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1. Introduction

Due to the request in applications of analysis such as PDEs, harmonic analysis and
approximation theory, there were several efforts of extending classical function spaces
arising in harmonic analysis from Euclidean spaces to other domains and anisotropic set-
tings; see, for example, [1,3,2,4,10,15,11,16,20,31,35–37,24,38,39]. Calderón and Torchin-
sky initiated the study of Hardy spaces associated with anisotropic dilations in [10,11,9].
Recently, a theory of anisotropic Hardy spaces and their weighted theory were developed
by Bownik et al. in [1,7].

Another direction is the development of the theory of Hardy spaces on product do-
mains initiated by Gundy and Stein [23]. In particular, Chang and Fefferman [12,13]
characterized the classical product Hardy spaces via atoms. Fefferman [19], Krug [26]
and Zhu [43] established the weighted theory of the classical product Hardy spaces, and
Sato [29,30] established parabolic Hardy spaces on product domains. It was also proved
that the classical product Hardy spaces are good substitutes of product Lebesgue spaces
when p ∈ (0, 1]; see, for example, [17–19,30,32].

Let !A := (A1, A2) be a pair of expansive dilations and A∞( !A) the corresponding
class of product Muckenhoupt weights on Rn × Rm (see Definition 2.5 below). Recently,
a theory of the weighted anisotropic product Hardy spaces Hp

w( !A) associated with ex-
pansive dilations and product Muckenhoupt weights was established in [8]. In particular,
the Hardy spaces Hp

w( !A) were characterized in terms of the Lusin-area function and the
atomic decompositions. Moreover, the boundedness on Hp

w( !A) was obtained in [28] for
a class of anisotropic singular integrals on Rn × Rm, whose kernels are adapted to !A in
the sense of Bownik (see [1]) and have vanishing moments defined via bump functions
in the sense of Stein (see [33]).

In this article we continue our study by establishing the Littlewood–Paley character-
ization and the duality of weighted anisotropic product Hardy spaces. Our first result
(see Proposition 2.8 below) shows the equivalence of the Lusin-area function definition
of the space Hp

w( !A) for tempered distributions in S ′
∞(Rn ×Rm) with tempered distribu-

tions in S ′
0(Rn ×Rm) vanishing weakly at infinity. Here, S ′

∞(Rn ×Rm) is the dual space
of the set of all Schwartz functions with all vanishing moments (see Section 2 below).
This seemingly inconsequential result enables us to establish the ϕ-transform character-
ization (see Theorem 2.12 below) and the Littlewood–Paley g-function characterization
(see Theorem 2.14 below) of the Hardy space Hp

w( !A). We also introduce the weighted
anisotropic product Campanato space Lp,w( !A) (see Definition 2.10 below) and establish
its ϕ-transform characterization (see also Theorem 2.12 below). In the final part of this
article, we identify the dual space of Hp

w( !A) with Lp,w( !A) in Theorem 2.16 below. This
improves the result of Krug and Torchinsky [27] which describes the duals of the classical
weighted product Hardy spaces Hp

w(R2
+×R2

+) when the weights w satisfy Muckenhoupt’s
Ar(R × R) condition on rectangles and 2/r < p ! 1. Moreover, the dual spaces in [27]
have quite different description from Lp,w( !A), and the method employed by Krug and
Torchinsky [27] is based on the atomic decomposition characterization of Hp

w(R2
+ ×R2

+).
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To achieve our targets, one key tool is the discrete Calderón reproducing formulae (see
Lemma 2.3 below), which is a discrete variant, via dilated cubes introduced by Bownik
and Ho [5], of the Calderón reproducing formulae in [8, Proposition 2.16]. Motivated by
Frazier and Jawerth [21], Bownik [3] and Bownik and Ho [5], to obtain the Littlewood–
Paley g-function characterization of Hp

w( !A), we invoke a weighted anisotropic product
variant of the Plancherel–Pôlya inequality (see Lemmas 3.13(i) and 3.15(i) below) and
the boundedness of the almost diagonal operators on the discrete weighted anisotropic
product Hardy space (see Lemma 3.17 below).

Notice that the ϕ-transform characterization of Lp,w( !A) closely connects with dilated
cubes of Bownik–Ho associated to A1 and A2. Although dilated cubes nicely reflect the
properties of expansive dilations, they have a critical defect, that is, dilated cubes with
different levels have no nested property, which makes it impossible to establish Journé’s
covering lemma for these dilated cubes. To overcome this difficulty, we invoke the dyadic
cubes of Christ [14] for general spaces of homogeneous type in the sense of Coifman
and Weiss [15]. To be precise, we establish some subtle relations in Lemma 3.10 below
between dilated cubes and dyadic cubes, which further induce some important relations
between the sequence spaces #p,w( !A) defined via dilated cubes and #̇p,w( !A) defined via
dyadic cubes (see Lemma 3.12 below). Applying the nested property of dyadic cubes
of Christ (see also Lemma 3.7 below) and Journé’s covering lemma in [8, Lemma 4.9],
we establish a weighted anisotropic product variant of the Plancherel–Pôlya inequality
on #p,w( !A) (see Lemmas 3.13(ii) and 3.15(ii) below), which, together with some stan-
dard argument (see, for example, the proof of Bownik [3, Theorem 3.12]), yields the
ϕ-transform characterization of #p,w( !A). Applying the ϕ-transform characterizations of
Hp

w( !A) and Lp,w( !A) together with some ideas from Wang [40] and Frazier and Jawerth
[21], we then prove that the dual space of Hp

w( !A) is just Lp,w( !A). We particularly point
out that Lemma 3.13 below plays a key role, whose proof is quite geometrical in the sense
that we prove this lemma via subtly classifying the dyadic cubes of Christ in [14] (see
also Lemma 3.7 below) and its associated Journé’s covering lemma in [8, Lemma 4.9].

The main results of this article are stated in Section 2 and their proofs are given in
Section 3 below.

Finally, we make some conventions on symbols. Throughout this article, we denote by
C a positive constant which is independent of the main parameters, but it may vary from
line to line. Constants with subscripts, such as C0, do not change in different occurrences.
The symbol A " B means that A ! CB and the symbol A ∼ B means that A " B and
B " A. Denote by $E the cardinality of the set E. For any p ∈ [1, ∞], we denote by p′ its
conjugate index, namely, 1/p + 1/p′ = 1. We also let N := {1, 2, . . .}, Z+ := {0} ∪ N and
Zn

+ := (Z+)n. For any a, b ∈ R, we denote min{a, b} and max{a, b}, respectively, by a∧ b

and a ∨ b. If E is a subset of Rn, we denote by χE its characteristic function. For any
multi-index γ := (γ1, . . . , γn) ∈ Zn

+, let |γ| := γ1 + · · ·+γn, and ∂γ := ( ∂
∂ξ1

)γ1 · · · ( ∂
∂ξn

)γn .

We also denote (
n times︷ ︸︸ ︷

0, . . . , 0 ) by the symbol !0n.
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2. Main results

We begin with some notions. Let m, n ∈ Z. In what follows, for convenience, we often
let n1 := n and n2 := m.

Definition 2.1. Let i ∈ {1, 2}. A real ni × ni matrix Ai is called an expansive dilation,
shortly a dilation, if minλ∈σ(Ai) |λ| > 1, where σ(Ai) denotes the set of all eigenvalues
of Ai. A quasi-norm associated with expansive matrix Ai is a Borel measurable mapping
ρAi : Rni → [0,∞), for simplicity, denoted as ρi, such that

(i) ρi(xi) > 0 for xi )= 0;
(ii) ρi(Aixi) = biρi(xi) for xi ∈ Rni , where bi := |det Ai|;
(iii) ρi(xi + yi) ! Hi[ρi(xi) + ρi(yi)] for all xi, yi ∈ Rni , where Hi # 1 is a constant.

Throughout the whole article, we always let A1 and A2 be expansive dilations, re-
spectively, on Rn1 and Rn2 , and ρ1 and ρ2 the corresponding quasi-norms. Such ρ1 and
ρ2 indeed exist; see [1, p. 8]. Let i ∈ {1, 2}. The set Qi of dilated cubes of Rni is defined
by

Qi :=
{

Qi := Aji
i

(
[0, 1)ni + ki

)
: ji ∈ Z, ki ∈ Zni

}
.

For any Qi := Aji
i ([0, 1)ni + ki), let xQi := Aji

i ki be the “lower-left corner” of Qi. It is
easy to see that, for any fixed ji ∈ Z, {Qi := Aji

i ([0, 1)ni + ki): ki ∈ Zni} is a partition
of Rni . Denote by R := Q1 × Q2 the set of all dilated rectangles.

For any function ϕ(i) on Rni , ϕ on Rn × Rm, ji ∈ Z, ki ∈ Zni , Qi := A−ji
i ([0, 1)ni +ki)

and Q := Q1 × Q2, let ϕ(i)
ji

(xi) := bji
i ϕ(i)(Aji

i xi) for all xi ∈ Rni ,

ϕj1,j2(x) := bj1
1 bj2

2 ϕ
(
Aj1

1 x1, Aj2
2 x2
)

for all x := (x1, x2) ∈ Rn × Rm,

and, correspondingly,

ϕ(i)
Qi

(xi) := |Qi|
1
2 ϕ(i)

ji
(xi − xQi), ϕQ(x) := |Q| 1

2 ϕj1,j2(x1 − xQ1 , x2 − xQ2), (2.1)

where | · | means the Lebesgue measure on Rni or Rn × Rm, respectively.
Denote by S(Rn × Rm) the set of all Schwartz functions on Rn × Rm and by

S ′(Rn × Rm) its topological dual space. As in [22], we let

S∞
(
Rn × Rm

)
:=
{

φ ∈ S
(
Rn × Rm

)
:
∫

Rni

φ(x1, x2)xαi
i dxi = 0, αi ∈ Zni

+ , i ∈ {1, 2}
}

.

We consider S∞(Rn × Rm) as a subspace of S(Rn × Rm), including the topology.
Thus, S∞(Rn × Rm) is a complete metric space (see, for example, [34, p. 21, (3.7)]).
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Equivalently, S∞(Rn × Rm) can be defined as a set of φ ∈ S(Rn × Rm) such that the
semi-norms

‖φ‖∗
M := sup

|γ|!M
sup

ξ∈Rn×Rm

∣∣∂γ φ̂(ξ)
∣∣

2∏

i=1

(
|ξi|M + |ξi|−M

)
< ∞

for all M ∈ Z+ (see [5, p. 1479]). The semi-norms {‖ · ‖∗
M }M∈Z+ generate a topol-

ogy of a locally convex space on S∞(Rn × Rm) which coincides with the topology of
S∞(Rn × Rm) as a subspace of a locally convex space S(Rn × Rm). Let S ′

∞(Rn × Rm)
be the topological dual space of S∞(Rn × Rm) with the weak-∗ topology.

For any N ∈ Z+, let SN (Rn) be the set of all ϕ ∈ S(Rn) satisfying
∫

Rn ϕ(x)xα dx = 0
for any α ∈ Zn

+ with |α| ! N . Given two functions φ(i) on Rni , i ∈ {1, 2}, define
φ := φ(1) ⊗φ(2) by φ(x1, x2) := φ(1)(x1)φ(2)(x2) for all (x1, x2) ∈ Rn1 ×Rn2 . Recall that

!0ni :=
(

ni times︷ ︸︸ ︷
0, . . . , 0

)
.

Definition 2.2. Let S∞(Rn × Rm) be the set of all functions of the form ϕ := ϕ(1) ⊗ϕ(2)

with ϕ(i) ∈ S(Rni), i ∈ {1, 2}, such that

(i) supp ϕ̂(i) ⊂ [−π, π]ni \ {!0ni}, and
(ii) supj∈Z |ϕ̂(i)((A∗

i )jξi)| > 0 for all ξi ∈ Rni \ {!0ni}, where A∗
i denotes the transpose

of Ai.

Suppose that ϕ, ψ ∈ S∞(Rn × Rm). The pair (ϕ, ψ) is called an admissible pair of
dual frame wavelets if, in addition to (i) and (ii),

(iii)
∑

j∈Z ϕ̂(i)((A∗
i )jξi)ψ̂(i)((A∗

i )jξi) = 1 for all ξi ∈ Rni \ {!0ni}.

We should point out that such ϕ and ψ indeed exist. Indeed, by [5, Lemma 3.6], for
any ϕ ∈ S∞(Rn × Rm), there exists some ψ ∈ S∞(Rn × Rm) such that (ϕ, ψ) is an
admissible pair of dual frame wavelets.

The following Calderón reproducing formulae are product variants of [5, Lemmas 2.6
and 2.8], which play an important role in the whole article.

Lemma 2.3.

(i) Let φ := φ(1) ⊗ φ(2), where, for i ∈ {1, 2}, φ(i) ∈ S(Rni) satisfies that supp φ̂(i) is
compact and bounded away from the origin and, for all ξi ∈ Rni \ {!0ni},

∑

ji∈Z
φ̂(i)
((

A∗
i

)jiξi

)
= 1. (2.2)
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Then, for any f ∈ S∞(Rn × Rm) (resp. f ∈ S ′
∞(Rn × Rm)),

f =
∑

j1,j2∈Z
f ∗ φj1,j2 (2.3)

holds true in S∞(Rn × Rm) (resp. S ′
∞(Rn × Rm)).

(ii) Let (ϕ, ψ) be an admissible pair of dual frame wavelets as in Definition 2.2. For any
f ∈ S∞(Rn × Rm) (resp. f ∈ S ′

∞(Rn × Rm)),

f =
∑

R∈R
〈f, ϕR〉ψR (2.4)

holds true in S∞(Rn × Rm) (resp. S ′
∞(Rn × Rm)), where ϕR and ψR are as in (2.1).

The proof of Lemma 2.3 is given in Section 3. Based on the Calderón reproducing
formulae, we can establish some new equivalent characterizations of weighted anisotropic
product Hardy spaces in [8].

We first recall the weight class of Muckenhoupt associated with A introduced in [5].

Definition 2.4. Let p ∈ [1, ∞), A be a dilation and w a non-negative measurable function
on Rn. Let b := |det A|. The function w is said to belong to the weight class Ap(Rn; A)
of Muckenhoupt, if there exists a positive constant C such that, when p ∈ (1, ∞),

sup
x∈Rn

sup
k∈Z

{
b−k

∫

Bρ(x,bk)

w(y) dy

}{
b−k

∫

Bρ(x,bk)

[
w(y)
]−1/(p−1)

dy

}p−1
! C

and, when p = 1,

sup
x∈Rn

sup
k∈Z

{
b−k

∫

Bρ(x,bk)

w(y) dy

}{
ess sup

y∈Bρ(x,bk)

[
w(y)
]−1} ! C;

and the minimal constant C as above is denoted by Cp,A,n(w). Here, for all x ∈ Rn and
k ∈ Z, Bρ(x, bk) := {y ∈ Rn: ρ(x − y) < bk}.

Define

A∞
(
Rn; A

)
:=
⋃

1!p<∞
Ap

(
Rn; A

)
.

Definition 2.5. For i ∈ {1, 2}, let Ai be a dilation on Rni and !A := (A1, A2). Let
p ∈ (1, ∞) and w be a non-negative measurable function on Rn × Rm. The function w

is said to be in the weight class Ap( !A) of Muckenhoupt, if w(x1, ·) ∈ Ap(A2) for almost
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every x1 ∈ Rn and ess supx1∈Rn Cp,A2,m(w(x1, ·)) < ∞, and w(·, x2) ∈ Ap(A1) for almost
every x2 ∈ Rm and ess supx2∈Rm Cp,A1,n(w(·, x2)) < ∞. In what follows, let

Cq, )A,n,m(w) := max
{

ess sup
x1∈Rn

Cp,A2,m

(
w(x1, ·)

)
, ess sup

x2∈Rm
Cp,A1,n

(
w(·, x2)

)}
.

Define

A∞( !A) :=
⋃

1<p<∞
Ap( !A).

The above product anisotropic weights also satisfy similar basic properties of the
classical weights; see [8, Proposition 2.10] for more details.

Recall that a distribution f ∈ S ′(Rn × Rm) is said to vanish weakly at infinity if, for
any ϕ(1) ∈ S(Rn) and ϕ(2) ∈ S(Rm), f ∗ ϕk1,k2 → 0 in S ′(Rn × Rm) as k1, k2 → −∞,
where ϕ := ϕ(1) ⊗ ϕ(2); see [8]. Denote by S ′

0(Rn × Rm) the set of all f ∈ S ′(Rn × Rm)
vanishing weakly at infinity.

Let Φ := Φ(1) ⊗ Φ(2) with Φ(i) ∈ S(Rni) satisfying Φ̂(i)(!0ni) = 0, i ∈ {1, 2}. For any
f ∈ S ′(Rn × Rm) and all x ∈ Rn × Rm, the anisotropic product Lusin-area function of
f is defined by

!SΦ(f)(x) :=
{ ∑

k1,k2∈Z
bk1

1 bk2
2

∫

Bρ1 (x1,b
−k1
1 )×Bρ2 (x2,b

−k2
2 )

∣∣f ∗ Φk1,k2(y)
∣∣2 dy

} 1
2

.

The weighted anisotropic product Hardy space Hp
w( !A) was defined via the anisotropic

product Lusin-area function in [8] as follows. The class of allowable test functions in [8]
was somewhat restricted; see the following Definition 2.6. Later, we shall deduce, from
Theorem 2.14, that this restriction can be relaxed to Φ ∈ S∞(Rn × Rm).

Definition 2.6. Let Ψ := Ψ (1) ⊗Ψ (2) and Φ := Φ(1) ⊗Φ(2) be such that Ψ (i), Φ(i) ∈ S(Rni),
i ∈ {1, 2}, satisfying

(i) supp Ψ (i) ⊂ Bρi(!0ni , 1) := {xi ∈ Rni : ρi(xi) < 1}, Ψ (i) ∈ SNi(Rni), where Ni is
some fixed non-negative integer, and Ψ̂ (i)(ξ) # C > 0 for ξ ∈ {xi ∈ Rni : ai !
ρi(xi) ! bi}, where 0 < ai < bi < 1 are constants;

(ii) supp Φ̂(i) is compact and bounded away from the origin;
(iii) for all ξi ∈ Rni \ {!0ni},

∑

j∈Z
Ψ̂ (i)
((

A∗
i

)j
ξi

)
Φ̂(i)
((

A∗
i

)j
ξi

)
= 1.

We should point out that such pairs (Ψ, Φ) indeed exist by virtue of [8, Proposi-
tion 2.14].
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Definition 2.7. Let p ∈ (0, 1], w ∈ A∞( !A) and Φ be as in Definition 2.6.

(i) (See [8].) The weighted anisotropic product Hardy space Hp
w( !A) is defined by

Hp
w( !A) :=

{
f ∈ S ′

0
(
Rn × Rm

)
: ‖f‖Hp

w( )A) :=
∥∥!SΦ(f)

∥∥
Lp

w(Rn×Rm) < ∞
}

.

(ii) The weighted anisotropic product Hardy space H̃p
w( !A) is defined via replacing

S ′
0(Rn × Rm) in (i) by S ′

∞(Rn × Rm).

The following theorem shows that Hp
w( !A) and H̃p

w( !A) are equivalent in some sense.

Proposition 2.8. Let w ∈ A∞( !A) and p ∈ (0, 1]. Then Hp
w( !A) = H̃p

w( !A) in the following
sense: if f ∈ Hp

w( !A), then f ∈ H̃p
w( !A) and there exists a positive constant C, independent

of f , such that ‖f‖H̃p
w( )A) ! C‖f‖Hp

w( )A). Conversely, if f ∈ H̃p
w( !A), then there exists

a unique extension f̆ ∈ S ′
0(Rn × Rm) such that, for all ϕ ∈ S∞(Rn × Rm), 〈f̆ , ϕ〉 =

〈f, ϕ〉 and there exists a positive constant C, independent of f , such that ‖f̆‖Hp
w( )A) !

C‖f‖H̃p
w( )A).

The proof of Proposition 2.8 is given in Section 3.
Now let us introduce two kinds of weighted anisotropic product Hardy spaces defined,

respectively, via the Littlewood–Paley g-function.

Definition 2.9. Let p ∈ (0, ∞), w ∈ A∞( !A) and ϕ ∈ S∞(Rn × Rm).
The weighted anisotropic product Hardy space Ḧp

w( !A) is defined, via the Littlewood–
Paley g-function, to be the set of all f ∈ S ′

∞(Rn × Rm) such that

‖f‖Ḧp
w( )A) :=

∥∥∥∥

{ ∑

j1,j2∈Z
|ϕj1,j2 ∗ f |2

} 1
2
∥∥∥∥

Lp
w(Rn×Rm)

< ∞,

and the corresponding discrete weighted anisotropic product Hardy space ḧp
w( !A) is defined

to be the set of all complex-valued sequences s := {sR}R∈R such that

‖s‖ḧp
w( )A) :=

∥∥∥∥

{ ∑

R∈R
|sR|2|R|−1χR

} 1
2
∥∥∥∥

Lp
w(Rn×Rm)

< ∞.

For any Q ∈ R with Q := Q1 × Q2 := Aj1
1 ([0, 1)n + k1) × Aj2

2 ([0, 1)m + k2), where
j1, j2 ∈ Z and k1 ∈ Zn, k2 ∈ Zm, let the symbol

scale(Q) :=
(
scale(Q1), scale(Q2)

)
:= (j1, j2).

The weighted anisotropic product Campanato spaces are defined as follows, which are
weighted variants of anisotropic Campanato spaces on Rn in [1], and are proved to be
the dual spaces of weighted anisotropic Hardy spaces in Section 3.
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Definition 2.10. Let p ∈ (0, 1], w ∈ A∞( !A) and ϕ ∈ S∞(Rn × Rm).

(i) The space Lp,w( !A) is defined to be the set of all f ∈ S ′
∞(Rn × Rm) such that

‖f‖Lp,w( )A) :=
{

sup
w(Ω)<∞

1
[w(Ω)] 2

p −1

∫

Ω

∑

j1,j2∈Z

∑

R∈R, R⊂Ω
scale(R)=(−j1,−j2)

∣∣ϕj1,j2 ∗ f(x)
∣∣2

× |R|2

[w(R)]2 χR(x)w(x) dx

} 1
2

< ∞,

where Ω runs over all open sets in Rn × Rm with w(Ω) < ∞.
(ii) The corresponding sequence space #p,w( !A) is defined to be the set of all complex-

valued sequences s := {sR}R∈R such that

‖s‖,p,w( )A) :=
{

sup
w(Ω)<∞

1
[w(Ω)] 2

p −1

∑

R∈R, R⊂Ω
|sR|2 |R|

w(R)

} 1
2

< ∞,

where Ω runs over all open sets in Rn × Rm with w(Ω) < ∞.

Definition 2.11. Let ϕ := ϕ(1) ⊗ ϕ(2) and ψ := ψ(1) ⊗ ψ(2), with ϕ(i), ψ(i) ∈ S(Rni) for
i ∈ {1, 2}, such that supp ϕ̂(i) and supp ψ̂(i) are compact and bounded away from the
origin. The ϕ-transform Sϕ is the map taking each f ∈ S ′

∞(Rn × Rm) to the sequence
Sϕf := {(Sϕf)R}R∈R defined by (Sϕ(f))R := 〈f, ϕR〉. The inverse ϕ-transform Tψ is
the map taking the sequence s := {sR}R∈R to Tψs :=

∑
R∈R sRψR.

Theorem 2.12. Let p ∈ (0, ∞) and w ∈ A∞( !A). The ϕ-transform Tψ : ḧp
w( !A) → Ḧp

w( !A)
and the inverse transform Sϕ : Ḧp

w( !A) → ḧp
w( !A) are bounded. Moreover, if (ψ, ϕ) is an

admissible pair of dual frame wavelets as in Definition 2.2, then the map Tψ ◦ Sϕ is an
identity on Ḧp

w( !A; ϕ) = Ḧp
w( !A; ϕ̃).

The above results also hold if Ḧp
w( !A) and ḧp

w( !A) are replaced, respectively, by Lp,w( !A)
and #p,w( !A) for p ∈ (0, 1].

The proof of Theorem 2.12 is given in Section 3.
Then, by Theorem 2.12, with proofs similar to those of [3, Corollaries 3.13 and 3.14],

we can obtain that the space Lp,w( !A), equipped with ‖ ·‖ Lp,w( )A), is well defined and
complete as follows, the details being omitted.

Corollary 2.13. Let p ∈ (0, ∞) and w ∈ A∞( !A). The space Ḧp
w( !A) is well defined in the

following sense that, for any ϕ, ϕ̃ ∈ S∞(Rn × Rm), their associated quasi-norms, respec-
tively, in Ḧp

w( !A; ϕ) and Ḧp
w( !A; ϕ̃) are equivalent, namely, there exist positive constants

C1 and C2 such that, for all f ∈ Ḧp
w( !A),

C1‖f‖Ḧp
w( )A;ϕ̃) ! ‖f‖Ḧp

w( )A;ϕ) ! C2‖f‖Ḧp
w( )A;ϕ̃).
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When p ∈ (0, 1], the space Lp,w( !A) is also well defined in the above sense. Moreover, the
spaces Ḧp

w( !A) and Lp,w( !A), equipped respectively with ‖ ·‖ Ḧp
w( )A) and ‖ ·‖Lp,w( )A), are also

complete.

We have the following equivalences on the product Hardy spaces H̃p
w( !A) and Ḧp

w( !A).

Theorem 2.14. Let w ∈ A∞( !A) and p ∈ (0, 1]. Then f ∈ H̃p
w( !A) if and only if f ∈ Ḧp

w( !A).
Moreover, their corresponding quasi-norms are equivalent.

The proof of Theorem 2.14 is given in Section 3.
To show that Lp,w( !A) is the dual space of Ḧp

w( !A), we first establish the duality between
their corresponding sequence spaces.

Proposition 2.15. Let w ∈ A∞( !A) and p ∈ (0, 1]. Then (ḧp
w( !A))∗ = #p,w( !A) in the

following sense: for any t ∈ #p,w( !A), the map

Lt(h) := 〈t, h〉 :=
∑

R∈R
tRh̄R

for any h ∈ ḧp
w( !A) defines a continuous linear functional on ḧp

w( !A) with norm

‖Lt‖(ḧp
w( )A))∗ ! C‖t‖,p,w( )A),

where C is some positive constant, independent of t. Conversely, every L ∈ (ḧp
w( !A))∗

is of this form for some t ∈ #p,w( !A) with norm ‖t‖,p,w( )A) ! C‖L‖(ḧp
w( )A))∗ , where C is

some positive constant, independent of L.

The proof of Proposition 2.15 is also given in Section 3. Applying Proposition 2.15
and Theorem 2.12, we can prove that Lp,w( !A) is the dual space of Ḧp

w( !A) as follows.

Theorem 2.16. Let w ∈ A∞( !A) and p ∈ (0, 1]. Then (Ḧp
w( !A))∗ = Lp,w( !A) in the following

sense: there exists a positive constant C such that, for any g ∈ Lp,w( !A), there exists a
linear functional Lg(f) := 〈f, g〉 initially defined on f ∈ S∞(Rn × Rm), which has a
uniquely continuous extension to Ḧp

w( !A) and ‖Lg‖(Ḧp
w( )A))∗ ! C‖g‖Lp,w( )A). Conversely,

there exists a positive constant C such that every continuous linear functional L on
Ḧp

w( !A) can be written as L = Lg with some g ∈ Lp,w( !A) and ‖g‖Lp,w( )A) ! C‖L‖(Ḧp
w( )A))∗ .

The proof of Theorem 2.16 is given in Section 3.
We shall finish the article by giving another equivalent description of the duals of

anisotropic weighted Hardy spaces, which itself is quite interesting.

Definition 2.17. Let p ∈ (0, 1], w ∈ A∞( !A) and ϕ ∈ S∞(Rn × Rm). The space L̃p,w( !A)
is defined to be the set of all f ∈ S ′

∞(Rn × Rm) such that
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‖f‖L̃p,w( )A) :=
{

sup
w(Ω)<∞

1
[w(Ω)] 2

p −1

∫

Ω

∑

j1,j2∈Z

∑

R∈R, R⊂Ω
scale(R)=(−j1,−j2)

∣∣ϕj1,j2 ∗ f(x)
∣∣2

× |R|
w(R)χR(x) dx

} 1
2

< ∞,

where Ω runs over all open sets in Rn × Rm with w(Ω) < ∞.

Comparing with the definition of Lp,w( !A), an interesting phenomenon appearing in
the definition of L̃p,w( !A) is that the integral in Definition 2.17 is not weighted. However,
both spaces are equivalent as follows.

Corollary 2.18. Let w ∈ A∞( !A) and p ∈ (0, 1]. Then Lp,w( !A) = L̃p,w( !A) with equivalent
norms.

Finally, we shall comment about the proof of Corollary 2.18. By adapting the proof of
Theorem 2.12, we show that Theorem 2.12 also holds with Lp,w( !A) replaced by L̃p,w( !A),
p ∈ (0, 1], albeit with the same sequence space #p,w( !A). Once this is shown, Corollary 2.18
follows immediately, the details being omitted.

3. Proofs of main results

We first introduce some notation associated to expansive dilations.

Definition 3.1. Let A be an expansive dilation on Rn and σ(A) the set of all eigen-
values of A. If A is diagonalizable over C, then take λ− := minλ∈σ(A) |λ| and
λ+ := maxλ∈σ(A) |λ|. Otherwise, let λ− and λ+ be some positive real numbers such
that 1 < λ− < minλ∈σ(A) |λ| and λ+ > maxλ∈σ(A) |λ|. Set ζ+ := ln λ+

ln b and ζ− := ln λ−
ln b .

The following inequalities concerning A, ρ and the Euclidean norm | · | established in
[1, Section 2] are used in the whole article:

[
ρ(x)
]ζ− " |x| "

[
ρ(x)
]ζ+ for all ρ(x) # 1, (3.1)

[
ρ(x)
]ζ+ " |x| "

[
ρ(x)
]ζ− for all ρ(x) ! 1, (3.2)

bjζ− |x| "
∣∣Ajx
∣∣ " bjζ+ |x| for all j # 0, and (3.3)

bjζ+ |x| "
∣∣Ajx
∣∣ " bjζ− |x| for all j ! 0. (3.4)

Let i ∈ {1, 2}. For dilation Ai on Rni , let λi,−, λi,+, ζi,− and ζi,+ be associated to Ai

as above.

Proof of Lemma 2.3. To prove this lemma, we borrow some ideas from the proofs of
[5, Lemma 2.8], [41, Lemma 2.1] and [42, Lemma 2.1].
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(i) For any f ∈ S∞(Rn × Rm), M ∈ Z+ and j1, j2 ∈ Z, let us first show that

I :=
∑

j1,j2∈Z
‖f ∗ φj1,j2‖∗

M < ∞

by considering the following four cases.
We first assume that j1 # 0 and j2 < 0. Let β := (β1, β2) with β1 ∈ Zn

+ and β2 ∈ Zm
+ .

Since supp φ̂(i) is compact and bounded away from the origin, then there exists a positive
constant C such that supp φ̂(i) ⊂ {ξi ∈ Rni : 1/C ! |ξi| ! C}, i ∈ {1, 2}. Moreover,
noticing that φ̂(i)

ji
(ξi) = φ̂(i)((A∗

i )−jiξi), by [1, (3.13)] for j1 # 0 and a similar proof for
j2 < 0, we conclude that, for any M ∈ Z+,

sup
|β1|=M

∥∥∂β1 φ̂(1)
j1

∥∥
L∞(Rn) " 1 and

sup
|β2|=M

∥∥∂β2 φ̂(2)
j2

∥∥
L∞(Rm) " (λ2,+)−j2M sup

|β2|=M

∥∥∂β2 φ̂(2)
∥∥

L∞(Rm). (3.5)

Therefore, by (3.5), we know that

‖f ∗ φj1,j2‖∗
M

= sup
ξ∈Rn×Rm

sup
|β|!M

∣∣∂β ̂(f ∗ φj1,j2)(ξ)
∣∣(|ξ1|M + |ξ1|−M

)(
|ξ2|M + |ξ2|−M

)

! sup
ξ∈Rn×Rm

sup
|β|!M

∣∣∂β f̂(ξ)
∣∣ sup

|β1|!M

2∏

i=1

∣∣∂βi φ̂(i)
ji

(ξi)
∣∣(|ξi|M + |ξi|−M

)

" (λ2,+)−j2M sup
1/C!|(A∗

1)−j1ξ1|!C
1/C!|(A∗

2)−j2ξ2|!C

sup
|β|!M

∣∣∂β f̂(ξ)
∣∣(|ξ1|M + |ξ1|−M

)(
|ξ2|M + |ξ2|−M

)

=: I1 + I2 + I3 + I4,

where

I1 ∼ (λ2,+)−j2M sup
1/C!|(A∗

1)−j1ξ1|!C
1/C!|(A∗

2)−j2ξ2|!C

sup
|β|!M

∣∣∂β f̂(ξ)
∣∣|ξ1|M |ξ2|−M ,

and, similarly, I2, I3 and I4 are defined via replacing |ξ1|M |ξ2|−M in the definition of I1,
respectively, by |ξ1|M |ξ2|M , |ξ1|−M |ξ2|M and |ξ1|−M |ξ2|−M .

We shall only estimate I1 since the other estimates are similar. Let d be the minimal
positive integer such that (λ2,−)d/λ2,+ > 1. Thus, by (3.3) and (3.4), we have
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I1 ∼ (λ2,+)−j2M sup
1/C!|(A∗

1)−j1ξ1|!C
1/C!|(A∗

2)−j2ξ2|!C

sup
|β|!M

|ξ1|−1−dM |ξ2|dM+1∣∣∂β f̂(ξ)
∣∣(|ξ1|/|ξ2|

)(d+1)M+1

" (λ2,+)−j2M sup
1/C!|ξ1|!C
1/C!|ξ2|!C

∣∣(A∗
1
)j1ξ1
∣∣−dM−1∣∣(A∗

2
)j2ξ2
∣∣dM+1‖f‖∗

(d+1)M+1

" (λ1,−)−j1(dM+1)
( (λ2,−)d

λ2,+

)j2M

(λ2,−)j2‖f‖∗
(d+1)M+1

" (λ1,−)−j1(dM+1)(λ2,−)j2‖f‖∗
(d+1)M+1.

Hence,
∑

j1"0, j2<0 I1 " ‖f‖∗
(d+1)M+1. Similarly, we have

∑

j1"0, j2<0
(I2 + I3 + I4) " ‖f‖∗

(d+1)M+1.

Thus,
∑

j1"0, j2<0
‖f ∗ φj1,j2‖∗

M " ‖f‖∗
(d+1)M+1,

which is the desired estimate for this case.
In the remaining cases when j1 # 0 and j2 # 0, or j1 < 0 and j2 # 0, or j1 < 0 and

j2 < 0, we obtain similar estimates with d replaced by

d̃ := min
{
# ∈ N: (λi,−),/λi,+ > 1, i ∈ {1, 2}

}
.

Thus, combining these estimates, we obtain
∑

j1,j2∈Z
‖f ∗ φj1,j2‖∗

M " ‖f‖∗
(d̃+1)M+1. (3.6)

This implies that the series
∑

j1,j2∈Z f ∗ φj1,j2 converges unconditionally in the semi-
norms of S∞(Rn × Rm).

Let

f0 :=
∑

j1,j2∈Z
φj1,j2 ∗ f ∈ S∞

(
Rn × Rm

)
.

For all ξ ∈ (Rn × Rm) \ {(ξ1, ξ2) ∈ Rn × Rm: ξ1 = !0n or ξ2 = !0m}, by (2.2), we have∑
j1,j2∈Z φ̂((A∗

1)j1ξ1, (A∗
2)j2ξ2) = 1. Thus, we obtain

f̂0 =
∑

j1,j2∈Z

̂φj1,j2 ∗ f =
∑

j1,j2∈Z
φ̂j1,j2 f̂ = f̂
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in S(Rn × Rm). Noticing that the Fourier transform is a homeomorphism of S(Rn × Rm)
onto itself (see, for example, [34]), we obtain f0 = f . Thus, (2.3) holds for any f ∈
S∞(Rn × Rm).

A standard duality argument shows that (2.3) also holds for any f ∈ S ′
∞(Rn × Rm).

Indeed, let f ∈ S ′
∞(Rn × Rm). Since S ′

∞(Rn × Rm) is a dual, endowed with the weak-∗
topology, of the locally convex space S∞(Rn × Rm), f ∈ S ′

∞(Rn × Rm) if and only if
there exist a positive constant Cf and M ∈ Z+ such that, for all φ ∈ S∞(Rn × Rm),

∣∣〈f, φ〉
∣∣ ! Cf‖φ‖∗

M .

This observation and (3.6) further imply that, for all θ ∈ S∞(Rn × Rm),
∣∣∣∣

〈
f,
∑

j1,j2∈Z
φ̃j1,j2 ∗ θ

〉∣∣∣∣ ! Cf

∑

j1,j2∈Z
‖φ̃j1,j2 ∗ θ‖∗

M " ‖φ‖∗
(d̃+1)M+1,

where φ̃(·) := φ(−·). From this and the completeness of S∞(Rn × Rm), it follows that∑
j1,j2∈Z φj1,j2 ∗ f ∈ S ′

∞(Rn × Rm). Thus, for all θ ∈ S∞(Rn × Rm), it holds true that
〈 ∑

j1,j2∈Z
φj1,j2 ∗ f, θ

〉
=
〈

f,
∑

j1,j2∈Z
φ̃j1,j2 ∗ θ

〉
= 〈f, θ〉.

This finishes the proof of part (i) of Lemma 2.3.
(ii) Let (ϕ, ψ) be an admissible triplet of dual frame wavelets in S∞(Rn × Rm) as in

Definition 2.2. For f ∈ S∞(Rn × Rm) (resp. f ∈ S ′
∞(Rn × Rm)), by (2.3) with φ := ψ∗ϕ̃,

we conclude that

f =
∑

j1,j2∈Z
ψj1,j2 ∗ ϕ̃j1,j2 ∗ f (3.7)

in S∞(Rn × Rm) (resp. S ′
∞(Rn × Rm)).

For !A := (A1, A2), j1, j2 ∈ Z and !k := (k1, k2) ∈ Zn × Zm, let

!Aj1,j2 :=
(

Aj1
1 0n×m

0m×n Aj2
2

)
, !A∗

j1,j2 :=
( (A∗

1)j1 0n×m

0m×n (A∗
2)j2

)
and !k :=

(
k1
k2

)
,

where 0n×m denotes the n × m matrix with all entries 0, and 0m×n is similarly defined.
Let g := ϕ̃j1,j2 ∗ f . We first claim that, for all j1, j2 ∈ Z and f ∈ S∞(Rn × Rm) (resp.
f ∈ S ′

∞(Rn × Rm)),

g ∗ ψj1,j2(·) =
∑

k1∈Zn, k2∈Zm

b−j1
1 b−j2

2 g( !A−j1,−j2
!k)ψj1,j2(· − !A−j1,−j2

!k) (3.8)

in S∞(Rn × Rm) (resp. S ′
∞(Rn × Rm)). Assuming this claim for the moment, combining

this with (3.7), we see that (2.4) holds in S∞(Rn × Rm) (resp. S ′
∞(Rn × Rm)).



Author's personal copy

B. Li et al. / Journal of Functional Analysis 266 (2014) 2611–2661 2625

Now let us first prove the claim (3.8) for f ∈ S∞(Rn × Rm). By ϕ̂(i)
ji

(·) = ϕ̂(i)((A∗
i )−ji ·)

and supp ϕ̂(i) ⊂ ([−π, π]ni \ {!0ni}) with i ∈ {1, 2}, we see that g ∈ S∞(Rn × Rm) with
supp ĝ ⊂ !A∗

j1,j2([−π, π]n+m). Then, by using the Fourier orthonormal basis

{
b−j1/2

1 b−j2/2
2

(2π)(n+m)/2 e−i〈 )A−j1,−j2
)k,ξ〉
}

)k∈Zn×Zm

of L2( !A∗
j1,j2([−π, π]n+m)), we know that, for all ξ ∈ !A∗

j1,j2([−π, π]n+m),

ĝ(ξ) =
∑

)k∈Zn×Zm

b−j1
1 b−j2

2
(2π)n+m

[ ∫

)Aj1,j2 ([−π,π]n+m)

ĝ(y)ei〈 )A−j1,−j2
)k,y〉 dy

]
e−i〈 )A−j1,−j2

)k,ξ〉

in L2( !A∗
j1,j2([−π, π]n+m)). Since supp ĝ ⊂ !A∗

j1,j2([−π, π]n+m), !A∗
j1,j2([−π, π]n+m) can be

replaced by Rn × Rm in the above integral. Thus, by the Fourier inversion formula, we
find that, for any ξ ∈ !A∗

j1,j2([−π, π]n+m),

ĝ(ξ) =
∑

)k∈Zn×Zm

b−j1
1 b−j2

2 g( !A−j1,−j2
!k)e−i〈 )A−j1,−j2

)k,ξ〉

in L2( !A∗
j1,j2([−π, π]n+m)). Noticing that supp ψ̂j1,j2 ⊂ !A∗

j1,j2([−π, π]n+m), we can re-
place ĝ by its periodic extension without altering the product ĝψ̂j1,j2 . Using g ∗ ψj1,j2 =
(ĝψ̂j1,j2)∨ with f∨(·) := f̂(−·), we obtain

(g ∗ ψj1,j2)(x) =
∑

)k∈Zn×Zm

b−j1
1 b−j2

2 g( !A−j1,−j2
!k)
(
e−i〈 )A−j1,−j2

)k,ξ〉ψ̂j1,j2(ξ)
)∨(x)

=
∑

)k∈Zn×Zm

b−j1
1 b−j2

2 g( !A−j1,−j2
!k)ψj1,j2(x − !A−j1,−j2

!k) (3.9)

holds in L2(Rn × Rm) and hence pointwise.
To prove that (3.9) holds in S∞(Rn × Rm), we claim that, for any M ∈ Z+ and

!k ∈ Zn × Zm,
∑

)k∈Zn×Zm

b−j1
1 b−j2

2
∣∣g( !A−j1,−j2

!k)
∣∣∥∥ψj1,j2(· − !A−j1,−j2

!k)
∥∥∗

M
< ∞. (3.10)

Assuming the claim (3.10) for the moment, combining this with the completeness of
S∞(Rn × Rm), we see that

∑

)k∈Zn×Zm

b−j1
1 b−j2

2 g( !A−j1,−j2
!k)ψj1,j2(· − !A−j1,−j2

!k) ∈ S∞
(
Rn × Rm

)
.
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By this and (3.9), we find that (3.8) holds in S∞(Rn × Rm). This shows that (2.4) holds
true in S∞(Rn × Rm).

The proof of (3.10) is similar to the estimate of I in (i). For simplicity, we only prove
the claim (3.10) when j1 # 0 and j2 < 0. In this case, for any M ∈ Z+ and !k ∈ Zn ×Zm,
by the chain rule and [1, (3.13)] for j1 # 0 and a similar proof for j2 < 0, we have

∥∥ψj1,j2(· − !A−j1,−j2
!k)
∥∥∗

M

= sup
ξ∈Rn×Rm

sup
|γ|!M

∣∣∂γ
[
e−i〈 )A−j1,−j2

)k,ξ〉ψ̂j1,j2(ξ)
]∣∣

2∏

i=1

(
|ξi|M + |ξi|−M

)

" sup
ξ∈Rn×Rm

sup
|γ|!M

∣∣∂γ
(
e−i〈 )A−j1,−j2

)k,ξ〉)∣∣‖ψj1,j2‖∗
M

" ‖ψj1,j2‖∗
M sup

|γ1|!M

[
(λ1,−)−j1 |k1|

]|γ1| sup
|γ2|!M

[
(λ2,+)−j2 |k2|

]|γ2|

" ‖ψj1,j2‖∗
M |k1|M

[
(λ2,+)−j2 |k2|

]M
.

From this and |g( !A−j1,−j2y)| " ∏2
i=1[1 + ρi(A−ji

i yi)]−(2+Mζi,+) with ζi,+ as in Defini-
tion 3.1, it follows that

∑

)k∈Zn×Zm

∥∥b−j1
1 b−j2

2 g( !A−j1,−j2
!k)ψj1,j2(· − !A−j1,−j2

!k)
∥∥∗

M

" ‖ψj1,j2‖∗
M

∑

)k∈Zn×Zm

∣∣g( !A−j1,−j2
!k)
∣∣|k1|M

[
(λ2,+)−j2 |k2|

]M

" ‖ψj1,j2‖∗
M (λ2,+)−j2M

2∏

i=1

∫

Rni

|yi|M

[1 + ρi(A−ji
i yi)]2+Mζi,+

dyi " ‖ψj1,j2‖∗
M ,

which is a desired estimate and hence shows the above claim (3.10).
It remains to prove that (3.8) also holds true for any f ∈ S ′

∞(Rn × Rm). Let g :=
ϕ̃j1,j2 ∗ f . It is well known that g is a slowly increasing C∞ function on Rn × Rm (see,
for example, [34]).

For δ > 0, let gδ(·) := γ(δ·)g(·), where γ ∈ S(Rn × Rm) satisfies γ(!0n,!0m) = 1 and
supp γ̂ is compact. Then gδ ∈ S(Rn × Rm). If δ > 0 is sufficiently small, we further have
supp ĝδ ⊂ ( !A∗

j1,j2([−π, π]n+m)). By the already shown part of (3.8), we know that

ψj1,j2 ∗ gδ(·) = b−j1
1 b−j2

2
∑

)k∈Zn×Zm

gδ( !A−j1,−j2
!k)ψj1,j2(· − !A−j1,−j2

!k)

= b−j1
1 b−j2

2
∑

)k∈Zn×Zm

gδ(· − !A−j1,−j2
!k)ψj1,j2( !A−j1,−j2

!k) (3.11)

holds in S∞(Rn × Rm).
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Assume that g is at most polynomially increasing with order M ∈ Z+. Since ψj1,j2 ∈
S∞(Rn × Rm), then, for any fixed x ∈ Rn × Rm, we have

∣∣gδ(x − !A−j1,−j2
!k)ψj1,j2( !A−j1,−j2

!k)
∣∣

! Cγ,j1,j2 |x − !A−j1,−j2
!k|M
(
1 + | !A−j1,−j2

!k|
)−(M+n+m+1)

and
∑

)k∈Zn×Zm

b−j1
1 b−j2

2 |x − !A−j1,−j2
!k|M
(
1 + | !A−j1,−j2

!k|
)−(M+n+m+1)

! Cγ,j1,j2

∫

Rn×Rm

|x − y|M
(
1 + |y|

)−(M+n+m+1)
dy < ∞.

By applying the Lebesgue dominated convergence theorem and taking the limit as δ → 0
in (3.11), we conclude that (3.8) converges pointwise.

Notice that, for any θ ∈ S∞(Rn × Rm), since ψ ∈ S∞(Rn × Rm), by [8, Lemma 5.5],
we have

∣∣〈ψj1,j2(· − !A−j1,−j2
!k), θ
〉∣∣ ! Cj1,j2

2∏

i=1

[
1 + ρi(ki)

]−2−Mζi,+ .

From this and |gδ( !A−j1,−j2
!k)| ! Cγ(1 + | !A−j1,−j2

!k)M ! Cγ,j1,j2 [1 + ρi(ki)]Mζi,+ , it
follows that

∑

)k∈Zn×Zm

b−j1
1 b−j2

2
∣∣gδ( !A−j1,−j2

!k)
∣∣∣∣〈ψj1,j2(· − !A−j1,−j2), θ

〉∣∣

! Cγ,j1,j2

2∏

i=1

∫

Rni

[
1 + ρi(yi)

]−2
dyi < ∞.

This observation, together with (3.11) and the Lebesgue dominated convergence theorem,
implies that, for any θ ∈ S∞(Rn × Rm),

〈ψj1,j2 ∗ g, θ〉 = lim
δ→0

〈ψj1,j2 ∗ gδ, θ〉

= lim
δ→0

∑

)k∈Zn×Zm

b−jgδ( !A−j1,−j2
!k)
〈
ψj1,j2(· − !A−j1,−j2

!k), θ
〉

=
∑

)k∈Zn×Zm

b−j1
1 b−j2

2 g
(
!A−j1,−j2!k

)〈
ψj1,j2(· − !A−j1,−j2

!k), θ
〉
.

Thus, (3.8) holds in S ′
∞(Rn × Rm), which completes the proof of Lemma 2.3. !
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Proof of Proposition 2.8. Noticing that S ′
0(Rn × Rm) ⊂ S ′

∞(Rn × Rm), we obviously
have Hp

w( !A) ⊂ H̃p
w( !A).

Conversely, let (Ψ, Φ) be as in Definition 2.6. For any f ∈ H̃p
w( !A), by Lemma 2.3(i)

with φ := Ψ ∗ Φ, we obtain f =
∑

j1,j2∈Z Ψj1,j2 ∗ Φj1,j2 ∗ f in S ′
∞(Rn × Rm). This result

serves as a replacement of [8, Proposition 2.16] which is applicable only to elements
in S ′

0(Rn × Rm). By repeating the proof of [8, Lemma 4.6] with this modification, we
obtain the atomic decomposition f =

∑
j∈N λjaj in S ′

∞(Rn × Rm), where {aj}j∈N are
(p, q,!s)w-atoms as in [8, Definition 4.2], {λj}j∈N ⊂ C and (

∑
j∈N |λj |p)1/p " ‖f‖H̃p

w( )A).
Now, for any ϕ ∈ S(Rn × Rm), by the proof of [8, Lemma 4.10] (see [8, p. 424]), we know
that

∣∣∣∣
∫

Rn×Rm

aj(x)ϕ(x) dx

∣∣∣∣ =
∣∣aj ∗ ϕ̃(0)

∣∣ " 1,

where ϕ̃(·) := ϕ(−·).
Thus, if we define

〈f̆ , ϕ〉 :=
∑

j∈N
λj

∫

Rn×Rm

aj(x)ϕ(x) dx,

then

∣∣〈f̆ , ϕ〉
∣∣ "
∑

j∈N
|λj | " ‖f‖H̃p

w( )A).

Therefore, f̆ ∈ S ′(Rn × Rm), f̆ = f in S ′
∞(Rn × Rm) and f̆ =

∑
j∈N λjaj in

S ′(Rn × Rm), which, together with [8, Theorem 4.5], implies that f̆ ∈ Hp
w( !A) and

‖f̆‖Hp
w( )A) " ‖f‖H̃p

w( )A).
Now let us prove that the extension is unique. Assume that there exist two extensions

f̆1, f̆2 ∈ Hp
w( !A) with f̆1 = f̆2 = f in S ′

∞(Rn × Rm). We need to show that

g := f̆1 − f̆2 = 0 ∈ S ′(Rn × Rm
)
.

Set E := {(x1, x2) ∈ Rn × Rm: x1 = !0n or x2 = !0m}. Let us first prove supp ĝ ⊂ E .
Take any x ∈ (Rn × Rm) \ E and sufficiently small positive numbers δ1 and δ2 such that

(
Bρ1(x1, δ1) × Bρ2(x2, δ2)

)
∩ E = ∅.

Then, for any ϕ ∈ S(Rn × Rm) with supp ϕ ⊂ (Bρ1(x1, δ1) × Bρ2(x2, δ2)), we have
〈ĝ, ϕ〉 = 0. Indeed, for any (x′

1, x′
2) ∈ Rn × Rm and α1 ∈ Zn

+, α2 ∈ Zm
+ , we see that

∂α1ϕ
(
!0n, x′

2
)

= ∂α2ϕ
(
x′

1,!0m

)
= 0,
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which implies that ϕ̂ ∈ S∞(Rn × Rm). From this and g = 0 in S ′
∞(Rn × Rm), it follows

that 〈ĝ, ϕ〉 = 〈g, ϕ̂〉 = 0. Thus, supp ĝ ⊂ E .
Finally, let us prove g = 0 in S ′(Rn × Rm). Since f̆1, f̆2 ∈ Hp

w( !A), we have g ∈ Hp
w( !A).

By this and Lemma 4.10 in [8], we conclude that g ∈ S ′
0(Rn × Rm). Let φ := φ(1) ⊗ φ(2)

be as in Lemma 2.3(i). Then, there exist two integers ki and #i such that ki # #i and
supp φ̂i ⊂ Bρi(!0ni , bki

i ) \ Bρi(!0ni , b,i
i ), i ∈ {1, 2}. By the Calderón reproducing formula

[8, Lemma 2.15], we have g =
∑

j1,j2∈Z g ∗ φj1,j2 with convergence in S ′(Rn × Rm).
Therefore, for any ϕ ∈ S(Rn × Rm), we obtain

〈g, ϕ〉 =
∑

j1,j2∈Z
〈g ∗ φj1,j2 , ϕ〉 =

∑

j1,j2∈Z

〈
ĝ(·)φ̂
((

A∗
1
)−j1 ·,

(
A∗

2
)−j2 ·
)
, ϕ̂(−·)

〉
. (3.12)

Observe that, for any j1, j2 ∈ Z,

supp φ̂
((

A∗
1
)−j1 ·,

(
A∗

2
)−j2 ·
)

⊂
[
Bρ1

(
!0n, bk1+j1

1
)

\ Bρ1

(
!0n, b,1+j1

1
)]

×
[
Bρ2

(
!0m, bk2+j2

2
)

\ Bρ2

(
!0m, b,2+j2

2
)]

.

From this and supp ĝ ⊂ E , it follows that, for any j1, j2 ∈ Z,

(supp ĝ) ∩
(
supp φ̂

((
A∗

1
)−j1 ·,

(
A∗

2
)−j2 ·
))

= ∅.

Combining this with (3.12), we obtain 〈g, ϕ〉 = 0. This finishes the proof of Proposi-
tion 2.8. !

The proof of Theorem 2.12 needs a series of technical lemmas. First, we need to show
that the ϕ-transform Tψ as in Definition 2.11 is well defined, respectively, on ḧp

w( !A) and
#p,w( !A). Let us begin with the following technical lemma.

Lemma 3.2. Let Φ ∈ S∞(Rn × Rm) and Ψ := ψ(1) ⊗ ψ(2), where ψ(i) ∈ S∞(Rni), i ∈
{1, 2}. For any positive constants L1 and L2, there exist positive integers N1 and N2 and
positive constant C, depending only on L1 and L2, such that, for all P, Q ∈ R

∣∣〈ΨQ, ΦP 〉
∣∣ ! C‖Ψ‖N1,N2‖Φ‖N1,N2

2∏

i=1

{[
1 + ρi(xQi − xPi)

|Qi| ∨| Pi|

]−Li
(

|Qi|
|Pi|

∧ |Pi|
|Qi|

)Li
}

,

where

‖Ψ‖N1,N2 := sup
(x1,x2)∈Rn×Rm

sup
|γ1|!N1, |γ2|!N2

(
1 + |x1|

)N1(1 + |x2|
)N2∣∣∂γ1

x1 ∂
γ2
x2 Ψ(x1, x2)

∣∣.

Proof. To prove this lemma, we need the estimate [3, (3.18)], namely, for any ϕ, ψ ∈
S∞(Rn) and positive constant L, there exist a positive constant C and a positive inte-
ger N , depending only on L, such that, for all P, Q ∈ Q1,
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∣∣〈ϕQ, φP 〉
∣∣ ! C‖ϕ‖N‖φ‖N

(
1 + ρ(xQ − xP )

|Q| ∨| P |

)−L( |Q|
|P | ∧ |P |

|Q|

)L

, (3.13)

where ‖ϕ‖N := supx∈Rn, |γ|!N [1 + |x|]N |∂γϕ(x)|.
For any P, Q ∈ R, Φ ∈ S∞(Rn × Rm) and Ψ := ψ(1) ⊗ ψ(2) with ψ(i) ∈ S∞(Rni),

i ∈ {1, 2}, let ΨQ := ψ(1)
Q1

⊗ψ(2)
Q2

and ΦP be as in (2.1). Moreover, for any x := (x1, x2) ∈
Rn × Rm and P := P1 × P2 ∈ R with Pi := A−ji

i ([0, 1)ni + ki), ki ∈ Zni
i i ∈ {1, 2}, we

let

ΦP2(x1, x2) := |P2|−1/2Φ
(
x1, Aj2

2 x2 − k2
)
.

Then it is easy to show that

〈
ψ(2)

Q2
, ΦP

〉
:=
∫

Rm

ψ(2)
Q2

(x2)ΦP (x1, x2) dx2 =:
〈
ψ(2)

Q2
, ΦP2

〉
P1

∈ S∞
(
Rn
)
.

Consequently, using the fact that ΦP2(x1, ·) ∈ S∞(Rm) for all x1 ∈ Rn and (3.13) twice
(resp. with dilated cubes of Rn and Rm), for any positive constants L1 and L2, there
exist positive integers N1 and N2, depending only on L1 and L2, such that
∣∣〈ΨQ, ΦP 〉

∣∣ =
∣∣〈ψ(1)

Q1
,
〈
ψ(2)

Q2
, ΦP2

〉
P1

〉∣∣

"
∥∥ψ(1)∥∥

N1

∥∥〈ψ(2)
Q2

, ΦP2

〉∥∥
N1

(
1 + ρ1(xQ1 − xP1)

|Q1| ∨| P1|

)−L1( |Q1|
|P1| ∧ |P1|

|Q1|

)L1

"
∥∥ψ(1)∥∥

N1
sup

x1∈Rn
sup

|γ1|!N1

(
1 + |x1|

)N1∥∥ψ(2)∥∥
N2

∥∥∂γ1
x1 Φ(x1, ·)

∥∥
N2

×
2∏

i=1

{[
1 + ρi(xQi − xPi)

|Qi| ∨| Pi|

]−Li
(

|Qi|
|Pi|

∧ |Pi|
|Qi|

)Li
}

∼ ‖Ψ‖N1,N2‖Φ‖N1,N2

2∏

i=1

{[
1 + ρi(xQi − xPi)

|Qi| ∨| Pi|

]−Li
(

|Qi|
|Pi|

∧ |Pi|
|Qi|

)Li
}

,

which completes the proof of Lemma 3.2. !

The following technical lemma is just [8, Proposition 2.10(i)].

Lemma 3.3. (See [8].) Let q ∈ (1, ∞) and w ∈ Aq( !A). Then there exists a positive
constant C such that, for all x ∈ Rn × Rm and ki ∈ Z+, #i ∈ Z with i ∈ {1, 2},

w(Bρ1(x1, bk1+,1
1 ) × Bρ2(x2, bk2+,2

2 ))
w(Bρ1(x1, b,1

1 ) × Bρ2(x2, b,2
2 ))

! C
|Bρ1(x1, bk1+,1

1 ) × Bρ2(x2, bk2+,2
2 )|q

|Bρ1(x1, b,1
1 ) × Bρ2(x2, b,2

2 )|q

∼
[
bk1

1 bk2
2
]q

.
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For any w ∈ A∞( !A), the critical index of w is defined by

qw := inf
{

q ∈ (1, ∞): w ∈ Aq( !A)
}

. (3.14)

Obviously, qw ∈ [1,∞) and if qw ∈ (1, ∞), then w /∈ Aqw ( !A). Moreover, Johnson
and Neugebauer [25, p. 254] gave an example of w /∈ A1(2In×n) such that qw = 1 (see
also [8]), where In×n denotes the n × n identity matrix.

Lemma 3.4. Let w ∈ A∞( !A) with qw as in (3.14), q ∈ (qw,∞) and δ ∈ R. Then there
exist positive constants L1, L2 and C, depending on δ, such that, for all j1, j2 ∈ Z,

∑

R∈R, scale(R)=(j1,j2)

[w(R)]δ
∏2

i=1[1 + ρi(xRi)/(1 ∨ |Ri|)]Li
! C

2∏

i=1
b(2q|δ|+1)|ji|

i .

Proof. The proof of this lemma follows along the lines of its one parameter variant
[3, Lemma 2.11]. The key observation is that the measure w(x) dx is doubling with re-
spect to the action of the 2-parameter group of dilations !Aj1,j2 . Indeed, by Lemma 3.3,
there exists a positive constant C such that, for all x ∈ Rn × Rm, r1, r2 > 0, and
k1, k2 ∈ Z+,

w

( 2∏

i=1
Bρi

(
xi, (bi)kiri

)
)

! Cbk1q
1 bk2q

2 w

( 2∏

i=1
Bρi(xi, ri)

)
.

This practically means that w is a product q-doubling measure albeit with a positive
constant C. In particular, for any dilated rectangles P := P1 × P2, R := R1 × R2 ∈ R
of the form Pi := Aji

i ([0, 1)ni + ki) and Ri = Aji
i ([0, 1)ni + li), we have the following

analogue of [3, (2.6)], namely,

w(R) "
2∏

i=1

[
1 + ρi(ki − li)

]q
w(P ). (3.15)

Mimicking the proof of [3, Lemma 2.11] by considering four cases that j1, j2 # 0,
j1, j2 < 0, j1 # 0, j2 < 0 and j1 < 0, j2 # 0, we then obtain the desired estimate
in Lemma 3.4. !

Lemma 3.5. Suppose that w ∈ A∞( !A), p ∈ (0, ∞) and ψ := ψ(1) ⊗ ψ(2), where
ψ(i) ∈ S(Rni), i ∈ {1, 2}, satisfies that supp ψ̂(i) is compact and bounded away from
the origin. Then, the inverse ϕ-transform Tψ : ḧp

w( !A) → S ′
∞(Rn × Rm) is well defined

and continuous. The same result holds if ḧp
w( !A) is replaced by #p,w( !A), p ∈ (0, 1].

Proof. For any s ∈ ḧp
w( !A), by the definition of ḧp

w( !A), we know that, for all Q ∈ R,

|sQ| ! ‖s‖ḧp
w( )A)|Q| 1

2
[
w(Q)

]−1/p
.
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Applying Lemma 3.2 for any φ ∈ S∞(Rn × Rm) and P := [0, 1)n × [0, 1)m, we see that,
for all Q ∈ R,

∣∣〈ψQ, φ〉
∣∣ " ‖φ‖N1,N2

2∏

i=1

[
1 + ρi(xQi)

1 ∨ |Qi|

]−Li(
|Qi| ∧| Qi|−1)Li .

Combining the above estimates with Lemma 3.4, we then find that, for sufficiently large
L1 and L2,

∑

Q∈R
|sQ|
∣∣〈ψQ, φ〉

∣∣

" ‖φ‖N1,N2‖s‖ḧp
w( )A)

∑

j1,j2∈Z

∑

scale(Q)=(j1,j2)

2∏

i=1
bji/2−|ji|Li

i

[w(Q)]−1/p

[1 + ρi(xQi )
1∨|Qi| ]Li

" ‖φ‖N1,N2‖s‖ḧp
w( )A)

∑

j1,j2∈Z

2∏

i=1
bji/2+|ji|(2q/p+1)−|ji|Li

i " ‖φ‖N1,N2‖s‖ḧp
w( )A),

where q ∈ (qw,∞). Thus, by the definition of Tψs, we conclude that, for all φ ∈
S∞(Rn × Rm),

〈Tψs, φ〉 =
∑

Q∈R
sQ〈ψQ, φ〉.

Moreover, for all φ ∈ S∞(Rn × Rm), it holds true that
∣∣〈Tψs, φ〉

∣∣ " ‖φ‖N1,N2‖s‖ḧp
w( )A),

which implies that Tψ : ḧp
w( !A) → S ′

∞(Rn × Rm) is continuous.
Now, for any s ∈ #p,w( !A), by the definition of #p,w( !A), we know that

|sQ| ! ‖s‖,p,w( )A)
[
w(Q)

]1/p|Q|−1/2 for all Q ∈ R.

Then, repeating the above proof for ḧp
w( !A), we obtain the desired results for Tψ on

#p,w( !A). This finishes the proof of Lemma 3.5. !

Motivated by [3, Definition 3.9], we introduce the notion of majorant sequences.

Definition 3.6. Given a complex-valued sequence s := {sR}R∈R and r, λ > 0, define its
majorant sequence s∗

r,λ := {(s∗
r,λ)R}R∈R by

(
s∗

r,λ

)
R

:=
{ ∑

P ∈R, scale(P )=scale(R)

|sP |r
∏2

i=1[1 + |Ri|−1ρi(xRi − xPi)]λ

}1/r

.
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The spaces Lp,w( !A), #p,w( !A), and the sequences {(s∗
r,λ)Q}Q∈R can also be defined

“equivalently” via generalized dyadic rectangles associated to !A in some sense. Precisely,
let us begin with recalling the dyadic cubes associated to A introduced in [8, Lemma 2.3],
which is a slight variant of [14, Theorem 11].

Lemma 3.7. Let A be a dilation. Then there exists a set

Q̇1 :=
{

Q̇k
α ⊂ Rn: k ∈ Z, α ∈ Ik

}

of open subsets, where Ik is some index set, such that

(i) |Rn \ (
⋃
α Q̇k

α)| = 0 for each fixed k and Q̇k
α ∩ Q̇k

β = ∅ if α )= β;
(ii) for any α, β, k, # with # # k, either Q̇k

α ∩ Q̇,
β = ∅ or Q̇,

α ⊂ Q̇k
β ;

(iii) for each (#, β) and each k < #, there exists a unique α such that Q̇,
β ⊂ Q̇k

α;
(iv) there exist some negative integer v and positive integer u such that, for all Q̇k

α with
k ∈ Z and α ∈ Ik, there exists cQ̇k

α
∈ Q̇k

α satisfying that, for all x ∈ Q̇k
α,

Bρ

(
cQ̇k

α
, bvk−u

)
⊂ Q̇k

α ⊂ Bρ

(
x, bvk+u

)
.

In what follows, for convenience, we call {Q̇k
α}k∈Z,α∈Ik in Lemma 3.7 dyadic cubes.

Also, for any dyadic cube Q̇k
α with k ∈ Z and α ∈ Ik, we always define #(Q̇k

α) := k to be
its level.

Let Ai be a dilation on Rni , and Q̇i, #(Q̇i), vi, ui the same as in Lemma 3.7 corre-
sponding to Ai for i ∈ {1, 2}. Let Ṙ := Q̇1×Q̇2. For Ṙ ∈ Ṙ, we always write Ṙ := Ṙ1×Ṙ2
with Ṙi ∈ Q̇i and call Ṙ a dyadic rectangle. Moreover, we let #(Ṙ) := (#(Ṙ1), #(Ṙ2)), and
#(Ṙ) ! #(Ṗ ) always means that #(Ṙi) ! #(Ṗi), i ∈ {1, 2}.

Definition 3.8. For two sets E1 ⊂ Rn and E2 ⊂ Rm, let
∏2

i=1 Ei := E1 × E2. For any
locally integrable function f on Rn × Rm, the strong maximal function Ms(f) of f is
defined by setting, for all x ∈ Rn × Rm,

Ms(f)(x) := sup
y∈Rn×Rm, r1,r2>0

sup
x∈
∏2

i=1 Bρi(yi,ri)

1
|
∏2

i=1 Bρi(yi, ri)|

∫

∏2
i=1 Bρi (yi,ri)

∣∣f(z)
∣∣ dz.

The following lemma comes from [3, Lemma 2.9(a)].

Lemma 3.9. There exists a positive integer τi := τi(Ai, ni) for all Qi := Aji((0, 1]ni + ki)
with ji ∈ Z and ki ∈ Zni , i ∈ {1, 2}, such that

Bρi

(
cQi , bji−τi

i

)
⊂ Qi ⊂ Bρi

(
cQi , bji+τi

i

)
.

In what follows, for any α ∈ R, we denote by 4α5 the maximal integer not more
than α. Recall that $E denotes the cardinality of the set E.
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Lemma 3.10.

(i) For any Ṙ ∈ Ṙ, let UṘ := UṘ1
× UṘ2

with

UṘi
:=
{

Ri ∈ Qi: Ri ∩ Ṙi )= ∅, #(Ṙi) =
⌊(

scale(Ri) − ui

)
/vi

⌋}
, i ∈ {1, 2}.

For any R ∈ R, let UR := UR1 × UR2 with

URi :=
{

Ṙi ∈ Q̇i: Ri ∩ Ṙi )= ∅, #(Ṙi) =
⌊(

scale(Ri) − ui

)
/vi

⌋}
, i ∈ {1, 2}.

Then there exists a positive integer Ñ such that, for all R ∈ R and Ṙ ∈ Ṙ, $UṘ +
$UR ! Ñ . Moreover, for all w ∈ A∞( !A), R ∈ UṘ and Ṙ ∈ UR, w(Ṙ) ∼ w(R).

(ii) There exists a positive constant η0 := η0( !A, n, m) ∈ (0, 1) such that, for any open
set Ω ⊂ Rn × Rm,

⋃

R∈R, R⊂Ω

⋃

Ṙ∈UR

Ṙ ⊂ Ω(0) :=
{

x ∈ Rn × Rm: Ms(χΩ)(x) > η0
}

.

Proof. (i) For any R ∈ UṘ, let x̃i ∈ Ri ∩ Ṙi, i ∈ {1, 2}. Then, for any xi ∈ Ri, by
Lemma 3.9, Lemma 3.7(iv) and scale(Ri) ! vi#(Ṙi) + ui, we obtain

ρi(xi − cṘi
) ! H2

i

[
ρi(xi − cRi) + ρi(cRi − x̃i) + ρi(x̃i − cṘi

)
]

! 3H2
i bvi,(Ṙi)+ui+τi

i ,

which implies that

⋃

Ri∈UṘi

Ri ⊂ Bρi

(
cṘi

, 3H2
i bvi,(Ṙi)+ui+τi

i

)
, i ∈ {1, 2}. (3.16)

From this, vi[#(Ṙi) + 1] + ui < scale(Ri) ! vi#(Ṙi) + ui and Lemma 3.9, it follows that

$UṘ ! v1v2
|
∏2

i=1 Bρi(cṘi
, 3H2

i bvi,(Ṙi)+ui+τi

i )|
∏2

i=1 bvi[,(Ṙi)+1]+ui−τi

i

" 1.

Moreover, by (3.16), Lemma 3.3 and Lemma 3.7(iv), we have

w(R) ! w

( 2∏

i=1
Bρi

(
cṘi

, 3H2
i bvi,(Ṙi)+ui+τi

i

)
)

" w

( 2∏

i=1
Bρi

(
cṘi

, bvi,(Ṙi)−ui

i

)
)

" w(Ṙ).

The converse inequality also holds true via an argument similar to the above and hence
w(Ṙ) ∼ w(R).

Similarly, for any R ∈ R, we also have $UR " 1 and, for all Ṙ ∈ UR, w(R) ∼ w(Ṙ).
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(ii) For any R ∈ R and R ⊂ Ω with scale(R) = (j1, j2), Ṙ ∈ UR and x ∈ Ṙ, by an
estimate similar to that of (3.16), we have Ṙi ⊂ Bρi(cRi , 3H2

i bji−vi+τi
i ). From this and

Lemma 3.9, it follows that

Ms(χΩ)(x) # |
∏2

i=1 Bρi(cRi , 3H2
i bji−vi+τi

i ) ∩ Ω|
|
∏2

i=1 Bρi(cRi , 3H2
i bji−vi+τi

i )|

# |
∏2

i=1 Bρi(cRi , bji−τi
i )|

|
∏2

i=1 Bρi(cRi , 3H2
i bji−vi+τi

i )|
>

1
10

2∏

i=1

(
H2

i

)−1
bvi−2τi

i =: η0,

which completes the proof of Lemma 3.10. !

Definition 3.11. For any R ∈ R and UR as in Lemma 3.10(i), let χUR(Ṙ) be equal to
one if Ṙ ∈ UR or else zero. For any Ṙ ∈ Ṙ and UṘ as in Lemma 3.10(i), let χUṘ

(R) be
similarly defined.

Lemma 3.12.

(i) For any complex-valued sequence s := {sR}R∈R, its induced sequence ṡ is defined
by setting ṡ := {ṡṘ}Ṙ∈Ṙ, where ṡṘ :=

∑
R∈UṘ

|sR| with UṘ as in Lemma 3.10(i).
Then, for any w ∈ A∞( !A) and p ∈ (0, 1], there exists a positive constant C such
that ‖ṡ‖,̇p,w( )A) ! C‖s‖,p,w( )A), where the definition of the norm ‖ ·‖ ,̇p,w( )A) is the
same as ‖ ·‖ ,p,w( )A) but R and R are, respectively, replaced by Ṙ and Ṙ.

(ii) For any λ ∈ (0, ∞), the majorant sequence {(ṡ∗
2,λ)Ṙ}Ṙ∈Ṙ of ṡ is defined to be the

same as in Definition 3.6 but R, R, xRi , xPi , scale(P ) and scale(R) are, respectively,
replaced by Ṙ, Ṙ, cṘi

, cṖi
, #(Ṗ ) and #(Ṙ), i ∈ {1, 2}. Then there exists a positive

constant C such that, for all R ∈ R and Ṙ ∈ UR, (s∗
2,λ)R ! C(ṡ∗

2,λ)Ṙ.

Proof. (i) Let w ∈ A∞( !A). For any Ṙ ∈ Ṙ, let UṘ be as in Lemma 3.10(i). Then, for
any R ∈ UṘ, by Lemma 3.10(i), we have

w(R) ∼ w(Ṙ) and |Ṙ| ∼| R|. (3.17)

Moreover, for any open set Ω of Rn × Rm, similar to the proof of Lemma 3.10(ii), there
exists a positive constant η̃0 := η̃0(n, m, !A) ∈ (0, 1) such that

⋃

Ṙ∈Ṙ, Ṙ⊂Ω

⋃

R∈UṘ

⊂ Ω̃(0), (3.18)

where

Ω̃(0) :=
{

x ∈ Rn × Rm: MsχΩ(x) > η̃0
}

.
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Furthermore, for any q ∈ (qw,∞), by the Lq
w(Rn × Rm)-boundedness of Ms (see

[8, Proposition 2.10(ii)]), we also have w(Ω̃(0)) " w(Ω). Therefore, for any open set
Ω ⊂ Rn × Rm with w(Ω) < ∞, by (3.17), (3.18), w(Ω̃(0)) " w(Ω), p ∈ (0, 1] and
Lemma 3.10, we know that

1
[w(Ω)] 2

p −1

∑

Ṙ∈Ṙ, Ṙ⊂Ω

|ṡṘ|2 |Ṙ|
w(Ṙ)

" 1
[w(Ω)] 2

p −1

∑

Ṙ∈Ṙ, Ṙ⊂Ω

∑

R∈R
|sR|2 |R|

w(R)χUṘ
(R)

" 1
[w(Ω̃(0))] 2

p −1

∑

R∈R, R⊂Ω̃(0)

|sR|2 |R|
w(R)

∑

Ṙ∈Ṙ, Ṙ⊂Ω

χUR(Ṙ) " ‖s‖2
,p,w( )A).

From this and the arbitrariness of the open set Ω, it further follows that

‖ṡ‖,̇p,w( )A) " ‖s‖,p,w( )A).

(ii) For any λ ∈ (0, ∞), R ∈ R with scale(R) = (j1, j2) and any Ṙ ∈ UR, let us prove
that (s∗

2,λ)R " (ṡ∗
2,λ)Ṙ. To this end, we choose any other P ∈ R with scale(P ) = scale(R)

and Ṗ ∈ UP with #(Ṗ ) = #(Ṙ). Let xRi := Aji
i ki and xPi := Aji

i k̃i with ki, k̃i ∈ Zni

and ki )= k̃i, i ∈ {1, 2}. Then, by (3.1) and (3.2), there exists a constant ci such that
ρi(ki − k̃i) # bci

i and hence ρi(xRi − xPi) = bji
i ρ(ki − k̃i) # bji+ci

i . Let x̆i ∈ Ri ∩ Ṙi and
x̃i ∈ Pi ∩ Ṗi. Therefore, for i ∈ {1, 2}, by this estimate, Lemma 3.9, vi#(Ṗi)+ui < ji −vi,
and Lemma 3.7(iv), we have

ρi(cṘi
− cṖi

) ! H6
i

[
ρi(cṘi

− x̆i) + ρi(x̆i − cRi) + ρi(cRi − xRi) + ρi(xRi − xPi)
+ ρi(xPi − cṖi

) + ρi(cṖi
− x̃i) + ρi(x̃i − cṖi

)
]

! H6
i

(
3b−vi−ci

i + 3bτi−ci
i + 1

)
ρi(xRi − xPi).

Thus, for all R ∈ R and Ṙ ∈ UR, using the above estimate, Lemma 3.10(i) and (3.17),
we obtain

(
s∗

2,λ

)2
R

=
∑

scale(P )=scale(R)

|sP |2
∏2

i=1[1 + |Ri|−1ρi(xRi − xPi)]λ

"
∑

scale(P )=scale(R)

∑

,(Ṗ )=,(Ṙ)

|ṡṖ |2χUP (Ṗ )
∏2

i=1[1 + |Ṙi|−1ρi(cṘi
− cṖi

)]λ
"
(
ṡ∗

2,λ

)2
Ṙ

,

which completes the proof of Lemma 3.12. !

The following lemma is a generalization of [3, Lemma 3.10] and [40, Theorem 1.2 and
Lemma 3.1].
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Lemma 3.13. Let w ∈ A∞( !A) with qw as in (3.14).

(i) If p ∈ (0, ∞), r ∈ (0, ∞) and λ >q w(max{1, r/2, r/p}), then there exists a positive
constant C such that, for all s := {sR}R∈R,

‖s‖ḧp
w( )A) !

∥∥s∗
r,λ

∥∥
ḧp

w( )A) ! C‖s‖ḧp
w( )A).

(ii) If p ∈ (0, 1] and λ > 2qw/p, then there exists a positive constant C such that, for all
s := {sR}R∈R ∈ #p,w( !A),

‖s‖,p,w( )A) !
∥∥s∗

2,λ

∥∥
,p,w( )A) ! C‖s‖,p,w( )A).

Proof. (i) can be proved by an argument similar to that used in the proof of
[3, Lemma 3.10]; see also the proof of [21, Lemma 2.3], the details being omitted.

To show (ii), let w ∈ A∞( !A), p ∈ (0, 1] and λ ∈ R satisfy λ > 2qw/p. Observe that the
definition of #p,w( !A) is defined via the mean value on open sets, while the corresponding
one parameter space ḟ0,2

∞ (A; w) is defined via the mean value on dilated cubes. This
makes the proof of (ii) quite different from that of [3, Lemma 3.10]. We need to use
Journé’s covering lemma under the setting of expansive dilations (see [8, Lemma 4.9]).

Obviously, for all R ∈ R, |sR| ! (s∗
2,λ)R, which implies that ‖s‖,p,w( )A) ! ‖s∗

2,λ‖,p,w( )A).
To prove (ii), we still need to show ‖s∗

2,λ‖,p,w( )A) " ‖s‖,p,w( )A). Let Ω ⊂ Rn × Rm be any
fixed open set satisfying w(Ω) < ∞ and Ω(0) as in Lemma 3.10. For i ∈ {0, 1}, we define
inductively the sets

Ω(i+1) :=
{

x ∈ Rn × Rm: Ms(χΩ(i))(x) > η1
}

,

where η1 := η1( !A, n, m) ∈ (0, 1) is a constant to be fixed later.
For any {sR}R∈R, define {rR}R∈R and {tR}R∈R by letting rR := sR if R ⊂ Ω(2) or

else rR := 0 and tR := sR − rR for any R ∈ R. Moreover, picking any q ∈ (qw,∞), by
the Lq

w(Rn × Rm)-boundedness of Ms, we have w(Ω(2)) ∼ w(Ω). Thus, we obtain

1
[w(Ω)] 2

p −1

∑

R∈R
R⊂Ω

∣∣(s∗
2,λ

)
R

∣∣2 |R|
w(R) " I + J,

where

I := 1
[w(Ω(2))] 2

p −1

∑

R∈R
R⊂Ω

∣∣(r∗
2,λ

)
R

∣∣2 |R|
w(R)

and

J := 1
[w(Ω)] 2

p −1

∑

R∈R
R⊂Ω

∣∣(t∗
2,λ

)
R

∣∣2 |R|
w(R) .
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Estimate I. For any l1, l2 ∈ Z+ and R ∈ R, let

MR,l1,l2 :=
{

P ∈ R: scale(P ) = scale(R), bli
i ! |Ri|−1ρi(xPi − xRi) < bli+1

i , i ∈ {1, 2}
}

.

In the case that li for i ∈ {1, 2} is 0, the above condition is replaced by

|Ri|−1ρi(xPi − xRi) < bi.

Then we have

I ! 1
[w(Ω)(2)] 2

p −1

∑

j1,j2∈Z

∑

R∈R
scale(R)=(j1,j2)

∑

l1,l2∈Z+

∑

P ∈MR,l1,l2

|rP |2|P |[w(R)]−1
∏2

i=1[1 + |Ri|−1ρi(xRi − xPi)]λ
.

Since λ > 2qw/p with p ∈ (0, 1], we choose q ∈ (qw,∞) sufficiently close to qw such that
λ > 1 + q. For any P ∈ MR,l1,l2 , by (3.15), we see that

w(R) " bql1
1 bql2

2 w(P ).

Moreover, by an elementary lattice counting lemma (see [6, Lemma 2.8]), we conclude
that $MR,l1,l2 " bl1

1 bl2
2 . Thus,

I " 1
[w(Ω(2))] 2

p −1

∑

j1,j2∈Z

∑

P ∈R
scale(P )=(j1,j2)

|rP |2 |P |
w(P )

∑

l1,l2∈Z+

b−l1(λ−q−1)
1 b−l2(λ−q−1)

2

" 1
[w(Ω(2))] 2

p −1

∑

P ⊂Ω(2)

|sP |2 |P |
w(P ) " ‖s‖2

,p,w( )A),

which is a desired estimate for I.
Estimate J. We need to show J " ‖s‖,p,w( )A). Notice that, for any Ṙ ∈ UR, by

Lemma 3.10(i), |Ṙ| ∼| R| and w(Ṙ) ∼ w(R). Moreover, by the Lq
w(Rn × Rm)-bounded-

ness of Ms with q ∈ (qw, ∞) (see [8, Proposition 2.10(ii)]), we have w(Ω(0)) " w(Ω).
Also, observe that, for any R ∈ R and Ṙ ∈ Ṙ, R ∈ UṘ if and only if Ṙ ∈ UR, which, to-
gether with Lemma 3.10(i), further implies that

∑
R∈UṘ

χUR(Ṙ) =
∑

R∈UṘ
χUṘ

(R) ∼ 1.
Using these facts, together with the trivial fact that, for any R ∈ R,

∑
Ṙ∈UR

χUR(Ṙ) # 1,
Lemmas 3.12(ii) and 3.10(ii), we obtain

J ! 1
[w(Ω)] 2

p −1

∑

R∈R
R⊂Ω

∑

Ṙ∈UR

χUR(Ṙ)
∣∣(t∗

2,λ

)
R

∣∣2 |R|
w(R)

" 1
[w(Ω)] 2

p −1

∑

R∈R
R⊂Ω

∑

Ṙ∈UR

χUṘ
(R)
∣∣(ṫ∗

2,λ

)
Ṙ

∣∣2χUR(Ṙ) |Ṙ|
w(Ṙ)
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" 1
[w(Ω(0))] 2

p −1

∑

Ṙ⊂Ω(0), Ṙ∈Ṙ

[ ∑

R∈UṘ

χUR(Ṙ)
]∣∣(ṫ∗

2,λ

)
Ṙ

∣∣2 |Ṙ|
w(Ṙ)

∼ 1
[w(Ω(0))] 2

p −1

∑

Ṙ⊂Ω(0), Ṙ∈Ṙ

∣∣(ṫ∗
2,λ

)
Ṙ

∣∣2 |Ṙ|
w(Ṙ)

. (3.19)

Denote by mi(Ω(0)) the family of all dyadic rectangles Ṙ ⊂ Ω(0) which is maximal
in the Rni “direction”, where i ∈ {1, 2}. Let m(Ω(0)) := m1(Ω(0)) ∩ m2(Ω(0)). Notice
that, for any Ṙ ⊂ Ω(0), there exists at least one dyadic rectangle Ṗ ∈ m(Ω(0)) such that
Ṙ ⊂ Ṗ . Then, by (3.19), we know that

J " 1
[w(Ω(0))] 2

p −1

∑

Ṗ ∈m(Ω(0))

∑

Ṙ∈Ṙ, Ṙ⊂Ṗ

∑

Q̇∈Ṙ
,(Q̇)=,(Ṙ)

|ṫQ̇|2|Q̇|[w(Ṙ)]−1
∏2

i=1[1 + |Q̇i|−1ρi(cQ̇i
− cṘi

)]λ
. (3.20)

We now need to obtain some subtle decompositions on ṫQ̇. For any Ṗ := Ṗ1 × Ṗ2 ∈
m(Ω(0)), let Ṗ1,∗ ⊃ Ṗ1 be the maximal dyadic cube such that

∣∣(Ṗ1,∗ × Ṗ2) ∩ Ω(0)∣∣ > 5H4
1η1b2u1

1 b2u2
2 |Ṗ1,∗ × Ṗ2|, (3.21)

where we choose η1 ∈ (0, 1) small enough such that 5H4
1η1b2u1

1 b2u2
2 < 1. For BṖ1,∗

:=
Bρ1(cṖ1,∗

, 3H2
1 b

v1,(Ṗ1,∗)+u1
1 ) and UṖ1,∗

:= {Ṡ1 ∈ Q̇1: #(Ṡ1) = #(Ṗ1,∗), Ṡ1 ∩ BṖ1,∗
)= ∅},

using Lemma 3.7(iv), we see that

BU1 := Bρ1

(
cṖ1,∗

, 5H4
1 b

v1,(Ṗ1,∗)+u1
1

)
⊃
⋃

Ṡ1∈UṖ1,∗

Ṡ1.

Then, for any Ṡ1 ∈ UṖ1,∗
and x ∈ Ṡ1 × Ṗ2, by Lemma 3.7(iv) and (3.21), we have

Ms(χΩ(0))(x) #
|(BU1 × Bρ2(cṖ2

, bv2,(Ṗ2)+u2
2 )) ∩ Ω(0)|

|BU1 × Bρ2(cṖ2
, bv2,(Ṗ2)+u2

2 )|
# |(Ṗ1,∗ × Ṗ2) ∩ Ω(0)|

5H4
1 b2u1

1 b2u2
2 |Ṗ1,∗ × Ṗ2|

> η1,

which implies that (
⋃

Ṡ1∈UṖ1,∗
Ṡ1) × Ṗ2 ⊂ Ω(1).

On the other hand, for any Ṗ1,∗ × Ṗ2, there exists a dyadic rectangle Ṗ1,# ⊃ Ṗ1,∗ such
that Ṗ1,# × Ṗ2 ∈ m1(Ω(1)). Then, we further choose the maximal dyadic cube Ṗ2,∗ ⊃ Ṗ2
such that

∣∣(Ṗ1,# × Ṗ2,∗) ∩ Ω(1)∣∣ > 35H6
1 H4

2 b2u1
1 b2u2

2 η1|Ṗ1,# × Ṗ2|, (3.22)

where we choose η1 ∈ (0, 1) small enough such that 35H6
1 H4

2 b2u1
1 b2u2

2 η1 < 1.
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For BṖ2,∗
:= Bρ2(cṖ2,∗

, 3H2
2 b

v2,(Ṗ2,∗)+u2
2 ) and

UṖ2,∗
:=
{

Ṡ2 ∈ Q̇2: #(Ṡ2) = #(Ṗ2,∗), Ṡ2 ∩ BṖ2,∗
)= ∅
}

,

using Lemma 3.7(iv), we find that

BU2 := Bρ2

(
cṖ2,∗

, 5H4
2 b

v2,(Ṗ2,∗)+u2
2

)
⊃
⋃

Ṡ2∈UṖ2,∗

Ṡ2.

Then, for any x := (x1, x2) with x1 ∈ Bρ1(cṖ1,! , 7H6
1 b

v1,(Ṗ1,!)+u1
1 ) and x2 ∈ Ṡ2 ∈ UṖ2,∗

,
by Lemma 3.7(iv) and (3.22), we have

Ms(χΩ(1))(x) #
|(Bρ1(cṖ1,! , 7H6

1 b
v1,(Ṗ1,!)+u1
1 ) × BU2) ∩ Ω(1)|

|Bρ1(cṖ1,! , 7H6
1 b

v1,(Ṗ1,!)+u1
1 ) × BU2 |

# |(Ṗ1,# × Ṗ2,∗) ∩ Ω(1)|
35H6

1 H4
2 b2u1

1 b2u2
2 |Ṗ1,# × Ṗ2,∗|

> η1,

which, together with
⋃

Ṡ1∈UṖ1,∗
Ṡ1 ⊂ BU1 ⊂ Bρ1(cṖ1,! , 7H6

1 b
v1,(Ṗ1,!)+u1
1 ), implies that

⋃

Ṡ∈UṖ1,∗ ×UṖ2,∗

Ṡ ⊂ Ω(2).

Therefore, for any Q̇ ∈ Ṙ and Ṗ := Ṗ1 × Ṗ2 ∈ m(Ω(0)) with Q̇ := Q̇1 × Q̇2 )⊂ Ω(2)

and #(Q̇i) # #(Ṗi), i ∈ {1, 2}, by Lemma 3.7(ii), we obtain either

Q̇1 ∩ Ṡ1 = ∅ for all Ṡ1 ∈ UṖ1,∗
, (3.23)

or Q̇1 ⊂ Ṡ1 for some Ṡ1 ∈ UṖ1,∗
. Likewise, we either have

Q̇2 ∩ Ṡ2 = ∅ for all Ṡ2 ∈ UṖ2,∗
, (3.24)

or Q̇2 ⊂ Ṡ2 for some Ṡ2 ∈ UṖ2,∗
. Observe that either (3.23) or (3.24) must hold. Other-

wise, there would exist Ṡ := Ṡ1 × Ṡ2 ∈ UṖ1,∗
× UṖ2,∗

such that Q̇ ⊂ Ṡ ⊂ Ω(2). This is a
contradiction with Q̇ )⊂ Ω(2). Define two sequences {t̃Q̇}Q̇∈Ṙ and {ťQ̇}Q̇∈Ṙ, respectively,
by setting t̃Q̇ := ṡQ̇ if Q̇1 ∩ (

⋃
Ṡ1∈UṖ1,∗

Ṡ1) = ∅ with #(Q̇) # #(Ṗ ) or else t̃Q̇ := 0, and
ťQ̇ := ṡQ̇ if Q̇2 ∩ (

⋃
Ṡ2∈UṖ2,∗

Ṡ2) = ∅ with #(Q̇) # #(Ṗ ) or else ťQ̇ := 0. Notice that,
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by (3.20), if Q̇ ∈ Ṙ appears in the sum of J, then Q̇ )⊂ Ω(2) and #(Q̇) # #(Ṗ ) for some
Ṗ ∈ m(Ω(0)). This observation, together with (3.20) again, yields that J " J1 +J2, where

J1 := 1
[w(Ω(0))] 2

p −1

∑

Ṗ ∈m(Ω(0))

∑

Ṙ∈Ṙ, Ṙ⊂Ṗ

∑

Q̇∈Ṙ
,(Q̇)=,(Ṙ)

|t̃Q̇|2|Q̇|[w(Ṙ)]−1
∏2

i=1[1 + |Q̇i|−1ρi(cQ̇i
− cṘi

)]λ

and

J2 := 1
[w(Ω(0))] 2

p −1

∑

Ṗ ∈m(Ω(0))

∑

Ṙ∈Ṙ, Ṙ⊂Ṗ

∑

Q̇∈Ṙ
,(Q̇)=,(Ṙ)

|ťQ̇|2|Q̇|[w(Ṙ)]−1
∏2

i=1[1 + |Q̇i|−1ρi(cQ̇i
− cṘi

)]λ
.

Estimate J1. Let us first classify those cubes “Q̇” in J1 by the definition of t̃Q̇. In
what follows, let ŨṖ1,∗ denote the union of all the dyadic cubes in UṖ1,∗. For any Ṗ :=
Ṗ1 × Ṗ2 ∈ m(Ω(0)), we claim that

{
Q̇ := Q̇1 × Q̇2 ∈ Ṙ: Q̇1 ∩ ŨṖ1,∗

= ∅, #(Q̇) # #(Ṗ )
}

⊂
⋃

{Ṗ ′:=Ṗ ′
1×Ṗ ′

2∈Ṙ: ,(Ṗ ′)=,(Ṗ ), Ṗ ′
1∩ŨṖ1,∗ =∅}

{
Q̇ ∈ Ṙ: Q̇ ⊂ Ṗ ′}. (3.25)

Indeed, for a fixed Ṗ ∈ m(Ω(0)) and any Q̇1 ∩ ŨṖ1,∗
= ∅ with #(Q̇1) # #(Ṗ1), by (i)

and (iii) of Lemma 3.7, there exists a unique Ṗ ′
1,∗ ∈ Q̇1 such that #(Ṗ ′

1,∗) = #(Ṗ1,∗),
Q̇1 ⊂ Ṗ ′

1,∗ and Ṗ ′
1,∗ ∩ ŨṖ1,∗

= ∅. Furthermore, by Lemma 3.7(iii) again, there exists a
unique Ṗ ′

1 ∈ Q̇1 such that #(Ṗ ′
1) = #(Ṗ1) and Q̇1 ⊂ Ṗ ′

1. Then, we have Q̇1 ⊂ Ṗ ′
1,∗ ∩ Ṗ ′

1.
From this, #(Ṗ ′

1,∗) ! #(Ṗ ′
1) and Lemma 3.7(iii), it follows that Ṗ ′

1 ⊂ Ṗ ′
1,∗ and hence

Ṗ ′
1 ∩ ŨṖ1,∗

= ∅. By Lemma 3.7(iii), there also exists a unique Ṗ ′
2 ∈ Q̇2 such that Q̇2 ⊂ Ṗ ′

2
and #(Ṗ ′

2) = #(Ṗ2). Then we have Q̇ ⊂ Ṗ ′ := Ṗ ′
1 × Ṗ ′

2 satisfying #(Ṗ ′) = #(Ṗ ) and
Ṗ ′

1 ∩ ŨṖ1,∗
= ∅, which shows the above claim.

For any Ṗ2 ∈ Q̇2, let BṖ2
:= Bρ2(cṖ2

, 3H2
2 bv2,(Ṗ2)+u2

2 ) and

UṖ2
:=
{

Ṡ2 ∈ Q̇2: #(Ṡ2) = #(Ṗ2), Ṡ2 ∩ BṖ2
)= ∅
}

.

Denote by ŨṖ2
the union of all cubes in UṖ2

. Define two sets of dyadic cubes:

WṖ ,1 :=
{

Ṗ ′ := Ṗ ′
1 × Ṗ ′

2 ∈ Ṙ: #
(
Ṗ ′) = #(Ṗ ), Ṗ ′

1 ∩ ŨṖ1,∗
= ∅, Ṗ ′

2 ∩ ŨṖ ′
2

= ∅
}

and

WṖ ,2 :=
{

Ṗ ′ := Ṗ ′
1 × Ṗ ′

2 ∈ Ṙ: #
(
Ṗ ′) = #(Ṗ ), Ṗ ′

1 ∩ ŨṖ1,∗
= ∅, Ṗ ′

2 ⊂ ŨṖ ′
2

}
.
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Then, for any Ṗ ∈ m(Ω(0)), by (i) and (ii) of Lemma 3.7, we rewrite (3.25) as
{

Q̇ := Q̇1 × Q̇2 ∈ Ṙ: Q̇1 ∩ ŨṖ1,∗
= ∅, #(Q̇) # #(Ṗ )

}

⊂
( ⋃

Ṗ ′∈WṖ ,1

{
Q̇ ∈ Ṙ: Q̇ ⊂ Ṗ ′}

)
∪
( ⋃

Ṗ ′∈WṖ ,2

{
Q̇ ∈ Ṙ: Q̇ ⊂ Ṗ ′}

)
. (3.26)

Notice that, for any Ṗ ∈ m(Ω(0)) and Ṗ ′
1 ∩ ŨṖ1,∗

= ∅ with #(Ṗ ′
1) = #(Ṗ1), by Ṗ1 ⊂

Ṗ1,∗ ⊂ BṖ1,∗
:= Bρ1(cṖ1,∗

, 3H2
1 b

v1,(Ṗ1,∗)+u1
1 ) ⊂ ŨṖ1,∗

and Ṗ ′
1 ∩ ŨṖ1,∗

= ∅, we know that

ρ1(cṖ ′
1
− cṖ1

) #
ρ1(cṖ ′

1
− cṖ1,∗)

H1
− ρ1(cṖ1,∗

− cṖ1
)

# 3H2
1 b

v1,(Ṗ1,∗)+u1
1

H1
− b

v1,(Ṗ1,∗)u1
1 # 2H1b

v1,(Ṗ1,∗)+u1
1 .

Similarly, for any Ṗ ∈ m(Ω(0)) and Ṗ ′
2 ∩ ŨṖ2

= ∅ with #(Ṗ ′
2) = #(Ṗ2), we also have

ρ2(cṖ ′
2
− cṖ2

) # 2H2bv2,(Ṗ2)+u2
2 .

Thus, we obtain

WṖ ,1 ⊂
{

Ṗ ′ := Ṗ ′
1 × Ṗ ′

2 ∈ Ṙ: #
(
Ṗ ′) = #(Ṗ ),

ρ1(cṖ ′
1
− cṖ1

) # 2H1b
v1,(Ṗ1,∗)+u1
1 , ρ2(cṖ ′

2
− cṖ2

) # 2H2bv2,(Ṗ2)+u2
2

}
(3.27)

and

WṖ ,2 ⊂
{

Ṗ ′ := Ṗ ′
1 × Ṗ ′

2 ∈ Ṙ: #
(
Ṗ ′) = #(Ṗ ),

ρ1(cṖ ′
1
− cṖ1

) # 2H1b
v1,(Ṗ1,∗)+u1
1 , Ṗ ′

2 ⊂ ŨṖ2

}
. (3.28)

Let γ1(Ṗ ) := #(Ṗ1,∗) − #(Ṗ1). For any k1, k2 ∈ Z+, let

UṖ ,k1,k2
:=
{

Ṗ ′ ∈ Ṙ: #
(
Ṗ ′) = #(Ṗ ), ρ1(cṖ1

− cṖ ′
1
) ∼ bv1[,(Ṗ1)+γ1(Ṗ )]+k1

1 ,

ρ2(cṖ2
− cṖ ′

2
) ∼ bv2,(Ṗ2)+k2

2
}

and

UṖ ,k1
:=
{

Ṗ ′ ∈ Ṙ: #
(
Ṗ ′) = #(Ṗ ), ρ1(cṖ1

− cṖ ′
1
) ∼ bv1[,(Ṗ1)+γ1(Ṗ )]+k1

1 , Ṗ ′
2 ⊂ ŨṖ2

}
,

where ρ1(cṖ1
− cṖ ′

1
) ∼ bv1[,(Ṗ1)+γ1(Ṗ )]+k1

1 and ρ2(cṖ2
− cṖ ′

2
) ∼ bv2,(Ṗ2)+k1

2 mean, respec-
tively, that
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2H1bv1[,(Ṗ1)+γ1(Ṗ )]+u1+k1
1 ! ρ1(cṖ1

− cṖ ′
1
) < 2H1bv1[,(Ṗ1)+γ1(Ṗ )]+u1+k1+1

1

and

2H2bv2,(Ṗ2)+u2+k2
2 ! ρ2(cṖ2

− cṖ ′
2
) < 2H2bv2,(Ṗ2)+u2+k2+1

2 .

Thus, by this, (3.27) and (3.28), we conclude that

WṖ ,1 ⊂
⋃

k1,k2∈Z+

UṖ ,k1,k2
and WṖ ,2 ⊂

⋃

k1∈Z+

UṖ ,k1
.

Hence, for any j1, j2 ∈ Z+ and Ṗ ∈ m(Ω(0)), using above two decompositions and
(3.26), we obtain

{
Q̇ ∈ Ṙ: #(Q̇) = #(Ṗ ) + (j1, j2), Q̇1 ∩ ŨṖ1,∗

= ∅
}

⊂
( ⋃

k1,k2∈Z+

⋃

Ṗ ′∈UṖ ,k1,k2

{
Q̇ ∈ Ṙ: #(Q̇) = #(Ṗ ) + (j1, j2), Q̇ ⊂ Ṗ ′}

)

∪
( ⋃

k1∈Z+

⋃

Ṗ ′∈UṖ ,k1

{
Q̇ ∈ Ṙ: #(Q̇1) = #(Ṗ1) + j1, Q̇ ⊂ Ṗ ′}

)

=: VṖ ,j1,j2
∪ VṖ ,j1

. (3.29)

From this and
∑

Ṙ∈Ṙ, Ṙ⊂Ṗ

=
∑

j1,j2∈Z+

∑

Ṙ∈Ṙ, Ṙ⊂Ṗ
,(Ṙ)=,(Ṗ )+(j1,j2)

=
∑

j1∈Z+

∑

Ṙ∈Ṙ, Ṙ⊂Ṗ
,(Ṙ1)=j1+,(Ṗ1)

,

it follows that J1 " J(1)
1 + J(2)

1 , where

J(1)
1 := 1

[w(Ω(0))] 2
p −1

×
∑

Ṗ ∈m(Ω(0))

∑

j1,j2∈Z+

∑

Ṙ∈Ṙ, Ṙ⊂Ṗ
,(Ṙ)=,(Ṗ )+(j1,j2)

∑

Q̇∈VṖ ,j1,j2

|t̃Q̇|2|Q̇|[w(Ṙ)]−1
∏2

i=1[1 + |Q̇i|−1ρi(cQ̇i
− cṘi

)]λ

and

J(2)
1 := 1

[w(Ω(0))] 2
p −1

×
∑

Ṗ ∈m(Ω(0))

∑

j1∈Z+

∑

Ṙ∈Ṙ, Ṙ⊂Ṗ
,(Ṙ1)=j1+,(Ṗ1)

∑

Q̇∈VṖ ,j1

|t̃Q̇|2|Q̇|[w(Ṙ)]−1
∏2

i=1[1 + |Q̇i|−1ρi(cQ̇i
− cṘi

)]λ
.
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Then let us now estimate J(1)
1 and J(2)

1 , respectively.
Estimate J(1)

1 . Since λ > 2qw/p + 1, we choose q ∈ (qw,∞) to be close enough to qw

such that λ > 2q/p + 1. For any Ṗ ∈ m(Ω(0)), Ṙ ⊂ Ṗ with #(Ṙ) = #(Ṗ ) + (j1, j2) and
Q̇ ∈ VṖ ,j1,j2

, there exists a unique Ṗ ′ ∈ UṖ ,k1,k2
for some k1, k2 ∈ Z+ such that Ṗ ′ ⊃ Q̇

and #(Q̇) = #(Ṗ ′) + (j1, j2). Then, by Lemma 3.7(iv) and the definition of UṖ ,k1,k2
, we

see that Ṗ , Ṗ ′ ⊂ Bρ1(cṖ1
, 3H2

1 bv1[,(Ṗ1)+γ1(Ṗ )]+u1+k1+1
1 ) × Bρ2(cṖ2

, 3H2
2 bv2,(Ṗ2)+u2+k2+1

2 ).
From this, Ṙ ⊂ Ṗ , Q̇ ⊂ Ṗ ′, #(Q̇) = #(Ṙ) = #(Ṗ )+(j1, j2) = #(Ṗ ′)+(j1, j2), Lemma 3.7(iv)
and Lemma 3.3 with w ∈ Aq( !A), it follows that

w(Ṙ) $ w

( 2∏

i=1
Bρi

(
cṖi

, bvi[,(Ṗi)+ji]−ui

i

)
)

$ bqv1j1
1 bqv2j2

2 w

( 2∏

i=1
Bρi

(
cṖi

, bvi,(Ṗi)−ui

i

)
)

$ bqv1j1
1 bqv2j2

2 w(Ṗ )

$ bq{−v1[γ1(Ṗ )−j1]−k1}
1 b−q(k2−v2j2)

2

× w
(
Bρ1

(
cṖ1

, 3H2
1 bv1[,(Ṗ1)+γ1(Ṗ )]+u1+k1+1

1
)

× Bρ2

(
cṖ1

, 3H2
2 bv2,(Ṗ2)+u2+k2+1

2
))

$ bq{−v1[γ1(Ṗ )−j1]−k1}
1 b−q(k2−v2j2)

2 w
(
Ṗ ′)

$ bq{−v1[γ1(Ṗ )−j1]−k1}
1 b−q(k2−v2j2)

2 w(Q̇) (3.30)

and, similarly,

w
(
Ṗ ′) " bq[v1γ1(Ṗ )+k1]

1 bqk2
2 w(Ṗ ). (3.31)

Moreover, for any j1, j2, k1, k2 ∈ Z+, by Lemma 3.7, we conclude that

$
{

Ṙ ∈ Ṙ: Ṙ ⊂ Ṗ , #(Ṙ) = #(Ṗ ) + (j1, j2)
}

" b−v1j1
1 b−v2j2

2 and

$UṖ ,k1,k2
" bv1γ1(Ṗ )+k1

1 bk2
2 . (3.32)

Furthermore, for any Ṗ ∈ m(Ω(0)), Ṙ ⊂ Ṗ , Ṗ ′ ∈ UṖ ,k1,k2
with any k1, k2 ∈ Z+ and

Q̇ ⊂ Ṗ ′, by Ṗ1 ⊂ BṖ1,∗
and Ṗ ′

1 ∩ BṖ1,∗
= ∅, and (ii) and (iv) of Lemma 3.7, we find that

Ṗ ′
1 ∩ ŨṖ1,∗

= ∅, Q̇ ⊂ Ṗ ′ and

ρ1(cṖ ′
1
− cṖ1

) ! H2
1
[
ρ1(cṖ ′

1
− cQ̇1

) + ρ1(cQ̇1
− cṘ1

) + ρ1(cṘ1
− cṖ1

)
]

! H2
1
[
2b

v1,(Ṗ1,∗)+u1
1 + ρ1(cQ̇1

− cṘ1
)
]
,

which, together with
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ρ1(cQ̇1
− cṘ1

) #
ρ1(cQ̇1

− cṖ1,∗
)

H1
− ρ1(cṖ1,∗

− cṘ1
) # 2H1b

v1,(Ṗ1,∗)+u1
1 ,

implies that

ρ1(cṖ ′
1
− cṖ1

) " ρ1(cṘ1
− cQ̇1

). (3.33)

Similarly, for any Ṗ ∈ m(Ω(0)), Ṙ ⊂ Ṗ , Ṗ ′ ∈ UṖ ,k1,k2
and Q̇ ⊂ Ṗ ′, we also have

ρ2(cṖ ′
2
− cṖ2

) " ρ2(cṘ2
− cQ̇2

). (3.34)

Then, by (3.29), (3.30), (3.31), (3.32), (3.33), (3.34), p ∈ (0, 1], q ∈ (qw,∞) and
λ > 2q/p + 1, we know that

J(1)
1 " 1

[w(Ω(0))] 2
p −1

∑

Ṗ ∈m(Ω(0))

∑

j1,j2∈Z+

b−v1j1
1 b−v2j2

2

×
∑

k1,k2∈Z+

∑

Ṗ ′∈UṖ ,k1,k2

b
q[v1γ1(Ṗ )+k1]( 2

p −1)
1 b

qk2( 2
p −1)

2

[
w(Ṗ )
w(Ṗ ′)

] 2
p −1

×
∑

Q̇⊂Ṗ ′

|t̃Q̇|2|Q̇|bq{v1[γ1(Ṗ )−j1]+k1}
1 bq(k2−v2j2)

2 [w(Q̇)]−1

[bv1[γ1(Ṗ )−j1]+k1
1 bk2−v2j2

2 ]λ

" 1
[w(Ω(0))] 2

p −1

[ ∑

Ṗ ∈m(Ω(0))

w(Ṗ )bv1γ1(Ṗ ) 2q−pλ+p
2−p

1

] 2
p −1

‖ṡ‖2
,̇p,w( )A)

×
2∏

i=1

∑

ji∈Z+

bjivi(λ−q−1)
i

∑

ki∈Z+

b
−ki(λ− 2q

p −1)
i " ‖ṡ‖2

,̇p,w( )A), (3.35)

where, in the last inequality, we used that
∑

Ṗ ∈m(Ω(0)) w(Ṗ )bv1γ1(Ṗ ) 2q−pλ+p
2−p

1 " w(Ω(0)),
which holds by Journé’s covering lemma (see [8, Lemma 4.9]).

Estimate J(2)
1 . For any Q̇2 and k2 ∈ Z+, let

GQ̇2,k2
:=
{

Ṙ2 ∈ Q̇2: #(Ṙ2) = #(Q̇2), ρ2(cQ̇2
− cṘ2

) ∼ bv2,(Q̇2)+k2
2

}
,

where ρ2(cQ̇2
− cṘ2

) ∼ bv2,(Q̇2)+k2
2 always means that ρ2(cQ̇2

− cṘ2
) < bv2,(Q̇2)+u2+k2

2

when k2 = 0 and bv2,(Q̇2)+u2+k2−1
2 ! ρ2(cQ̇2

− cṘ2
) < bv2,(Q̇2)+u2+k2

2 when k2 # 1.
Moreover, for any Ṗ ∈ m(Ω(0)), by Lemmas 3.7 and 3.3, we have

$
{

Ṙ1: #(Ṙ1) = #(Ṗ1) + j1, Ṙ1 ⊂ Ṗ1
}

" b−v1j1
1 ,

$GQ̇2,k2
" bk2

2 and

$UṖ ,k1
" bv1γ1(Ṗ )+k1

1 . (3.36)
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For any Ṗ ∈ m(Ω(0)), Ṗ ′ ∈ UṖ ,k1
, Q̇ ⊂ Ṗ ′ with #(Q̇1) = #(Ṗ1) + j1, Ṙ ∈ Ṙ with Ṙ ⊂ Ṗ ,

#(Ṙ) = #(Ṗ ) + j1 and Ṙ2 ∈ GQ̇2,k2
, by Ṗ ′

1 ∩ BṖ1,∗
= ∅, and Lemmas 3.7 and 3.3, we find

that

w(Ṙ) $ bqv1j1
1 w(Ṗ1 × Ṙ2) $ b−q{v1[γ1(Ṗ )−j1]+k1}

1 w(Ṗ1 × Ṙ2)

$ b−q{v1[γ1(Ṗ )−j1]+k1}
1 b−qk2

2 w(Q̇) and w
(
Ṗ ′) " bq[v1γ1(Ṗ )+k1]

1 w(Ṗ ). (3.37)

Therefore, by (3.29), (3.33), (3.36), (3.37), p ∈ (0, 1], q ∈ (qw,∞) and λ > 2q/p + 1,
we conclude that

J(2)
1 " 1

[w(Ω(0))] 2
p −1

∑

Ṗ ∈m(Ω(0))

∑

j1∈Z+

b−v1j1
1

×
∑

k1∈Z+

∑

Ṗ ′∈UṖ ,k1

b
( 2

p −1)q[v1γ1(Ṗ )+k1]
1

[
w(Ṗ )
w(Ṗ ′)

] 2
p −1

×
∑

Q̇⊂Ṗ ′

∑

k2∈Z+

∑

Ṙ2∈GQ̇2,k2

bq{v1[γ1(Ṗ )−j1]+k1}
1 bqk2

2
|t̃Q̇|2|Q̇|[w(Q̇)]−1

[bv1[γ1(Ṗ )−j1]+k1
1 bk2

2 ]λ

" 1
[w(Ω(0))] 2

p −1

[ ∑

Ṗ ∈m(Ω(0))

w(Ṗ )bv1γ1(Ṗ ) 2q−pλ+p
2−p

1

] 2
p −1

‖ṡ‖2
,̇p,w( )A)

×
∑

j1∈Z+

bj1v1(λ−q−1)
1

∑

k1∈Z+

b
−k1(λ− 2q

p −1)
1

∑

k2∈Z+

b−k2(λ−q−1)
2

" ‖ṡ‖2
,̇p,w( )A), (3.38)

where, in the last inequality, we used that
∑

Ṗ ∈m(Ω(0)) w(Ṗ )bv1γ1(Ṗ ) 2q−pλ+p
2−p

1 " w(Ω(0)),
which holds again by Journé’s covering lemma (see [8, Lemma 4.9]).

Combining (3.35) and (3.38), we know that

J1 " J(1)
1 + J(2)

1 " ‖ṡ‖2
,̇p,w( )A).

Symmetrically, we also have J2 " ‖ṡ‖2
,̇p,w( )A). Combining the estimates of J1 and

J2 and Lemma 3.12(i), we conclude that J " ‖s‖2
,p,w( )A), which completes the proof of

Lemma 3.13. !

We also need to generalize Peetre’s mean value inequality to our setting, which is an
extension of [3, Lemma 8.3] and [21, Lemma A.4] from one parameter setting to two
parameter setting. Since the proof of Lemma 3.14 is similar to that of [3, Lemma 8.3],
we omit the details.
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Lemma 3.14. Let K be a compact subset of Rn × Rm and λ ∈ (0, ∞). Suppose that
g ∈ S ′(Rn × Rm) with supp ĝ ⊂ K. For any γ ∈ N, define two sequences {aQ}Q∈R and
{bQ}Q∈R, respectively, by setting, for all Q ∈ R,

aQ := sup
y∈Q

∣∣g(y)
∣∣ and

bQ := sup
{

inf
y∈P

∣∣g(y)
∣∣: scale(P ) = scale(Q) − (γ, γ), P ∩ Q )= ∅

}
. (3.39)

Then, for any sufficiently large positive integer γ and Q ∈ R with scale(Q) = (0, 0),
(a∗

2,λ)Q ∼ (b∗
2,λ)Q with equivalent positive constants independent of g and Q.

Lemma 3.15. Let w ∈ A∞( !A) with qw as in (3.14). Suppose ϕ := ϕ(1) ⊗ ϕ(2) with
ϕ(i) ∈ S(Rni) satisfying that supp ϕ(i) is compact and bounded away from the origin,
where i ∈ {1, 2}. For any f ∈ S ′

∞(Rn × Rm) and γ ∈ Z+, define the sequences sup(f) :=
{supQ(f)}Q∈R and inf(f) := {infQ(f)}Q∈R by setting, for all Q ∈ R with scale(Q) =
(−j1,−j2),

supQ(f) := |Q| 1
2 sup

y∈Q

∣∣ϕ̃j1,j2 ∗ f(y)
∣∣ and

infQ(f) := |Q| 1
2 sup
{

inf
y∈P

∣∣ϕ̃j1,j2 ∗ f(y)
∣∣: scale(P ) = (−j1 − γ,−j2 − γ), P ∩ Q )= ∅

}
,

where ϕ̃(·) = ϕ(−·).

(i) If p ∈ (0, ∞), then, for any sufficiently large γ ∈ Z+,

‖f‖Ḧp
w( )A) ∼

∥∥sup(f)
∥∥

ḧp
w( )A) ∼

∥∥inf(f)
∥∥

ḧp
w( )A) (3.40)

with equivalent positive constants independent of f .
(ii) If p ∈ (0, 1], then (3.40) also holds with Ḧp

w( !A) and ḧp
w( !A) replaced, respectively, by

Lp,w( !A) and #p,w( !A).

Proof. We shall only prove Lemma 3.15 for Lp,w( !A) and #p,w( !A); the proofs for the spaces
Ḧp

w( !A) and ḧp
w( !A) are similar to that of [3, Lemma 3.11], the details being omitted.

Let us first prove that, for all f ∈ Lp,w( !A) with p ∈ (0, 1], ‖inf(f)‖,p,w( )A) " ‖f‖Lp,w( )A).
For any fixed γ ∈ Z+, define the sequence s := {sP }P ∈R by setting

sP := |P |1/2 inf
y∈P

∣∣ϕ̃,1,,2 ∗ f(y)
∣∣

for any P ∈ R with scale(P ) := (−#1,−#2). Clearly, we have

|Q|− 1
2 infQ(f) = sup

{
|P |− 1

2 |sP |: P ∩ Q )= ∅, scale(P ) = scale(Q) − (γ, γ)
}

.
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Fix j1, j2 ∈ Z and Q ∈ R with scale(Q) = (−j1,−j2). Suppose that P, R ∈ R satisfy

scale(P ) = scale(R) = (−j1 − γ,−j2 − γ), y ∈ P ∩ Q )= ∅, z ∈ R ∩ Q )= ∅. (3.41)

Then, we have

ρi(xPi − xRi) ! H2
i

[
ρi(xPi − yi) + ρi(yi − zi) + ρi(zi − xRi)

]
" |Qi|,

where i ∈ {1, 2}. Thus, for any λ > 1, we obtain

sP !
(
s∗

2,λ

)
R

2∏

i=1

[
1 + |Pi|−1ρi(xPi − xRi)

]λ/2 " bγλ/2
1 bγλ/2

2
(
s∗

2,λ

)
R

. (3.42)

Moreover, for any Q ∈ R with scale(Q) = (−j1,−j2), there exists a positive constant
C1 > 1 such that

UQ :=
{

R ∈ R: scale(R) ! scale(Q), R ∩ Q )= ∅
}

⊂ Bρ1

(
cQ1 , C1b−j1

1
)
× Bρ2

(
cQ2 , C1b−j2

2
)

and Bρ1(cQ1 , C−1
1 b−j1

1 ) × Bρ2(cQ2 , C−1
1 b−j2

2 ) ⊂ Q. Then, for any fixed open set Ω ⊂
Rn × Rm, Q ∈ R with Q ⊂ Ω, Ω̃ := {x ∈ Rn × Rm: Ms(χΩ)(x) > C−4

1 } and x ∈
R ∈ UQ, we have

Ms(χΩ)(x) # |(Bρ1(xQ1 , C1bj1
1 ) × Bρ2(xQ2 , C1bj2

2 )) ∩ Ω|
|Bρ1(xQ1 , C1bj1

1 ) × Bρ2(xQ2 , C1bj2
2 )|

> C−4
1 ,

which implies that

⋃

R∈UQ

R ⊂ Ω̃. (3.43)

Then, by (3.41), (3.42) and (3.43), we see that

∑

Q⊂Ω
scale(Q)=(−j1,−j2)

[
infQ(f)|Q|− 1

2
]2

χQ

" (b1b2)λγ
∑

Q⊂Ω
scale(Q)=(−j1,−j2)

∑

scale(P )=(−j1−γ,−j2−γ)

[(
s∗

2,λ

)
P

|P |− 1
2
]2

χP χUQ(P )χQ

" (b1b2)λγ
∑

P ⊂Ω̃
scale(P )=(−j1−γ,−j2−γ)

[(
s∗

2,λ

)
P

|P |− 1
2
]2

χP .
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Thus, for any open set Ω ⊂ Rn × Rm and p ∈ (0, 1], choosing λ > 2qw/p + 1, by
the above estimate, w(Ω) ∼ w(Ω̃) (by [8, Proposition 2.10(ii)]), w(Q) ∼ w(P ) (by
Lemma 3.3), |P | ∼| Q| and Lemma 3.13, we find that

1
[w(Ω)] 2

p −1

∫

Ω

∑

j1,j2∈Z

∑

Q⊂Ω
scale(Q)=(−j1,−j2)

[
infQ(f)|Q|− 1

2 χQ(x)
]2 |Q|2

[w(Q)]2 w(x) dx

" (b1b2)λγ

[w(Ω̃)] 2
p −1

∫

Ω̃

∑

P ⊂Ω̃

[(
s∗

2,λ

)
P

|P |− 1
2 χP (x)

]2 |P |2

[w(P )]2 w(x) dx

"
∥∥s∗

2,λ

∥∥2
,p,w( )A) " ‖s‖2

,p,w( )A)

" sup
w(Ω)<∞

1
[w(Ω)] 2

p −1

×
∫

Ω

∑

j1,j2∈Z

∑

Q⊂Ω
scale(Q)=(−j1,−j2)

∑

Q∩P .=∅
scale(P )=(−j1−γ,−j2−γ)

∣∣ϕ̃j1+γ,j2+γ ∗ f(x)
∣∣2

× χP (x) |Q|2

[w(Q)]2 χQ(x)w(x) dx

" sup
w(Ω)<∞

1
[w(Ω̈)] 2

p −1

∫

Ω̈

∑

j1,j2∈Z

∑

P ⊂Ω̈
scale(P )=(−j1−γ,−j2−γ)

∣∣ϕ̃j1+γ,j2+γ ∗ f(x)
∣∣2

× χP (x) |P |2

[w(P )]2
∑

Q⊂Ω
scale(Q)=(−j1,−j2)

χQ(x)w(x) dx " ‖f‖2
Lp,w( )A),

where
⋃

{P ∈R: Q⊂Ω, P ∩Q.=∅, scale(P )=scale(Q)−(γ,γ)}

P ⊂ Ω̈ :=
{

x ∈ Rn × Rm: Ms(χΩ)(x) > C0
}

which is obtained by a proof similar to that of (3.43). Here C0 ∈ (0, 1) is some positive
constant independent of Ω. From the above estimate and the arbitrariness of Ω, we
deduce that

∥∥inf(f)
∥∥
,p,w( )A) " ‖f‖Lp,w( )A).

Obviously, for any f ∈ Lp,w(Rn × Rm; ϕ̃), ‖f‖Lp,w( )A) ! ‖sup(f)‖,p,w( )A). To finish the
proof of Lemma 3.15, it still needs to prove ‖sup(f)‖,p,w( )A) " ‖inf(f)‖,p,w( )A). Fix any
Q ∈ R with scale(Q) = (−j1,−j2), j1, j2 ∈ Z. Let g(x) := (ϕ̃j1,j2 ∗ f)(A−j1

1 x1, A−j2
2 x2)

for all x = (x1, x2) ∈ Rn × Rm. Then we have supp ĝ ⊂ K := (supp ϕ̂(1) ×supp ϕ̂(2)). Let
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{aQ}Q∈R and {bQ}Q∈R be as in (3.39). A direct calculation shows that, for any fixed
Q ∈ R with scale(Q) = (−j1,−j2),

a
A

j1
1 Q1×A

j2
2 Q2

:= |Q|− 1
2 supQ(f) and b

A
j1
1 Q1×A

j2
2 Q2

:= |Q|− 1
2 infQ(f), Q ∈ R.

Hence, applying Lemma 3.14 to the dilated rectangle Q̃ := Aj1
1 Q1 × Aj2

2 Q2, we have

(
sup(f)∗

2,λ

)
Q

= |Q| 1
2
(
a∗

2,λ

)
Q̃

" |Q| 1
2
(
b∗

2,λ

)
Q̃

∼
(
inf(f)∗

2,λ

)
Q

. (3.44)

Since Q ∈ R is arbitrary, letting p ∈ (0, 1] and λ ∈ (2qw/p + 1,∞) be as in Lemma 3.13,
by Lemma 3.13(ii) and (3.44), we conclude that

∥∥sup(f)
∥∥
,p,w( )A) "

∥∥inf(f)
∥∥
,p,w( )A),

which completes the proof of Lemma 3.15. !

Proof of Theorem 2.12. Let w ∈ A∞( !A). By Lemmas 3.13 and 3.15 together with an
argument similar to that used in the proofs of [5, Theorem 3.5] and [40, Theorem 1.4],
we obtain the desired results for Theorem 2.12 on the spaces ḧp

w( !A) and Ḧp
w( !A), the

details being omitted by similarity.
In what follows, let us prove Theorem 2.12 on the spaces #p,w( !A) and Lp,w( !A) with

p ∈ (0, 1]. We first prove that Tψ is bounded from #p,w( !A) to Lp,w( !A). Let

f := Tψs =
∑

Q∈R
sQψQ.

Then, by Lemma 3.5, we know that f is a well-defined element of S ′
∞(Rn × Rm), which

implies that, for all x ∈ Rn × Rm,

f ∗ ϕj1,j2(x) =
∑

,1,,2∈Z

∑

scale(Q)=(−,1,−,2)
sQψQ ∗ ϕj1,j2(x).

Since supp ϕ̂(i) and supp ψ̂(i) are compact and bounded away from the origin, i ∈ {1, 2},
then, for any Qi ∈ Qi with scale(Qi) = −#i, i ∈ {1, 2}, there exists a sufficiently large
integer M such that, when |ji − #i| > M and scale(Qi) = −#i, i ∈ {1, 2}, we have
supp ψ̂(i)

Qi
∩supp ϕ̂(i)

ji
= ∅ and hence, for any ξ ∈ Rn × Rm, |#1 −j1| > M or |#2 −j2| > M ,

we further have (ψQ ∗ ϕj1,j2 )̂(ξ) = 0. From this, it follows that, for any x ∈ Rn × Rm,
ψQ ∗ϕj1,j2(x) = 0 when |#1 − j1| > M or |#2 − j2| > M . Therefore, we conclude that, for
all x ∈ Rn × Rm,

f ∗ ϕj1,j2(x) =
∑

|,i−ji|!M
i∈{1,2}

∑

scale(Q)=(−,1,−,2)
sQϕj1,j2 ∗ ψQ(x).
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For any p ∈ (0, 1], we take λ ∈ (2qw/p + 1,∞). Since ϕj1,j2 ∗ ψ ∈ S(Rn × Rm), it follows
that, for all x ∈ Rn × Rm,

ϕj1,j2 ∗ ψQ(x) = (ϕj1−,1,j2−,2 ∗ ψ)Q(x)

= |Q|− 1
2 (ϕj1−,1,j2−,2 ∗ ψ)

(
A,1

1 (x1 − xQ1), A,2
2 (x2 − xQ2)

)

" |Q|− 1
2

∏2
i=1[1 + ρi(A,i

i xi − xQi)]λ/2
.

Moreover, for any x ∈ Rn × Rm and #1, #2 ∈ Z, there exists a unique Qx ∈ R such that
x ∈ Qx and scale(Qx) = (−#1,−#2). Then, for any Q ∈ R with scale(Q) := (−#1,−#2),
it is easy to show 1 + ρi(A,i

i (xQx
i
− xQi)) " 1 + ρi(A,i

i (xi − xQi)), i ∈ {1, 2}. From this,
the above estimate, p ∈ (0, 1], λ ∈ (2qw/p+1,∞) and Hölder’s inequality, it follows that,
for all x ∈ Rn × Rm,

∣∣f ∗ ϕj1,j2(x)
∣∣ "

∑

|,i−ji|!M
i∈{1,2}

χQx(x)
∣∣Qx
∣∣− 1

2

×
∑

scale(Q)=(−,1,−,2)

|sQ|
∏2

i=1[1 + ρi(A,i
i (xQx

i
− xQi))]λ/2

"
∑

|,i−ji|!M
i∈{1,2}

χQx(x)
∣∣Qx
∣∣− 1

2
(
s∗

2,λ

)
Qx

"
∑

|,i−ji|!M
i∈{1,2}

∑

scale(Q)=(−,1,−,2)

(
s∗

2,λ

)
Q
χQ(x)|Q|− 1

2 .

Moreover, for any open set Ω ⊂ Rn × Rm, using an argument similar to that used in the
estimate for (3.43), there exists a positive constant η2 ∈ (0, 1) such that

⋃

|,i−ji|!M
i∈{1,2}

⋃

scale(Q)=(−,1,−,2)
Q⊂Ω

Q ⊂ Ω̌ :=
{

x ∈ Rn × Rm: Ms(χΩ)(x) > η2
}

.

Consequently, for any p ∈ (0, 1], λ ∈ (2qw/p + 1,∞), q ∈ (qw,∞) and open set
Ω ⊂ Rn × Rm with w(Ω) < ∞, by the last two estimates, (3.43), w(Ω̌) " w(Ω) (see
[8, Proposition 2.10(ii)]) and Lemma 3.15, we have

1
[w(Ω)] 2

p −1

∫

Ω

∑

j1,j2∈Z

∑

R⊂Ω
scale(R)=(−j1,−j2)

∣∣f ∗ ϕj1,j2(x)
∣∣2χR(x) |R|2

[w(R)]2 w(x) dx

" 1
[w(Ω)] 2

p −1

∫

Ω

∑

j1,j2∈Z

∑

R⊂Ω, R∈R
scale(R)=(−j1,−j2)
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×
[ ∑

|,i−ji|!M
i∈{1,2}

∑

scale(Q)=(−,1,−,2)

(
s∗

2,λ

)
Q
χQ(x)|Q|− 1

2

]2
χR(x) |R|2

[w(R)]2 w(x) dx

" 1
[w(Ω̌)] 2

p −1

∫

Ω̌

∑

,1,,2∈Z

∑

Q⊂Ω̌
scale(Q)=(−,1,−,2)

(
s∗

2,λ

)2
Q
χQ(x) |Q|

[w(Q)]2

×
∑

|,i−ji|!M
i∈{1,2}

∑

scale(R)=(−j1,−j2)
χR(x)w(x) dx

"
∥∥s∗

2,λ

∥∥2
,p,w( )A) " ‖s‖2

,p,w( )A),

which implies that ‖Tψ(s)‖Lp,w( )A) " ‖s‖,p,w( )A).
Suppose that f ∈ Lp,w( !A) and Q := A−j1

1 ([0, 1)n +k1)×A−j2
2 ([0, 1)m +k2), j1, j2 ∈ Z,

k1 ∈ Zn, k2 ∈ Zm. Then,

∣∣(Sϕf)Q

∣∣ =
∣∣〈f, ϕQ〉

∣∣ = |Q| 1
2
∣∣(ϕ̃j1,j2 ∗ f)(xQ)

∣∣ ! supQ(f).

Therefore, by Lemma 3.15, we obtain the boundedness of Sϕ from #p,w( !A) to Lp,w( !A; ϕ̃).
Finally, if (ψ, ϕ) is an admissible pair of frame wavelets as in Definition 2.2, then, by

Lemma 2.3(ii), we know that Lp,w( !A; ϕ̃) ↪→ Lp,w( !A; ϕ) is a bounded inclusion. Hence,
by reversing the roles of ϕ and ϕ̃, we find that

Lp,w( !A; ϕ̃) = Lp,w( !A; ϕ),

which completes the proof of Theorem 2.12. !

To prove Theorem 2.14, we need two technical lemmas first. By [8, Lemma 5.5] and
a basic fact that ψj ∗ ϕk := (ψj−k ∗ ϕ)k, j, k ∈ Z, we obtain the following lemma, the
details being omitted.

Lemma 3.16. For i ∈ {1, 2}, let Mi ∈ (0, ∞), Ni ∈ Z+, ϕ(i), ψ(i) ∈ SNi(Rni), ϕ :=
ϕ(1) ⊗ ϕ(2) and ψ := ψ(1) ⊗ ψ(2). Then there exists a positive constant C, depending on
Mi and Ni with i ∈ {1, 2}, such that, for all ji, ki ∈ Z with ji # ki, i ∈ {1, 2} and for
all x ∈ Rn × Rm,

∣∣ϕj1,j2 ∗ ψk1,k2(x)
∣∣ ! C

2∏

i=1
b

ki+(ki−ji)(Ni+1)ζi,−
i

[
1 + ρi

(
Aki

i xi

)]−Mi .

We skip the proof of the following Lemma 3.17 since it is similar to those of
[5, Theorem 4.1] and [40, Theorem 2.1].
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Lemma 3.17. Let p ∈ (0, 1] and w ∈ A∞( !A) with qw as in (3.14). An operator A is said
to be almost diagonal, if its associated matrix {aR,Q}R,Q∈R, where aR,Q := (AeQ)R,
satisfies that there exists some positive constant ε such that

sup
R,Q∈R

|aR,Q|/κR,Q(ε) < ∞,

where

κR,Q(ε) :=
2∏

i=1

[
1 + ρi(xRi − xQi)

|Ri| ∨| Qi|

]− qw
p −ε[( |Ri|

|Qi|

) 1+ε
2

∧
(

|Qi|
|Ri|

) qw
p + ε−1

2
]
. (3.45)

Then the almost diagonal operator A is bounded on ḧp
w( !A).

Proof of Theorem 2.14. Let p ∈ (0, 1] and w ∈ A∞( !A). We first show that, for all
f ∈ S ′

∞(Rn × Rm), ‖f‖H̃p
w( )A) " ‖f‖Ḧp

w( )A). For any k1, k2 ∈ Z, x ∈ Rn × Rm and
Φ ∈ S∞(Rn × Rm), we have

bk1
1 bk2

2

∫

∏2
i=1 Bρi (xi,b

−ki
i )

∣∣f ∗ Φk1,k2(y)
∣∣2 dy

= bk1
1 bk2

2

∫

∏2
i=1 Bρi (xi,b

−ki
i )

∑

R∈R
scale(R)=(−k1,−k2)

∣∣f ∗ Φk1,k2(y)
∣∣2χR(y) dy. (3.46)

Let (ϕ, ψ) be the admissible pair of frame wavelets as in Definition 2.2. For any f ∈
Ḧp

w( !A), by Lemma 2.3(ii), we know that f =
∑

Q∈R〈f, ϕQ〉ψQ in S ′
∞(Rn × Rm), which,

together with Φ ∈ S∞(Rn × Rm), implies that

f ∗ Φk1,k2 =
∑

Q∈R
〈f, ϕQ〉ψQ ∗ Φk1,k2 (3.47)

holds true pointwise. Moreover, since ψ := ψ(1)⊗ψ(2) and Φ := Φ(1)⊗Φ(2) with ψ(i), Φ(i) ∈
S∞(Rni), i ∈ {1, 2}, then, for any y ∈ R with scale(R) = (−k1,−k2), Q ∈ R with
scale(Q) = (−j1,−j2), Mi ∈ (0, ∞) and Ni ∈ Z+ to be fixed later, by Lemma 3.16, we
conclude that

∣∣ψQ ∗ Φk1,k2(y)
∣∣ "

2∏

i=1
b

−ji/2−|ji−ki|(Ni+1)ζi,−+ji∧ki

i

[
1 + bji∧ki

i ρi(yi − xQi)
]−Mi

" |R|− 1
2

2∏

i=1
b

−|ji−ki|[(Ni+1)ζi,−+ 1
2 ]

i

[
1 + bji∧ki

i ρi(xRi − xQi)
]−Mi . (3.48)
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Since p ∈ (0, 1] and qw is as in (3.14), if we let

aR,Q :=
2∏

i=1
b

−|ji−ki|[(Ni+1)ζi,−+ 1
2 ]

i

[
1 + bji∧ki

i ρi(xRi − xQi)
]−Mi ,

Ni > (qw/p − 1)ζ−1
i,− − 1, Mi > qw/p, Ni ∈ Z+ and ε ∈ R+ such that

ε/2 < min
i∈{1,2}

{
(Ni + 1)ζi,− + 1 − qw/p, Mi − qw/p, (Ni + 1)ζi,−

}
,

then it is easy to show that, for any R, Q ∈ R, aR,Q " κR,Q(ε) uniformly, where κR,Q(ε)
satisfies (3.45), which implies that {aR,Q}R,Q∈R induces an almost diagonal operator.
Therefore, for any f ∈ Ḧp

w( !A) and s := {sQ}Q∈R with sQ := 〈f, ϕQ〉, by (3.46), (3.47),
(3.48), Lemma 3.17 and Theorem 2.12 with the inverse ϕ-transform Sϕ(f), we have

‖f‖H̃p
w( )A) =

∥∥!SΦ(f)
∥∥

Lp
w(Rn×Rm) "

∥∥∥∥

{ ∑

Q∈R
aR,QsQ

}

R∈R

∥∥∥∥
ḧp

w( )A)

"
∥∥Sϕ(f)

∥∥
ḧp

w( )A) " ‖f‖Ḧp
w( )A),

which is desired.
Finally, we show that, for all f ∈ S ′

∞(Rn × Rm), ‖f‖Ḧp
w( )A) " ‖f‖H̃p

w( )A). To this
end, letting γ ∈ N be as in Lemma 3.15, for any Q ∈ R with scale(Q) = (−k1,−k2),
k1, k2 ∈ Z, and any x ∈ Q, by [3, Lemma 2.9(b)], there exists some constant k0 ∈ N,
independent of the choice of Q, such that

⋃

{P ∈R: P ∩Q.=∅, scale(Pi)=(−k1−γ,−k2−γ)}

P ⊂ Bρ1

(
x1, b−k1+k0

1
)
× Bρ2

(
x2, b−k2+k0

2
)
.

Thus, for any x ∈ Q and Φ ∈ S∞(Rn × Rm), we have
∑

P ∩Q.=∅
scale(P )=(−k1−γ,−k2−γ)

inf
y∈P

∣∣f ∗ Φk1−k0,k2−k0(y)
∣∣2χQ(x)

! bk1−k0
1 bk2−k0

2

∫

Bρ1 (x1,b
−k1+k0
1 )×Bρ2 (x2,b

−k2+k0
2 )

∣∣f ∗ Φk1−k0,k2−k0(y)
∣∣2 dy. (3.49)

Let

infQ(f)

:= |Q| 1
2 sup
{

inf
y∈P

∣∣f ∗ Φ̃k1−k0,k2−k0(y)
∣∣: scale(P ) = (−k1 − γ,−k2 − γ), P ∩ Q )= ∅

}
.

Then, for any f ∈ H̃p
w( !A) with p ∈ (0, 1] and w ∈ A∞( !A), by Corollary 2.3, Lemma 3.15

and (3.49), we conclude that
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‖f‖Ḧp
w( )A) ∼

∥∥∥∥

{ ∑

k1,k2∈Z
|f ∗ Φ̃k1−k0,k2−k0 |2

} 1
2
∥∥∥∥

Lp
w(Rn×Rm)

"
∥∥∥∥

{ ∑

k1,k2∈Z

∑

Q∈R
scale(Q)=(−k1,−k2)

[
infQ(f)

]2|Q|−1χQ

} 1
2
∥∥∥∥

Lp
w(Rn×Rm)

"
∥∥!SΦ(f)

∥∥
Lp

w(Rn×Rm) ∼ ‖f‖H̃p
w(Rn×Rm),

which completes the proof of Theorem 2.14. !

Proof of Proposition 2.15. Let p ∈ (0, 1] and w ∈ A∞( !A) with qw as in (3.14). We first
prove that, for any t := {tR}R∈R ∈ #p,w( !A), its induced map Lt, defined by

Lt(s) :=
∑

R∈R
sR t̄R

for any s ∈ ḧp
w( !A), belongs to (ḧp

w( !A))∗. We show this by using some ideas from the
proof of [40, Theorem 3.5]. For any x ∈ Rn × Rm, k ∈ Z and R ∈ R, let

G(x) :=
{ ∑

R∈R
|sR|2|R|−1χR(x)

} 1
2

,

Ωk :=
{

x ∈ Rn × Rm: G(x) > 2k
}

,

Rk :=
{

R ∈ R: |R ∩ Ωk| > |R|/2, |R ∩ Ωk+1| ! |R|/2
}

and ER,k := R ∩ (Ωk+1)$. Then, for any k ∈ Z and R ∈ Rk, by Lemma 3.3 with
w ∈ Aq( !A) and q ∈ (qw,∞), we obtain

1
2q

! |ER,k|q

|R|q " w(ER,k)
w(R) . (3.50)

We choose a positive integer c0 > 2 such that b−c0u1
1 b−c0u2

2 < b−2u1
1 b−2u2

2 /2 and, for
all k ∈ Z, let

Ω̃k :=
{

x ∈ Rn × Rm: Ms(χΩk )(x) > b−c0u1
1 b−c0u2

2
}

.

Then, for all R ∈ Rk and all x ∈ R, by Lemma 3.7(iv), we see that

Ms(χΩk )(x) # 1
bv1,(Ṙ1)+u1

1 bv2,(Ṙ2)+u2
2

∫

xR+B(1)
v1%(Ṙ1)+u1

×B(2)
v2%(Ṙ2)R+u2

χΩk (y) dy

# b−2u1
1 b−2u2

2
|Ωk ∩ R|

|R| > b−c0u1
1 b−c0u2

2 ,
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which implies that
⋃

R∈Rk

R ⊂ Ω̃k. (3.51)

Moreover, for any w ∈ Aq( !A) with q ∈ (qw,∞), by the Lq
w(Rn × Rm)-boundedness of

Ms (see [8, Proposition 2.10(ii)]), we obtain w(Ω̃k) " w(Ωk) for all k ∈ Z.
Therefore, for all s ∈ ḧp

w( !A), by (3.50), (3.51), Hölder’s inequality and w(Ω̃k) "
w(Ωk), we have

∣∣Lt(s)
∣∣ !
∑

k∈Z

∑

R∈Rk

|tR||sR|

"
∑

k∈Z

∫

Ω̃k

∑

R∈Rk

|tR| |R| 1
2

w(R)χR(x)|sR||R|− 1
2 χER,k (x)w(x) dx

"
∑

k∈Z

{∫

Ω̃k

∑

R∈Rk

|tR|2 |R|
[w(R)]2 χR(x)w(x) dx

} 1
2

×
{∫

Ω̃k

∑

R∈Rk

|sR|2|R|−1χER,k (x)w(x) dx

} 1
2

" ‖t‖,p,w( )A)
∑

k∈Z

[
w(Ω̃k)

]( 2
p −1) 1

2

{ ∫

Ω̃k\Ωk+1

[
G(x)
]2

w(x) dx

} 1
2

" ‖t‖,p,w( )A)
∑

k∈Z
2k
[
w(Ωk)

] 1
p " ‖t‖,p,w( )A)‖s‖ḧp

w( )A), (3.52)

which implies that the induced fractional Lt ∈ (ḧp
w( !A))∗ and |Lt| " ‖t‖,p,w( )A).

Now let us prove the converse by borrowing some ideas from the proof of [21, Theo-
rem 5.9]. For any N ∈ N, w ∈ A∞( !A) and R ∈ R, let BN := Bρ1(0, bN

1 ) × Bρ2(0, bN
2 ),

IN :=
{

R ∈ R: R ⊂ BN ,
∣∣scale(Ri)

∣∣ ! N, i ∈ {1, 2}
}

,

and #2(BN ) be the set of all s(N) := {s(N)
R }R∈IN satisfying

∥∥s(N)∥∥
,2(BN ) :=

{ ∑

R∈IN

∣∣s(N)
R

∣∣2
}1/2

< ∞.

For any t ∈ ḧp
w( !A) and N ∈ N, let t(N) := {t(N)

R }R∈IN with t(N)
R := tR if R ∈ IN . We

denote by ḧp
w( !A; BN ) the set of all such t(N). Obviously, ḧp

w( !A; BN ) endowed with the
norm ‖ ·‖ ḧp

w( )A) is a subspace of ḧp
w( !A).
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Notice that, for any s(N) ∈ #2(BN ), p ∈ (0, 1] and w ∈ A∞( !A), by Hölder’s inequality,
we know that

∥∥s(N)∥∥
ḧp

w( )A) !
∥∥s(N)∥∥

,2(BN )
[
w(BN )

]1− p
2 ,

which implies that #2(BN ) ⊂ ḧp
w( !A; BN ) and hence (ḧp

w( !A; BN ))∗ ⊂ (#2(BN ))∗ =
#2(BN ). Then, for any L ∈ (ḧp

w( !A))∗, by the above estimate and (ḧp
w( !A))∗ ⊂

(ḧp
w( !A; BN ))∗, there exists some t(N) ∈ #2(BN ) such that, for all s(N) ∈ ḧp

w( !A; BN ),

L
(
s(N)) =

∑

R∈IN

s(N)
R t(N)

R . (3.53)

For N + 1, repeating the above process, there exists some t(N+1) ∈ #2(BN ) such that,
for all s(N+1) ∈ ḧp

w( !A; BN+1),

L
(
s(N+1)) =

∑

R∈IN+1

s(N+1)
R t(N+1)

R ,

and t(N+1)|ḧp
w( )A;BN ) = t(N). By this extension, we obtain a sequence t∗ := {t∗

R}R∈R,
where t∗

R := t(N)
R if R ∈ IN for all N ∈ N.

We now show that t∗ ∈ #p,w( !A). To this end, let Ω be any open set with w(Ω) < ∞
and ϑ the measure on R such that, for any R ∈ R, ϑ(R) := [w(Ω)]1−2/p|R|[w(R)]−1 if
R ⊂ Ω, or else ϑ(R) := 0. Define #2(Ω; ϑ) to be the set of all complex-valued sequences
s := {sR}R∈R, R⊂Ω such that

‖s‖,2(Ω;ϑ) :=
{ ∑

R⊂Ω
|sR|2
[
w(Ω)

]1− 2
p |R|
[
w(R)

]−1
} 1

2

< ∞.

Then, by (3.53) and (#2(Ω; ϑ))∗ = #2(Ω; ϑ), we have

{ 1
[w(Ω)] 2

p −1

∑

R⊂Ω
χIN (R)

∣∣t∗
R

∣∣2|R|
[
w(R)

]−1
} 1

2

=
∥∥χIN t∗∥∥

,2(Ω,ϑ) = sup
‖s‖%2(Ω;ϑ)!1

∣∣∣∣
∑

R∈IN , R⊂Ω
t(N)
R sR

[
w(Ω)

]1− 2
p |R|
[
w(R)

]−1
∣∣∣∣

! ‖L‖(ḧp
w( )A))∗ sup

‖s‖%2(Ω;ϑ)!1

∥∥{sR

[
w(Ω)

]1− 2
p |R|
[
w(R)

]−1}
R⊂Ω

∥∥
ḧp

w( )A) ! ‖L‖(ḧp
w( )A))∗ ,

where, in the last step, we used the following inequality that
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∥∥{sR

[
w(Ω)

]1− 2
p |R|
[
w(R)

]−1}
R⊂Ω

∥∥
ḧp

w( )A)

=
{∫

Ω

[ ∑

R⊂Ω

∣∣sR

[
w(Ω)

]1− 2
p
∣∣2|R|
[
w(R)

]−2
χR(x)

]p/2
w(x) dx

}1/p

! 1
[w(Ω)] 2

p −1

{∫

Ω

∑

R⊂Ω
|sR|2|R|

[
w(R)

]−2
χR(x)w(x) dx

} 1
2 [

w(Ω)
] 1

p − 1
2

= ‖s‖,2(Ω,ϑ) ! 1.

From this and the Fatou lemma, it follows that
{ 1

[w(Ω)] 2
p −1

∑

R⊂Ω

∣∣t∗
R

∣∣2 |R|
w(R)

} 1
2

! ‖L‖(ḧp
w( )A))∗ ,

which, together with the arbitrariness of Ω, implies that t∗ ∈ #p,w( !A) and ‖t∗‖,p,w( )A) !
‖L‖(ḧp

w( )A))∗ .
By (3.52), for all s ∈ ḧp

w( !A), we have
∑

R∈R

∣∣t∗
RsR

∣∣ "
∥∥t∗∥∥

,p,w( )A)‖s‖ḧp
w( )A) " ‖L‖(ḧp

w( )A))∗‖s‖ḧp
w( )A),

which, together with the Lebesgue dominated convergence theorem on series and (3.53),
yields that, for all s ∈ ḧp

w( !A),

L(s) = lim
N→∞

L
(
s(N)) = lim

N→∞

∑

R∈IN

s(N)
R t∗

R =
∑

R∈R
sRt∗

R.

This finishes the proof of Proposition 2.15. !

From Theorem 2.12 and Proposition 2.15, the proof of Theorem 2.16 follows by a
straightforward adaption of methods by Frazier and Jawerth [21, Theorem 5.13].

Proof of Theorem 2.16. Let p ∈ (0, 1] and w ∈ A∞( !A). Let (ϕ, ψ) be an admissible pair
of frame wavelets as in Definition 2.2 such that ϕ = ψ. In other words, ϕ is an admissible
Parseval wavelet. Using Theorem 2.12, we conclude that Tϕ ◦ Sϕ is also an identity on
Ḧp

w( !A).
For s := {sR}R∈R and t := {tR}R∈R, let 〈s, t〉 :=

∑
R∈R sRtR. Then, for any f ∈

S∞(Rn × Rm), the ϕ-transform Sϕ and the inverse ϕ-transform Tϕ, we have
〈
Sϕ(f), t

〉
=
∑

R∈R
〈f, ϕR〉tR =

〈
f, Tϕ(t)

〉
. (3.54)

For any g ∈ Lp,w( !A), define a linear functional L̃g by L̃g(f) := 〈g, f〉 for any f ∈
S∞(Rn × Rm).
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Then, for any f ∈ S∞(Rn × Rm), by Theorem 2.12, (3.54) and Proposition 2.15, we
find that

∣∣L̃g(f)
∣∣ =
∣∣〈g, f〉

∣∣ =
∣∣〈Tϕ
(
Sϕ(g)

)
, f
〉∣∣ =
∣∣〈Sϕ(g), Sϕ(f)

〉∣∣

"
∥∥Sϕ(g)

∥∥
,p,w( )A)

∥∥Sϕ(f)
∥∥

ḧp
w( )A) " ‖g‖Lp,w( )A)‖f‖Ḧp

w( )A),

which implies that ‖L̃g‖(Ḧp
w( )A))∗ " ‖g‖Lp,w( )A) and hence L̃g defines a continuous lin-

ear functional on S∞(Rn × Rm). Moreover, since S∞(Rn × Rm) is a dense subspace of
Ḧp

w( !A), using Theorem 2.12, we conclude that L̃g is uniquely extended to a continuous
linear functional Lg on Ḧp

w( !A).
Conversely, for any L ∈ (Ḧp

w( !A))∗ and the inverse ϕ-transform Tϕ, by Theorem 2.12,
we have #1 := L ◦ Tϕ ∈ (ḧp

w( !A))∗. Then, by Proposition 2.15 and Theorem 2.12, there
exists t = {tR}R∈R ∈ #p,w( !A) such that #1(s) =

∑
R∈R sRtR for any s := {sR}R∈R ∈

ḧp
w( !A) and

‖t‖,p,w( )A) ∼ ‖#1‖(ḧp
w( )A))∗ " ‖L‖(Ḧp

w( )A))∗.

Hence, for any f ∈ S∞(Rn × Rm) and g := Tϕ(t) =
∑

R∈R tRϕR, by #1 ◦ Sϕ = L ◦ Tϕ ◦
Sϕ = L, Tϕ ◦ Sϕ = Id on Ḧp

w( !A) and (3.54), we know that

L(f) = #1 ◦
(
Sϕ(f)

)
=
〈
Sϕ(f), t

〉
= 〈f, g〉 = Lg(f),

which implies that L = Lg. Moreover, by Theorem 2.12, we conclude that

‖g‖Lp,w( )A) " ‖t‖,p,w( )A) " ‖Lg‖(Ḧp
w( )A))∗ ,

which completes the proof of Theorem 2.16. !
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