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We show an extrapolation formula for discrete Triebel-Lizorkin spaces which extends a formula of Cwikel and
Nilsson [14] to quasi-Banach lattices. This is done in the general setting of anisotropic Triebel-Lizorkin spaces
associated with expansive dilations and doubling measures on Rn introduced by the author [4], [5]. Our main
result is new even in the standard dyadic setting.
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1 Introduction

In this paper we prove an extrapolation formula for discrete Triebel-Lizorkin spaces ḟα ,q
p . These spaces were

introduced and studied in the influential papers by Frazier and Jawerth [16]–[18]. Their importance stems from
the fact that they describe wavelet coefficients of functions/distributions in Triebel-Lizorkin spaces Ḟα ,q

p . In turn,
Triebel-Lizorkin spaces form a unifying class of function spaces encompassing many well-studied classical func-
tion spaces such as Lebesgue spaces, Hardy spaces, the Lipschitz spaces, and the space BMO.

Suppose that 0 < p, q ≤ ∞ and α ∈ R. Let Q denote the collection of all dyadic cubes Q = 2j ([0, 1]n + k),
where j ∈ Z, k ∈ Zn . The discrete Triebel-Lizorkin sequence space ḟα ,q

p is defined as the collection of all
complex-valued sequences w = {wQ}Q∈Q such that

‖w‖ḟ α , q
p

=

∥∥∥∥∥∥

(
∑

Q∈Q

(
|Q|−α |wQ |χ̃Q

)q

)1/q
∥∥∥∥∥∥

Lp

< ∞, (1.1)

where χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the dilated cube Q. However, in the
special case p = ∞, the above formula needs to be replaced by the following localized definition introduced by
Frazier and Jawerth [18],

‖w‖ḟ α , q
∞

=

(
sup
P ∈Q

1
|P |

∫

P

∑

Q∈Q, Q⊂P

(
|Q|−α |wQ |χ̃Q

)q
dx

)1/q

< ∞. (1.2)

Moreover, the case q = ∞ requires an obvious modification due to the presence of #∞ norm. The main result of
this paper is the following extrapolation theorem for ḟα ,q

p spaces.
Theorem 1.1 Suppose that α0 ,α1 ∈ R, 0 < p0 , p1 ≤ ∞, 0 < q0 , q1 ≤ ∞, and 0 < θ < 1. Then, for any

w ∈ ḟα1 ,q1
p1

we have

‖w‖θḟ α 1 , q 1
p 1

% sup
{∥∥|w|θ |v|1−θ

∥∥
ḟ α , q
p

: ‖v‖ḟ α 0 , q 0
p 0

≤ 1
}

, (1.3)

where (1/p, 1/q,α) = (1 − θ)(1/p0 , 1/q0 ,α0) + θ(1/p1 , 1/q1 ,α1).
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The formula (1.3) is a lesser known cousin of the well-known interpolation formula for the Calderón product
of ḟα ,q

p spaces, see [18, Theorem 8.2],

‖w‖ḟ α , q
p

% ‖w‖( ḟ α 0 , q 0
p 0 )1−θ ( ḟ α 1 , q 1

p 1 )θ = inf
{
‖v0‖1−θ

ḟ α 0 , q 0
p 0

‖v1‖θḟ α 1 , q 1
p 1

: |w| = |v0 |1−θ |v1 |θ
}

. (1.4)

The interpolation formula (1.4) enables the recovery of the norms of intermediate ḟα ,q
p spaces once the norms

at endpoints are known. The remarkable feature of the extrapolation formula (1.3) is that it makes possible the
recovery of the norm of ḟα ,q

p spaces for the range of parameters beyond the two known endpoint norms. The
extrapolation formula is not only a curiosity, but it has found applications in the study of rearrangement operators
of the Haar system on dyadic Hardy spaces in the work of Geiss, Müller, and Pillwein [20].

An abstract interpolation space version of extrapolation formula (1.3) was established by Cwikel and Nilsson
[14]. Their result [14, Theorem 3.5] can be restated as follows; the precise definitions are given in Definitions 3.1
and 3.2.

Theorem 1.2 (Cwikel, Nilsson) Let (X0 , X1) be a couple of saturated Banach lattices, and let X1−θ
0 Xθ

1 be
their Calderón product for some 0 < θ < 1. If X1 has the Fatou property, then for any x ∈ X1 ,

‖x‖θX 1
= sup

{∥∥|u|1−θ |x|θ
∥∥

X 1−θ
0 X θ

1
: ‖u‖X 0 ≤ 1

}
. (1.5)

Note that (1.5) has the equality of norms rather than equivalence of norms as in (1.3) and (1.4). In the Banach
setting, when 1 ≤ p0 , p1 , q0 , q1 ≤ ∞, Theorem 1.2 can be shown to imply Theorem 1.1. However, Theorem
1.2 does not apply in the quasi-Banach setting where a more concrete approach is needed. In fact, the proof of
Theorem 1.2 in [14] relies on [14, Theorem 1.5] saying that a saturated Banach lattice X has the Fatou property
if and only if X = X ′′, where X ′ is the Köthe dual of X . Since X = X ′′ is known to fail for X = ḟα ,q

p when
p < 1 or q < 1, see Theorem 2.4, this illustrates the difficulty of quasi-Banach setting where duality techniques
generally do not work.

We shall prove that Theorem 1.1 holds in a much more general setting than the classical dyadic case described
above. Our favorite setting involves general expansive dilations and doubling measures on Rn . A systematic study
of Besov and Triebel-Lizorkin spaces in this setting has been undertaken in [3]–[6]. In Section 2 we survey the
highlights of this setting which are especially relevant to this paper. In the final section we give the proof of our
main result. We use the convention that the symbol x ! y means that there exists a constant C > 0 such that
x ≤ Cy, and the symbol x % y means that x ! y and x " y.

2 Anisotropic Triebel-Lizorkin spaces

Triebel-Lizorkin spaces in the isotropic setting are well-studied unifying class of function spaces. The usual
isotropic structure can be replaced by more general non-isotropic dilations which produces as a result anisotropic
variants of the classical function spaces. Among many others we mention here parabolic Hardy spaces [11], [12],
Besov and Triebel-Lizorkin spaces for diagonal dilations [1], [15], [27]–[31]. The other possible direction is the
study of weighted Besov and Triebel-Lizorkin spaces associated with general Muckenhoupt A∞ weights, see
[7]–[9], [26]. One should also add that a significant portion of the theory of function spaces can also be done on
very general domains such as spaces of homogeneous type introduced by Coifman and Weiss [13]; for example,
see [21]–[25]. However, this high level of generality imposes restrictions on possible values of the integrability
exponent p, i.e., p > 1 − δ for some possibly small δ > 0.

To strike a balance between a high level generality and often diminishing range of possible results, we con-
sider the class of non-isotropic dilation structures associated with expansive dilations, which includes previously
considered diagonal setting. In the context of Hardy Hp spaces this goal was achieved by the author in [2], where
it was demonstrated that significant portion of a real-variable isotropic Hp theory extends to such anisotropic
setting. Analogous extensions to anisotropic Besov and Triebel-Lizorkin spaces with doubling measures were
studied in [3]–[6]. These studies show that the isotropic methods of dyadic ϕ-transforms of Frazier and Jawerth
[16], [18], [19] extend to non-isotropic setting associated with general expansive dilations. In particular, weighted
anisotropic Triebel-Lizorkin and Besov spaces were characterized by their wavelet transform coefficients and
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smooth atomic and molecular decompositions of these spaces were established. In addition, the localized ver-
sion of Triebel-Lizorkin spaces in the endpoint case of p = ∞ was developed in [4]. Finally, the duality and
interpolation results about anisotropic Triebel-Lizorkin spaces were obtained in [5].

We start by recalling basic definitions and properties of the Euclidean spaces associated with general expansive
dilations.

2.1 Anisotropic setting

We say that a real n × n matrix is expansive if all of its eigenvalues λ satisfy |λ| > 1. A quasi-norm associated
with an expansive matrix A is a Borel measurable mapping ρA : Rn → [0,∞) satisfying

ρA (x) > 0, for x )= 0,
ρA (Ax) = |det A|ρA (x) for x ∈ Rn ,

ρA (x + y) ≤ H(ρA (x) + ρA (y)) for x, y ∈ Rn ,
(2.1)

where H ≥ 1 is a constant. The corresponding ρA -balls are defined as

BρA (x, r) = {y ∈ Rn : ρA (x − y) < r}, x ∈ Rn , r > 0.

We say that a non-negative Borel measure µ on Rn is ρA -doubling if there exists C > 0 such that

µ(BρA (x, |det A|r)) ≤ Cµ(BρA (x, r)) for all x ∈ Rn , r > 0. (2.2)

Let Q be the collection of all dilated cubes

Q =
{
Q = Aj ([0, 1]n + k) : j ∈ Z, k ∈ Zn

}

adapted to the action of a dilation A. Obviously, if A = 2Id we obtain the usual collection of dyadic cubes.
The scale of a dilated cube Q = Aj ([0, 1]n + k) ∈ Q is defined as scale(Q) = j. Alternatively, scale(Q) =
log| det A | |Q|. The tent T (P ) over P ∈ Q is defined as

T (P ) = {Q ∈ Q : |Q ∩ P | > 0 and scale(Q) ≤ scale(P )}.

2.2 Anisotropic function spaces

We start by recalling the definition of anisotropic Ḟα ,q
p spaces in the range 0 < p < ∞. Let S = S(Rn ) be the

Schwartz class, S ′ the space of tempered distributions, and P the subspace of polynomials.
Definition 2.1 For α ∈ R, 0 < p < ∞, 0 < q ≤ ∞, and a ρA -doubling measure µ, we define the anisotropic

Triebel-Lizorkin space Ḟα ,q
p = Ḟα ,q

p (Rn , A, µ) as the collection of all f ∈ S ′/P such that

‖f‖Ḟα , q
p

=

∥∥∥∥∥∥

(
∑

j∈Z

(
|det A|jα |f ∗ ϕj |

)q

)1/q
∥∥∥∥∥∥

Lp (µ)

< ∞, (2.3)

where ϕj (x) = |det A|jϕ(Ajx) and ϕ ∈ S(Rn ) satisfies (2.4), (2.5)

supp ϕ̂ := {ξ ∈ Rn : ϕ̂(ξ) )= 0} ⊂ [−π,π]n \ {0}, (2.4)

sup
j∈Z

|ϕ̂((A∗)j ξ)| > 0 for all ξ ∈ Rn \ {0}. (2.5)

The discrete Triebel-Lizorkin sequence space ḟα ,q
p = ḟα ,q

p (A,µ) is defined as the collection of all complex-valued
sequences s = {sQ}Q∈Q such that

‖s‖ḟ α , q
p

=

∥∥∥∥∥∥

(
∑

Q∈Q
(|Q|−α |sQ |χ̃Q )q

)1/q
∥∥∥∥∥∥

Lp (µ)

< ∞, (2.6)

where χ̃Q = |Q|−1/2χQ is the L2-normalized characteristic function of the dilated cube Q.
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In the special case p = ∞ the above definition is unsatisfactory. Frazier and Jawerth [18] had proposed a
localized definition of the norm when p = ∞ by considering averages only over small scales.

Definition 2.2 For α ∈ R, 0 < q ≤ ∞, and a ρA -doubling measure µ, we define the anisotropic Triebel-
Lizorkin space Ḟα ,q

∞ = Ḟα ,q
∞ (Rn , A, µ) as the collection of all f ∈ S ′/P such that,

‖f‖Ḟα , q
∞ (Rn ,A,µ) = sup

P ∈Q

(
1

µ(P )

∫

P

∞∑

j=− scale(P )

(
|det A|jα |f ∗ ϕj (x)|

)q
dµ(x)

)1/q

< ∞, (2.7)

where ϕ ∈ S(Rn ) satisfies (2.4) and (2.5). The sequence space, ḟα ,q
∞ = ḟα ,q

∞ (A,µ) is the collection of all
complex-valued sequences s = {sQ}Q∈Q such that

‖s‖ḟ α , q
∞ (A,µ) = sup

P ∈Q

(
1

µ(P )

∫

P

∑

Q∈T (P )

(
|Q|−α |sQ |χ̃Q (x)

)q
dµ(x)

)1/q

< ∞. (2.8)

One of the main results about these spaces is due to Frazier and Jawerth [18], who proved in the dyadic setting
that sequence spaces ḟα ,q

p describe the coefficients of wavelet expansions of elements in Ḟα ,q
p . This result also

yields the equivalence of quasi-norms (2.3) and (2.7) regardless of the choice of ϕ. The author [4] proved that the
same holds in the non-isotropic setting for general expansive dilations.

Theorem 2.3 Suppose that ϕ ∈ S(Rn ) is a Parseval wavelet such that the support of ϕ̂ is bounded and
bounded away from 0. That is,

‖f‖2 =
∑

Q∈Q
|〈f,ϕQ 〉|2 for all f ∈ L2(Rn ),

where ϕQ (x) = |det A|j/2ϕ(Ajx − k) for Q = A−j ([0, 1]n + k). Let Sϕ be the wavelet analysis transform
mapping f ∈ S ′/P to the sequence Sϕf = {〈f,ϕQ 〉}Q∈Q. Let Tϕ be the wavelet synthesis transform mapping
s = {sQ}Q∈Q to Tϕs =

∑
Q∈Q sQϕQ . Then, the operators Sϕ : Ḟα ,q

p → ḟα ,q
p and Tϕ : ḟα ,q

p → Ḟα ,q
p are

bounded and TϕSϕ = Id.
The following duality result is a manifestation of the fact that the endpoint space Ḟα ,q

∞ is a natural extension of
Ḟα ,q

p spaces for p < ∞. Theorem 2.4 is an extension of the well-known isotropic results of Triebel [28], Frazier
and Jawerth [18], and Verbitsky [32] who has filled a gap in the case of (p, q) ∈ (1,∞)× (0, 1). For convenience,
we state it in the unweighted case where the duality pairing takes more natural form than in the weighted case,
see [5, Corollary 4.7 and Theorem 4.8].

Theorem 2.4 Suppose that α ∈ R, 0 < p, q < ∞. Then, the dual space of discrete Triebel-Lizorkin space is

(
ḟα ,q
p (Rn , A)

)∗ =

{
ḟ−α ,q ′

p′ (Rn , A), 1 ≤ p < ∞,

ḟ−α+(1/p−1),∞
∞ (Rn , A), 0 < p < 1.

A similar duality also holds for Ḟα ,q
p (Rn , A) spaces.

Many other results about Ḟα ,q
p spaces in the anisotropic setting can be found [4], [5]. Here, we shall only

state two additional facts which are employed in Section 3. These are [5, Lemma 3.1] and [5, Corollary 3.4 and
Theorem 3.6], resp.

Lemma 2.5 Suppose that α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA -doubling measure. Fix ε > 0. Suppose that
for each Q ∈ Q, EQ ⊂ Q is a Borel set with µ(EQ )/µ(Q) > ε. Then, for any s = {sQ}

‖s‖ḟ α , q
p (A,µ) %

∥∥∥∥∥∥

(
∑

Q∈Q

(
|Q|−α |sQ |χ̃EQ

)q

)1/q
∥∥∥∥∥∥

Lp (µ)

, 0 < p < ∞, (2.9)

‖s‖ḟ α , q
∞ (A,µ) % sup

P ∈Q

(
1

µ(P )

∫

P

∑

Q∈T (P )

(
|Q|−α |sQ |χ̃EQ (x)

)q
dµ(x)

)1/q

, p = ∞, (2.10)

where χ̃EQ = |Q|−1/2χEQ is the normalized characteristic function of EQ .
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Theorem 2.6 Suppose that α ∈ R, 0 < p, q ≤ ∞, and µ is a ρA -doubling measure. Fix 0 < ε< 1. Then, for
any s = {sQ}

‖s‖ḟ α , q
p (A,µ) % inf






∥∥∥∥∥∥

(
∑

Q∈Q

(
|Q|−α |sQ |χ̃EQ

)q

)1/q
∥∥∥∥∥∥

Lp (µ)

: EQ ⊂ Q, µ(EQ )/µ(Q) > ε





. (2.11)

Moreover, for any 0 < r < ∞ we have the equivalence of norms when p = ∞,

‖s‖ḟ α , q
∞

% sup
P ∈Q



 1
µ(P )

∫

P

(
∑

Q∈T (P )

(
|Q|−α |sQ |χ̃Q (x)

)q

)r/q

dµ(x)




1/r

. (2.12)

3 Interpolation and extrapolation of ḟα,q
p spaces

In this section we shall prove Theorem 1.1 in the general setting of expansive dilations A and ρA -doubling
measures µ. A reader more familiar with the isotropic setting might choose for the simplicity that A = 2Id and µ
is the Lebesgue measure on Rn . We start by defining relevant properties of quasi-Banach lattices and the Calderón
product [10].

Definition 3.1 Suppose that ν is a positive measure on Ω, and X is a quasi-Banach space of ν-measurable
functions on Ω, which are identified if equal ν-a.e.

(i) We say that X is a quasi-Banach lattice on Ω if for any ν-measurable functions f, g

f ∈ X and |g(x)| ≤| f(x)| ν-a.e. =⇒ g ∈ X and ‖g‖X ≤ ‖f‖X .

(ii) X is saturated if for every measurable set E ⊂ Ω with µ(E) > 0, there exists a measurable subset
F ⊂ E such that χF ∈ X .

(iii) X has the Fatou property if for a.e. pointwise increasing sequence {fk}∞k=1of non-negative functions
in X with supk ‖fk‖X < ∞, the function f defined by f(ω) = limk→∞ fk (ω) is in X and ‖f‖X =
limk→∞ ‖fk‖X .

Definition 3.2 Suppose that X0 and X1 are quasi-Banach lattices on Ω. Given 0 < θ < 1, define the Calderón
product X1−θ

0 Xθ
1 as the collection of all ν-measurable functions u satisfying

‖u‖X 1−θ
0 X θ

1
= inf

{
M > 0 :|u(x)| ≤ M |v0(x)|1−θ |v1(x)|θ ν-a.e.

for some ‖v0‖X 0 ≤ 1 and ‖v1‖X 1 ≤ 1
}

< ∞.

Equivalently, the Calderón product quasi-norm can be defined as

‖u‖X 1−θ
0 X θ

1
= inf

{
‖v0‖1−θ

X 0
‖v1‖θX 1

: |u(x)| = |v0(x)|1−θ |v1(x)|θ ν-a.e.
}
.

Theorem 3.3, which was shown in [5, Theorem 6.1], generalizes the result of Frazier and Jawerth [18, Theorem
8.2] on Calderón products of ḟα ,q

p spaces.

Theorem 3.3 Suppose that α0 ,α1 ∈ R, 0 < p0 , p1 ≤ ∞, 0 < q0 , q1 ≤ ∞, and µ is a ρA -doubling measure.
Then, for any 0 < θ < 1, we can identify the Calderón product as

(
ḟα0 ,q0
p0

(A,µ)
)1−θ(ḟα1 ,q1

p1
(A,µ)

)θ = ḟα ,q
p (A,µ), (3.1)

with equivalent quasi-norms, where

(1/p, 1/q,α) = (1 − θ)(1/p0 , 1/q0 ,α0) + θ(1/p1 , 1/q1 ,α1). (3.2)
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It is worth emphasizing that Theorem 3.3 also covers the endpoint cases p0 = ∞ or p1 = ∞. The same
remarkable feature is true for our main result, Theorem 3.4, which establishes the extrapolation formula for
discrete Triebel-Lizorkin spaces. In particular, Theorem 3.4 implies that the Triebel-Lizorkin norm in the case
p1 = ∞ can be recovered from the corresponding norms with finite integrability parameters p, p0 < ∞. This is
yet another manifestation of the fact that the definition of the Triebel-Lizorkin spaces when p = ∞, which was
historically troublesome until a satisfactory definition Frazier and Jawerth [18], is a natural continuation of the
better understood scale 0 < p < ∞.

Theorem 3.4 Suppose that α0 ,α1 ∈ R, 0 < p0 , p1 ≤ ∞, 0 < q0 , q1 ≤ ∞, 0 < θ < 1, and µ is a ρA -doubling
measure. Then, for any w ∈ ḟα1 ,q1

p1
we have

‖w‖θḟ α 1 , q 1
p 1

% sup
{∥∥|w|θ |v|1−θ

∥∥
ḟ α , q
p

: ‖v‖ḟ α 0 , q 0
p 0

≤ 1
}

, (3.3)

where the relevant parameters are constrained by (3.2).

P r o o f. For simplicity, let X0 = ḟα0 ,q0
p0

(A,µ), Xθ = ḟα ,q
p (A,µ), and X1 = ḟα1 ,q1

p1
(A,µ). The inequality "

in (3.3) follows immediately from Theorem 3.3.
Indeed, suppose that w = {wQ} ∈ X1 , and v = {vQ} ∈ X0 with ‖v‖X 0 ≤ 1. Then, by Theorem 3.3 and

Definition 3.2
∥∥|w|θ |v|1−θ

∥∥
X θ

%
∥∥|w|θ |v|1−θ

∥∥
X 1−θ

0 X θ
1
≤ ‖v‖1−θ

X 0
‖w‖θX 1

≤ ‖w‖θX 1
.

The proof of the opposite inequality of (3.3) requires more work and uses a stopping time argument. Moreover,
it must be split into several cases since ḟα ,q

p spaces have a different definition when p = ∞.
Case 1: p0 , p1 < ∞. Suppose that w ∈ X1 . We claim that there exists v ∈ X0 and a universal constant

C > 0 such that

‖v‖X 0 ≤ C‖w‖p1 /p0
X 1

, (3.4)
∥∥|w|θ |v|1−θ

∥∥
X θ

≥ 1
C
‖w‖p1 /p

X 1
. (3.5)

Assuming (3.4) and (3.5) for the moment, yields

‖v‖1−θ
X 0

‖w‖θX 1
! ‖w‖θ+(1−θ)p1 /p0

X 1
= ‖w‖p1 /p

X 1
!

∥∥|w|θ |v|1−θ
∥∥

X θ
.

Hence, after renormalizing ‖v‖X 0 = 1, we obtain ! in (3.3).
First, consider the subcase of q0 , q1 < ∞. We shall temporarily assume that p0/q0 ≤ p1/q1 ; the opposite case

follows by an easy adaptation. For k ∈ Z, define

Ωk =




x ∈ Rn :

(
∑

Q

(
|Q|−α1 |wQ |χ̃Q (x)

)q1

)1/q1

> 2k




 .

Qk = {Q ∈ Q : µ(Q ∩ Ωk ) ≥ µ(Q)/2 and µ(Q ∩ Ωk+1) < µ(Q)/2}.
Note that the families Qk , k ∈ Z, are pairwise disjoint, and if Q )∈

⋃
k∈Z Qk , then wQ = 0. In this case set

vQ = 0. Otherwise, if Q ∈ Qk for some k ∈ Z, then we set

vQ = 2kδ |Q|u |wQ |q1 /q0 , where δ = p1/p0 − q1/q0 ≥ 0, u = α0 + 1/2 − (α1 + 1/2)q1/q0 . (3.6)

To prove (3.4), we use Lemma 2.5 with sets EQ = Q ∩ Ωk , Q ∈ Qk ,

‖v‖p0
X 0

!
∫

Rn

(
∑

k∈Z

∑

Q∈Qk

|Q|−(α0 +1/2)q0 |Q|uq0 2kδq 0 |wQ |q1 χEQ

)p0 /q0

dµ

=
∫

Rn

(
∑

k∈Z
2kδq 0 χΩk

∑

Q∈Qk

(
|Q|−α1 |wQ |χ̃Q

)q1

)p0 /q0

dµ

!
∫

Rn

(
∑

Q∈Q

(
|Q|−α1 |wQ |χ̃Q

)q1

)(1+δq0 /q1 )p0 /q0

dµ = ‖w‖p1
X 1

.
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Here, in the penultimate step we used the fact that δ ≥ 0 and

2kδq 0 χΩk ≤
(

∑

Q∈Q

(
|Q|−α1 |wQ |χ̃Q

)q1

)δq0 /q1

.

To prove (3.5), we use a similar argument as above after redefining EQ = Q∩(Ωk+1)c , Q ∈ Qk . By the identities
(α + 1/2)q − (1 − θ)uq = (α1 + 1/2)q1 and (θ + (1 − θ)q1/q0)q = q1 , we have

∥∥|w|θ |v|1−θ
∥∥p

X θ
=

∫

Rn

(
∑

k∈Z

∑

Q∈Qk

|Q|−(α+1/2)q |wQ |θq2(1−θ)kδq |Q|(1−θ)uq |wQ |(1−θ)qq1 /q0 χQ

)p/q

dµ

≥
∫

Rn

(
∑

k∈Z
2(1−θ)kδq χ(Ωk + 1 )c

∑

Q∈Qk

(
|Q|−α1 |wQ |χ̃Q

)q1

)p/q

dµ

"
∫

Rn

(
∑

Q∈Q

(
|Q|−α1 |wQ |χ̃EQ

)q1

)(1+(1−θ)δq/q1 )p/q

dµ

=
∫

Rn

(
∑

Q∈Q

(
|Q|−α1 |wQ |χ̃EQ

)q1

)p1 /q1

dµ " ‖w‖p1
X 1

.

The last step follows by Lemma 2.5 and the third step by the fact that

2k+1χ(Ωk + 1 )c ≥
(

∑

Q∈Qk

(
|Q|−α1 |wQ |χ̃EQ

)q1

)1/q1

, (3.7)

In the complementary case p0/q0 ≥ p1/q1 we have δ ≤ 0 and it suffices to switch the definitions of sets EQ

in the proofs of (3.4) and (3.5). The details are left to the reader.
To prove (3.4) and (3.5) in the subcase of q0 = ∞ requires only a minor adaptation of the above arguments.

For Q ∈ Qk , k ∈ Z we set

vQ = 2kδ |Q|u , where δ = p1/p0 , u = α0 + 1/2. (3.8)

For Q )∈
⋃

k∈Z Qk , we set vQ = 0. Then, by Lemma 2.5 with EQ = Q ∩ Ωk we have

‖v‖p0
X 0

!
∫

Rn

sup
k∈Z

sup
Q∈Qk

(
2kp1 /p0 χΩk (x)χQ (x)

)p0 dµ(x)

!
∫

Rn

(
∑

Q∈Q

(
|Q|−α1 |wQ |χ̃Q

)q1

)δp0 /q1

dµ = ‖w‖p1
X 1

.

Likewise, we also obtain (3.5) with obvious modifications.
On the other hand, the subcase q1 = ∞ requires a truly separate treatment. For simplicity we shall assume that

q0 < ∞ since the case q0 = q1 = ∞ is dealt as above. For k ∈ Z define

Qk =
{
Q ∈ Q : 2k < |Q|−(α1 +1/2) |wQ | ≤ 2k+1}, Ωk =

⋃

Q∈Qk

Q.

We equip Q with stacked below partial order as in [4, Definition 6.3]. That is, for Q,P ∈ Q, we define Q # P ,
if there is a chain of cubes Q = Q0 , Q1 , . . . , Qs = P ∈ Q such that

scale(Qi) < scale(Qi+1) and |Qi ∩ Qi+1 | > 0 for all i = 0, . . . , s − 1.

Note that in the dyadic case A = 2Id, # is simply an inclusion ⊂ relation. Let Q′
k be the collection of maximal

dilated cubes in Qk . We need to use two facts about Q′
k . By [4, Proposition 2.10] and the fact that ‖w‖X 1 < ∞,
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for every Q ∈ Qk , there exists (not necessarily unique) P ∈ Q′
k such that Q # P . Moreover, by [4, Lemma 6.5]

and the the doubling property of µ we have

µ(Ωk ) ! µ(Ω′
k ), where Ω′

k =
⋃

Q∈Q′
k

Q.

Define the sequence w′ = {w′
Q} by w′

Q = wQ if Q ∈ Q′
k for some k ∈ Z, and w′

Q = 0 otherwise. Therefore,
we have

‖w‖p1
X 1

=
∫

Rn

sup
k∈Z

sup
Q∈Qk

(
|Q|−(α1 +1/2) |wQ |

)p1 χQ (x)dµ(x)

%
∫

Rn

∑

k∈Z
2kp1 χΩk dµ

!
∫

Rn

∑

k∈Z
2kp1 χΩ′

k
(x)dµ

!
∫

Rn

sup
k∈Z

2kp1 χΩ′
k
(x)dµ % ‖w′‖p1

X 1
.

For Q ∈ Q′
k , k ∈ Z we set

vQ = 2kδ |Q|u , where δ = p1/p0 , u = α0 + 1/2.

For Q )∈
⋃

k∈Z Q′
k , we set vQ = 0. Since the cubes in Q′

k are disjoint we have

‖v‖p0
X 0

=
∫

Rn

(
∑

k∈Z

∑

Q∈Q′
k

(
|Q|−(α0 +1/2)+u2kδ

)q0 χQ

)p0 /q0

dµ

=
∫

Rn

(
∑

k∈Z
2kδq 0 χΩ′

k

)p0 /q0

dµ

!
∫

Rn

(
sup
k∈Z

2kδq 0 χΩ′
k

)p0 /q0

dµ

=
∫

Rn

sup
k∈Z

2kp1 χΩ′
k
dµ % ‖w′‖p1

X 1
≤ ‖w‖p1

X 1
.

Likewise,

∥∥|w|θ |v|1−θ
∥∥p

X θ
=

∫

Rn

(
∑

k∈Z

∑

Q∈Q′
k

(
|Q|−(α+1/2) |wQ |θ2(1−θ)kδ |Q|(1−θ)u)q

χQ

)p/q

dµ

"
∫

Rn

(
∑

k∈Z
2k((1−θ)δ+θ)qχΩ′

k

)p/q

dµ

≥
∫

Rn

sup
k∈Z

2kp1 χΩ′
k
dµ % ‖w′‖p1

X 1
% ‖w‖p1

X 1
.

This completes the proof of case p0 , p1 < ∞.
Case 2: p0 = ∞ and p1 < ∞. For brevity, we shall only consider the subcase of q0 , q1 < ∞. Suppose

that w ∈ X1 . By homogeneity of the formula (3.3), we can assume that ‖w‖X 1 = 1. We claim that there exists
v ∈ X0 and a universal constant C > 0 such that

‖v‖X 0 ≤ C, (3.9)
∥∥|w|θ |v|1−θ

∥∥
X θ

≥ 1/C. (3.10)
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Assuming (3.9) and (3.10) for the moment, yields

‖v‖1−θ
X 0

‖w‖θX 1
! 1 !

∥∥|w|θ |v|1−θ
∥∥

X θ
.

Hence, after renormalizing ‖v‖X 0 = 1, we obtain ! in (3.3).
Define the sequence v = {vQ} by (3.6) as in Case 1 with the understanding that p1/p0 = 0. To prove (3.9),

we use Theorem 2.6 with the sets EQ = Q ∩ (Ωk+1)c , where Q ∈ Qk ,

‖v‖X 0 !

∥∥∥∥∥∥

(
∑

Q∈Q

(
|Q|−α0 |vQ |χ̃EQ

)q0

)1/q0
∥∥∥∥∥∥

L∞

!

∥∥∥∥∥∥

(
∑

k∈Z
2kδq 0 χ(Ωk + 1 )c

∑

Q∈Qk

(
|Q|−α1 |wQ |χ̃Q

)q1

)1/q0
∥∥∥∥∥∥

L∞

!

∥∥∥∥∥∥

(
∑

Q∈Q

(
|Q|−α |wQ |χ̃Q

)q1

)(1+δq0 /q1 )/q0
∥∥∥∥∥∥

L∞

= 1.

Here, in the penultimate step we used (3.7) and the fact that δ = −q1/q0 < 0. The proof of (3.10) is done in
the same way as in Case 1 because ḟα ,q

∞ norms are not involved in (3.10). The only needed change is a switch in
a definition of sets EQ = Q ∩ Ωk , where Q ∈ Qk , due to the fact that δ < 0. Finally, the special subcases of
q0 = ∞ or q1 = ∞ are dealt in a similar fashion as in Case 1; the details are left to the reader.

Case 3: p0 < ∞ and p1 = ∞. For brevity, we shall only consider the subcase of q0 , q1 < ∞. Suppose that
w ∈ X1 . By homogeneity of the formula (3.3) we can assume that ‖w‖X 1 = 1. As in Case 2 it suffices to show
that there exists v ∈ X0 such that (3.9) and (3.10) hold.

By (2.12) for any 0 < r < ∞, there exists P ∈ Q such that

1 = ‖w‖r
X 1

% 1
µ(P )

∫

P

(
∑

Q∈T (P )

(
|Q|−α1 |wQ |χ̃Q

)q1

)r/q1

dµ

% 1
µ(P )

∫

Rn

(
∑

Q∈T (P )

(
|Q|−α1 |wQ |χ̃Q

)q1

)r/q1

dµ.

(3.11)

The last step is trivial if the collection of dilated cubes Q is nested as in the dyadic case. Otherwise, it can be
deduced as a consequence of the following two facts. By [4, Lemma 6.5] there exists η > 0 such that

⋃

Q∈T (P )

Q ⊂
⋃

|k−k0 |<η

Aj0 ([0, 1]n + k), where P = Aj0 ([0, 1]n + k0).

On the other hand, by [4, Proposition 2.10] we have

µ(Aj0 ([0, 1]n + k)) % µ(P ) for |k − k0 | < η.

Thus, the integral over Rn in (3.11) can be split over a finite union of “neighboring” cubes of P with the same
scale. As a consequence, the integral over Rn is controlled by the corresponding integral over P .

Define the sequence v = {vQ} by

vQ = µ(P )−1/p0 |Q|u |wQ |q1 /q0 for Q ∈ T (P ), where u = α0 + 1/2 − (α1 + 1/2)q1/q0 , (3.12)

and vQ = 0 otherwise.
To prove (3.9), we use (3.11) with r = p0q1/q0

‖v‖p0
X 0

=
1

µ(P )

∫

Rn

(
∑

Q∈T (P )

|Q|−(α0 +1/2)q0 |Q|uq0 |wQ |q1 χQ

)p0 /q0

dµ

=
1

µ(P )

∫

Rn

(
∑

Q∈T (P )

(
|Q|−α1 |wQ |χ̃Q

)q1

)p0 /q0

dµ % 1.
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To prove (3.10) we also use (3.11) with r = pq1/q
∥∥|w|θ |v|1−θ

∥∥p

X θ

=
1

µ(P )(1−θ)p/p0

∫

Rn

(
∑

Q∈T (P )

(
|Q|−(α+1/2)+(1−θ)u |wQ |θ+(1−θ)q1 /q0 χQ

)q

)p/q

dµ

=
1

µ(P )

∫

Rn

(
∑

Q∈T (P )

(
|Q|−α1 |wQ |χ̃Q

)q1

)p/q

dµ % 1.

This shows Case 3 in the subcase q0 , q1 < ∞. The special case q0 = ∞ or q1 = ∞ is again left to the reader.
Case 4: p0 = p1 = ∞. This case is actually much simpler than the previous ones since it can be shown by

direct calculations. Again, we shall only consider the subcase q0 , q1 < ∞. Suppose that w ∈ X1 with ‖w‖X 1 = 1.
It suffices to show that there exists v ∈ X0 such that (3.9) and (3.10) hold. Define the sequence v = {vQ} by

vQ = |Q|u |wQ |q1 /q0 , for Q ∈ Q, where u = α0 + 1/2 − (α1 + 1/2)q1/q0 . (3.13)

Then, by the definition of ḟα ,q
∞ norm

‖v‖X 0 = sup
P ∈Q

(
1

µ(P )

∫

P

∑

Q∈Q
|Q|−(α0 +1/2)q0 |Q|uq0 |wQ |q1 χQdµ

)1/q0

= sup
P ∈Q

(
1

µ(P )

∫

P

∑

Q∈Q

(
|Q|−α1 |wQ |χ̃Q

)q1 dµ

)1/q0

= 1.

A similar calculation shows that
∥∥|w|θ |v|1−θ

∥∥p

X θ
= 1. This completes Case 4 and the proof of Theorem 3.4.
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