1 Let ¢ be an infinitely differentiable real valued function such that, for some
constants C1, C2, C3 > 0, C; < ¢(x) < Cr and |¢® (x)| < C3 forall x e Rand all k > 1.
For example, ¢(x) = 2 + sin x satisfies these conditions. We consider the symbol o (x, &),
with x = (x1,x2), & = (&1, &) € R?, defined by

)+ 9()E
L+ 60+ 87 + 9(x)€y

We claim thato € SY (A), where A is a2 x 2 diagonal matrix with diagonal entries v/2, 2+/2.
More precisely, we claim to have estimates of the following form

881022081 0820 (x1. x2)., (61, £2)| S (1 + par (61, £2)) Iere2)l, 32)

o((x1,x2), (§1,82)) =

where

1 3
pae (€1, £2) = max (& 216173, a1, el = S+ 5.

We shall verify directly these estimates only for (1, 0,0, 0) and its permutations. We
will always break down our analysis depending on the relative size of |£; |3 and |&;| (which
determine the quasi-norm).

1. (B,a) = (1,0,0,0). This case is trivial, the derivative being zero.

2. (B,ax) =(0,1,0,0). We compute

¢ (2)E2(1 + £3)
(1+87 +85 + 9(x2)E)?
Inthis case, ||| = Oand (14p4= (€1, &)1l = 1. Since |¢/(x2)| < Czand @(x2) > Cj,
we immediately see that
' C)IEF+E) & C3
(+E0+ 82+ 90D’ 1+ p(E
3.(8,a) = (0,0, 1,0). We have

0,0 (x, ) =

1E1°(1 + &)
(1+E0 4+ &7 + p(x2)ED)?

We expect our estimates tobe < (14 |£(1) "2 or < (141&|*3)~1/2. Indeed, if |£(|? > |&],
then

|0g,0(x, §)| S

&P+ &) - €113
(1 +E &7+ p(x2)EN2 ~ 1 +&f
while if |&]° < |&], we have
&P+ &5) - |&,15/3
(L+E+E7 + p(x)ED2 ™ 1+ &3

SA+Eh !t Sa+ a2

SA+ 18D <A+ 67
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164 A. Bényi, M. Bownik

4. (B, ) = (0,0,0,1). We have

151(E0 + &9 + &)
(1+E0 + &7 + p(x2)ED)2
Note that &3 = /6269 < &3 + p(x2)&S. Thus,

£0 + &5 + &
1+E0+ 67 +o(x)ES ™

05,0 (x, §)| S

Now, if [& > > |&], then

elEP+8+8) 18l
(1 +EC+E2+p(x)ED2 ~ 14+80 ™

Finally, if |&; I* < |&|, we have

1618 + &0 + &) - &2
(1+ &8 + &2+ p(x2)EN)2 ™~ 1 + &3

We divide the proof of Theorem 3.1 into several subsections in which we explain our
strategy leading to the conclusion we wish to achieve. We will start by showing that we can
reduce the L2 boundedness of o (x, D) to the L2 boundedness of pseudodifferential operators
with so called anisotropic elementary symbols. Finally, we will prove that any elementary
symbol yields an L2 bounded pseudodifferential operator.

We will repeatedly use the following elementary lemma, see [2—4].

A+1EDHT SAa+1aPH 2

SA+ 18D S A+ 162372

Lemma 3.2 Suppose A is an expansive matrix, and h._ and hy are any positive real numbers

such that 1 < A_ < minjeq(a) |A| and maxyco(a) M| < Ay < b = |det A|. Then, there
exists ¢ > 0 such that
(/)0 |x| < |A/x| < cOp) x| for j =0, (33)
(1/0) ) |x] < |A/x| < c-) x| for j 0. (3.4)
Furthermore, if A is diagonalizable over C, then we may take h_ = minyey(a) |A| and

Ay = MaXpeq(a) Al
3.1 Elementary symbols

We want to reduce our study to that of anisotropic elementary symbols. Assume that such a
reduction is possible. Then, we will only need to worry (in a subsequent subsection) about
the L? boundedness of o (x, D) with anisotropic elementary symbol of the form

o(x, &) =D mi$((A")/§), (3.5)
Jj=0

where m; are bounded and satisfying appropriate smoothness and decay, and e Sis
supported away from the origin, that is, there exists R > 0 such that

suppd C {§ e R" : 1/R < |&| < R}.

We begin by stating the following claim.
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Anisotropic inhomogeneous pseudodifferential symbols 165

Claim 1 There exists (a fixed) J > 1 such that
supp $((A*) /) N supp p((A") ) =14, (3.6)
for|j—k|>J.

This non-overlapping property of the supports will play an important role in our argu-
ments. The proof of the claim is a consequence of the elementary Lemma 3.2. Letting
¢j(x) = |det A|/¢(A/x), we have ¢;(£) = H((A*)~/&). Hence, if j > 0, Lemma 3.2
implies that

suppd; C (€ € R" 1 1/R < [(A*)/&| < R)
ClE eR": (A_) /(Re) < |&] < Re(hy)’}.

Let J be the smallest positive integer such that (A_)’ > R?c. By the previous inclusion of
supports,

supp;ﬁﬂsuppaj:@ for j > J.
Thus, applying supp $k = (A" (supp a) yields
suppakﬂsupp$j=(7) for |j — k| > J,

and the claim is proved.

Returmng now to our elementary symbols, if we let f; = f * ¢;, for some f € S, then
f ;= f ¢ ;. Using Plancherel’s theorem (twice) and (3.6) (that guarantees the sums are finite),
we get

2 T2 -2 2
DUl =D 1F 617 S Il £172
Jj=0 Jj=0

Furthermore,

o(x, DY f(x) = D mj(x) f(x).

j=0

Therefore, the proof of the L? boundedness of o (x, D) with elementary symbol (3.5) reduces
to showing the following inequality:

>omifi| < C(lefjlliz)l/z. 3.7)

120 L2 120

We will come back to (3.7) in Sect. 3.3. For now, we simply note that the constant C > 0
is determined by the reduction of a generic symbol to an elementary one, and, in particular,
from the control on m , control that will be obtained from the symbol belonging to S?’O(A).

3.2 Reduction to elementary symbols

We indicate how the reduction to elementary symbols is performed. For a given u € S, such
that v = u is compactly supported away from the origin,

suppv C {§ : 1/R < |&| < R},

we write uj (x) = | det A|7u(A7x), and we have

W) =u(A")7E) = v((A") ) i= v (§).
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Assume that

D2 V@ =15#0. (3.8)

JEZ

Given an arbitrary symbol o € S?’O(A), if we further assume that o (x, 0) = 0, then we
can write

o= 0j+1, 3.9)
j=0
where
oj(x, &) = v/ (E)o(x,£),j >0, (3.10)
and
—1 '
T, &= > v(Eo ). 3.11)
j=—00

Note that the assumption o (x,0) = 0 does not imply a further restriction on the L”
boundedness properties of o (x, D). Indeed, if o (x, 0) # 0, then we let

5()675) = O'()C,S) _U(X,O).

Now, we simply notice that 6 (x,0) = 0 and o (x, 0) is a smooth and bounded multiplier;
indeed, the pseudodifferential operator 7" associated to o (x, 0) is givenby Tf = o (-, 0) - f,
and, by condition (3.1) with k = 0, we canbound |7 f ||Lr < [lo (-, 0)||Lo || f1Ir. Therefore,
the L? boundedness properties of o (x, D) and 6 (x, D) are equivalent.

3.2.1 The “negative” part of the multiplier

We wish to show next that the multiplier operator 7 (x, D) is bounded on Lebesgue spaces.
We start by noting that 7(x, &) vanishes on |§| > c¢R, where R > 0 is determined by the
support of v and ¢ > 0 is the constant in Lemma 3.2. Indeed, for j < —1 and || > cR,

. 1 .
[(A")7/E] > E(L) T1E1 > R,
that is & ¢ suppv/. Recall also that the functions v/ have non-overlapping supports (see
Claim 1 in Sect. 3.1):
suppvj ﬂsuppvk =0, |j—k|l>J,

where J is the smallest positive integer such that (A_)’ > ¢RZ?. Therefore, we can simply
concentrate on the properties of 7(x, £) at the frequency scale 1/R < |(A*)~/&| < R, for
a fixed j < —1. With the exception of (possibly) a finite number of terms at a proportional
scale k determined by |k — j| < J, all the other terms in the expression of T will vanish.
The pseudodifferential operator 7 (x, D) can also be represented in its kernel form by

T(x, D) f(x) Z/K(x,y)f(y)dy,
where

K(x,y) = / T(x, £)e'S Y gg.
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The integration in & is over the compact set {£ : |£] < cR}. Using integration by parts, we
can write

K(x,y)=(+x =y ™MLyx,y),

where L)y is a bounded smooth function and M is arbitrarily large. From here, we immedi-
ately get that t(x, D) is bounded on L?. We briefly indicate why the statement about L y; is
true.

It is sufficient to prove that

187 (x. &)l < 1.

for |£| < cR, which is equivalent to prove that, for j < —1 and 1/R < |(A*)*j§| <R,
18E v/ ©)o (x. )l < ¢
We show why this is true only for the first order derivative. Note that
v/ (§)o(x, §) = v/ (§)ox(€) = we(AH7/8),
where
wx () = v()ox (A7),
Since o € S?’O(A), from the inequalities (3.1), we have
8L o [(A")T 1((A") )| < Cp.

Therefore,

19g [0/ (8) oy (8)]] = |9 [wx ((A*) /)]
< A8z vl e ox (E)] + vl oo |8 o2 [(A%) (A% T E)])
SIAnH s

3.2.2 The “positive” part of the multiplier

The previous discussion indicates that we can safely concentrate on the “positive” part of the
given symbol, namely A(x, §) = =00 (x, &). We will show that, through a periodization
argument, we can decompose the positive part of ¢ into a convergent sum of elementary
symbols.

For j > 0, let

Aj(x, &) = D oj(x, (A% (& — 27 Rk)),

kez

where R is the positive real that determines the support of v (see previous subsection). Recall
that

oj(x, &) =v/ (E)o(x,&) = v(A") VE)o(x, &).

Due to the support condition on v, it is easy to see that o7 ((x, A*)7 &) vanishes on |£| > R.
Note also that A j is a 277 RZ" periodic function (as a function of £, for a fixed x).
Let now ¢ € C* be compactly supported,

suppy C{§: R —e <|&] <R +e),
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where 0 < € < 1/(12R), and such that ¥yv = v on supp v. Then clearly,
0j(x. §) = V(A" E)0;(x, &) = ¥/ (§)o;(x, §).
Furthermore, we have
0j(x.8) = Y/ (E)A;(x, (AHTIE). (3.12)
Indeed, we can write

Aj(x, (AN TE) =0j(x. &) + D 0j(x, & — 2 R(A*) k),
|k]#0

and we distinguish two cases.
Casel [(A*)J&| > R +e¢

Then v/ (§) = v((A*)"/&) = 0, therefore oj(x, &) = 0, and ¥/ (£§) = 0. Consequently,
(3.12) holds.

Case2 |[(A*) /€| <R+e¢
Then, for |k| # 0, we have
I(A*)/ (¢ =27 R(A")/K)| = 2 RIk| — |(A*) /€| > 27 R|k| — R — € > R.
This, in turn, implies that
oj(x, & — 2 R(A*) k) =0,

and again we have the equality (3.12).
If we now expand A ; into its Fourier series, we have

Ajx.&) = > cjplne kIR,

keZ"

where
cjr(x) = QrR)™" / o (x, (A*)jé:)e—ik.g/R dE.
[-7 R,m R]"
Using (3.12), we can further write

0j (6 §) = D (14 k)~ e (rye AT Ry (4% ),
kezn

where
Kjk () = (1 + kDD 2 (x).
Therefore, we see that

Ax,E) =D 0j(x, &) = > (14 k)™ "0k (x, ),

Jj=0 kezr

where

ok, 8) = D i) AT Ry (4% Tg) = B )t (AT 8.

J=0 J=0
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It is clear then that it is sufficient to prove the uniform boundedness (with respect to the index
k) of the multiplier operators 7, since

1Tl < DA+ kD™ T o 2
keZl

The multipliers o are our typical elementary symbols (compare to (3.5)). The only thing left

is to obtain the correct control on the coefficients « j; that would allow us to conclude with an
inequality like (3.7). This control is determined by the estimates on the symbol o € S?,O(A).
Recall that

cjk(x) = (2nR)—"/e—”<f/Ra,-(x, (A% &) dt.

If we integrate by parts, we can gain |k| ™" (for N as large as we please) as long as we can
bound 8?’ oj(x, (A*)7&). This in turn, will imply that the coefficients « j; are bounded (again,
compare with (3.5) where we required that the m ; coefficients are bounded). We prove that
we have indeed the right control on the coefficients as follows.

Lemma 3.3 Suppose that the symbol o is in the class S?’O(A). Let v be a C* function such
that suppv C {§ : 1/R < |&| < R}. For each j € Z, define

ol (x,§) = o (x, (AD8).
Then, for all B and some constants Cg > 0,
18” (vo )l < Cp.
Proof By the condition on the support of v and by the product rule we have

10f oDl = sup 9P ed)®I = C sup  sup 9% ).
1/R<|§|<R l|<[B] 1/R<|§|<R

Givenany £ inthe annulus 1 /R < |§| < R,definen = (A*)/&. Note that p=(17) ~ | det A|/.
Hence, by (3.1)

9“0 (A" T = [0%0{ €)] < Ca.
This completes the proof of the lemma. O

Corollary 3.4 For any N > 0 and for all x, we have
cje(x) = @rR)™" / e I Ry(E)o T (x, £)ds = Ok ) as [k| — oo
and cjr(x) = O(1) as | j| — oo.

Remark 3.1 The previous corollary translates into saying that the coefficients of an elemen-
tary symbols, which we denoted by m ;, are smooth and bounded. In fact, a completely
analogous argument to the one employed in Lemma 3.3 shows that we can control the L
norm of the derivatives of the coefficients and get that

0%m;llp=~ < Cq,

for all multi-indices « and some constants C,, > 0.
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3.3 Boundedness of elementary pseudodifferential operators

We come back now to inequality (3.7). We wish to show that for a famlly (m j) of appropriately
smooth and bounded functions, and ( f;) € L? such that supp fk Nsupp f = @for|j—k| > J,
we have

1/2

Domifi| =C (o005 | - (3.13)

jz0 12 Jj=0

Our argument is based on the following decomposition of the coefficients m ;, j > 0 into
their “good” and “bad” parts; our decompositions is a slight modification of the one that
appears in [12].

S L bjliee S ()77, and

Claim 2 We can write mj = g; + bj, where ||g;l|lL=
supp fjg; C (6 1 @R~ < [(A)T/El < R+ QR)7).

The proof of the claim is as follows. Consider K € CZ° such that I?(O) = land I?(E) =0
on || > (2R)~". Define as usual

K;j(x) = |detA[YK(A/x) = b/ K (A'x),
and let
gi=Kj*mj;, and b; =m;—g;.

By construction, m j = g; + b;. The estimate of the good part is easy, since clearly

lgjllzoe < 1Kl ptllmjllzoe. (3.14)
To control the bad part, we use the Mean Value Theorem and the fact that f Kiu) =
J K@) = K(0) =1 to get

I ()] s/|mj<x>—m,-(x—u>||1<,»<u>|du5/|u|bf|K(Afu)|du

5/|A‘f’u||l<(u>|du sc<xf)‘f/|u||1<(u)|du5(L)‘f. (3.15)

Finally, we show the inclusion of supports. Let us assume first that m; € L?. Then g j € L?
and

supp f7g; C supp fj +suppg;  supp fj + supp K.
Since
supp f; C {£: R™' < |(A*)™/&| < Ryand suppK; C (£ : |[(A%) g < @R)1},
we conclude that
supp 87 C (& : @R~ < [(A) gl < R+ QR

If m; ¢ L?, we approximate it with the cutoffs m ; x{¢| <} and then let N — o0 to arrive to
the same conclusion.
In order to prove (3.13), it therefore suffices to estimate

ijfj and Zgjfj

jz0 12 j=z0 12
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We utilize the estimates shown in Claim 2 and the Cauchy—Schwarz inequality.

1/2 1/2
S bifi|l = D bl fille < [ D 1Dl > Uil
j=0 2 Jjz0 j=0 jz0
1/2 1/2 1/2
S(2e DUfil | =2 =D DA
Jj=0 j=0 Jj=0

(3.16)

With the notation in Lemma 3.2, let / be the smallest positive integer such that ()L,)I >
c(2R2 + 1). Then, for all i > I, we have

EQR T <El < R+CQRTINE: QR < |(AHE| <R+ 2R 1} = 0.
By applying A**, we conclude that

Supp@ ﬂsuppﬁ: @, forall |i —k| > 1.

Therefore,
I 1/2
Sleifil =D iembirn| =T D Ngifilie
j=0 12 =0 [[k=0 L2 Jj=0
1/2
STKIp [ DoIf172] - 3.17)
j=0

Estimates (3.16) and (3.17) yield estimate (3.13), thus finishing the proof of Theorem 3.1.

It is worth noting that the same proof works with minor modifications if we assume that
o € S(f’ 5(A), 0 < 8 < 1. We end the paper by exhibiting an example of an anisotropic
symbol in S?,l (A) which is unbounded on L2.

Example 3.2 Let 0 # v € R”" be fixed. Let ¢ be a smooth bump such that
suppy C B(v,8), and ¢(¢§)=1on B(v,$/2)

for some § > 0, where B(v, §) = {£ € R" : |& — v| < §}. Since the matrix A* is expansive
we can choose § > 0 sufficiently small such that the dilated balls (A*)/ (B(v, §)) are disjoint
for j € Z. Define the symbol

o, §) =3 e A g, (3.18)
Jj=1

Due to our choice of § > 0, we notice that for every & € R”, this summation contains at most
one non-zero term. Recall that o € S(l) ((A)if

9200 [0 (A5, A )](Akx, (A%)7*E)]| < Cap, (3.19)
for all (x,&) € R” x R" \ {0} and k € Z is such that 1 + pa«(£) ~ b*. Observe that

@((A*)7/£) # 0 implies that £ € (A*)/(B(v, 8)) and thus pu= (&) ~ b/. Thus, the dilates
in (3.19) undo those present in (3.18), which shows that o € S?,I(A).
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Next, we shall show that for the symbol considered, o (x, D) : L? 4 L% Fix f € Ssuch
that supp f C B(0, r) for some r > 0. For N € N, define

N .
Fy =73 %eix'm*””f (x)- (320)

j=1

Letting f;(x) = ¢V f(x), we see that f;(§) = f(& — (A")/v), and supp f; C

B((A*)/v,r). Since A* is expansive we can choose r > 0 sufficiently small such that

B((A®)v,r) C (A*)/(B(v, §/2)) for all j € N. This automatically yields that
suppfjﬂsuppfk =@ forj #k,

and that for all j € N,

§esupp fj = ¢;(6) = 1.
Hence, by the orthogonality of f st
v 172

1 b4
1PNz = Zj—znfjn’; < 2l fl-

j=l1

Finally, since o (x, &) = e~i* (A9 for & € supp ¢;, by the Fourier inversion formula we
have

N
. 1~ .
o (x, D)(Fn)(x) Z/G(x,é)e”‘g > 7 Fle = @A v)dt
j=1

R

N 1 ) N 1
N L[ i e anyi 1
—Zz‘,]/e JE— )]v)dg_@ )”(ZJ)

R7 Jj=1

Thus, there exists constant C > 0, such that for any N € N,

CcV6
lo(x, D)Fyllp2 > Clog N| fll2 > T”FN”LZ’
This proves that o (x, D) is not bounded on L2

Remark 3.2 We have demonstrated that the anisotropic class of inhomogeneous symbols
Sgy 5(A),0 <8 < 1, shares similar L? boundedness results with its isotropic counterpart.
This comment also applies to the L? boundedness, | < p < oo, of the smaller anisotropic
class S? 5(A), 0 <6 < 1. The next natural step would be a systematic study of the L? bound-
edness i)roperties of more exotic anisotropic classes of symbols Sl’f’ 5(A), as carried out in
the isotropic setting by Fefferman [8] or Miyachi [15]. However, this goes beyond the scope
of this paper which merely aimed at showing plausibility of a larger theory of anisotropic
pseudo-differential operators.
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