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1. Introduction

Due to the request in applications of analysis such as PDEs, harmonic analysis and
approximation theory, there were several efforts of extending classical function spaces
arising in harmonic analysis from Euclidean spaces to other domains and anisotropic set-
tings; see, for example, [1,3,2.4,10,15,11,16,20,31,35-37,24,38,39]. Calderén and Torchin-
sky initiated the study of Hardy spaces associated with anisotropic dilations in [10,11,9].
Recently, a theory of anisotropic Hardy spaces and their weighted theory were developed
by Bownik et al. in [1,7].

Another direction is the development of the theory of Hardy spaces on product do-
mains initiated by Gundy and Stein [23]. In particular, Chang and Fefferman [12,13]
characterized the classical product Hardy spaces via atoms. Fefferman [19], Krug [26]
and Zhu [43] established the weighted theory of the classical product Hardy spaces, and
Sato [29,30] established parabolic Hardy spaces on product domains. It was also proved
that the classical product Hardy spaces are good substitutes of product Lebesgue spaces
when p € (0, 1]; see, for example, [17-19,30,32].

Let A := (A1, A3) be a pair of expansive dilations and Aoo(f_f) the corresponding
class of product Muckenhoupt weights on R™ x R™ (see Definition 2.5 below). Recently,
a theory of the weighted anisotropic product Hardy spaces H&(/Y) associated with ex-
pansive dilations and product Muckenhoupt weights was established in [8]. In particular,

—,

the Hardy spaces HP (A) were characterized in terms of the Lusin-area function and the
atomic decompositions. Moreover, the boundedness on HP,(A) was obtained in [28] for
a class of anisotropic singular integrals on R™ x R™, whose kernels are adapted to A in
the sense of Bownik (see [1]) and have vanishing moments defined via bump functions
in the sense of Stein (see [33]).

In this article we continue our study by establishing the Littlewood—Paley character-
ization and the duality of weighted anisotropic product Hardy spaces. Our first result
(see Proposition 2.8 below) shows the equivalence of the Lusin-area function definition
of the space HE (A) for tempered distributions in S’_(R" x R™) with tempered distribu-
tions in S (R™ x R™) vanishing weakly at infinity. Here, S._(R™ x R™) is the dual space
of the set of all Schwartz functions with all vanishing moments (see Section 2 below).
This seemingly inconsequential result enables us to establish the p-transform character-
ization (see Theorem 2.12 below) and the Littlewood—Paley g-function characterization
(see Theorem 2.14 below) of the Hardy space HE (A). We also introduce the weighted
anisotropic product Campanato space £p’w(/_f) (see Definition 2.10 below) and establish
its ¢-transform characterization (see also Theorem 2.12 below). In the final part of this
article, we identify the dual space of H? (A) with Lp,w(ff) in Theorem 2.16 below. This
improves the result of Krug and Torchinsky [27] which describes the duals of the classical
weighted product Hardy spaces H. Q(Ri X Ri) when the weights w satisfy Muckenhoupt’s
A, (R x R) condition on rectangles and 2/r < p < 1. Moreover, the dual spaces in [27]

have quite different description from £, ,,(A), and the method employed by Krug and
Torchinsky [27] is based on the atomic decomposition characterization of HE (R3 x R?).
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To achieve our targets, one key tool is the discrete Calderén reproducing formulae (see
Lemma 2.3 below), which is a discrete variant, via dilated cubes introduced by Bownik
and Ho [5], of the Calderén reproducing formulae in [8, Proposition 2.16]. Motivated by
Frazier and Jawerth [21], Bownik [3] and Bownik and Ho [5], to obtain the Littlewood—
Paley g-function characterization of Hﬁ(g), we invoke a weighted anisotropic product
variant of the Plancherel-Pélya inequality (see Lemmas 3.13(i) and 3.15(i) below) and
the boundedness of the almost diagonal operators on the discrete weighted anisotropic
product Hardy space (see Lemma 3.17 below).

Notice that the ¢-transform characterization of L'p,w(f_f) closely connects with dilated
cubes of Bownik—Ho associated to A; and As. Although dilated cubes nicely reflect the
properties of expansive dilations, they have a critical defect, that is, dilated cubes with
different levels have no nested property, which makes it impossible to establish Journé’s
covering lemma for these dilated cubes. To overcome this difficulty, we invoke the dyadic
cubes of Christ [14] for general spaces of homogeneous type in the sense of Coifman
and Weiss [15]. To be precise, we establish some subtle relations in Lemma 3.10 below
between dilated cubes and dyadic cubes, which further induce some important relations
between the sequence spaces Ep,w(f_f) defined via dilated cubes and fp,w(g) defined via
dyadic cubes (see Lemma 3.12 below). Applying the nested property of dyadic cubes
of Christ (see also Lemma 3.7 below) and Journé’s covering lemma in [8, Lemma 4.9],
we establish a weighted anisotropic product variant of the Plancherel-Pdélya inequality
on £, (A) (see Lemmas 3.13(ii) and 3.15(ii) below), which, together with some stan-
dard argument (see, for example, the proof of Bownik [3, Theorem 3.12]), yields the
p-transform characterization of épvw(ff). Applying the ¢-transform characterizations of

-, —,

H?(A) and L, ,,(A) together with some ideas from Wang [40| and Frazier and Jawerth
21], we then prove that the dual space of HP(A) is just Enw(ff). We particularly point
out that Lemma 3.13 below plays a key role, whose proof is quite geometrical in the sense
that we prove this lemma via subtly classifying the dyadic cubes of Christ in [14] (see
also Lemma 3.7 below) and its associated Journé’s covering lemma in [8, Lemma 4.9)].

The main results of this article are stated in Section 2 and their proofs are given in
Section 3 below.

Finally, we make some conventions on symbols. Throughout this article, we denote by
C a positive constant which is independent of the main parameters, but it may vary from
line to line. Constants with subscripts, such as Cy, do not change in different occurrences.
The symbol A < B means that A < C'B and the symbol A ~ B means that A < B and
B < A. Denote by §E the cardinality of the set E. For any p € [1, 00, we denote by p’ its
conjugate index, namely, 1/p+1/p’ = 1. We also let N :={1,2,...}, Z; := {0} UN and
7% := (Z4)". For any a,b € R, we denote min{a, b} and max{a, b}, respectively, by a Ab
and a V b. If E is a subset of R", we denote by xg its characteristic function. For any

multi-index v := (y1,...,7) € Z, let |y :=y1 4+ -+, and 07 := (8%1)71 -~-(%)%.

n times

—— .
We also denote (0,...,0) by the symbol 0,
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2. Main results

We begin with some notions. Let m,n € Z. In what follows, for convenience, we often
let n; :=n and ny := m.

Definition 2.1. Let ¢ € {1,2}. A real n; x n; matrix A; is called an expansive dilation,
shortly a dilation, if minye,(a,) |A| > 1, where 0(A4;) denotes the set of all eigenvalues
of A;. A quasi-norm associated with expansive matrix A; is a Borel measurable mapping
pa,; : R™ — [0, 00), for simplicity, denoted as p;, such that

(i) pi(x;) > 0 for z; # 0;
(ii) pi(Asz;) = bipi(z;) for z; € R™ | where b; := |det A;;
(iii) pi(xi + i) < Hi[pi(z;) + pi(y:)] for all z;,y; € R™ where H; > 1 is a constant.

Throughout the whole article, we always let A; and A be expansive dilations, re-
spectively, on R™ and R™2, and p; and py the corresponding quasi-norms. Such p; and
p2 indeed exist; see [1, p. 8]. Let i € {1,2}. The set Q; of dilated cubes of R™ is defined
by

Q; :={Q; = Al ([0,)™ + k;): ji € Z, k; € Z" }.

For any Q; := A% ([0,1)™ + k;), let ¢, := AV k; be the “lower-left corner” of Q;. Tt is
easy to see that, for any fixed j; € Z, {Q; := AJ*([0,1)™ + k;): k; € Z™} is a partition
of R™. Denote by R := Q1 x Qs the set of all dilated rectangles.

For any function o on R™, @ on R™ x R™, j; € Z, k; € Z™, Q; := A7 ([0,1)™ +k;)
and Q := Q1 X Q2, let 9053)(33@) = bgigo(i)(Agia:i) for all z; € R™:,

©jr.in (T) = b{lb%2¢(A{1x1,A%2x2) for all z := (x1,22) € R" x R™,
and, correspondingly,
i 1 1
o) = 1Qil*ef) (@i —20.), (@) = Q12 (w1 — 20,72~ 7q,), (21)

where | - | means the Lebesgue measure on R™ or R™ x R™, respectively.
Denote by S(R™ x R™) the set of all Schwartz functions on R™ x R™ and by
S'(R™ x R™) its topological dual space. As in [22], we let

SOO(R” X Rm) = {<Z> € S(R” X Rm): / d(z1,x0)xy de; =0, oy €21, 1 € {1,2}}.
R"™4

We consider So(R™ x R™) as a subspace of S(R™ x R™), including the topology.
Thus, Seo(R™ x R™) is a complete metric space (see, for example, [34, p. 21, (3.7)]).
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Equivalently, So(R™ x R™) can be defined as a set of ¢ € S(R™ x R™) such that the
semi-norms

2

Il == sup  sup [876()| [ (1&I™ + &™) <

|v|<M EER™ XR™ Pl

for all M € Z4 (see [5, p. 1479]). The semi-norms {|| - |[3;}mez, generate a topol-
ogy of a locally convex space on So(R™ x R™) which coincides with the topology of
Soo(R™ x R™) as a subspace of a locally convex space S(R™ x R™). Let S (R™ x R™)
be the topological dual space of Soo (R™ x R™) with the weak-* topology.

For any N € Z, let Sy (R") be the set of all p € S(R™) satisfying [g, ¢(x)x* dr =0
for any o € Z% with |a| < N. Given two functions ¢(¥ on R™, i € {1,2}, define
¢ := M @03 by ¢(x1,22) 1= oW (21)p? (22) for all (z1,x2) € R™ x R™2. Recall that

n; times

Definition 2.2. Let .7, (R” x R™) be the set of all functions of the form ¢ := ¢ @ p(?)
with ) € S(R™), i € {1,2}, such that

(i) suppp® C [=m, 7] \ {0, }, and
(ii) sup;ez [0 ((A7)7&)] > 0 for all & € R™ \ {0,,,}, where A denotes the transpose
of A,L

Suppose that ¢, 1 € Z(R™ x R™). The pair (¢,) is called an admissible pair of
dual frame wavelets if, in addition to (i) and (ii),

(i) 3,z 0@ (A1) ((A7)IE) = 1 for all & € R™ \ {T,,,}.

We should point out that such ¢ and v indeed exist. Indeed, by [5, Lemma 3.6], for
any ¢ € Yo (R™ x R™), there exists some ¢ € Y (R™ x R™) such that (y,%) is an
admissible pair of dual frame wavelets.

The following Calderén reproducing formulae are product variants of [5, Lemmas 2.6
and 2.8], which play an important role in the whole article.

Lemma 2.3.

(i) Let ¢ := ¢ @ ¢3), where, for i € {1,2}, () € S(R™) satisfies that suppgz/b(i\) is
compact and bounded away from the origin and, for all & € R™ \ {0,,},

S oi((4r) ) =1. (22)

JiEZ
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Then, for any f € Soo(R™ X R™) (resp. f € S (R™ x R™)),

F=Y =i (2.3)

J1,J2€Z

holds true in Soo(R™ x R™) (resp. S. (R™ x R™)).
(ii) Let (p,1) be an admissible pair of dual frame wavelets as in Definition 2.2. For any

f € S (R™ x R™) (resp. f € SL(R™ x R™)),

f=> ({fer)tr (2.4)

ReR

holds true in Seo(R™ x R™) (resp. SL (R™ x R™)), where pr and ¢r are as in (2.1).

The proof of Lemma 2.3 is given in Section 3. Based on the Calderén reproducing
formulae, we can establish some new equivalent characterizations of weighted anisotropic
product Hardy spaces in [8].

We first recall the weight class of Muckenhoupt associated with A introduced in [5].

Definition 2.4. Let p € [1,00), A be a dilation and w a non-negative measurable function
on R™. Let b := |det A|. The function w is said to belong to the weight class A,(R™; A)
of Muckenhoupt, if there exists a positive constant C' such that, when p € (1, 00),

p—1
sup sup{b"“ / w(y)dy}{b_’“ / [w(y)}_l/(p_l)dy} <C
TrER™ kKEZ

Bp(xrbk) Bp(vak)

and, when p = 1,

sup supot [ wlpyay{ esssup [w)] "} <

z€R™ kEZ yEB, (z,bF)
B, (x,b%) ’

and the minimal constant C' as above is denoted by C) 4., (w). Here, for all z € R™ and
k € Z, B,(z,bF) := {y € R™: p(z —y) < b*}.
Define

AOO(R";A) = U AP(R”;A).

1<p<o

Definition 2.5. For i € {1,2}, let A; be a dilation on R™ and A := (A;, As). Let
p € (1,00) and w be a non-negative measurable function on R™ x R™. The function w

-

is said to be in the weight class A,(A) of Muckenhoupt, if w(z1,-) € Ap(Asz) for almost
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every 1 € R™ and esssup,,, egn Cp, 45,m(w(21,-)) < 00, and w(-, x2) € Ap(A1) for almost
every x2 € R™ and esssup,,cgm Cp,a, n(w(, 22)) < 0o. In what follows, let

Cy imm(W) = max{esssup Cp,As,m (w(z1,-)), esssup C, 7A1,n(w(-,x2))}.
IleR" I2€R7n

Define

As(d) = | A4

1<p<oo

The above product anisotropic weights also satisfy similar basic properties of the
classical weights; see [8, Proposition 2.10] for more details.

Recall that a distribution f € S'(R™ x R™) is said to vanish weakly at infinity if, for
any o) € S(R™) and ¢? € S(R™), f * or, 1y, — 0 in S’(R™ x R™) as ky, ko — —o0,
where ¢ := () @ p(); see [8]. Denote by S)(R" x R™) the set of all f € S'(R™ x R™)
vanishing weakly at infinity. -

Let ¢ := &) @ $?) with #() € S(R™) satisfying (@) (0,,) = 0, i € {1,2}. For any
f e SR xR™) and all z € R™ x R™, the anisotropic product Lusin-area function of
f is defined by

Sa(f)(x) tz{ > vy / |f*(pk1,k2(y)‘2dy}%-

klak2€Z —k —k
Bp1 (:Bl,bl 1)><Bp2 (ZL’Q,bQ 2)

The weighted anisotropic product Hardy space H? (/T) was defined via the anisotropic
product Lusin-area function in [8] as follows. The class of allowable test functions in [§]
was somewhat restricted; see the following Definition 2.6. Later, we shall deduce, from
Theorem 2.14, that this restriction can be relaxed to @ € .7 (R™ x R™).

Definition 2.6. Let ¥ := () @ W) and & := &) @ () be such that ¥®, ¢ ¢ S(R™),
i € {1,2}, satisfying

(i) supp¥® C B,,(0,,,1) := {z; € R™: p;(2;) < 1}, ¥ € Sy, (R™), where Nj is
some fixed non-negative integer, and ¥ (¢) > C > 0 for ¢ € {z; € R™: a; <
pi(x;) < b;}, where 0 < a; < b; < 1 are constants;

(ii) supp @ is compact and bounded away from the origin;
(i) for all & € R™ \ {0y, },

ST TO((A7) )20 ((47)°E) = 1.

JEL

We should point out that such pairs (¥, ®) indeed exist by virtue of [8, Proposi-
tion 2.14].
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-

Definition 2.7. Let p € (0, 1], w € Ax(A) and @ be as in Definition 2.6.

-

(i) (See [8].) The weighted anisotropic product Hardy space HP (A) is defined by

HE(A) i= {f € SR < B™): £ty = 150D ey < 0}
(ii) The weighted anisotropic product Hardy space HP(A) is defined via replacing
SH(R™ x R™) in (i) by 8. (R™ x R™).

-

The following theorem shows that HP? (A) and HP (A) are equivalent in some sense.

Proposition 2.8. Let w € Ax(A) and p € (0,1]. Then HP,(A) = HF(A) in the following

sense: if f € HP (A), then f € HP(A) and there exists a positive constant C, independent
of f, such that ||f||ﬁ5(g) < C’||f||H5(g). Conversely, if f € HP(A), then there eists

a unique extension f € SH(R™ x R™) such that, for all ¢ € Soo(R™ x R™), (f,¢) =
(f,p) and there exists a positive constant C, independent of f, such that ||f”H§;(AY) <

CHfHﬁg(j)-

The proof of Proposition 2.8 is given in Section 3.
Now let us introduce two kinds of weighted anisotropic product Hardy spaces defined,
respectively, via the Littlewood—Paley g-function.

-,

Definition 2.9. Let p € (0,00), w € A (A) and ¢ € S (R™ x R™).
The weighted anisotropic product Hardy space H}j(ﬁ) is defined, via the Littlewood—
Paley g-function, to be the set of all f € S, (R™ x R™) such that

1l g, 2y = ”{ > 1@iie f’z}z

J1,J2€Z

< 00,
Lﬁ} (Rn X]R?n)

-

and the corresponding discrete weighted anisotropic product Hardy space hfu( ) is defined
to be the set of all complex-valued sequences s := {sr}rer such that

Isllip, 4 == H{ > \sR\le\‘lxR}

ReR

< Q.
LY (RnxR™)

For any Q € R with Q := Q1 x Qs := A'([0,1)” 4 k1) x AP*([0,1)™ + ks), where
11,02 € Z and k1 € Z", ky € Z™, let the symbol

scale(Q) := (scale(Q1),scale(Q2)) := (j1, j2)-

The weighted anisotropic product Campanato spaces are defined as follows, which are
weighted variants of anisotropic Campanato spaces on R™ in [1], and are proved to be
the dual spaces of weighted anisotropic Hardy spaces in Section 3.
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-

Definition 2.10. Let p € (0, 1], w € A (A4) and ¢ € S (R™ x R™).

—,

(i) The space L .,(A) is defined to be the set of all f € S, (R™ x R™) such that

1 2
Mepun={, o0 o[ 0 5 fensnsw)
w(2)<oo [w(§2)]> 0 J1.J2€L RER, RCN

scale(R)=(—j1,—Jj2)

N[

X ﬂ:XR@)w(m) dm} < 00,

[w(R)]
where {2 runs over all open sets in R™ x R™ with w({2) < oo.
(ii) The corresponding sequence space Ep,w(f_f) is defined to be the set of all complex-
valued sequences s := {sg}rer such that

1
| B\
Isl, ,4‘32{ sup |sR|2—} < 0,
pow(A) w(2)<oo [w(2)]7 " Re%m w(R)

where (2 runs over all open sets in R x R™ with w({2) < co.

Definition 2.11. Let ¢ := () ® ¢ and v := M) @ @) with @ @ ¢ S(R™) for
i € {1,2}, such that supp ¢(*) and supp (9 are compact and bounded away from the
origin. The ¢-transform S, is the map taking each f € S, (R™ x R™) to the sequence

Sof = {(Syf)r}rer defined by (S, (f))r = (f,¢r). The inverse @-transform T, is
the map taking the sequence s := {sr}rer to Tys := > p.p SRUR.

Theorem 2.12. Let p € (0,00) and w € Axo(A). The o-transform Ty : he (A) — HP (A)
and the inverse transform S, : HP (A) — h? (A) are bounded. Moreover, if (1, ) is an
admissible pair of dual frame wavelets as in Definition 2.2, then the map Ty o S, is an
identity on HP(A; ) = HP (A; p).

The above results also hold if H? (A) and h?, (A) are replaced, respectively, by Ly w( 1)

-

and ¢, ,(A) for p € (0,1].

The proof of Theorem 2.12 is given in Section 3.

Then, by Theorem 2.12, with proofs similar to those of [3, Corollaries 3.13 and 3.14],
we can obtain that the space £,.,(A), equipped with || -|| £, (4 18 well defined and
complete as follows, the details being omitted.

Corollary 2.13. Let p € (0,00) and w € A (A). The space HP,(A) is well defined in the
following sense that, for any ¢, ¢ € S (R™ x R™), their associated quasi-norms, respec-

tively, in Hg(ff, ©) and H{;(A', ©) are equivalent, namely, there exist positive constants
C1 and Cy such that, for all f € Hff)(ff),

Cl”fHH{;(,&@ < ||f”H5,(A’;¢) < CQHf”Hﬁ;(z‘T;@'
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When p € (0 1], the space Ly .w(A) is also well defined in the above sense. Moreover, the
spaces HP (A) and L, w(A), equipped respectively with || -|| fn 4y and I| -]l £, () 0T also
complete.

—, .. -

We have the following equivalences on the product Hardy spaces H? (A) and H? (A).

Theorem 2.14. Let w € Ao (A) and p € (0,1]. Then f € HP,(A) if and only if f € H? (A).
Moreover, their corresponding quasi-norms are equivalent.

The proof of Theorem 2.14 is given in Section 3.
To show that £, ., (A) is the dual space of H2 (A), we first establish the duality between
their corresponding sequence spaces.

-, . — -

Proposition 2.15. Let w € Ax(A) and p € (0,1]. Then (h% (A))* = {pw(A) in the
following sense: for any t € Ep,w(ff), the map

Li(h) : =Y trhg

ReR

-

for any h € h2 (A) defines a continuous linear functional on b2, (A) with norm

1l iy, 2y < CliEl, 1)

where C is some positive constant, independent of t. Conversely, every L € (h2 (A))*
is of this form for some t € £, .,(A) with norm HtHe o) < ClLl e 1)y » where C s
some positive constant, independent of L.

The proof of Proposition 2.15 is also given in Section 3. Applying Proposition 2.15
and Theorem 2.12, we can prove that £, ,(A) is the dual space of H2 (A) as follows.

Theorem 2.16. Let w € Ao (A) and p € (0,1]. Then (HP,(A))* = Ly, w(A) in the following
sense: there exists a positive constant C such that, for any g € Epw(A) there exists a
linear functional Ly(f) = (f,g) initially defined on f € So(R™ x R™), which has a
uniquely continuous extension to HP (A) and | Lgy H(Hp(A C|]g||£ (&) Conversely,
there exists a positive constant C' such that every continuous lmear functional L on

H? (A) can be written as L = Ly with some g € Ly.w(A) and ||g]|£ < C||LH(Hp

w(A) (A))~

The proof of Theorem 2.16 is given in Section 3.
We shall finish the article by giving another equivalent description of the duals of
anisotropic weighted Hardy spaces, which itself is quite interesting.

Definition 2.17. Let p € (0,1], w € Ax(A) and ¢ € .Foo (R™ x R™). The space L, ., (A)
is defined to be the set of all f € S,_(R™ x R™) such that



B. Li et al. / Journal of Functional Analysis 266 (2014) 2611-2661 2621

1 2
171z, .4 22{ Sup 7__1/ > ) [@irga * £ (@)]
w(2)<oo [w(§2)]> 0 J1:J2€L RER, RCN
scale(R)=(—j1,—Jj2)
L
w(R)

2
XR(J;) dl‘} < 09,
where (2 runs over all open sets in R™ x R™ with w({2) < oo.

Comparing with the definition of Ep,w(/f), an interesting phenomenon appearing in
the definition of £, ,(A) is that the integral in Definition 2.17 is not weighted. However,
both spaces are equivalent as follows.

Corollary 2.18. Let w € Ao (A) and p € (0,1]. Then L, ., (A) = Zpyw(/i’) with equivalent
norms.

Finally, we shall comment about the proof of Corollary 2.18. By adapting the proof of
Theorem 2.12, we show that Theorem 2.12 also holds with £, ,,(4) replaced by £, ., (A4),

p € (0, 1], albeit with the same sequence space £, , (f_f) Once this is shown, Corollary 2.18
follows immediately, the details being omitted.

3. Proofs of main results

We first introduce some notation associated to expansive dilations.

Definition 3.1. Let A be an expansive dilation on R™ and o(A) the set of all eigen-

values of A. If A is diagonalizable over C, then take A_ := minyc,(a)|A| and
Ay = maxXjyeq(a) |A[. Otherwise, let A\ and Ay be some positive real numbers such
that 1 < A_ < minyey(a) [N and Ay > maxyeo(a) |\ Set ¢4 1= B2 and ¢ .= BA

The following inequalities concerning A, p and the Euclidean norm | - | established in
'1, Section 2] are used in the whole article:

[p(2)]* < lal £ [p(x)]F for all p(z) > 1, (3
¢ ¢
@) S el S [p(@)] S for all pla) < 1, .
Vo |z| < |Alz| < Vor|z| forall j >0, and (3
Vot |z| S |ATz| S |z| for all j < 0. (3

Let i € {1,2}. For dilation A; on R™, let \; _, A\; 4+, ¢;— and (; 4+ be associated to A;
as above.

Proof of Lemma 2.3. To prove this lemma, we borrow some ideas from the proofs of
[5, Lemma 2.8], [41, Lemma 2.1] and [42, Lemma 2.1].
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(i) For any f € Soo(R™ X R™), M € Z and j1,j2 € Z, let us first show that

1= Z ||f*¢j17j2||>]k\4 <0

J1,J2€Z

by considering the following four cases.
We first assume that j; > 0 and j < 0. Let §:= (81, B2) with 5, € Z" and p € ZT.

Since supp ¢(*) is compact and bounded away from the origin, then there exists a positive
constant C' such that supp ¢ C {& € R™: 1/C < |&] < C}, i € {1,2}. Moreover,

noticing that ¢§:) (&) = (;(Z\)((A;k)_]léz), by [1, (3.13)] for 71 > 0 and a similar proof for
Jj2 < 0, we conclude that, for any M € Z,

sup Haﬁlqﬁ(l)HLw(Rn) 1 and

|B11=M
P Sl‘lp ||862¢(2)HL°°(RW) (A2+) JQMI SFPMHW%@)HLOO(RW) (3.5)
2|— 2

Therefore, by (3.5), we know that

1f * B4y gz 1 ar

= sup  sup [0P(f % sy ) (O] (16N + (&M (1™ + (€] M)
EER™ XR™ |B|<M

< sup sup ‘6ﬁf sup HWBZ(? (&) ’(’§i’M+‘€i‘_M)

EER™ XR™ |B|<M |,31\<

< (Ngg ) 2M sup sup }aﬁf(@‘ (6™ + &™) (1&IM + 1&17M)
1/O<I(AT) 161 |<C |BISM
1/C<|(A5) 7726, |<C

=5 + L+ I3+ 14,

where

T~ (Ao, q) 72 sup sup |07 F(&)]|€1|M &,
1/CK|(AT) 1 |<C IBISM
1/C<|(As) 7 726|<C

and, similarly, I, I3 and I; are defined via replacing |&;|* €3]~ in the definition of I,
respectively, by [&1]|M[&]M, [&1]7M &M and [&1]7M]&| M.

We shall only estimate I since the other estimates are similar. Let d be the minimal
positive integer such that (Aa,_)?/Aa 4 > 1. Thus, by (3.3) and (3.4), we have
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i 1 -~ d+1)M+1
I ~ (Mg p ) 2M sup sup [€1|7 M (& M08 F(6)| (16 )/ 1€)) T
1/CK|(A}) Tig <O 1BISM
1/C<|(AS) 726, 1<C

S (Aeg)2M sup ‘(AT)M&
1/C<l&|<C
1/C<[&2|<C

‘—dM—1|( ‘dM—f—l

A3)7 & 11 Cas1ynr41

—j1(dM+1) (A2 —)d J2M j *
< O (B2 Gy

)

< ) D O )72 gy s

Hence, 32, >0 j,<0lt S {a41)ar41- Similarly, we have

Z (2 + 13+ La) < 1Fl{a1)nr41-
J120, j2<0
Thus,
o I * b gl S I arnyarss

jl}oa]‘2<0

which is the desired estimate for this case.
In the remaining cases when j; > 0 and js > 0, or j; < 0 and jo > 0, or j; < 0 and
J2 < 0, we obtain similar estimates with d replaced by

d:=min{f eN: (\_)/ iy >1, i€ {1,2}}.

Thus, combining these estimates, we obtain
S0 # b llin S Iy nrs (3.6)
J1,J2€Z

This implies that the series ) 1.da€T f * ¢;,,j, converges unconditionally in the semi-
norms of Soo(R™ x R™).
Let

fO = Z ¢j17j2 * f € Soo (Rn X Rm)

jl)erZ

For all £ € (R x R™)\ {(£1,&) € R" xR™: & = 0, or & = 0,,,}, by (2.2), we have
D jaez O((AD)1&1, (A3)2€2) = 1. Thus, we obtain

fo= Y bnnrf= Y Gunf=7

J1,J2€7Z J1,J2€Z
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in S(R™ x R™). Noticing that the Fourier transform is a homeomorphism of S(R™ x R™)
onto itself (see, for example, [34]), we obtain fy = f. Thus, (2.3) holds for any f €
Soo (R™ x R™).

A standard duality argument shows that (2.3) also holds for any f € S/ (R™ x R™).
Indeed, let f € S, (R™ x R™). Since S._(R™ x R™) is a dual, endowed with the weak-x
topology, of the locally convex space Sy (R™ x R™), f € S._(R™ x R™) if and only if
there exist a positive constant Cy and M € Z, such that, for all ¢ € Soo (R™ x R™),

(£, 0)| < Crllglls-

This observation and (3.6) further imply that, for all § € Soo(R™ x R™),

(15 Gisae0)| <O 30 Wi 0llin S 100,00,

J1,J2€Z J1,J2€Z

where ¢(-) := ¢(—). From this and the completeness of Soo(R™ x R™), it follows that
D ivinen Pivgs * | € SL(R™ x R™). Thus, for all § € Soo(R™ x R™), it holds true that

< > ¢j1,j2*f,9>=<f, > 5j1,j2*9>=<fa9>-

J1,J2€%Z J1,j2€Z

This finishes the proof of part (i) of Lemma 2.3.

(ii) Let (v,%) be an admissible triplet of dual frame wavelets in So(R™ x R™) as in
Definition 2.2. For f € Soo(R™ x R™) (resp. f € SL (R™ x R™)), by (2.3) with ¢ := 9%,
we conclude that

f = Z wj17j2 N ajhh * f (37>
jl:erZ

in Soo(R™ x R™) (resp. S’ (R" x R™)).
For A := (A1, As), j1,j2 € Z and k := (ky, k) € Z™ x Z™, let

. AN 0 N AN 5 k
Ajl,jz = ( ! n>]<2m) ) A;l g2 T <( 1) nrm ) and k= ( 1) )
Omxn AQ ’ Omxn (AQ)]Q ko
where 0,,«,, denotes the n x m matrix with all entries 0, and 0,,,«,, is similarly defined.

Let g := @}, j, * f. We first claim that, for all ji, jo € Z and f € Soo(R™ x R™) (resp.
[ € SL(R™ xR™)),

gxi ()= Y by Pg(A g k), (- — Ay, k) (3.8)

ki1€Z™, ko€Z™

in Seo (R™ x R™) (resp. S, (R™ x R™)). Assuming this claim for the moment, combining
this with (3.7), we see that (2.4) holds in Soo(R™ x R™) (resp. S, (R™ x R™)).



B. Li et al. / Journal of Functional Analysis 266 (2014) 2611-2661 2625

—

Now let us first prove the claim (3.8) for f € Soo (R™ x R™). By goj?(-) = /5((/1:‘)*]1)
and supp () C ([—m, 7)™ \ {0,,}) with i € {1,2}, we see that g € Soo(R™ x R™) with

—
*

suppg C A} . ([=m,7]"*™). Then, by using the Fourier orthonormal basis

b_jl/zb_j2/2 . -
{1@—4371)/26‘““‘“”2’“@}
(2m) keznxzm

of L2(A*

« o ([=m, 7" t™)), we know that, for all £ € A% ([—m, 7]"+™),

R pIrp Iz R i i
D S e Rl
keZn x7m™ gjl,jz([_ﬂ’ﬁ]n+nl)

: 2( A% n+m : I~ A* n—+m A* n—+m
in L2(A% , ([, 7" *™)). Since supp g C A, ;. ([=m,7]"*™), A%, ([=m, 7]"*™) can be

replaced by R” x R™ in the above integral. Thus, by the Fourier inversion formula, we

find that, for any & € A’;f17j2([—7r,7r]”+m),

?(5) = Z bl_jlb;jzg(f_f_jl,_jQE)ef'L'(Aﬂ—jL—jzE7€>
kezn xzm

in L2(A*

J1,J2
place g by its periodic extension without altering the product gi;, ;,. Using g * ¢, j, =
(9G¥, 4,)¥ with f¥(-) := f(—-), we obtain

([—m, 7]"*™)). Noticing that supp@//J\jl’j2 c A

317j2([_7ra7r]n+m); we can re-

— 171 —7jo - - —ilA . ReVT \YJ
(g* )@ = D b7y g(Aj, k) (e A bOg, ()" (x)

kezn xzm

= Z bl_j1 b;jzg(g—jh—h];)wjl»h (‘T - g—jl,—j2g) (3'9)

kezn xzm

holds in L?(R™ x R™) and hence pointwise.
To prove that (3.9) holds in Soo(R™ x R™), we claim that, for any M € Z, and
keZmxzm,

*

M

Z bl_jlb2_j2 ‘g("zl‘*jl,*jzg)ml/}jhjz(' - X*jlv*]ﬁlz)‘ < 00. <310>

kezn xzm

Assuming the claim (3.10) for the moment, combining this with the completeness of
Soo(R™ x R™), we see that

Yo (A k) o (- — Ay k) € S (R X R™).

keznxzm
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By this and (3.9), we find that (3.8) holds in Sy, (R™ x R™). This shows that (2.4) holds
true in Soo (R™ x R™).

The proof of (3.10) is similar to the estimate of I in (i). For simplicity, we only prove
the claim (3.10) when j; > 0 and jy < 0. In this case, for any M € Z, and k ez x 7",
by the chain rule and [1, (3.13)] for j; > 0 and a similar proof for jo < 0, we have

*

M

ijhjz ( - g—jl,—j2 E)
2

= sup sup [07 [ AR O0, 5 @] TT(6IM + &)

EER™ XR™ |y|<M i=1

< sup sup |97 (e RO |y
EER™ XR™ |y|<M

Slslse sup [ ) k)™ sup [(Map) ™72 ko] ™!
[v1|<M |v2| <M

« i 1M
S sy o e e [ [(A2 ) 772 o]

From this and |g(j_j1’_j2y)| < H?Zl[l + pi(A7 7))~ +HMG4) with ¢ 4 as in Defini-
tion 3.1, it follows that

> by (A, k), g — A —nR) ||,

kezn xzm
. - - . M
Sl D 9(Aj k) ||k ™ (A2 1) 772 Ka]
keznxzm
< s lir O b " v < sl
JiJ2 Il M 2+ 1+p2 A Ji )]Z—Q—MQ,Jr Yi S Y5152 11M

le

which is a desired estimate and hence shows the above claim (3.10).

It remains to prove that (3.8) also holds true for any f € S/ (R™ x R™). Let g :=
©j1.5» * f. It is well known that g is a slowly increasing C'™° function on R” x R™ (see,
for example, [34]).

For § > 0, let gs(-) := v(3-)g(-), where v € S(R"™ x R™) satisfies (0y,,0,,,) = 1 and
supp? is compact. Then g5 € S(R™ x R™). If § > 0 is sufficiently small, we further have
supp g5 C (AJ1 i ([, 7" ™). By the already shown part of (3.8), we know that

Uirga % 96() = b7 072 N gs(ALj, k), (- — A_j k)
Eeznxzm

=b 70 > gs(— A ks (A, k) (3.11)
keznxzm

holds in Sao(R™ x R™),
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Assume that g is at most polynomially increasing with order M € Z.. Since 1;, ;, €
Soo(R™ x R™), then, for any fixed x € R™ x R™, we have

lgs(x — A_j, k), 0 (A_jy — k)|

- = - =\ —(M4+n+m+1)
< Cygple — Ay k™ (1 + A, —jk])

and

g o - - =\ —(MAn+m+1)
Sy le - A, kM (LA, k) o

keznxzm

—(M+4+n+m+41)
<Cogse [ o=l dy < o

R7™ xR™

By applying the Lebesgue dominated convergence theorem and taking the limit as 6 — 0
in (3.11), we conclude that (3.8) converges pointwise.

Notice that, for any 0 € S, (R™ x R™), since ¢ € Soo (R™ x R™), by [8, Lemma 5.5],
we have

2
|<¢j1,j2(‘ - g_jla_j2]g)79>| < Ojl,jz H[l + pl<kz)]

=1

—2-MG +

From this and ‘95(g—j1,—jzg)‘ < C’Y(l + ’A)—jh—hg)M < C’Ya.jl:j2[1 + pi<ki)]MCi’+7 it
follows that

Yo b g5 (A i B[ (Vg (- — Ay ), 0)
kezr xzm™
2

< C’Yajl:jQ H / [1 + pi(yi)} i dy; < oo.
=1 R

This observation, together with (3.11) and the Lebesgue dominated convergence theorem,

implies that, for any 6 € Sy (R™ x R™),

(i1.g2 * 9,0) = Mm@y, 5, % 5, 6)

= lim o bIgs (A, k) (W g (= Ay k), 0)
kezn xzm

= > bl g (AT TR (g, (- — Ay k), 0).

kezn xzm

Thus, (3.8) holds in S’_(R™ x R™), which completes the proof of Lemma 2.3. O
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Proof of Proposition 2.8. Noticing that Sj(R™ x R™) C S. (R™ x R™), we obviously
have HP,(A) C HP(A).

Conversely, let (¥, @) be as in Definition 2.6. For any f € Hﬁ'](/f), by Lemma 2.3(i)
with ¢ := ¥ x @, we obtain f =3, . ;W) j, * D j, * f in S, (R™ x R™). This result
serves as a replacement of [8, Proposition 2.16] which is applicable only to elements
in S{(R™ x R™). By repeating the proof of [8, Lemma 4.6] with this modification, we
obtain the atomic decomposition f = >,y Aja; in SL(R™ x R™), where {a;};en are
(p, 4, §)w-atoms as in [8, Definition 4.2, {A;}jen C Cand (3 ;y |\ PP < ||f||ﬁ5}(g).
Now, for any ¢ € S(R™ x R™), by the proof of [8, Lemma 4.10] (see [8, p. 424]), we know

that
[ wt i

R™ xR™

where ¢(+) 1= o(—).
Thus, if we define

then

‘<JC7<P>} S Z RYIRS Hf”ﬁg(jy
jEN
Therefore, f € S'(R"xR™), f = f in SL(R"xR™) and f = 3, Aa; in
S'(R™ x R™), which, together with [8, Theorem 4.5, implies that f e Hff)(ff) and

Hf”Hg(A) S ||fHﬁ5(/T)-
Now let us prove that the extension is unique. Assume that there exist two extensions
fi, fo € HP(A) with f1 = fo = f in S._(R™ x R™). We need to show that

g:=fi — f2=0€ S (R" xR™).

Set & := {(z1,22) € R" x R™: 27 = 0,, or To = ﬁm}. Let us first prove suppg C &.
Take any = € (R” x R™) \ & and sufficiently small positive numbers ¢; and J5 such that

(Bm (,2171,(51) X Bp2 (.’1’2,52)) Né& = @

Then, for any ¢ € S(R™ x R™) with suppy C (B, (21,01) X B,,(x2,62)), we have
(g, ) = 0. Indeed, for any (27,25) € R” x R™ and a1 € Z}, ap € ZT', we see that

—

8“1g0(6n,x’2) = aach(a:’l,()m) =0,
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which implies that @ € So(R™ x R™). From this and ¢ = 0 in S/_(R™ x R™), it follows
that (g,¢) = (g9, p) = 0. Thus, suppg C &.

Finally, let us prove g = 0 in &’(R™ x R™). Since fi, f2 € HP(A), we have g € HP,(A).
By this and Lemma 4.10 in [8], we conclude that g € Sj(R™ x R™). Let ¢ := ¢(!) @ ¢(?)
be as 1n Lemma 2.3(i). Then, there exist two integers k; and ¢; such that k; > ¢; and
supp (ﬁl C B,,(0,,,bF)\ B,,(0,,,b5), i € {1,2}. By the Calderén reproducing formula
8, Lemma 2.15], we have g = 37, . .7 g * ¢;, j, with convergence in S'(R™ x R™).
Therefore, for any ¢ € S(R™ x R™), we obtain

(0) = D (g% bgme) = Y (GOS((A]) 7 (45) 7). 8(=)).  (3.12)

J1,J2€Z J1,J2€Z

Observe that, for any ji,j2 € Z,

supp ((47) 7"+, (43) ")
C [Bpl (6717 b’1ﬂ+j1) \ By, <6n7 bilJrjl)} X [sz (6m7 b§2+j2) \ B,, (Gm, b§2+j2)] .

From this and suppg C &, it follows that, for any j;, js € Z,

(suppg) N (supp &((A7) -, (43) 7)) = 0.

Combining this with (3.12), we obtain (g, ) = 0. This finishes the proof of Proposi-
tion 2.8. O

The proof of Theorem 2.12 needs a series of technical lemmas. First, we need to show
that the p-transform T, as in Definition 2.11 is well defined, respectively, on h?, (f_f) and
Ep,w(ff). Let us begin with the following technical lemma.

Lemma 3.2. Let & € Soo(R® x R™) and ¥ := D) @ ) where () € S (R™), i €
{1,2}. For any positive constants Ly and Lo, there exist positive integers Ny and Ny and
positive constant C', depending only on Ly and Lo, such that, for all P,Q € R

- p'(CCQ Tp,) Y 1Qi | 2| '
Vg, P <l P II 1+ & : . A )

=1

where

N-
[W]lny v, o= sup sup (L o) (1 Ja]) 00 020 (21, ) .
(z1,22) ER™ XR™ |71 [< N1, |v2|<N2

Proof. To prove this lemma, we need the estimate [3, (3.18)], namely, for any ¢,9 €
S (R™) and positive constant L, there exist a positive constant C' and a positive inte-
ger N, depending only on L, such that, for all P, € Q1,
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plrg —xp)\ T (1QL, IPI\"
(v 62)] < Cliellwlloll(1+ 2222200 ) <|P|/\|Q|> (313)

where [l = Sup g, enlL + [V | (z)]. |

For any P,Q € R,® € Soo(R" x R™) and ¥ := ) @ ¢ with ) € S (R™),
i€ {L,2}, let ¥g = ¢(1) ®w(2) and @p be as in (2.1). Moreover, for any x := (21, 23) €
R" x R™ and P := Py x Py € R with Py := A;7([0,1)™ + k;), k; € Z0" i € {1,2}, we
let

Qv)p2 (IEl,IEQ) = |P2|71/2(15(ZE1, Agzzg — ]{32)

Then it is easy to show that

v5), Pp /w (22)Bp (w1, 22) dwvy = (V) D), € Seo(R").

Consequently, using the fact that @p,(z1,-) € Soo(R™) for all z; € R™ and (3.13) twice
(resp. with dilated cubes of R™ and R™), for any positive constants L; and Lo, there
exist positive integers N1 and N,, depending only on L; and Lo, such that

(o, ®p)| = [(0G), (Ve ®r) )|

(1) @) pl(le—chI))_“(IQl! |P1\>
S 60 52 @p2>HN1(1+—|QMP1| 17

Sy, sup  sup (U )™ [0 071 2, )|

|71|\ 1

| ilvg, - p>]( Qi |Pi|>L1}
H{[ Qi VI P IR

2 — L. L.
pi(in_$Pi):| z( ‘Ql| |P1’) l}
~ @ @ 14 PiEQ — TR il ,
1211 ve \|N1,N2H{[ e 2

=1

No

which completes the proof of Lemma 3.2. O
The following technical lemma is just [8, Proposition 2.10(i)].

Lemma 3.3. (See [8].) Let q € (1,00) and w € Ay (A). Then there exists a positive
constant C' such that, for all x € R™ x R™ and k; € Z, {; € Z with i € {1,2},

w(Bpl (mbbllﬂ—wl) X Bﬂz (x27b]2€2+€2)) < O|Bp1 (.731,blf1+£1) X Bp2($2,b]2€2+€2)|q
w(Bpl (‘Thbil) X sz(%,bgz)) |Bp1 ($1,b€1) X Bp2($2,bg2)|q
~ [
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For any w € Ao (A), the critical index of w is defined by
G = inf{q € (1,00): w € Ay(A)}. (3.14)

Obviously, g, € [1,00) and if ¢, € (1,00), then w ¢ Aqw(/f). Moreover, Johnson
and Neugebauer (25, p. 254] gave an example of w ¢ A;(21,,x,) such that ¢, = 1 (see
also [8]), where I,,,, denotes the n x n identity matrix.

Lemma 3.4. Let w € Aoo(ff) with g, as in (3.14), ¢ € (qu,0) and § € R. Then there
exist positive constants Ly, Lo and C, depending on &, such that, for all ji,js € Z,

3 [w(R)]° H 20181+ 11|

RER, scale(R)=(j1,j2) Hz 1[1 + pl(-TR )/(1 v |R |)

Proof. The proof of this lemma follows along the lines of its one parameter variant
3, Lemma 2.11]. The key observation is that the measure w(x) dx is doubling with re-
spect to the action of the 2-parameter group of dilations AJ1 j»- Indeed, by Lemma 3.3,
there exists a positive constant C' such that, for all x € R™ x R™, ri,79 > 0, and
ki,ko € Z,

2
<HBPI i, (b;) Z)) OOy b5 1w (HBPZ xr)
=1

This practically means that w is a product g-doubling measure albeit with a positive
constant C. In particular, for any dilated rectangles P := P, X P,,R:= R; X Ry € R
of the form P; := A% ([0,1)™ + k;) and R; = AJ*([0,1)™ + I;), we have the following
analogue of [3, (2.6)], namely,

R) S JI+piki = 1)) "w(P). (3.15)

Mimicking the proof of [3, Lemma 2.11] by considering four cases that ji,j2 > 0,
J1,J2 < 0,71 =2 0, jo < 0 and j; < 0, jo > 0, we then obtain the desired estimate
in Lemma 3.4. O

Lemma 3.5. Suppose that w € Ax(A),p € (O, o) and ¥ = Y @ 3 where
Y € S(R™), i € {1,2}, satisfies that supp w(i) is compact and bounded away from
the origin. Then, the inverse -transform Ty, : b2 (A) — S/ (R™ x R™) is well defined
and continuous. The same result holds if h? (A) is replaced by £, (A), p € (0,1].

-,

Proof. For any s € h? (A), by the definition of /2 (A), we know that, for all Q € R,

sl < llsllis, 5]Q1% [w(@)] "
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Applying Lemma 3.2 for any ¢ € Soo (R™ x R™) and P :=[0,1)" x [0,1)™, we see that,
for all Q € R,

2 ) —L; .
(e8] < lollwe TT |1+ 28503 (@il Qi)™
i=1 !

Combining the above estimates with Lemma 3.4, we then find that, for sufficiently large
L1 and LQ,

> lsql|(q, 6]

QeRr
2l w(@)]7HP
S Nl v sl ) > > Hbj/ > . Pie) L,
Jl,]QGZSCaIE(Q) (]17]2)’L 1 [1 + 1\/|Q | ] '

2
ji /24341 (2q/p+1)—|7:| L
Slolvenllsliga > TJel#HHCVP D=0 <o), n sl 1,

J1,J2€Zi=1

where ¢ € (qu,00). Thus, by the definition of Ty s, we conclude that, for all ¢ €
Soo(R™ x R™),

(Tys,d) = D sq(vo, 9).

QeER

Moreover, for all ¢ € Soo (R™ x R™), it holds true that
Ty, )] S 1l wallsllig .

which implies that T}, : h2 (A) — S’ (R"™ x R™) is continuous.
Now, for any s € Ep,w(ff), by the definition of ¢, ,,(A), we know that

1/py -
Isg| < HSHEP,M(/Y) [w(Q)] PIQI7Y% forall Q € R.

Then, repeating the above proof for hﬁ](/f), we obtain the desired results for T, on
prw(/f). This finishes the proof of Lemma 3.5. O

Motivated by [3, Definition 3.9, we introduce the notion of majorant sequences.

Definition 3.6. Given a complex-valued sequence s := {sp}rer and 7, A > 0, define its
majorant sequence s* , = {(s* \)r}rer by

()= { 2 2 ’fPV( r, —zp,) }1/T'

PeR, scale(P)=scale(R) Hizl[l + ’RZ| 1p’i x
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The spaces Ly (A), £p.w(A), and the sequences {(s72)@tqer can also be defined
“equivalently” via generalized dyadic rectangles associated to A in some sense. Precisely,
let us begin with recalling the dyadic cubes associated to A introduced in [8, Lemma 2.3],
which is a slight variant of [14, Theorem 11].

Lemma 3.7. Let A be a dilation. Then there exists a set
01 :={QF CR™ keZ acl)

of open subsets, where 1, is some index set, such that

(i) R\ (U, @5)| = 0 for cach fized k and Q1 Qs =0 if o # 6
(ii) for any o, B, k, £ with £ > k, either Q% N Q% =0 orQ‘ C Qg;
iii) for each (¢,8) and each k < £, there exists a unique o such that Q% C Q*;
B a
(iv) there exist some negative integer v and positive integer u such that, for all Q’; with
k € Z and o € Iy, there exists cpr € Q’; satisfying that, for all x € QZ;,

Bp(cQ;;,b“k’“) cQk c Bp(x,b”k+“).

In what follows, for convenience, we call {Q Yrez,acr, in Lemma 3.7 dyadic cubes.
Also, for any dyadic cube Q with k € Z and « € I, we always define £(Q%) := k to be
its level.

Let A; be a dilation on R™, and Q;, £(Q;), vs, u; the same as in Lemma 3.7 corre-
sponding to A; fori € {1 2}. Let R:=0Q;x0Q05. For R e R we always write R:= Ry xRy
with R; € Q; and call R a dyadic rectangle. Moreover, we let ((R) := ({(Ry),{(Ry)), and
((R) < U(P) always means that £(R;) < £(P;), i € {1,2}.

Definition 3.8. For two sets 4 C R™ and Fy, C R™, let H?:l FE; := 1 x Es. For any
locally integrable function f on R™ x R™, the strong maximal function M(f) of f is
defined by setting, for all x € R™ x R™,

1

M (f)(z) := sup sup / | f(2)] dz.
YER™ XR™, r1,r2>0 2€[[2, B, (4, r) HZ 1 Boi (yis i) s B

i=1 Pp; \YirTi

The following lemma comes from [3, Lemma 2.9(a)|.

Lemma 3.9. There exists a positive integer 7; := 7;(A;,n;) for all Q; := A% ((0,1]™ + k;)
with j; € Z and k; € 2, i € {1,2}, such that

By, <CQi ’ bgiin) C Q; C By, (Cin bgiJrTi).

In what follows, for any o € R, we denote by |« the mazimal integer not more
than «. Recall that §F denotes the cardinality of the set E.
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Lemma 3.10.
(i) For any R € R, let Up, := R, X Up, with

Up ={Ri € Qi: R, NR; # 0, ((R;) = | (scale(R;) —u;) /vi]}, i€ {1,2}.

For any R € R, let Ur := Ug, x Ug, with

Ug, = {RZ € Qi RiNR; #0, K(Rl) = L(scale(Ri) - ul)/vlj }, i€ {1,2}.

Then there exists a positive integer N such that, for all R € R and R € R, 10 +
4Ur < N. Moreover, for allw € Ax(A), R € Uy and R € Ug, w(R) ~ w(R).

(i) There exists a positive constant 1y = no(A,n,m) € (0,1) such that, for any open
set 2 C R™ x R™,

U U Rc RO .= {z e R" x R™: M,(xa)(x) >mn0}.

RER, RCN2 ReUp

Proof. (i) For any R € Up, let ; € R; N Ri, i € {1,2}. Then, for any z; € R;, by
Lemma 3.9, Lemma 3.7(iv) and scale(R;) < vil(R;) + u;, we obtain

e ~ ’Uif Rz U TTh
pi(wi — cp) < HY [pi(zi — cr,) + pilcr, — Ti) + pi(T; — cp,)| < 3Hb; (Ra)tuitm

which implies that

U Ri C By, (cp,, 3HZIHITH4™) e (1,2). (3.16)
RiGURi

From this, v;[¢(R;) 4 1] 4+ u; < scale(R;) < vil(R;) + u; and Lemma 3.9, it follows that

2 Uz‘f Ri)+u;+7;
R == 2 UZZR +1+u1 T ~
[12, 5

Moreover, by (3.16), Lemma 3.3 and Lemma 3.7(iv), we have

B, (cp., 3HZO ATy ) <oy [ TT By, (cp, 67T 7Y ) < w(R).
Pi R pz R l

The converse inequality also holds true via an argument similar to the above and hence
w(R) ~ w(R).
Similarly, for any R € R, we also have #Uz < 1 and, for all R € Ug, w(R) ~ w(R).
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(ii) For any R € R and R C §2 with scale(R) = (j1,42), R € Ugr and x € R, by an
estimate similar to that of (3.16), we have R; C B,,(cr,,3H?b}'""**™). From this and
Lemma 3.9, it follows that

|Hz‘2:1 Bpi<CRi, 3Hi2bgi—vi+7i) ﬂ Q|
|H?:1 BPz‘ (CR“ 3H§bgi*9i+7i)

Ms(xa)(z) =

2 .77.77-1 2
|Hi:1 BPz‘(CRi’bi ) > i H(HZ)_lb;h'*QTi =: 1o,

’H?:l Bpi (CRN 3Hz'2bgi_vi+ﬂ> 10 i=1 Z

which completes the proof of Lemma 3.10. O

Definition 3.11. For any R € R and Ug as in Lemma 3.10(i), let xy,(R) be equal to
one if R € Ug or else zero. For any R € R and Uj as in Lemma 3.10(i), let Xv,(R) be
similarly defined.

Lemma 3.12.

(i) For any complex-valued sequence s := {Sr}rer, its induced sequence $ is defined
by setting § := {SR}RGRLwh‘f'r@ $i = Y peu, |Sr| with Ug as in Lemma 3.10(i).
Then, for any w € Ax(A) and p € (0,1], there exists a positive constant C such
that H'é”ép,w(ﬁ) < C”‘SHzp,w(ﬁ)’ where the definition of the norm -l by (A) is the
same as || -| 0w (A) but R and R are, respectively, replaced by R and R.

(ii) For any A € (0,00), the majorant sequence {(33 )} per Of 8 is defined to be the
same as in Definition 3.6 but R, R, xRr,, Tp,, scale(P) and scale(R) are, respectively,
replaced by R, R, Ch,» Cp,; ((P) and (R), i € {1,2}. Then there exists a positive
constant C' such that, for all R € R and R € Ug, (s5.0)rR < O(35 )5

Proof. (i) Let w € Au(A). For any R € R, let Uy, be as in Lemma 3.10(i). Then, for
any R € Up, by Lemma 3.10(i), we have

w(R) ~w(R) and |R|~|R|. (3.17)

Moreover, for any open set {2 of R x R™, similar to the proof of Lemma 3.10(ii), there

—,

exists a positive constant 79 := 19(n, m, A) € (0,1) such that

U U ceo, (3.18)

ReR, Rc ReUy

where

Q0 .= {z e R" xR™: Myxa(z) >0}
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Furthermore, for any ¢ € (qw,o0), by the L% (R™ x R™)-boundedness of M, (see
[8, Proposition 2.10(ii)]), we also have w(2) < w(£2). Therefore, for any open set
2 C R* x R™ with w(f2) < oo, by (3.17), (3.18), w(2®) < w(R), p € (0,1] and
Lemma 3.10, we know that

1 alis
——— > sl @

|
[P~ per hcn W

bS]

1 2 IRl
S ()it > > Isal w(R)XUR(R)

ReR, Rcn RER

1 2 |R| : 2
S W Z SR w(R) Z xXug(R) S ||3H£p7w(g)-
RER, RCNO) RER, RCN

From this and the arbitrariness of the open set {2, it further follows that

||5||ép7w(,§) N ||3||gp,w(A')-

(ii) For any X € (0,00), R € R with scale(R) = (j1, j2) and any R € Ug, let us prove
that (s3 \)r S (85,1) - To this end, we choose any other P € R with scale(P) = scale(R)
and P € Up with E(P) = E(R) Let xg, = AflkZ and zp, := Aflfl;l with ki,%i € 2N
and k; # ki, i € {1,2}. Then, by (3.1) and (3.2), there exists a constant ¢; such that
pi(k; — %Z) > b and hence p;(zg, —zp,) = bgip(ki — E) > bgﬁci. Let #; € R; N R; and
Z; € P;N P;. Therefore, for i € {1,2}, by this estimate, Lemma 3.9, v;£(P;) 4+ u; < j; —vs,
and Lemma 3.7(iv), we have

pi(cRi - CPi) < HzG [pi(cRi - jrl) + pl(‘%l - CRi) + Ioi<CRi - xRi) + pi(‘rRi - xPi)
+pilep, —cp,) + pilep, — Ti) + pi(@ — cp,)]
< HZG (3b;vi_ci + sz—l_cl + l)pz(mRz — Clipl.).

Thus, for all R € R and R € Ug, using the above estimate, Lemma 3.10(i) and (3.17),
we obtain

2
(83,/\); = Z 2 Lid

scale(P)=scale(R) Hi:l[l + |Ri|71pi<xRi - xpi)]/\

< ¥ > 3¢ Pxus (P) < (55,)>%

2 S5 |—
scale(P)=scale(R) ¢(P)=£(R) Hi:l[l + |RZ| 1pi(CRi - Cpi)]A

which completes the proof of Lemma 3.12. O

The following lemma is a generalization of [3, Lemma 3.10] and [40, Theorem 1.2 and

Lemma 3.1].
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-

Lemma 3.13. Let w € Ao (A) with q, as in (3.14).

(i) If p € (0,00), r € (0,00) and A >q ,(max{1,7/2,r/p}), then there exists a positive
constant C' such that, for all s := {sr}rer,

Islliz, 2y < lstallin 2y < Cllsllig, -

(ii) Ifp € (0,1] and \ > 2qy/p, then there exists a positive constant C such that, for all
5= {SR}RGR € Ep,w<A);

Isllg,...cay < [Is3.all,, 2y < Clisll,.. )

Proof. (i) can be proved by an argument similar to that used in the proof of
13, Lemma 3.10]; see also the proof of [21, Lemma 2.3], the details being omitted.

To show (i), let w € Ao (A), p € (0,1] and A € R satisfy A > 2¢,,/p. Observe that the
definition of Ep,w(A) is defined via the mean value on open sets, while the corresponding
one parameter space f'gg)z(A;w) is defined via the mean value on dilated cubes. This
makes the proof of (ii) quite different from that of [3, Lemma 3.10]. We need to use
Journé’s covering lemma under the setting of expansive dilations (see |8, Lemma 4.9]).

Obviously, for all R € R, [sgr| < (85 ) r, which implies that HsHe Lo S sy /\||£p ()
() < HSHép,w(fY)' Let 2 C R" x R™ be any
fixed open set satisfying w(£2) < co and £2(9) as in Lemma 3.10. For i € {0,1}, we define
inductively the sets

To prove (ii), we still need to show

QU = Lo e R® x R™: M(xom)(@) >m},

where 71 := 11 (A, n,m) € (0,1) is a constant to be fixed later.

For any {sr}rer, define {rr}rer and {tg}rer by letting rp := sp if R ¢ 23 or
else rp := 0 and tp := sp — rr for any R € R. Moreover, picking any ¢ € (g, o0), by
the LI (R™ x R™)-boundedness of M, we have w(£2?)) ~ w(£2). Thus, we obtain

Rl
——— > (s5)ul ST+,
i 2l o <
RC(?
where
1 . 2 R
= ———— D
[w(22)])5 1 %l(m)ﬂ w(R)
RCQ2
and

2R
J .= ol % Z{ R H)

ReER
RC?
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Estimate I. For any 1,/ € Z4 and R € R, let
Mp, 1, = {P € R: scale(P) = scale(R), bl < |Ri|tpi(zp, —xg,) < bt e {1,2}}.
In the case that [; for i € {1,2} is 0, the above condition is replaced by
|Ri| "t pi(zp, — xR,) < b;.

Then we have

el Pllw(R)]
S @@ [w(ﬂ IRk oy 2 2 [Toi [+ Rl pilar, — zp)P

]17]2€Z ReR l1,lo0€Z4 PEMR 14,1
scale(R)=(j1,j2) e

Since A > 2q,,/p with p € (0, 1], we choose ¢ € (g, o0) sufficiently close to g,, such that
A>1+4¢q. For any P € Mpy, 1,, by (3.15), we see that

w(R) < i pi2w(P).

Moreover, by an elementary lattice counting lemma (see [6, Lemma 2.8]), we conclude

that #Mp, 1, < b0, Thus,
P| i (A—q—1);—l2(A—q—1)

=t DINED DR VTP Lol S el

[w( ] ]1»]262 PGR w(P) ll,lQGZ+

scale(P)=(j1,j2)
1 1P|

S——— Y el S IsI? 4
~ 2 _ ~ Y w A)?

[w(Q@))]p 1 PCO® w(P) pw(A)

which is a desired estimate for I.

Estimate J. We need to show J ||s||é i)- Notice that, for any R € Ug, by
Lemma 3.10(i), |R| ~| R| and w(R) ~ w(R) Moreover by the LI (R™ x R™)-bounded-
ness of M, with ¢ € (quw,00) (see [8, Proposition 2.10(ii)]), we have w(2®) < w(2).
Also, observe that, for any Re Rand R€ R, R € Uy, if and only if R € Ug, which, to-
gether with Lemma 3.10(i), further implies that > e xun(R) = Y rev, XUy (R) ~ 1.
Using these facts, together with the trivial fact that, for any R € R, > perr. Xvgn(R) > 1,
Lemmas 3.12(ii) and 3.10(ii), we obtain

IS ———— 21 D 2 xw@|(ta) g \2%

[w( RER
Feraty ReUg

__1 Z Z Xu, (R t2,>\)R‘2XUR(R)%

[ RGR ReUg w
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L S TRMALE
S [w(Q(O))]%fl Z { Z XUR(R)}‘(t2,>\)R| w(R)

Rcn) ReR -ReUg

NI N N N (3.19)

[w(Q(O))]B_l RCOO), ReR w(R)

Denote by m;(£2(9) the family of all dyadic rectangles R c 2O which is mazimal
in the R™ “direction”, where i € {1,2}. Let m(2(?) := my(20) N my(2®). Notice
that, for any R C 29 there exists at least one dyadic rectangle P € m(2©) such that
R C P. Then, by (3.19), we know that

il oy oy oy fol @I

2_ 2 N —
(RO L o0, re hep ber [T (L +1Qiltpi(ey, — cp)]?
(Q)=4(R)

We now need to obtain some subtle decompositions on iQ. For any P:=P x P, €
m(2), let P, D P; be the maximal dyadic cube such that

{(Ply* X PQ) M \Q(O){ > 5Hf7’]1b?ulbgu2yply* X Pg’, (321)

where we choose 7; € (0,1) small enough such that 5Hin b7“ b3“> < 1. For Bp =

By, (cp, . 3HIO Ty and Uy, = {81 € Ot U($1) = U(Pr.), $10Bp, | # 0},
using Lemma 3.7(iv), we see that

. 4,v14(Py ) +u :
=By, (cp, ,5HID" ) D () S
SleUpl .

By

1

Then, for any S; € Up, ., and z € Sy x Py, by Lemma 3.7(iv) and (3.21), we have

|(Buy X Bpy (e, V5™ 1) 0 QO] [P x B) 0 20

|BU1 X sz (CP27 b12}2£(P2)+u2)| - 5H%b%UIb§U2|P1,* X P2|

M;(xXoo)(@) 2

>771a

which implies that (g, cp, S1) x Py ¢ O,

On the other hand, for any Pl,* X Pg, there exists a dyadic rectangle Pl,, D Pl,* such
that Pl,_ x Py € ml(Q(l)). Then, we further choose the maximal dyadic cube Pg,* o Py
such that

‘(PL- X PQ,*) N Q(l)‘ > 35H16H§b§ulbgu2nllply X PQ‘, (322)

where we choose 7, € (0,1) small enough such that 35HS H3b3“1b3">n; < 1.
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. -— . 2 UQE(PQ,*)“‘UQ
For Bp, = By,(cp, ,3H3b, ) and

Up,. = {52 € Qut U(S2) = U(P2.), S2N By, #10},

using Lemma 3.7(iv), we find that

Py )+ -
By, = By, (cp, , SHAb %0y 50 | ] 8,
S2€UP2,*

Then, for any x := (21, 22) with z1 € B,, (cp, ',7H?b11)1£(]b1")+u1) and x5 € Sy € Up, .
by Lemma 3.7(iv) and (3.22), we have

[(Byy (cp,  THED, 1) 5 By n W)
By, (cp,  THSb 70 5 By |

M;s(xow)(@) =

|(P17_ X ng*) N Q(l)|
T 35HSHADX1b242| Py, x Py .|

> m,
which, together with g, ¢r7,, Sy C By, C B, (cp, 7lr176bm£(P1 )+u1), implies that
1,5 i

U $coo.

SGUPL* XUPQ’*

Therefore, for any Q € R and P := P, x P, € m(2)) with Q := Q1 x Q2 ¢ 2
and £(Q;) = U(P;), i € {1,2}, by Lemma 3.7(ii), we obtain either

QNS =0 foralS €Up (3.23)

or Q1 C Sy for some Sy € U Py Likewise, we either have

QQ N SQ = for all SQ € UP2 L (324)

or Q C Sy for some Sy € Up, .. Observe that either (3.23) or (3.24) must hold. Other-
wise, there would exist S = 5’1 X 5'2 € U L X U . such that Q c S c 2® This is a
contradiction with Q ¢ 22). Define two sequences {tQ}QeR and {tQ}QGR, respectively,
by setting tQ = 8¢ if Q1N (UsleU S1) = 0 with £(Q) > £(P) or else tQ = 0, and

tQ = $g it Q2 N <U32€Up27* Sy) = @ Wlth Q) > L(P) or else tQ := 0. Notice that,
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by (3.20), if Q € R appears in the sum of J, then Q ¢ 2®) and £(Q) > ¢(P) for some
P e m(02). This observation, together with (3.20) again, yields that J < J; +J5, where

o 1 5 3 3 [t ?1QI[w(R)]
1= ———5 2 N
[w(2O)]7 ' Pem(R®)RER, RCP  QER [T [T+ Qi 1pi(CQi o CRi)]/\
€(Q)=L(R)

1 i P1QI[w(R)] !
Jo 1= W Z Z Z D) QL _

[w (2 pem(no) er ek oer  lim[l Qi T pileg, —cp)I?
HQ)=(R)

Estimate J;. Let us first classify those cubes “Q” in J; by the definition of %VQ. In

what follows, let (71-31’* denote the union of all the dyadic cubes in Up, . For any P =
Py x Py € m(029), we claim that

{Qi=Q1xQeR: Q1NUp =0, Q) > (P)}
C U {QeR: Qc P} (3.25)

{Pr:=P{x P{eR: £(P")=L(P), P{NUp, =0}

Indeed, for a fixed P € m(2®) and any Q; NUp, = B with £(Q1) > £(P1), by (i)
and (iii) of Lemma 3.7, there exists a unique P1/* e Q; such that E(Pl’*) = ((P1.),
Q1 C Pl’* and P1’>k N (71'31 _ = 0. Furthermore, by Lemma 3.7(iii) again, there exists a
unique P/ € Q1 such that ((P]) = ¢(Py) and Q; C P}|. Then, we have Q; C Pl’* NP
From this, /(P] ) < 0(P]) and Lemma 3.7(iii), it follows that P{ C P{, and hence
PN UP = (. By Lemma 3.7(iii), there also exists a unique Py € Qp such that Qo C P}
and E(PQ) = ((P;). Then we have Q C P’ := P| x P} satisfying ¢(P") = ¢(P) and
PN U = (), which shows the above claim.

For any Pg € Qy, let Bp, = By, (cP2,3H22b12)2€(P2)+u2) and
Up, = {S2 € Qa: €(S3) = U(P2), S2N Bp, # 0}.
Denote by ﬁPQ the union of all cubes in Up, . Define two sets of dyadic cubes:
Wp, = {P'=P] x Py e R: ({(P") =¢(P), P[n (71'31,* =0, Pyn ﬁpz/ =0}
and

Wpoi={P'i= P{ x Py R: ((P') = U(P), P{nTp =0, By Up}.
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Then, for any P € m(2®), by (i) and (ii) of Lemma 3.7, we rewrite (3.25) as
(=0 x Qa e Re Ou1 T =0, 6Q) > ((P))
c ( U {¢er QcP’})u( U {¢er QcP’}). (3.26)

P’EWP’I P/EWPQ

Notice that, for any P € m(£2(®)) and P/ N fjpl =0 with ¢(P{) = {(Py), by P, C
P . C Bp, = By, (cpl’*,?,Hllel”é(Pl’*Hul) C (7151,* and P/ N lfjpm = (), we know that

pl(cPl’ - Cpl,*)
H,

pi(cpy —cp) = —plep, . —cp)

S 3H12b11)1£(P1’*)+UI _ bvlﬂ(PL*)ul
=z H 1
1

> 2H1bvlé(P1,*)+ul
= 1 .
Similarly, for any P € m(02() and P} N [7152 = () with ¢(P}) = £(P), we also have

p2(cp; —cp,) = 2H2b12’2z(P2)+u2.
Thus, we obtain
Wy, C{P =P x PyeR: ({(P') ={(P),
pi(cp —cp) = 2H1511)1£(P1’*)+u1a p2(cp; —cp,) = 2H2b§25(152)+u2} (3.27)
and
Wy, C{P =P x PyeR: {(P') ={(P),
prlepy — ep,) = 20 T PLC T ) (3.28)
Let v1(P) := £(Py ) — £(Py). For any ki, ky € Z, let
UP,kl,kQ = {Pl € R: K(P/) = K(P)v Pl(cpl - CP{) ~ bqfl[apl)ﬂl(P)Hkl;
palep, — cpy) ~ b DT}
and
Upr, = {P' e R: £(P") =L(P), pi(cp, — Cpy) ~ blljl[é(Pl)ﬂl(P)Hkl, Py C ﬁpz},

bvln[f(Pl)ﬂl(P)Hkl bvze(P2)+k1

where pi(cp — cpr) ~ and pa(cp, — cpr) ~ by mean, respec-
1 1 2 2

tively, that
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2Hlb1111[Z(P1)+71(P)]+u1+k1 < Pl( CP/) < 2Hlb”ll)1[K(P1)+’71(P)]+u1+k1+1

Cp, —
and

2H2b12)25(1'32)+u2+k2 <

L(Py)4ug+ko+1
< palep, — opy) < 2Hpby TR

Thus, by this, (3.27) and (3.28), we conclude that

Wp’lC U UP7k17k2 and WP’2C U UP,kl'

k1,ko€Z4 ki1€Z4

Hence, for any ji,js € Z4 and P € m(02(), using above two decompositions and
(3.26), we obtain

{Q eR: £(Q) =UP) + (j1,j2), QNTp, =0}
C ( U U {Q e R: £(Q) = UP) + (1, J2), QCP’})

k17k2€Z+ PleU'P’li62
J ( U U {QeR: £(Q1) =4(P1) + ju, QCP’}>
k€Lt PreUp

=:V; UVP,jl' (3.29)

P,j1,72
From this and

2. =22 =2 >

ReR,RCP  Jj1.j2€L+  RER,RCP J1€Z+  RER,RCP
L(R)=£(P)+(j1.52) L(R1)=j1+L(P1)

it follows that J; < ng) + Jg2), where

(1) 1
Jl = - 5 1
[w(200))]>~

[t ?1Q[w(R)]
o S S D D ——
Pem(Q®)j1,J2€2+  RER,RCP  QeVp ; . +1=1 il “PilCq, R;
L(R)=L(P)+(j1,52)

and
72 = _ 5
w(QO)]F !
o ?1QI[w(R)]
"SI0 SR SRR . L

: (e —ea N
Pem(20)i1€2+  RER,RCP. QEVy Mim L+ 1Qi T pileq, —cp,)]
£(Ry)=j1+£(P1)
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(1)

Then let us now estimate J;’ and J 52)7 respectively.

Estimate ng). Since A > 2q,,/p + 1, we choose ¢ € (¢, 0) to be close enough to g,
such that A > 2q/p + 1. For any P € m(N©), R c P with {(R) = /(P) + (jl,j?) and
Q € VP j1.j.» there exists a unique P’ € Up ;. 4, for some k1, k2 € Zy such that P’ O @
and £(Q) = £(P") + (41, j2). Then, by Lemma 3.7(iv) and the definition of Up ey kys WE

see that P, P’ C Bp1 (CPN3H12b11)1[Z(P1)+’Y1(P)}+u1+k:1+1) x Bp2 (CP273H22b12)2£(P2)+u2+k2+1),
From this, R C P, Q C P’ £(Q) = {(R) = £(P)+(j1,j2) = £L(P")+(j1, jo), Lemma 3.7(iv)
and Lemma 3.3 with w € A,(A), it follows that

) > w(HBPl cp,, b [e(P2)+3i]— uz)>
2 bt{’uljl bgvzjz <H sz B ;} E(R)—m))

z bt{vljl bgmh w(P)

2 b?{ivl[71(P)ijl]fkl}b;q(l@*vzjé)
x w(Bp (Cp 3H12b71’1[K(P1)+71(P)]+u1+k1+1)
1 1

x BpQ (CP1 ’ 3H22b12)2£(1.32)+u2+k2+1))
Z b({{ivl[71(P)fjl]*k’l}b;q(bfvzh)w(P’)

> b‘f{_vl[71(P)_jl]_kl}bz_q(kz_vzjz)w(Q) (3.30)
and, similarly,
w(P') < pilnPrklpae g, py (3.31)
Moreover, for any j1, jo, k1, ke € Z4, by Lemma 3.7, we conclude that
tH{Re R: RC P, {(R) = l(P)+ (j1,52)} by "7by"**  and
BUp g gy S OP TR0, (3.32)

Furthermore, for any P € m(2), R ¢ P, P’ ¢ Up 1, k, With any ki, ks € Zy and
QC P byP C Bp, , and PN Bp =0, and (ii) and (iv) of Lemma 3.7, we find that
PN (7151’* =0, Q C P’ and

pi(cp; — ep) < HY [pilepy —co,) +piley, —cp) +mlep, —cp)]

< ng [2bv1Z(P1 ) Ful +,01(CQ1 CRl)]

which, together with
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pl(C. _CP*) v1l(P1 ) +u
plcg, —cp,) 2 QlHl Lo pilep, . —ep,) > 2Hb

implies that

pi(cp —cp) S pileg, —co,)- (3.33)
Similarly, for any P € m(2(®), Rc P, P’ € Up 1, 1, and Q C P, we also have

p2(cpy —cp,) S palcp, —co,)- (3.34)

Then, by (3.29), (3.30), (3.31), (3.32), (3.33), (3.34), p € (0,1], ¢ € (qw,00) and
A > 2q/p+ 1, we know that

30 < 1 3 S gy

~ 2_1
o (O™ pepiaon in ety

. 57 2-1
v 2_ 2_ P p
- T b(f[ 171 (P)+ka] (2 1)bgk2(p 1){10( )}

k1,k2€Z4 pr w(P/)

3

Qcp’

GUP,kzl ko

|’{Q |2 |Q|b(11{111 [v1 (P)fj1]+k1}bg(szv2j2) [w(Q)]—l

v1[y1(P)—j1]+k1 pka—vajaqn
[by b ]
2g—pA+p

1 V171 (P) 2452 T 2112
< - p ; R
™ [w(RO))p [ z(f:)m))qu)bl ] HSHKP””(A)
Pem

2
jivi (A—q—1 _k'i()‘_2_q_1) .
I D2 o 3 0 TS (3.35)

i=1j,€Z4 ki€Z+

(P) 2q—pA+p

=S w(eo)

N\ 7 V1771

where, in the last inequality, we used that }-pc,, (o0 w(P)b;
which holds by Journé’s covering lemma (see [8, Lemma 4.9]).
Estimate J 52). For any Qg and ko € Z4, let

G n, = 1R € Qat U(R2) = £(Q2), pa(cp, — cg,) ~ by @D,

v20(Q2)+us+ka

b;’zg(Qszz always means that pa(cg, — cp,) < by

where pa(cy, — cg,) ~
when ko = 0 and ngﬁ(QQHuﬁk?_l < p2(0Q2 —cp,) < bgzé(QQHuﬁkQ when ko > 1.
Moreover, for any P € m(2®), by Lemmas 3.7 and 3.3, we have
ﬁ{R1Z E(Rl) = E(Pl) + j1, Rl C Pl} 5 bl_vljl,
1G o,y S V52 and

ﬁUP,kl < b’tlf’l’Yl(P)ﬂLkl‘ (336)

~
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For any P € m(R©), P' € Up, Ky Q C P’ with £(Qy) = £(Py) + j1, R € R with R C P,
((R) = 0(P) +j, and Ry € G, ks DY P/N Bp =0, and Lemmas 3.7 and 3.3, we find
that
w(R) 2 b w(Py x Ry) 2 by D IRy by Ry
> bl—fJ{m[71(P)—j1]+k1}b2—qk2w(Q) and w(P’) < b({[vlwl(P)—i_kl]w(P). (3.37)

Therefore, by (3.29), (3.33), (3.36), (3.37), p € (0,1],¢ € (qw,00) and A > 2¢q/p + 1,
we conclude that

(2) 1 —v1J1
WS o, 2, 2

Pem(0(0) j1€2L4

x> Y b q[vm(pprkl][ ((]];))F'_l

ki1€Zy P’eUP’,V1

~ o, N
q{v1[v1(P)—j1]+k1} k2 ’th |Q|[w(Q)]
X Z Z Z b1 b2 [bqul[vl(P)—leklb];Q])\

QCP’ ko€Zy RQGGQQ,RQ

1 . U1’Y1(P) Qq_fkﬂj %_1 .12
< S 2-p , R
22O )]_1[ > w(P) } 1312 &

Pem(2O)
% Z b]lm(/\ q—1) Z b*’fl -1 Z by k2(A—g—1)
J1E€EZ+ k1€Z4 ko €74
5 HSHZ”U(A’)v (338)

. P)29—pA+p
where, in the last inequality, we used that > pc,, o) w(P)blljﬂl( T < w(2O),

which holds again by Journé’s covering lemma (see |8, Lemma 4.9]).
Combining (3.35) and (3.38), we know that

(1) (2) P
JiSh +8 §HSH1gpﬁw(g)'
Symmetrically, we also have Jo < ||s||§ Ay
Jo and Lemma 3.12(i), we conclude that J < ||s||?

lpw(A)
Lemma 3.13. 0O

Combining the estimates of J; and

which completes the proof of

We also need to generalize Peetre’s mean value inequality to our setting, which is an
extension of [3, Lemma 8.3] and [21, Lemma A.4| from one parameter setting to two
parameter setting. Since the proof of Lemma 3.14 is similar to that of [3, Lemma 8.3],
we omit the details.
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Lemma 3.14. Let K be a compact subset of R™ x R™ and A € (0,00). Suppose that
g € S'(R™ x R™) with suppg C K. For any v € N, define two sequences {ag}ger and
{bo}oer, respectively, by setting, for all Q € R,

ag = sup|g(y)| and
yeq

bo = sup{ inf [g(y)]: scale(P) = scale(Q) ~ (7,7), PNQ # @}. (3.39)

Then, for any sufficiently large positive integer v and @ € R with scale(Q)) = (0,0),
(a5 \)q ~ (b5 \)q with equivalent positive constants independent of g and Q.

Lemma 3.15. Let w € AOO(JLY) with q, as in (3.14). Suppose ¢ = 1) @ @) with
0 € S(R™) satisfying that supp ¥ is compact and bounded away from the origin,
where i € {1,2}. For any f € S, (R™ x R™) and v € Z, define the sequences sup(f) :=

{supQ(f)}QGR and inf(f) = {infq(f)}ger by setting, for all Q € R with scale(Q) =
(_j17 _j2)7

supg (f) = |Q|% sup| @, j, * f(y)| and
yeaQ

inf(f) = |QIF sup{ inf |3, 5. % f(y)]: scale(P) = (=j1 =7, —j2 =7), PNQ #0}.
yeP

where G(-) = 7(—).

(i) If p € (0,00), then, for any sufficiently large v € Z,

1 g, ) ~ Hsup(f)H%(g) ~ Hinf(f)Hm;(A) (3.40)

with equivalent positive constants independent of f.
(i) If p € (0,1], then (3.40) also holds with HP,(A) and h?,(A) replaced, respectively, by
Lpw(A) and 0,.,(A).
Proof. We shall only prove Lemma 3.15 for £, , (A) and lpw (A); the proofs for the spaces
HP (A) and k2 (A) are similar to that of [3, Lemma 3.11], the details being omitted.

Let us first prove that, for all f € £, ,,(A) withp € (0, 1], Hinf(f)ng () < Hngp V()
For any fixed v € Z, define the sequence s := {sp}per by setting

spi= P2 inf [Ge,e. + f(y)]
for any P € R with scale(P) := (—¢1,—/2). Clearly, we have

Q|2 info(f) = sup{|P|’%]5p|: PNQ #0, scale(P) = scale(Q) — (v,7)}.
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Fix j1,j2 € Z and Q € R with scale(Q) = (—j1, —j2). Suppose that P, R € R satisfy
scale(P) =scale(R) = (—j1 —v,—j2—7), yE€PNQR#0D, ze¢ RNQ #0. (3.41)

Then, we have

pi(xPi - xRi) < Hiz [Pi(xp,- - yi) + pz’(yi - Zi) + pz'(zi — JERJ} N |Qz’|,
where ¢ € {1,2}. Thus, for any A > 1, we obtain

2

sp< (55) g LI+ 1P pilep, —ar)] 2 S0V (s5,) e (342)
1=1

Moreover, for any Q € R with scale(Q) = (—j1, —j2), there exists a positive constant
C7 > 1 such that

Uy = {R € R: scale(R) < scale(Q), RNQ # 0}
C By, (cq,,Cib;"") x By, (cq,, C1by”?)

and B,, (cq,, Cy'by7") x B,,(co,,Cy'0;7%) C Q. Then, for any fixed open set £ C

R” x R™, Q € R with Q C 2, 2 := {z € R* xR™ M,(xo)(z) > C;*} and = €
R € Ug, we have

|(Bp1 (xQ1701b{1> X BP2 (waolb%z)) N “Q| > 0—4

MS(XQ)(:B) 2 i 3 1 >
|Bp1 ('TQI ) Clbjll) X sz (.’I,‘Q2,01b%2)|

which implies that

) Rc o (3.43)
Relq

Then, by (3.41), (3.42) and (3.43), we see that

3 [info (£)|Q1 2] xe

QCN
scale(Q)=(—j1,—J2)
< (bibo) ) > [(53.0) p P ] xp ot (P)xe
QCQ' A scale(P)=(—j1—7,—Jj2—"7)
scale(Q)=(—j1,—Jj2)
< (bibs)™ > [(s3.) pP172] X

PC2
scale(P)=(—j1—,—J2—")
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Thus, for any open set 2 C R™ x R™ and p € (0,1], choosing A > 2¢,/p + 1, by
the above estimate, w(£2) ~ w(§2) (by [8, Proposition 2.10(ii)]), w(Q) ~ w(P) (by
Lemma 3.3), |P| ~| Q| and Lemma 3.13, we find that

o [ Y [infeQ Fre@)] A () da

2
0 J1,J2€Z QCS? [w(Q)]
scale(Q)=(—j1,—Jj2)

(blbz)M/ 1 2 |PJ?
S == [ D [(50) plPI 2 xp(2)] w(z) de
~ 51 NP P2
. |2 < a2
~ } 52,>\H£p7w(j) ~ ||3||gp’w(g)
1
S sup

21
P

w(2)<co [w(12)]

X / Z Z Z Pjr+v,a+y * f(x)|2

0 J1:.J2€Z Qce QNP#0
scale(Q)=(—j1,—Jj2) scale(P)=(—ji1—v,—j2—"7)

ﬂ T )w\r)axr

1 - 2
Sosup ———5— 21/ Z Z |90j1+%j2+7*f(x)‘
w($2)<oo [w(§2)]> % 10267 Pci
scale(P)=(—j1—v,—Jj2—")

|P? 2
X XP(JZ) [w(P)]2 Q;Q XQ(ZIZ‘)UJ(Q?) dz S Hf”gp’w(gy

scale(Q)=(—j1,—J2)

where

U PcC:= {z e R" x R™: M (xo)(z) > Co}
{PER: QC N, PNQ#D, scale(P)=scale(Q)—(v,v)}

which is obtained by a proof similar to that of (3.43). Here Cy € (0, 1) is some positive
constant independent of 2. From the above estimate and the arbitrariness of {2, we
deduce that

Hinf(f)ng’w(g) S Hf||£p7w(j)-

Obviously, for any f € £, ., (R™ x R™; @), ||fH£p W) S Hsup(f)Hép (- To finish the
proof of Lemma 3.15, it still needs to prove Hsup(f)||zp W(A) S ||inf(f)||ep (&) Fix any

Q € R with scale(Q) = (—j1, —J2), j1,J2 € Z. Let g(x) := (&), j */f\)(Al_jlxl,/A\g_hwz)
for all z = (z1,22) € R™ x R™. Then we have suppg C K := (supp ¢1) x supp ¢(?). Let
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{ag}ger and {bg}oer be as in (3.39). A direct calculation shows that, for any fixed
Q € R with scale(Q) = (—j1, —7J2),

1 1,
Wpir g, ai2Q, = |Q|™2 supg(f) and bAgl-lleA;-QQz =1Q| 2 infg(f), Q€R.
Hence, applying Lemma 3.14 to the dilated rectangle @ = A{lQl X Ajf @2, we have

(sup(£)3,0) 0 = Q1% (a5,) 5 S Q12 (b3.1) g ~ (Inf(£)31) - (3.44)

Since ) € R is arbitrary, letting p € (0,1] and X € (2¢,,/p+ 1,00) be as in Lemma 3.13,
by Lemma 3.13(ii) and (3.44), we conclude that

HSUPU)H%’W(,I) S Hinf(f)Hep,w(fY)’

which completes the proof of Lemma 3.15. O

—.

Proof of Theorem 2.12. Let w € Ay (A). By Lemmas 3.13 and 3.15 together with an
argument similar to that used in the proofs of [5, Theorem 3.5| and [40, Theorem 1.4],
we obtain the desired results for Theorem 2.12 on the spaces hE,(A) and HP (A), the
details being omitted by similarity.

In what follows, let us prove Theorem 2.12 on the spaces £, ( 1) and Ep’w(ff) with

-

p € (0,1]. We first prove that Ty, is bounded from ¢, ,,(A) to £, .,(A). Let

f=Tys = Z 5QYq-

QER

Then, by Lemma 3.5, we know that f is a well-defined element of S’ (R™ x R™), which
implies that, for all x € R™ x R™,

freim@) =Y > $QUQ * Pj1 42 (T).

£1,£2€Z scale(Q)=(—£1,—¥2)

Since supp ¢ and supp () are compact and bounded away from the origin, i € {1, 2},
then, for any @; € Q; with scale(Q;) = —¥¢;, i € {1,2}, there exists a sufficiently large
integer M such that, when |j; — ¢;| > M and scale(Q;) = —¥;, i € {1,2}, we have

supp wgz Nsupp gox) = () and hence, for any £ € R"™ x R™, |¢; —j1| > M or [ls—ja| > M,
we further have (g * ¢, j,)(€) = 0. From this, it follows that, for any z € R™ x R™,
Yo * @), i, () = 0 when |1 — j1| > M or |l2 — jo| > M. Therefore, we conclude that, for

all z € R" x R™,

Frenm@) = > > 5QPj1 .42 * Yo ().

[€i—js|SM scale(Q)=(—L1,—¢2)
i€{1,2}
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For any p € (0,1], we take A € (2¢,,/p+ 1, 00). Since ¢}, j, ¥ € S(R™ x R™), it follows
that, for all x € R™ x R™,

Pj1,j2 * TPQ(CL’) = (90]&*317]'2*52 * ”lb)Q(fL“)
= |Q|7%(¢j1—517j2—52 * ¢) (Alil (1171 - $Q1)7A52 (1‘[)2 - $Q2))

- QI |
I+ pi(Afiw — 2g,)]M2

Moreover, for any x € R” x R™ and /1,5 € Z, there exists a unique Q* € R such that
x € Q% and scale(Q®) = (—f1,—{2). Then, for any Q € R with scale(Q) := (—¥¢1,—{2),
it is easy to show 1+ p;(A% (rQr —2q,)) S1+ pi(AY% (z; — 20,)), i € {1,2}. From this,
the above estimate, p € (0, 1], A € (2¢,/p+1, 00) and Holder’s inequality, it follows that,
for all z € R® x R™,

_1
fxonn@] S D xe@)|Q"] 2
[€i—j: | <M
ie{1,2}
|sq
>< .
scale(Q)ZZ(—h,—b) Hf:l[l T pi(Afl (fo B in))]/\/z
_1
S Y xe @R (55 g
[€i—j:|<M
ie{1,2}

2 > (53.0) o X (@)@ 2.

M’L —j.ngM scale(Q):(—El,—Eg)
ie{1,2}

A

Moreover, for any open set 2 C R™ x R™, using an argument similar to that used in the
estimate for (3.43), there exists a positive constant 72 € (0,1) such that

U U QC = {z e R" x R"™: M (xo)(z) > n}.
[€;—ji|SM scale(Q)=(—L1,—¢2)
ie{1,2} QCH?

Consequently, for any p € (0,1], A € (2qw/p + 1,0), ¢ € (qw,o0) and open set
2 C R x R™ with w(£2) < oo, by the last two estimates, (3.43), w(£2) < w() (see
8, Proposition 2.10(ii)]) and Lemma 3.15, we have

|’

L E 2 R
[w(Q)]%*l ([jl,jQEZ | (Rf%?, | )‘f 901102(@‘ Xr(x) [w(R)]Qw(x) x
scale = 7‘71’7‘72

1 /
S——= § E :
[w(2)]» ! L j1ga€Z  RCS2, RER
scale(R)=(—j1,—j2)
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2

% [ > ) (SS,/\)QXQ(x)’Ql_% XR(OC)[ lﬁ'z)]zw(x) dx
M;gﬁ';}M scale(Q)=(—¥£1,—¥2) w
S [w(é)]%_l !el,zzgez Q;g; ( 2,>\)QXQ( )[w(Q)P

scale(Q)=(—4£1,—¥£2)

X Z Z Xr(x)w(x)dx

[€i—37:i|<M scale(R)=(—j1,—j2)
ic{1,2}

2 2
S;,Al‘gnw(g) S HSng’w(A')J

~Y |

which implies that ||T¢(3)H5p)w(g) < ”SHEZ,,?U(A)' |
Suppose that f € £, (A) and Q := A7 7' ([0,1)" 4+ k1) x Ay ([0, 1)™ + k2), ju, j2 € Z,
ki1 € Z", ko € Z™. Then,

1y~
(S f)o| = [{f00)| =1Q12| (8,4, * [)(zq)| < supy(f)-
Therefore, by Lemma 3.15, we obtain the boundedness of S, from £,, ,,(A) to L£p.w(A; ).
Finally, if (¢, ¢) is an admissible pair of frame wavelets as in Definition 2.2, then, by
Lemma 2.3(ii), we know that £, . (4; ) < L£,.,(A4; @) is a bounded inclusion. Hence,
by reversing the roles of ¢ and ¢, we find that

Ep,w<A5 p) = Ep,w(A; ©),
which completes the proof of Theorem 2.12. O

To prove Theorem 2.14, we need two technical lemmas first. By [8, Lemma 5.5] and
a basic fact that ¢; * ¢ = (Vj_ * @)k, j,k € Z, we obtain the following lemma, the
details being omitted.

Lemma 3.16. For i € {1,2}, let M; € (0,00), N; € Zy, o, ") € Sy (R™), ¢ :=
oM @ @ and o := D @ ). Then there exists a positive constant C, depending on
M; and N; with i € {1,2}, such that, for all j;, k; € Z with j; > k;, i € {1,2} and for
all x € R™ x R™,

2
|<pj1,j2 T (:1:)\ < CHbfi‘F(ki—Ji)(Nri-l)Ci,f [1 + i (Aicxz)}—M
1=1

We skip the proof of the following Lemma 3.17 since it is similar to those of
[5, Theorem 4.1] and [40, Theorem 2.1].
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Lemma 3.17. Let p € (0,1] and w € Ao (A) with qu as in (3.14). An operator A is said
to be almost diagonal, if its associated matriz {ar o}r.ecr, where arg = (Ae9)g,
satisfies that there exists some positive constant € such that

sup |ar,ql/kr,o(€) < oo,
7Q€R

where

2

_ m(:cm—m)}‘?’*[(|m|)1? (|@i|)%+651]
mrQle) H{” ] V[ Q] al) gl - (345)

=1

Then the almost diagonal operator A is bounded on hE,(A).

—,

Proof of Theorem 2.14. Let p € (0,1] and w € A, (A). We first show that, for all
fe SR <R™), I fllgna) S Iflgpa)- For any ki,ke € Z, 2 € R" x R™ and
b € S (R™ x R™), we have

bl ple / 1 # B (9| dy

— k.
? By, (xi,b; )

=1

_ ks / S ) xay) dy.  (346)

—k; RER
71 By, (zib; Fiy scale(R)=(—ki,—k2)

Let (p,1) be the admissible pair of frame wavelets as in Definition 2.2. For any f €
H{j)(ff), by Lemma 2.3(ii), we know that f = -5 (f, Q)¢ in S (R™ x R™), which,
together with @ € S (R™ x R™), implies that

f 5 Pryhy = Y (fr0Q)0qQ * Pry 1, (3.47)
QER

holds true pointwise. Moreover, since 1 := (M@ ?) and ¢ := ¢V P2 with (D, $() ¢
So(R™), 7 € {1,2}, then, for any y € R with scale(R) = (—k1,—k2), @ € R with
scale(Q) = (—j1, —Jj2), M; € (0,00) and N; € Z, to be fixed later, by Lemma 3.16, we
conclude that

2
—73i/2—|7i—ki|(N:+1)Ci, —+7i Nk ji Nk —M;
w}Q*ékhkz(y)‘ SHsz/ 9 I ), i [14—53 n pl(yl_xQz)]
=1

2
5 ‘R|_% H bi—|ﬁ—ki\[(Ni+1)Ci,—+§] [1 + bZZAkZPz (xRi — g, )} —Mi. (348)
=1
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Since p € (0, 1] and ¢q,, is as in (3.14), if we let

i [(N;+1 i — —M;
aRQ _Hb |.7 ( + )C +35 ]|:1+b]1/\k1p (le _le):| :

N; > (quw/p — I)C;i —1, M; > qu/p, N; € Z4 and € € R such that

6/2< el'?i% { N +1)Cz, +1_Q1U/p7 _Qw/p7(N +1)CZ7 }

then it is easy to show that, for any R, Q € R, ar,g S kr.q(€) uniformly, where kg ¢(€)
satisfies (3.45), which implies that {ar,q}r,ger induces an almost diagonal operator.

Therefore, for any f € Hfj,(/f) and s := {sq}oer With sq := (f, pq), by (3.46), (3.47),
(3.48), Lemma 3.17 and Theorem 2.12 with the inverse o-transform S, (f), we have

1172t = I3z i 5 | { 3 s
RER

QER ZACY

5 HSLP(f> WP, (A) 5 Hf”Hq’L(/Y)a

which is desired.

Finally, we show that, for all f € SL(R" xR™), [[fllzr 1) < Hf“ﬁg(jy To this
end, letting v € N be as in Lemma 3.15, for any @ € R with scale(Q) = (—k1, —k2),
ki,ky € Z, and any x € @, by [3, Lemma 2.9(b)|, there exists some constant ky € N,
independent of the choice of @, such that

U P C B, (x1,b;" ) x B, (9, by ¥ ).
{PER: PNQ#D, scale(P;)=(—k1—v,—k2—7)}

Thus, for any z € @ and @ € .7 (R™ x R™), we have

2
Z inf ‘f*dskl ko ks —lo (U )‘ xq(7)
yep
PNQ#AD
scale(P)=(—k1—v,—k2—7)
B _ 2
< bllcl k0b12€2 ko / ‘f * stn—ko,kz—ko(y)‘ dy. (349)
Bpl (m17b1 k1+k O)XBp2 ($27 k2+k0)

Let
infq(f)

= |Q|% Sup{ynelg}f *5k1—k0,k2—k0(y)|: Scale(P) = <_k1 — Y, —k2 — /7)7 PNQ# Q)}

Then, for any f € ﬁ[g (f_f) with p € (0,1] and w € Aoo(ff), by Corollary 2.3, Lemma 3.15
and (3.49), we conclude that
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_ 3
e~ {3 175 Bt

k1,k2€Z

LE (R xR™)

e = mewrier)

k1,k2€Z QER
scale(Q)=(—k1,—k2)

LE (R xR™)

S H“%(f)HLg(Ranm) ~ Hf”ﬁg,(Ranmy

which completes the proof of Theorem 2.14. O

Proof of Proposition 2.15. Let p € (0,1] and w € Ao (A) with ¢, as in (3.14). We first

-

prove that, for any t := {tr}rer € {pw(A), its induced map L;, defined by

Lt(s) = Z SRt_R

for any s € h? (A), belongs to (k2 (A))*. We show this by using some ideas from the
proof of [40, Theorem 3.5]. For any x € R” x R™, k € Z and R € R, let

G(z) = { > |5R|2|R|1XR(33)}%7

ReR
Q= {z e R" x R™: G(z) > 2"},
Ri := {RE R: |Rﬂ0k‘ > ‘R|/2, ’Rﬁgk+1’ < ’R‘/Q}

and Ery := RN (QkH)E. Then, for any k¥ € Z and R € Ry, by Lemma 3.3 with
w e .Aq(ff) and ¢ € (qw, 00), we obtain

1 _ |Eril? - w(ERk)

27 < TRE S wi®) (3.50)

We choose a positive integer ¢g > 2 such that by “©“'b, ©¥2 < b 2“1h, 2“2 /2 and, for
all k € Z, let

D= {z € R" x R™ M(xe,)() > by by "2 ).
Then, for all R € Ry and all x € R, by Lemma 3.7(iv), we see that
1

bvlf(R1)+u1 bUQE(R2)+U2
1 2

rr+B

Mi(xa) (@) >

X (y) dy

1 B®
v1L(R1)+uy vol(Rg)R+ug

P
% bl—coul b2—60u2

—2u1 1.—2uo

Y
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which implies that

U Rc . (3.51)
RER

Moreover, for any w € Aq(/f) with ¢ € (g, 00), by the L% (R™ x R™)-boundedness of
M, (see [8, Proposition 2.10(ii)]), we obtain w(£2) < w(§2,) for all k € Z.

Therefore, for all s € A2 (A), by (3.50), (3.51), Hélder’s inequality and w({2;) <
w({2), we have

Li(s)] <D0 D Itrllsrl

k€Z RER

Y[ty 'R xr(@) |58l Bl XEy (1) () do
kEZ O RER

S tr Xr(x)w(x)dx ’
R }

< / S [P R X (2 >w<x>dx}

RERy
2-1)3 2 :
Sl o S [w(@0) { | ) w@)dx}
kEZ ~
2\ 2% 41
Sl on S22 (@] S Ut o sl oo (3.52)
kEeZ

which implies that the induced fractional Ly € (h2,(A))* and |L:| < ||¢]| o (A)"
Now let us prove the converse by borrowing some ideas from the proof of [21, Theo-
rem 5.9]. For any N € N, w € Ayo(A) and R € R, let By = B,,(0,b)) x B,,(0,b)),

In :={Re€R: RC By,

scale(R;)| < N, i€ {1,2}},

and ¢2(By) be the set of all s(N) := {S%N)}RejN satisfying

1/2
HS(N)Hp(BN) ::{ Z ‘SR ‘ } < 00.

Relyn

For any t € h2(A) and N € N, let t(V) .= {tg%N)}RGIN with tg%N) =tr it R € Iny. We
denote by h2 (A; By) the set of all such tN). Obviously, h2 (A; By) endowed with the
norm || -|| iz, () is a subspace of he (A).
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Notice that, for any s'™) € £2(By), p € (0,1] and w € A (A), by Hélder’s inequality,
we know that

D

N N 1-2
HS( )Hii{;(x) S HS( )Hﬁ(BN)[w(BN)] )
which implies that ¢2(By) C h2(A; By) and hence (h%(A; By))* C ((2(By))* =
(?(By). Then, for any L € (h?(A))*, by the above estimate and (k2 (A))* C
(hﬁ}(/f, Bn))*, there exists some t(V) € ¢2(By) such that, for all s(V) € hﬁ}(ff, By),

M) = 30 s, (3.53)

Reln

For N + 1, repeating the above process, there exists some t(V+1 € ¢2(By) such that,
for all s(N+t1) € b2 (A; By 1),

L(S(N+1)) _ Z S%N—i—l)tg%N—l—l),

Relnia

and t(NH)]%(g;BN) = tNV). By this extension, we obtain a sequence t* := {t}rer,

where t3 := t'") if R € Iy for all N € N.

We now show that t* € £, ,(A). To this end, let £2 be any open set with w(£2) < oo
and ¥ the measure on R such that, for any R € R, ¥(R) := [w(2)]'~%/?|R|[w(R)]~" if
R C 12, or else 9(R) := 0. Define £2(£2;49) to be the set of all complez-valued sequences

s :={Sr}Rrer, rRcn such that

1
2

H8||g2(9;ﬁ) = { Z |5R|2[w(Q)}1_%|R‘ [w(R)}_l} < 00.

RCY2

Then, by (3.53) and (£2(£2;9))* = ¢2(£2;9), we have

1
2

{[ = S Bl )

RC

S 5w w(@)] 7 R [w(R)]

Reln, RCS2

ot — sup
H In Hfz(f?ﬁ) 51l ¢2 250y <1

1__
<IZlgcay- 5w [[{sn[w(@] 7 IRIwE] Y e ol oy < Mol -

I5ll¢2 (2;0) ST

where, in the last step, we used the following inequality that
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{sr[w(@)] 7 1B [w@®] ™Y acollie s

= PRI Tw(R 2y o (2 p/wa T
:{ﬂsz[w(m] 18I [w(R)] ™ xr( >] ) }

1/p

S =
(SIS

5 4 / S Jswl|R|[w )}‘2xR<x>w<x>dx}%[w<m]

RCS2
= H5H€2(Q,19) <
From this and the Fatou lemma, it follows that

R
{ T > It s il } < 2l cayy-»

RC

’!3

-,

which, together with the arbitrariness of (2, implies that t* € ¢, ,,(A) and ||t*||€p W) S
L0 i, )
By (3.52 ) for all s € h?,(A), we have

o ltrsrl SN, o lsllin ay S 1Ll G, ay)-
ReR

S, 4y

which, together with the Lebesgue dominated convergence theorem on series and (3.53),
yields that, for all s € h2 (A),

L(s)= lim L(s™) = lim Y~ g% = > snlp.
Reln ReR

This finishes the proof of Proposition 2.15. O

From Theorem 2.12 and Proposition 2.15, the proof of Theorem 2.16 follows by a
straightforward adaption of methods by Frazier and Jawerth [21, Theorem 5.13].

Proof of Theorem 2.16. Let p € (0,1] and w € Aso(A). Let (p, %) be an admissible pair
of frame wavelets as in Definition 2.2 such that ¢ = . In other words, ¢ is an admissible
Parseval wavelet. Using Theorem 2.12, we conclude that T, o S, is also an identity on
H2 (A).

For s := {sp}rer and t := {tr}Rrer, let (s,t) := > p.p Srtr. Then, for any f €
Soc(R™ x R™), the p-transform S, and the inverse p-transform T, we have

ReER

For any ¢ € Epyw(/f), define a linear functional Eg by Eg(f) := (g, f) for any f €
Soo (R™ x R™).
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Then, for any f € Soo(R™ x R™), by Theorem 2.12, (3.54) and Proposition 2.15, we
find that

1Zy(H)] = (9. /)| = {To(So(9)), £)] = [(Se9), So(1)))]
S ||S¢(9)Hep,w(,ai’)HSQO(JC)HBQ(A) S ||9H/;p’w(fY)Hf||H5(/T)a

which implies that ||Zg||( iy < gl £, (&) and hence Zg defines a continuous lin-
ear functional on So(R™ x R™). Moreover, since Soo (R™ x R™) is a dense subspace of

-,

HP (A), using Theorem 2.12, we conclude that L, is uniquely extended to a continuous
linear functional L, on H? (A).

Conversely, for any L € (HP (A))* and the inverse g-transform T,, by Theorem 2.12,
we have £; := L oT, € (h? (A))*. Then, by Proposition 2.15 and Theorem 2.12, there

—,

exists t = {tr}rer € {p.w(A) such that l1(s) = > pox Srtr for any s := {sgp}rer €
h? (A) and

”tHeP,w(,cY) ~ WlH(hg(A))* S ||LH(H5(A))*‘

Hence, for any f € Soo(R" x R™) and g := T, (t) = Y per trRPR, by 108, = LoT, o
Sy=L,T,0S,=1don HP (A) and (3.54), we know that

L(f) = ti 0 (Sp(f)) = (Su(f). 1) = (f.9) = Lg(f),

which implies that L = L,. Moreover, by Theorem 2.12, we conclude that

||9||5p,w(,4“) S ||t||gp7w(j) S ||Lg||(ﬁg(g))*a

which completes the proof of Theorem 2.16. 0O
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