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In this paper we give a combinatorial characterization of tight fusion frame
(TFF) sequences using Littlewood–Richardson skew tableaux. The equal
rank case has been solved recently by Casazza, Fickus, Mixon, Wang, and
Zhou. Our characterization does not have this limitation. We also develop
some methods for generating TFF sequences. The basic technique is a majo-
rization principle for TFF sequences combined with spatial and Naimark
dualities. We use these methods and our characterization to give neces-
sary and sufficient conditions which are satisfied by the first three highest
ranks. We also give a combinatorial interpretation of spatial and Naimark
dualities in terms of Littlewood–Richardson coefficients. We exhibit four
classes of TFF sequences which have unique maximal elements with respect
to majorization partial order. Finally, we give several examples illustrating
our techniques including an example of tight fusion frame which can not be
constructed by the existing spectral tetris techniques. We end the paper by
giving a complete list of maximal TFF sequences in dimensions ≤ 9.

1. Introduction

Fusion frames were introduced in [Casazza and Kutyniok 2004] (under the name
frames of subspaces) and in [Casazza et al. 2008]. A fusion frame for !N is a finite
collection of subspaces {Wi }K

i=1 in !N such that there exist constants 0<α ≤α′ <∞
satisfying

α‖x‖2 ≤
K∑

i=1

‖Pi x‖2 ≤ α′‖x‖2 for all x ∈ !N ,

where Pi is the orthogonal projection onto Wi . Equivalently, {Wi }K
i=1 is a fusion

frame if and only if

αI ≤
K∑

i=1

Pi ≤ α′I,
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where I is the identity on !N . The constants α and α′ are called fusion frame bounds.
An important class of fusion frames are tight fusion frames (TFF), for which α = α′

and hence
∑K

i=1 Pi = αI. We note that the definition of fusion frames given in
[Casazza and Kutyniok 2004; Casazza et al. 2008] applies to closed subspaces in
any Hilbert space together with a collection of weights associated to each subspace
Wi . Since the scope of this paper is limited to nonweighted finite dimensional TFF,
the definition of a fusion frame is only presented for this case.

Fusion frames have been a very active area of research in the frame theory
[Casazza and Kutyniok 2013]. A lot of effort was devoted into developing the basic
properties and constructing fusion frames with desired properties. In particular, the
construction and existence of sparse tight fusion frames was studied in [Calderbank
et al. 2011]. Fusion frame potentials have been studied in [Casazza and Fickus
2009] and [Massey et al. 2010]. Applications of fusion frames include sensor
networks [Casazza et al. 2008], coding theory [Bodmann 2007; Kutyniok et al.
2009], compressed sensing [Boufounos et al. 2011], and filter banks [Chebira et al.
2011]. In this paper we consider a problem of classifying TFF sequences.

Problem 1.1. Given N ∈ ", characterize sequences (L1, . . . , L K ) for which there
exists a tight fusion frame {Wi }K

i=1 with dim Wi = Li in N dimensional space.
Equivalently, given α > 1 such that αN ∈ ", characterize sequences (L1, . . . , L K )

such that αI can be decomposed as a sum of projections P1 + · · · + PK with
rank Pi = Li , i = 1, . . . , K .

Casazza, Fickus, Mixon, Wang, and Zhou [Casazza et al. 2011] have recently
achieved significant progress in this direction by solving the equal rank case. That is,
the authors have classified all triples (K , L , N ) such that there exists a tight fusion
frame consisting of K subspaces {Wi }K

i=1 with the same dimension dim Wi = L
in !N . The answer is highly nontrivial in the most interesting case when L does
not divide N and 2L < N . The authors show that a necessary condition for such
sequences (K , L , N ) is that K ≥ 'N/L( + 1, whereas a sufficient condition is
K ≥ 'N/L( + 2. In a gray area, where K = 'N/L( + 1, the authors have devised
a reduction procedure which replaces the original sequence by another one with
the equivalent TFF property (existence or nonexistence). Then, it is shown that
after a finite number of steps the original sequence (K , L , N ) is reduced to one
for which either the necessary condition fails or the sufficient condition holds.
However, the results [Casazza et al. 2011] do not say much about a more general
problem of classifying TFF sequences with unequal ranks. In this paper we answer
Problem 1.1 by giving a combinatorial characterization of TFF sequences using
Littlewood–Richardson skew tableaux.

While the concept of fusion frames is relatively new, the problem of representing
an operator as a sum of orthogonal projections has been studied for a long time in
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the operator theory. The first fundamental result of this kind belongs to Fillmore
[1969] who characterized finite rank operators which are finite sums of projections;
see Theorem 3.1. Fong and Murphy [1985] characterized operators which are
positive combinations of projections. Analogous results were recently investigated
for C-∗ algebras and von Neumann algebras; see [Halpern et al. 2013; Kaftal et al.
2011]. However, the most relevant results for us are due to Kruglyak, Rabanovich,
and Samoı̆lenko [Kruglyak et al. 2002; 2003] who characterized the set of all
(α, N ) such that αI is the sum of K orthogonal projections. In other words, their
main result (Theorem 7 of the latter reference) gives a minimal length K of a TFF
sequence in !N with the frame bound α. However, their results do not say anything
about the ranks of projections which is a focus of this paper.

In the finite dimensional setting the existence of TFF sequences is intimately
related to Horn’s problem [Horn 1962] which has been solved by Klyachko [1998],
and Knutson and Tao [Knutson and Tao 1999; Knutson et al. 2004], for a survey
see [Fulton 2000; Knutson and Tao 2001]. Problem 1.1 can be thought of as a very
special kind of Horn’s problem where hermitian matrices have only two eigenvalues:
0 and 1, and their sum has only one eigenvalue α. Using Klyachko’s result [1998]
we show that the existence of TFF sequence (L1, . . . , L K ) is equivalent to the
nonvanishing of a certain Littlewood–Richardson coefficient; see Theorem 4.3. In
turn, the latter condition is equivalent to the existence of a matrix satisfying some
computationally explicit properties such as: constant row and column sums, and row
and column sum dominance; see Corollary 4.4. Our combinatorial characterization
enables us to deduce several properties that TFF sequences must satisfy. In addition,
it enables us to give an explicit construction procedure of a tight fusion frame
corresponding to a given TFF sequence; see Example 7.2.

A fundamental technique of our paper is a majorization principle involving the
majorization partial order ! as in the Schur–Horn theorem [Antezana et al. 2007;
Kaftal and Weiss 2010], which is also known as the dominance order in algebraic
combinatorics [Fulton 1997]. In Section 2 we show that a sequence majorized
by a TFF sequence is also a TFF sequence. We also establish the spatial and
Naimark dualities for general TFF sequences extending the equal rank results in
[Casazza et al. 2011]. In Section 3 we find necessary and sufficient conditions on
the first three largest ranks of projections using Filmore’s theorem [1969] and a
description of possible spectra of a sum of two projections; see Lemma 3.2. The
latter result might be of independent interest since its proof uses honeycomb models
developed by Knutson and Tao [1999; 2001]. In the same section we also exhibit
classes of TFF sequences which have only one maximal element. These include
not only the expected case of integer α, but also half-integer scenario, and the
corresponding conjugate α’s via the Naimark duality. In Section 4 we prove our
main characterization result of TFF sequences using Littlewood–Richardson skew
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tableaux. In addition to illustrating it on specific examples, in Section 5 we give
a complete proof of Theorem 3.3 using the combinatorics of the Schur functions.
This leads to a partial characterization of TFF sequences which are of the hook
type, i.e., sequences ending in repeated 1’s. In Section 6 we show that the spatial
and Naimark dualities manifest themselves as identities for the corresponding
Littlewood–Richardson coefficients. Finally, in Section 7 we give several examples
of existence of tight fusion frames using skew Littlewood–Richardson tableaux. In
particular, we give an explicit construction of TFF corresponding to the sequence
(4, 2, 2, 2, 1) in dimension N = 6. This example is remarkable for two reasons. It is
the first TFF sequence which is missed by brute force generation involving recursive
spatial and Naimark dualities. Furthermore, this example can not be constructed
by the existing spectral tetris construction [Calderbank et al. 2011; Casazza et al.
2012], which is an algorithmic method of constructing sparse fusion frames utilized
in the equal rank characterization [Casazza et al. 2011]. We end the paper by giving
a complete list of maximal TFF sequences for α ≤ 2 in dimensions N ≤ 9.

2. Basic majorization and duality results

Definition 2.1. Fix a positive integer N . Let L1 ≥ L2 ≥ · · · ≥ L K > 0 be a weakly
decreasing sequence of positive integers. Such sequence is also known as a partition
in number theory [Andrews 1976] and algebraic combinatorics [Fulton 1997]. We
say that (L1, L2, . . . , L K ) is a tight fusion frame (TFF) sequence if there exists
orthogonal projections P1, . . . , PK such that

(2-1) αI =
K∑

i=1

Pi , and ranki = Li ,

where α ∈ ! and I is the identity on !N . A trace argument shows that α =∑K
i=1 Li/N ≥ 1. Given α ≥ 1 such that αN ∈ ", we define TFF(α, N ) to be the

set of all TFF sequences in !N with the frame bound α.

Majorization. The following definition comes from the majorization theory of the
Schur–Horn theorem; see [Kaftal and Weiss 2010]. In algebraic combinatorics
the majorization partial order on partitions is known as the dominance order; see
[Fulton 1997].

Definition 2.2. Suppose that L = (L1, L2, . . . , L K ) and L′ = (L ′
1, L ′

2, . . . , L ′
K ′) be

two weakly decreasing sequences of nonnegative integers. We say that L′ majorizes
L, and write L ! L′ if for all k ≤ min(K , K ′),

K∑

i=1

Li =
K ′∑

i=1

L ′
i and

k∑

i=1

Li ≤
k∑

i=1

L ′
i .
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Observe that appending zeros at the tails of sequences L, L′ does not affect majo-
rization relation. Moreover, for sequences with only positive terms, the majorization
L ! L′ forces K ≥ K ′.

The majorization principle for TFF sequences takes the following form.

Theorem 2.3. Let L and L′ be two weakly decreasing sequences of positive integers
such that L ! L′. Then, L′ ∈ TFF(α, N ) implies that L ∈ TFF(α, N ).

In the proof of Theorem 2.3 we use the following elementary result on a sum of
two projections.

Lemma 2.4. Fix positive integers p > q ≥ 0. Let P and Q be two orthogonal
projection of ranks p and q, respectively. Then, there exist orthogonal projections
P ′ and Q′ of ranks p − 1 and q + 1, respectively, such that P + Q = P ′ + Q′.

Proof. Assume we have two projections P and Q with ranks p > q that act on an
N dimensional vector space V . Then, we can decompose V into the eigenspaces
of P and Q such that

V = VP ⊕ V ⊥
P , V = VQ ⊕ V ⊥

Q ,

where VP and V ⊥
P denote the 1-eigenspace and 0-eigenspace, respectively. Since

p > q, we have that p + (N − q) > N and hence dim(VP ∩ V ⊥
Q ) > 0. Choose a

nonzero vector in VP ∩ V ⊥
Q and let R denote the corresponding rank 1 projection.

Then, we can decompose P = P + R, where P is a rank p−1 projection. Moreover,
Q + R is a projection of rank q +1. Thus, P + Q = P + (Q + R), which completes
the proof of the lemma. "
Proof of Theorem 2.3. Since L ! L′ we can find a sequence of partitions L =
L0 ! L1 ! · · · ! Ln = L′ such that any two consecutive partitions L j−1 and L j ,
j = 1, . . . , n, differ at exactly two positions by ±1. That is, for each j = 1, . . . , n,
there exist two positions m < m′ ∈ " such that

(2-2)
L j−1 = (∗, . . . , ∗, L̃m , ∗, . . . , ∗, L̃m′ , ∗, . . . , ∗),

L j = (∗, . . . , ∗, L̃m + 1, ∗, . . . , ∗, L̃m′ − 1, ∗, . . . , ∗),

where the remaining values, denoted by ∗, are the same. Such partitions L j can be
easily constructed by the following recursive procedure.

Given the initial partitions L and L′ we append extra zeros to L′ so that L
and L′ have the same length. Define m to be the first position such that initial
subsequences (L1, . . . , Lm) and (L ′

1, . . . , L ′
m) are not the same. Likewise, m′ is the

last position such that the ending subsequences (Lm′, . . . ) and (L ′
m′, . . . ) are not the

same. Define L1 from L by replacing Lm → Lm + 1 and Lm′ → Lm′ − 1. It is not
difficult to see that L1 forms a weakly decreasing sequence and L = L0 ! L1 ! L′.
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Repeating this procedure recursively we define a sequence L1 ! L2 ! · · · ! L′.
After a finite number of steps we must arrive at Ln = L′.

Observe that the ranks in (2-2) satisfy L̃m ≥ L̃m′ . By Lemma 2.4 applied to
two projections with ranks p = L̃m + 1 > q = L̃m′ − 1 ≥ 0, if L j ∈ TFF(α, N ),
then L j−1 ∈ TFF(α, N ). Therefore, repeated application of Lemma 2.4 proves
Theorem 2.3. "

We remark that the above proof does not use the tightness assumption in any
way. Consequently, Theorem 2.3 holds for general (not necessarily tight) fusion
frames with a prescribed frame operator.

Dualities. In this subsection we shall establish two dualities for TFF sequences.
The first duality involves taking orthogonal projections of the same ambient space
and is a straightforward generalization of [Casazza et al. 2011, Theorem 6].

Theorem 2.5. Suppose that (L1, L2, . . . , L K ) ∈ TFF(α, N ). Then, (N − L K , N −
L K−1, . . . , N − L1) ∈ TFF(K − α, N ).

Proof. Let P1, . . . , PK be the orthogonal projections with rank Pi = Li such that∑K
i=1 Pi = αI. Clearly,

∑K
i=1(I − Pi ) = (K − α)I and rank(I − Pi ) = N − Li . "

The second result relies on taking more subtle orthogonal complements based on
a dilation theorem for tight frames with bound 1, also known as Parseval frames. It
is known that every Parseval frame can be obtained as a projection of an orthogonal
basis of some higher dimensional space. The complementary projection gives rise
to another Parseval frame, which is often called the Naimark complement of the
original frame. This leads to the following result

Theorem 2.6. Suppose that (L1, L2, . . . , L K ) ∈ TFF(α, N ). Then, the same se-
quence (L1, L2, . . . , L K ) ∈ TFF(α̃, Ñ ), where the dimension Ñ =

(∑K
i=1 Li − N

)

and the frame bound α̃ = α/(α − 1) = αN/Ñ .

Proof. For each k = 0, . . . , K , define σk = ∑k
i=1 Li with the convention that σ0 = 0.

Our assumption implies that there exists a tight frame {v j }σK
j=1 in !N such that

for each k = 1, . . . , K , the subcollection {v j }σk
j=1+σk−1

is an orthonormal sequence
which spans the Lk dimensional space Wk from the definition of a TFF. Treating
v1, . . . , vσK as column vectors we obtain an N ×σK matrix U with orthogonal rows
each of norm

√
α = √

σK /N . This is due to the fact that {v j }σK
j=1 is a tight frame

with constant α.
Let Ũ be an extension of U to a σK × σK matrix with all orthogonal rows of

norm
√

α. In other words, (1/
√

α)Ũ is a unitary extension of (1/
√

α)U which has
orthonormal rows. Let {w j }σK

j=1 be the column vectors constituting the (σK −N )×σK
submatrix of the bottom rows of Ũ . Since (1/

√
α)Ũ is an orthogonal matrix we

have
〈v j , v j ′ 〉 + 〈w j , w j ′ 〉 = αδ j, j ′ for all j, j ′ = 1, . . . , σK .
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By the block orthogonality of vectors v j we have that for each block k = 1, . . . , K ,

〈w j , w j ′ 〉 = (α − 1)δ j, j ′ for all j, j ′ = 1 + σk−1, . . . , σk .

This means that the vectors {w j }σk
j=1+σk−1

form an orthogonal set which span some
Lk dimensional space W̃ k . Moreover, {w j }σK

j=1 is a tight frame with a constant α for
(σK − N ) dimensional space. Consequently, unit norm vectors {(1/

√
α − 1)w j }σK

j=1,
which are block orthonormal, form a tight frame with a constant α/(α − 1). This
leads to the decomposition P̃1 +· · ·+ P̃ K = α/(α−1)I, where P̃k is an orthogonal
projection onto W̃ k . "

As an immediate corollary of Theorem 2.6, we can reduce the study of TFF
sequences to the case when 1 < α < 2; the case α = 2 does not cause any difficulties
as we will see later.

Corollary 2.7. If α > 1 is such that αN ∈ ", then TFF(α, N ) = TFF(α̃, Ñ ), where
1/α + 1/α̃ = 1 and Ñ = N (α − 1).

Observe that if there exists a TFF sequence with parameters (α, N ), then by
computing traces we necessarily have that αN ∈". Hence, without loss of generality
we shall always make this assumption.

3. Estimates on first 3 ranks

In this section we find necessary and sufficient conditions on the first three largest
ranks of TFF projections. Our analysis is based on two fundamental results.
Theorem 3.1 is due to Fillmore. Lemma 3.2 describes the spectral properties
of the sum of two projections, and it can be thought of as a generalization of
Lemma 2.4.

Theorem 3.1 [Fillmore 1969, Theorem 1]. A nonnegative definite hermitian matrix
S is a sum of projections if and only if

(3-1) trace(S) ∈ "0 and trace(S) ≥ rank(S).

Lemma 3.2. Let P, Q be two orthogonal projections on an N dimensional vector
space V with ranks p, q , respectively. For any λ ∈ !, let m(λ) be the multiplicity of
λ as an eigenvalue of P + Q. Then, the following are true:

(i) m(λ) > 0 =⇒ λ ∈ [0, 2],
(ii)

∑
λ∈[0,2] m(λ) = N ,

(iii) m(1) ≥ |p − q|,
(iv) λ ∈ (0, 2) =⇒ m(λ) = m(2 − λ),

(v) m(0) − m(2) = N − p − q.
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Conversely, if 0 ≤ p, q ≤ N and m : ! → "0 satisfies (i)–(v), then there exists
orthogonal projections P, Q of ranks p, q , such that m is a multiplicity function of
P + Q.

Proof. Since P, Q are hermitian, we can decompose V as a direct sum of eigenspaces

V = VP ⊕ V ⊥
P = VQ ⊕ V ⊥

Q

where VP denotes the 1-eigenspace and V ⊥
P the 0 eigenspace of P . Thus, p =

dim(VP) and q = dim(VQ). Parts (i)–(iii) follow by basic linear algebra.
To prove part (iv) we define fλ : V → V by

fλ(v) := vP +
(

λ
λ−2

)
v′

P ,

where v = vP + v′
P is induced by the orthogonal decomposition V = VP ⊕ V ⊥

P
and λ ∈ (0, 2). Since fλ is an invertible and linear map, it suffices to show that if
(P + Q)v = λv, then (P + Q) fλ(v) = (2 − λ) fλ(v). Write

vP = xQ + x ′
Q and v′

P = yQ + y′
Q

according to the decomposition V = VQ ⊕ V ⊥
Q . Then,

(P + Q)v = vP + xQ + yQ = 2xQ + yQ + x ′
Q = λ(xQ + x ′

Q + yQ + y′
Q)

and hence
(2 − λ)xQ + (1 − λ)yQ = (λ − 1)x ′

Q + λy′
Q .

This implies that

(3-2) (2 − λ)xQ = (λ − 1)yQ and (1 − λ)x ′
Q = λy′

Q

since VQ ∩ V ⊥
Q = {0}.

By (3-2), we have

(P + Q) fλ(v) = 2xQ + x ′
Q +

(
λ

λ−2

)
yQ

= (2 − λ)vP + λxQ + (λ − 1)x ′
Q +

(
λ

λ−2

)
yQ

= (2 − λ)vP +
(
λ(1−λ)
λ−2

)
yQ − λy′

Q +
(

λ
λ−2

)
yQ

= (2 − λ)vP − λyQ − λy′
Q

= (2 − λ)
(
vP +

(
λ

λ−2

)
v′

P

)
= (2 − λ) fλ(v).

This proves part (iv). To prove part (v), we consider the projection map

g : V → VP + VQ
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where VP + VQ denotes the span of vectors in VP , VQ . We have

dim(VP + VQ) = dim(VP) + dim(VQ) − m(2) = p + q − m(2).

But,
dim(VP + VQ) = N − dim(ker g) = N − m(0).

This shows that the properties (i)–(v) are necessary.
A quick way to see the converse direction is to utilize the honeycomb model

of Knutson and Tao [1999; 2001]. The honeycombs corresponding to triples
(P, Q, −(P + Q)), where p > q can be represented by one of the following
diagrams. In the case p = q the line corresponding the eigenvalue −1 of −(P + Q)

might not be present. We leave the details to the reader. This involves finding
multiplicities of unlabeled line segments to satisfy the “zero-tension” property. "

P Q

p

q
N − p

N − q

m(2) m(0)

10

01

−2 λ1 λ2 . . . − 1 . . . λ′
2 λ′

1 0

−(P + Q)

Figure 1. Honeycomb with m(2) > 0, m(0) > 0 and λ′
i := −2 − λi .

Figure 2. Honeycombs with m(2) = 0 and m(0) = 0, respectively.
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Using Theorem 3.1 and Lemma 3.2, our goal is to find necessary and sufficient
conditions on the first three largest ranks of projections in a TFF.

Theorem 3.3. Suppose that 1 < α < 2 and (L1 ≥ L2 ≥ · · · ≥ L K ) ∈ TFF(α, N ).
Then, we have the following necessary conditions:

L1 ≤ (α − 1)N ,(3-3)

L1 + L2 ≤ N ,(3-4)

L1 + L2 + L3 ≤
{

N , α < 3/2,

2(α − 1)N , α > 3/2.
(3-5)

Conversely, if L1 ≥ L2 ≥ L3 satisfy (3-3), (3-4), and (3-5), then there exists
L ∈ TFF(α, N ) which starts with the sequence (L1, L2, L3).

Proof. Suppose αI is written as in (2-1). Then, S = αI − P1 is an operator with
2 eigenvalues: α with multiplicity N − L1 and (α − 1) with multiplicity L1. By
Theorem 3.1 we must have

αN − L1 ≥ N .

Solving this for L1 yields (3-3).
By Lemma 3.2 the sum P1+P2 has eigenvalue 1 with multiplicity at least L1−L2.

Moreover, all other positive eigenvalues of this sum must come in pairs (2 − λ, λ),
where 1 ≤ λ ≤ α < 2. Thus, by Lemma 3.2(v), L1 + L2 ≤ N . Let S = αI− P1 − P2.
By Theorem 3.1, S must satisfy (3-1). Note that the trace of S remains constant
regardless of choices of P1 and P2:

trace(S) = αN − L1 − L2.

Thus, the rank of S must be minimized to guarantee that it can be written as a sum
of projections. The minimal rank of S occurs if P1 + P2 has eigenvalue α with
multiplicity L2, and thus eigenvalue 2 − α with the same multiplicity. Then, the
rank of the corresponding S is N − L2. Thus, we have

αN − L1 − L2 ≥ N − L2.

This leads again to (3-3). Therefore, Fillmore’s theorem does not introduce new
constraints in this case. In other words, (3-3) and (3-4) are both necessary and
sufficient conditions for the existence of an element of TFF(α, N ) starting with
(L1, L2).

Suppose next that 1 < α < 3/2. Repeating the above arguments, by Lemma 3.2,
P1+P2 must have all of its L1+L2 nonzero eigenvalues (counted with multiplicities)
in the interval [2 −α, α]. Thus, if L1 + L2 + L3 > N , then at least one eigenvalue
of P1 + P2 + P3 would be at least (2−α)+1 > 3/2 > α, which is impossible. Thus,
(3-5) is necessary.
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To prove the converse, assume that L1 + L2 + L3 ≤ N . Using honeycomb models
as in the proof of Lemma 3.2, one can show that there exist projections Pi such
that their sum P1 + P2 + P3 has the eigenvalue α with multiplicity L2 + L3, and no
eigenvalues bigger than α. This is shown in a two step process. First, we construct
P1 and P2 such that their sum has eigenvalues: α and 2−α both with multiplicities
L2 and 1 with multiplicity L1 − L2. Then, using a honeycomb model we can add
on another projection P3, such that P1 + P2 + P3 has eigenvalue α with multiplicity
L2 + L3. See Figure 3 for an illustration of this honeycomb construction. We now
have an operator S = αI− (P1 + P2 + P3) with the rank N − L2 − L3. The trace of
S remains constant regardless of the choice of such projections:

trace(S) = αN − L1 − L2 − L3.

Since L1 ≤ (α − 1)N , Fillmore’s Theorem 3.1 can be applied to represent S as a
sum of projections. This proves that (3-3)–(3-5) are both necessary and sufficient
conditions for the first 3 ranks of a TFF sequence in the case 1 < α < 3/2.

In the special case α = 3/2, it is easy to see that (N/2, N/2, N/2) is the
unique maximal element in TFF(α, N ); see Theorem 3.4. Unfortunately, the case
3/2 < α < 2 does not seem to be easily approachable with the techniques of
this section. Instead, in Section 5 we shall give another combinatorial proof of
Theorem 3.3 which works in the entire range 1 < α < 2. "

P2 P1

−P3

m(α) = L2 + L3

P1 + P2 + P3

m(α) = L2

10

0

0

1

0

−1 α

Figure 3. Honeycomb of P1 + P2 + P3 with maximum eigenvalue α

of multiplicity L2 + L3.
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We end this section by an explicit characterization of TFF sequences for some
special values α.

Theorem 3.4. The set TFF(α, N ) has exactly one maximal element L with respect
to majorization relation ! in the following four cases indexed by n ∈ ":

α = n, L = (N , N , . . . , N︸ ︷︷ ︸
n

),(3-6)

α = 1 + 1
n
, n|N , L =

( N
n

,
N
n

, . . . ,
N
n︸ ︷︷ ︸

n+1

)
,(3-7)

α = n + 1
2
, 2|N , L =

(
N , . . . , N︸ ︷︷ ︸

n−1

,
N
2

,
N
2

,
N
2

)
,(3-8)

(3-9) α = 1 + 2
2n−1

, (2n − 1)|N ,

L =
( 2N

2n−1
, . . . ,

2N
2n−1︸ ︷︷ ︸

n−1

,
N

2n−1
,

N
2n−1

,
N

2n−1

)
.

Proof. The case (3-6) is the easiest and it follows immediately from Theorem 2.3.
The case (3-7) is obtained by the duality argument. Indeed, note that if α = 1+1/n,
then n must divide N . Then, by Corollary 2.7, TFF(α, N ) = TFF(α̃, Ñ ), where
α̃ = α/(α − 1) = n + 1 and Ñ = (α − 1)N = N/n.

In particular, we have that TFF(3/2, N ) = TFF(3, N/2) has a unique maximal
element (N/2, N/2, N/2). By appending (n − 1) N ’s in the front of this sequence
we obtain a maximal element of TFF(n + 1/2, N ). It remains to show that this is
the only maximal element.

Suppose that we have another element (L1, . . . , L K )∈TFF(n+1/2, N ). Let Pi ’s
be the corresponding projections. Given two hermitian matrices S and T we write
S ≤ T if 〈Sx, x〉 ≤ 〈T x, x〉 for all x ∈ !N . Since

∑n
i=1 Pi ≤ nI, S = ∑K

i=n+1 Pi
must have full rank N . By Fillmore’s Theorem 3.1, this implies that

trace(S) =
K∑

i=n+1

Li ≥ N .

Thus, L1 + · · · + Ln ≤ (n − 1/2)N .
Suppose on the contrary that L1 + · · · + Ln+1 > nN . For each i , let Wi be the

corresponding subspace with dim Wi = Li . By basic linear algebra, the intersection
satisfies

dim
( n+1⋂

i=1
Wi

)
≥ L1 + · · · + Ln+1 − nN > 0.
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This implies that P1 + · · · + Pn+1 has eigenvalue n + 1 exceeding α = n + 1/2,
which is a contradiction. Thus, we have necessarily L1 +· · ·+ Ln+1 ≤ nN . Clearly,

L1 + · · · + Ln+2 ≤ L1 + · · · + L K = (n + 1/2)N .

Consequently, (L1, . . . , L K ) ! L, proving (3-8).
Finally, case (3-9) is shown by the duality argument. If α = 1+2/(2n −1), then

2n − 1 must divide N . Then, by Corollary 2.7, TFF(α, N ) = TFF(α̃, Ñ ), where
α̃ = α/(α − 1) = n + 1/2 and Ñ = (α − 1)N = 2N/(2n − 1). "

Section 7 provides the list of all maximal elements in TFF(α, N ) for all α ≤ 2
and dimensions N ≤ 9. It is easy to observe that all unique maximal elements in
our tables are covered by Theorem 3.4. Hence, it is very tempting to conjecture
that for general α and N , if TFF(α, N ) has only one maximal element, then α must
necessarily come from one of the four cases of Theorem 3.4.

4. A combinatorial characterization of tight fusion frames

In this section we give a combinatorial characterization of tight fusion frames in
the context of Schur functions. The main result of this section, Theorem 4.3, is a
direct consequence of Horn’s recursion for the hermitian eigenvalue problem (for
a survey of this problem see [Fulton 2000]). For completeness, we state the main
results of this body of work. For any partition

λ = (λ1 ≥ λ2 ≥ · · · ≥ λd > 0),

let

|λ| =
d∑

i=1

λi

denote the size of λ and let d denote the length. We say λ is a rectangular partition
if

λ = (ab) := (a, . . . , a︸ ︷︷ ︸
b

)

for some positive integers a, b. For any partition λ, let sλ denote the corresponding
Schur polynomial. The polynomial sλ is a homogeneous polynomial of degree
|λ|. It is well known that the Schur polynomials form a linear basis of the algebra
of symmetric polynomials with integer coefficients. Hence for any collection
of partitions λ1, . . . , λK we can define the corresponding Littlewood–Richardson
coefficients c(λ1, . . . , λK ; µ) as the product structure constants of

K∏

i=1

sλi =
∑

µ

c(λ1, . . . , λK ; µ) sµ.
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The Littlewood–Richardson coefficients defined above play an important role
in the hermitian eigenvalue problem. To state these results, we first need some
notation. There is a standard identification between sets of positive integers of size
r and partitions of length at most r . For any set I = {i1 < i2 < · · · < ir }, define the
partition

λ(I ) := (ir − r, ir−1 − r + 1, . . . , i1 − 1).

Let (β1, . . . ,βK+1) ∈ (!N )K+1 denote a collection of sequences where each
β i := (β i

1 ≥ · · ·≥β i
N ). The goal of the hermitian eigenvalue problem is to determine

for which sequences (β1, . . . ,βK+1) do there exist N × N hermitian matrices
H1, . . . , HK+1 such that the eigenvalues of Hi are given by the sequence β i and

K∑

i=1

Hi = HK+1.

The following theorem, due to Klyachko, gives a remarkable characterization in
terms of a collection of inequalities parametrized by nonzero Littlewood–Richardson
coefficients.

Theorem 4.1 [Klyachko 1998]. Let (β1, . . . ,βK+1) ∈ (!N )K+1 be a collection of
sequences of nonincreasing real numbers such that

K∑

i=1

N∑

j=1

β i
j =

N∑

j ′=1

βK+1
j ′ .

Then the following are equivalent:

(1) There exist N×N hermitian matrices H1, . . . ,HK+1 with spectra (β1, . . . ,βK+1)

such that
K∑

i=1

Hi = HK+1.

(2) For every r < N, the sequence (β1, . . . ,βK+1) satisfies the inequality

(4-1)
K∑

i=1

∑

j∈I j

β i
j ≥

∑

j ′∈I K+1

βK+1
j ′

for every collection of subsets I 1, . . . , I K+1 of size r of integers {1, 2, . . . , N }
where the Littlewood–Richardson coefficient

c
(
λ(I 1), . . . , λ(I K ); λ(I K+1)

)
4= 0.

The inequalities given in (4-1) are called Horn’s inequalities and were initially
defined in a very different way by Horn [1962]. While Horn’s list of inequalities
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are, a priori, different than Klyachko’s list (4-1), they were shown to be equivalent
as a consequence of the saturation theorem of Knutson and Tao [1999]. What is
amazing about this equivalence is that Horn’s initial definition of the inequalities
(4-1) uses a recursion unrelated to Littlewood–Richardson coefficients. Horn’s
recursion, in light of Theorem 4.1, can be stated as follows:

Theorem 4.2. Let I 1, . . . , I K+1 be subsets of size r of integers {1, 2, . . . , N } such
that

(4-2)
K∑

i=1

r∑

j=1

λ(I i ) j =
r∑

j ′=1

λ(I K+1) j ′ .

The following are equivalent:

(1) The Littlewood–Richardson coefficient

c(λ(I 1), . . . , λ(I K ); λ(I K+1)) 4= 0.

(2) There exist r × r hermitian matrices H1, . . . , HK+1 that have spectra

(λ(I 1), . . . , λ(I K+1))

such that

(4-3)
K∑

i=1

Hi = HK+1.

The recursion says that a collection of subsets I 1, . . . , I K+1 corresponds to
a Horn inequality if and only if the corresponding collection of partitions are
eigenvalues of some r × r hermitian matrices which satisfy (4-3). Hence Horn’s
inequalities can be defined recursively by induction on N . We also remark that (4-2)
is a necessary condition for the corresponding Littlewood–Richardson coefficient to
be nonzero since it is equivalent to the grading condition when multiplying Schur
functions in the graded algebra of symmetric functions.

We now apply Theorem 4.2 to the case of tight fusion frames. Suppose that
(L1 ≥ L2 ≥ · · · ≥ L K ) ∈ TFF(α, N ) and that M := ∑K

i=1 Li . Then there exist
orthogonal projections P1, . . . , PK such that

(4-4)
K∑

i=1

N Pi = MI.

Since Pi is an orthogonal projection, the spectrum of the hermitian matrix N Pi
is given by

(N , . . . , N︸ ︷︷ ︸
Li

, 0, . . . , 0︸ ︷︷ ︸
N−Li

).
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Let (N Li ) denote the corresponding rectangular partition to the spectra above. The
following is a direct corollary of Theorem 4.2.

Theorem 4.3. Fix an integer N and let (L1 ≥ L2 · · · ≥ L K ) be a sequence of
nonnegative integers such that L1 ≤ N. Let M := ∑K

i=1 Li and α = M/N. The
following are equivalent:

(1) The sequence (L1 ≥ L2 ≥ · · · ≥ L K ) ∈ TFF(α, N ).

(2) The Littlewood–Richardson coefficient

c
(
(N L1), . . . , (N L K ); (M N )

)
4= 0.

Proof. Assume part (1). Then there exist orthogonal projections P1, . . . , PK with
ranks (L1, . . . , L K ) such that

(4-5)
K∑

i=1

Pi = αI.

Multiplying both sides of (4-5) by N gives (4-4). Applying Theorem 4.2 gives
part (2).

Conversely, if we assume part (2) then by Theorem 4.2, there exists a collection
of N × N matrices which satisfy (4-4) and have spectra (N L1), . . . , (N L K ). Scaling
by 1/N yields the desired tight fusion frame. "

The condition that c
(
(N L1), . . . , (N L K ); (M N )

)
4=0 can be made computationally

explicit by the following existence condition. With the notation of Theorem 4.3 we
consider the following properties for an N × M matrix A = A[i, j].

(i) integral nonnegativity: A[i, j] ∈ #≥0

(ii) row sum:
M∑

j=1
A[i, j] = M for all i

(iii) column sum:
N∑

i=1
A[i, j] = N for all j

(iv) row sum dominance:
l∑

j=1
(A[i, j] − A[i + 1, j]) ≥ A[i + 1, l + 1] for all i, l

(v) column sum dominance:
l∑

i=1
(A[i, j]− A[i, j +1]) ≥ A[l +1, j +1] for all j, l

Note that we can take l to be zero in conditions (iv) and (v) since in this case the
sums are by definition equal to zero. Observe that properties (iv) and (v) require
dominance with one additional summand in the later row or column. Also note that
(ii) and (iii) are the only properties dependent on the size of the matrix A. Let A be
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an N × M matrix and consider the sequence (L1, . . . L K ). We can partition A into
a sequence of column block matrices

A = [A1 | A2 | · · · | AK ]

where each Ai is the corresponding N × Li submatrix of A. We now have the
following addition to Theorem 4.3.

Corollary 4.4. Conditions (1) and (2) in Theorem 4.3 are equivalent to:

(3) There exists an N × M matrix A which satisfies properties (i)–(iv) and whose
column block submatrices A1, . . . , AK each satisfy property (v).

Moreover, the coefficient c
(
(N L1), . . . , (N L K ); (M N )

)
equals the number of

N × M matrices A which satisfy (3).

Proof. We refer to [Fulton 1997] for definitions and details of Littlewood–Richardson
skew tableaux. Consider the Littlewood–Richardson coefficients cν

λ,µ corresponding
to the product of two Schur functions

sλsµ =
∑

ν

cν
λ, µ sν .

It is well known that the number cν
λ, µ is precisely equal to the number of

Littlewood–Richardson skew tableaux ν/λ of content µ. Now suppose there exists
an N × M matrix A which satisfies the conditions of Corollary 4.4 with respect to
a sequence L = (L1, . . . , L K ). For any k ≤ K let

A(k) := [A1 | · · · | Ak]

denote the submatrix of A consisting of the matrices A1, . . . , Ak . By properties (i)
and (iv), the row sums of A(k) yield a partition

(4-6) µk :=
(∑

j

A(k)[i, j]
)N

i=1

given in the standard weakly decreasing form. It is easy to see that µk/µk−1

is a well defined skew partition. Consider the Young diagram corresponding to
µk/µk−1. We can fill the boxes of the j-th row of this diagram with Ak[ j, 1] 1s,
Ak[ j, 2] 2s, Ak[ j, 3] 3’s and so forth in weakly increasing order. Property (iv)
implies that the shape of µk/µk−1 is a valid skew partition and that the entries in
each column are strictly decreasing. Property (v) implies that the row reading word
is reverse lattice. Together this implies the resulting skew tableau is a Littlewood–
Richardson skew tableau. Property (iii) implies that content of the tableau is that
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of the rectangular partition (N Lk ). Hence the existence of the matrix A(k) implies
that the Littlewood–Richardson coefficient

(4-7) cµk

µk−1, (N Lk )
4= 0.

Properties (ii) and (iii) imply that µK = (M N ). By induction on k, multiplying the
Schur functions s(N L1 ), . . . s(N L K ) gives

c
(
(N L1), . . . , (N L K ); (M N )

)
4= 0.

Conversely, if the second part of Theorem 4.3 holds, then there exists a sequence
of partitions µ1, µ2, . . . , µK such that (4-7) holds with µ1 = (N L1) and µK = (M N ).
In particular, there exists a Littlewood–Richardson skew tableau of shape µk/µk−1

with content (N Lk ). We can construct a matrix Ak which satisfies property (v) using
the entries of this Littlewood–Richardson skew tableau by reversing the argument
above. Moreover, taking A = [A1 | · · · | AK ], we have that A satisfies all the
conditions part (3) of Corollary 4.4.

Finally, the Littlewood–Richardson rule states that

cµk

µk−1, (N Lk )

is precisely the number of Littlewood–Richardson skew tableaux of shape µk/µk−1

with content (N Lk ). Hence, the second part of Corollary 4.4 follows from the
bijection given by (4-6). This completes the proof. "

Example 4.5. We consider two examples where tight fusion frames exist for N = 5
and M = 8.

First, consider the sequence L = (2, 2, 2, 2). The matrix

A =





5 0 3 0 0 0 0 0
0 5 0 1 2 0 0 0
0 0 2 2 2 2 0 0
0 0 0 2 1 0 5 0
0 0 0 0 0 3 0 5





satisfies the conditions in Corollary 4.4. We write out the corresponding Young
tableaux to the partitions µ1, µ2, µ3 and µ4 with content given by the submatrices
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A(1), A(2), A(3), A(4):

1 1 1 1 1
2 2 2 2 2

1 1 1 1 1 1 1 1
2 2 2 2 2 2
1 1 2 2
2 2

1 1 1 1 1 1 1 1
2 2 2 2 2 2 1 1
1 1 2 2 1 1 2 2
2 2 1
2 2 2

1 1 1 1 1 1 1 1
2 2 2 2 2 2 1 1
1 1 2 2 1 1 2 2
2 2 1 1 1 1 1 1
2 2 2 2 2 2 2 2

Note that the all the data can be encoded in the final partition µ4 as a union of
skew Littlewood–Richardson tableaux.

For the second example, we consider L = (3, 2, 1, 1, 1), the matrix A and the
corresponding union of Littlewood–Richardson tableaux

A =





5 0 0 3 0 0 0 0
0 5 0 0 3 0 0 0
0 0 5 0 0 3 0 0
0 0 0 2 0 2 4 0
0 0 0 0 2 0 1 5





1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 1 1 1
1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1

.

We end this section with an important observation concerning the partial sum of
orthogonal projections P1 +· · ·+ Pk . Let A be a matrix as in Corollary 4.4 for some
L ∈ TFF(α, N ) and consider the sequence of partitions µ1, . . . , µK corresponding
to A. For each k ≤ K , we have that the coefficient

c
(
(N L1), . . . , (N Lk ); µk) 4= 0.

This fact together with Theorem 4.2 yields the following corollary

Corollary 4.6. Let A be a matrix as in Corollary 4.4 for some L ∈ TFF(α, N ) and
consider the sequence of partitions µ1, . . . , µK corresponding to A. Then there
exist orthogonal projections P1, . . . , PK such that (4-4) holds and each partial sum∑k

i=1 Pi has spectrum (µk
1/N , . . . , µk

N /N ).

We remark that Corollary 4.6 is useful for the construction of explicit tight fusion
frames. We illustrate this process later in Example 7.2.
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5. Combinatorial majorization and hook type sequences

In this section we give alternate proofs of Theorem 2.3 on majorization as well
as Theorem 3.3 on estimates using the combinatorics of Schur functions and
Theorem 4.3. We begin with some fundamental definitions and lemmas on Schur
functions. Let λ ⊆ (M N ). We define the dual partition of λ in (M N ) to be

λ∗ := (M − λN ≥ M − λN−1 ≥ · · · ≥ M − λ1).

λ

λ∗

Lemma 5.1. Let λ ⊆ (M N ) and let p(λ) denote the number of parts of λ equal to
M. Assume that for some positive integer k we have

|λ| = N (M − k).

Then
c
(
λ, (N ), . . . , (N )︸ ︷︷ ︸

k

; (M N )
)
4= 0

if and only if k ≥ N − p(λ).

Proof. The lemma follows from two elementary facts about Schur functions. Con-
sider the product

(s(N ))
k =

∑

µ

c((N ), . . . , (N ); µ) sµ

By the Pieri rule, we have that c((N ), . . . , (N ); µ) 4= 0 if and only if µ has length
less than or equal to k and |µ| = Nk. Furthermore, if λ, µ ⊆ (M N ), then c(M N )

λ, µ 4= 0
if and only if µ = λ∗. It is easy to check that λ∗ appears as a summand in the
product (s(N ))

k precisely when k ≥ N − p(λ). "
The following theorem on the product of Schur functions corresponding to

rectangular partitions is proved by Okada.

Theorem 5.2 [Okada 1998, Theorem 2.4]. Fix integers a, b, N1, N2 with a ≥ b.
The product of Schur functions

(5-1) s(N a
1 )s(N b

2 ) =
∑

λ

sλ,

where the sum is over all partitions λ with length ≤ a + b such that

• λb+1 = λb+2 = · · · = λa = N1,
• λb ≥ max{N1, N2},
• λi + λa+b+1−i = N1 + N2 for all i ∈ {1, . . . , b}.
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We now give an alternate proof of Theorem 2.3 using Theorem 5.2 in the case
when N1 = N2.

Lemma 5.3. Fix a positive integer N and let 0 < a < b. Then the Littlewood–
Richardson coefficients

cλ
(N b), (N a)

≤ cλ
(N b−1), (N a+1)

.

In particular, Theorem 2.3 on majorization of tight fusion frames follows.

Proof. It is easy to check the λ that appear in the summation (5-1) for the pair
((N b), (N a)) are contained in the λ that appear in the summation (5-1) for the
pair ((N b−1), (N a+1)). This proves the inequality. The application to tight fusion
frames follows from Theorem 4.3. "

It is easy to see that by majorization, the following theorem is equivalent to
Theorem 3.3 on estimates.

Theorem 5.4. Assume the conditions in Theorem 4.3. Further assume that α =
M/N < 2. If (L1 ≥ L2 ≥ · · · ≥ L K ) ∈ TFF(α, N ), then we have the following
necessary conditions:

(1) L1 ≤ M − N.

(2) L1 + L2 ≤ N.

(3) If α > 3/2, then L1 + L2 + L3 ≤ 2(M − N ).

(4) If α < 3/2, then L1 + L2 + L3 ≤ N.

Conversely, suppose L1, L2, L3 satisfy conditions (1)–(4) and L4 =· · ·= L K = 1.
Then (L1 ≥ L2 ≥ · · · ≥ L K ) ∈ TFF(α, N ).

Proof. Recall that for any partition λ ⊆ (M N ), we let p(λ) denote the number
of parts of λ equal to M . First we prove part (1). By majorization, it suffices to
assume that L2 = 1. Part (1) now follows from Lemma 5.1 by setting λ = (N L1)

and observing that p((N L1)) = 0.
We now prove part (2). By majorization, it suffices to assume that L3 = 1.

Consider the product

(5-2) s(N L1 )s(N L2 ) =
∑

λ

sλ.

By Theorem 5.2, we have that λ1 + λL1+L2 = 2N for every λ in the sum (5-2).
If λ ⊆ (M N ), then λ1 ≤ M . Note that such a partition λ exists since (L1 ≥ L2 ≥
· · · ≥ L K ) ∈ TFF(α, N ). Hence

λL1+L2 = 2N − λ1 ≥ 2N − M > 0

since α < 2. This implies that L1 + L2 ≤ N since (M N ) has only N parts.
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For part (3), we assume that L4 = 1. First, if L2 + L3 ≤ L1, then by part (1),
L1 + L2 + L3 ≤ 2(M − N ). Next, we assume L1 ≤ L2 + L3. Consider the product

(5-3) s(N L1 )s(N L2 )s(N L3 ) =
∑

λ

c
(
(N L1), (N L2), (N L3); λ

)
sλ.

Since α > 3/2, for any λ ⊆ (M N ) such that c
(
(N L1), (N L2), (N L3); λ

)
4= 0, we

have p(λ) ≤ L1. This can be seen by considering L2 and L3 as large as possible,
hence L1 = L2 = L3. One can show using the Littlewood–Richardson rule that
since 3N < 2M , three layered bricks of width N cannot span M more than once;
see diagram below.

µ1 µ2

µ2 µ3

By Lemma 5.1,

M − L1 − L2 − L3 ≥ N − p(λ) ≥ N − L1.

Hence L2 + L3 ≤ M − N . This proves part (3).
For part (4), fix any λ in the summand found in (5-2) such that λ ⊆ (M N ). Since

α < 3/2, we have

λL1+L2 = 2N − λ1 ≥ 2N − M > M − N .

Hence the rectangular partition ((M − N + 1)L1+L2) ⊆ λ. Comparing the two
products

(5-4) sλs(N L3 ) =
∑

µ′
cµ′

λ,(N L3 )
sµ′

and

(5-5) s((M−N+1)L1+L2 )s(N L3 ) =
∑

µ

sµ

we have that any partition µ′ from (5-4) such that cµ′

λ,(N L3 )
4= 0 contains some µ

from (5-5). Therefore it is enough to consider the partitions µ from (5-5). By
Theorem 5.2, we get

µ1 + µL1+L2+L3 = M − N + 1 + N = M + 1
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for every µ in the sum (5-5). Hence if µ⊆ (M N ), then µL1+L2+L3 >0 since µ1 ≤ M .
Note that such a partition µ exists since (L1 ≥ L2 ≥ · · · ≥ L K ) ∈ TFF(α, N ). Thus
L1 + L2 + L3 ≤ N . This proves part (4).

To prove sufficiency, we construct λ in the sum (5-3) such that λ ⊆ (M N ) and
c
(
(N L1), (N L2), (N L3); λ

)
4= 0. One can show using the Littlewood–Richardson

rule that parts (1)–(4) imply that such a λ exists. Furthermore, we can construct λ

such that p(λ) satisfies the following:

• If L1 ≥ L2 + L3, then p(λ) = L2 + L3.

• If L1 < L2 + L3 and α < 3/2, then p(λ) = L2 + L3.

• If L1 < L2 + L3 and α > 3/2, then p(λ) = 6 1
2(L1 + L2 + L3)7.

See Figures 4 and 5 for a diagram of λ in the cases above. If p(λ) = L2 + L3,
then Lemma 5.1 implies we need to check that L1 ≤ M − N , which is a necessary
condition. The last case is the most delicate. We construct λ with a partition µ2 of
the shape as in Figure 5 with a notch of height x . If L1 + L2 + L3 is even, then we
choose x such that p(λ)= x +L3 = L1+L2−x , and hence p(λ)= 1

2(L1+L2+L3).
If L1 + L2 + L3 is odd, then p(λ) = 6 1

2(L1 + L2 + L3)7. Either way, Lemma 5.1
implies we need to check that L1 +L2 +L3 ≤ 2(M − N ), which again is a necessary
condition. This completes the proof of the theorem. "

Remark 5.5. Parts (2) and (4) of Theorem 5.4 can be generalized to the following.
Claim: Let 2 ≤ k ≤ K . If α < k/(k −1), then L1 +· · ·+ Lk ≤ N . The proof follows
the same argument as the proof of Theorem 5.4 part (4).

µ2

µ1 µ3

µ2

µ3

µ2

µ1

µ3

µ2

µ3

Figure 4. Construction of λ for α < 3/2 as a union of Littlewood–
Richardson skew tableaux µ1, µ2, µ3 when L2 + L3 ≤ L1 and
L1 ≤ L2 + L3, respectively. This construction is possible since
L1 + L2 + L3 ≤ N and 2M < 3N .
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µ2

µ1 µ3

µ3

µ2

L1






L2 − x
{

x
{

µ2

µ1

µ3

µ2

}
x




 L3

Figure 5. Construction of λ for α > 3/2 as a union of Littlewood–
Richardson skew tableaux µ1, µ2, µ3 when L2 + L3 ≤ L1 and
L1 ≤ L2 + L3, resp.

6. Combinatorial spatial and Naimark duality

Theorems 2.5 and 2.6 establish spatial and Naimark dualities for tight fusion
frames. By Theorem 4.3, we have the analogous results for Littlewood–Richardson
coefficients.

Corollary 6.1. Assume we have a sequence of integers (L1 ≥ · · · ≥ L K ) as in
Theorem 4.3. Then

c
(
(N L1), . . . , (N L K ); (M N )

)
4= 0

⇐⇒ c
(
(N N−L1), . . . , (N N−L K ); ((K N − M)N )

)
4= 0

and

c
(
(N L1), . . . , (N L K ); (M N )

)
4= 0

⇐⇒ c
(
((M − N )L1), . . . , ((M − N )L K ); (M (M−N ))

)
4= 0.

In this section we prove a much stronger version of the corollary above. In
particular, we prove that these Littlewood–Richardson coefficients are equal. We
will frequently reference properties (i)–(v) for matrices defined in the paragraph
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preceding Corollary 4.4 using lower case roman numerals. We first consider spatial
duality.

Theorem 6.2. The Littlewood–Richardson coefficients

(6-1) c
(
(N L1), . . . , (N L K ); (M N )

)
=
c
(
(N N−L1), . . . , (N N−L K ); ((K N − M)N )

)
.

The coefficient c
(
(N L1), . . . , (N L K ); (M N )

)
is precisely the number of N × M

matrices A which satisfy the conditions given in the Corollary 4.4. We will call
such a collection of matrices the set of configuration matrices corresponding to
(L1, . . . , L K ; N ). We prove Theorem 6.2 by providing a bijection between the
configuration matrices corresponding to the coefficients in (6-1).

Suppose that c
(
(N L1), . . . , (N L K ); (M N )

)
4= 0 and fix a configuration matrix

A = [A1 | A2 | · · · | AK ]. For each Ai , we construct an N × (N − Li ) matrix Bi as
follows. Decompose

Ai =
N∑

j=1

C j

as a sum of binary matrices which for all integers y, j , satisfy

(1)
N∑

x=1
C j [x, y] = 1.

(2)
N ′∑

x=1
(C j [x, y] − C j [x, y + 1]) ≥ 0 for all N ′ < N .

(3)
N ′∑

x=1
(C j [x, y] − C j+1[x, y]) ≥ 0 for all N ′ < N .

Consider A2 from Example 4.5. We have





3 0
0 1
2 2
0 2
0 0




=





1 0
0 1
0 0
0 0
0 0




+





1 0
0 0
0 1
0 0
0 0




+





1 0
0 0
0 1
0 0
0 0




+





0 0
0 0
1 0
0 1
0 0




+





0 0
0 0
1 0
0 1
0 0




.

It is easy to see that this decomposition of Ai is unique since Ai satisfies properties
(i), (iii) and (v). For each C j , define the N × (N − Li ) matrix C ′

j to be the unique
binary matrix which satisfies conditions (1), (2) and that [C j | C ′

j ] is invertible. For
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example, if N = 5 then

C j =





1 0
0 0
0 1
0 0
0 0




# C ′

j =





0 0 0
1 0 0
0 0 0
0 1 0
0 0 1




.

Define

Bi :=
N∑

i=1

C ′
j

and consider the N × (K N − M) matrix

B := [BK | BK−1 | · · · | B1].

Note that the binary decomposition of Bi into C ′
j also satisfies conditions (1)–(3)

if we order the C ′
j in reverse. Moreover, if we apply this algorithm to the matrix B,

we will recover the matrix A. We now record some important observations on the
submatrices Ai and Bi . First, if x < y, then

(6-2) Ai [x, y] = Bi [x, y] = 0.

Second,

(6-3) Ai [x, y] + Bi [x, x − y] = Ai [x + 1, y + 1] + Bi [x + 1, x − y + 1].

In the equations above we take Ai [x, y] = 0 (respectively, Bi [x, y] = 0) if x, y lie
outside the boundaries of Ai (respectively, Bi ). In the case when x = y, we get

(6-4) Ai [x, x] = Ai [x + 1, x + 1] + Bi [x + 1, 1].

Theorem 6.2 follows from the proceeding proposition.

Proposition 6.3. The N × (K N − M) matrix B is a configuration matrix for the
sequence (N − L K , . . . , N − L1; K N − M).

Proof. The most challenging part of this proof is to show that the matrix B satisfies
property (iv). Hence the majority of this argument is dedicated to the proof this
property. We first consider the other properties. Properties (i)–(iii) are immediate
by construction of B. Property (v) follows from the fact that each Bi is a sum of
binary matrices which satisfy conditions (1)–(3). We now prove that B satisfies
property (iv) by contradiction. Suppose there exist integers i , l such that

(6-5)
l∑

j=1

(B[i, j] − B[i + 1, j]) < B[i + 1, l + 1].
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We define the integers k, l ′ as follows. Let k denote largest integer for which the
partial sum

l ′ :=
k∑

j=1

(N − L K− j+1) ≤ l.

Hence l ′ is the number of columns of the submatrix [BK | · · · | BK−k+1] of B.
Observe that each row sum of the matrix [A j | B j ] is equal to N . Combining

this observation with (6-5) gives

l∑

j=1

(B[i, j] − B[i + 1, j])

=
l ′∑

j=1

(B[i, j] − B[i + 1, j]) +
l∑

j=l ′+1

(B[i, j] − B[i + 1, j])

=
M∑

j=M−(k N−l ′−1)

(A[i + 1, j] − A[i, j]) +
l∑

j=l ′+1

(B[i, j] − B[i + 1, j])

< B[i + 1, l + 1].

Rewriting this inequality yields

M∑

j=M−k N+l ′+1

(A[i + 1, j] − A[i, j])

< B[i + 1, l + 1] −
l∑

j=l ′+1

(B[i, j] − B[i + 1, j])

= B[i + 1, l ′ + 1] +
l∑

j=l ′+1

(B[i + 1, j + 1] − B[i, j]).

The matrix entries of B appearing on the right hand side of the above equation are
all contained in the submatrix BK−k . Applying (6-3) and (6-4), we get
(6-6)

M∑

j=M−k N+l ′+1

(A[i +1, j]− A[i, j]) <

l−l ′∑

j=0

(AK−k[i, i − j]− AK−k[i +1, i − j +1]).



284 MARCIN BOWNIK, KURT LUOTO AND EDWARD RICHMOND

By (6-2), AK−k[x, y] = 0 if y > x . Hence we can extend the right hand side of
(6-6) to

M∑

j=M−k N+l ′+1

(A[i + 1, j] − A[i, j])

< AK−k[i, i −l+l ′]+
L K−k−(i+1)+(l−l ′)∑

j=0

(AK−k[i, L K−k − j]− AK−k[i +1, L K−k − j]).

Now the fact that A satisfies properties (ii), contradicts the fact that it also satisfies
property (iv). This completes the proof. "
Example 6.4. Let N = 4 and consider the sequence L = (2, 2, 2, 1). Using
Corollary 4.4, the matrix A below implies that L ∈ TFF(7/4, 4).

A =





4 0 3 0 0 0 0
0 4 0 1 2 0 0
0 0 1 2 2 2 0
0 0 0 1 0 2 4





We get

B =





4 0 0 4 0 1 0 0 0
0 4 0 0 2 2 1 0 0
0 0 4 0 0 1 0 4 0
0 0 0 0 2 0 3 0 4





and hence (3, 2, 2, 2) ∈ TFF(9/4, 4).

We now give the analogous theorem on combinatorial Naimark duality.

Theorem 6.5. The Littlewood–Richardson coefficients

(6-7) c
(
(N L1), . . . , (N L K ); (M N )

)

= c
(
((M − N )L1), . . . , ((M − N )L K ); (M (M−N ))

)
.

As with Theorem 6.2, we define a bijection between configuration matrices
corresponding to the Littlewood–Richardson coefficients in (6-7). Fix a configu-
ration matrix A corresponding to the sequence (L1, . . . , L K ; N ) and consider the
Littlewood–Richardson skew tableaux µk/µk−1 where µk is defined in (4-6). To
each µk/µk−1 we define the Lk × M binary matrix Tk by

Tk[x, y] :=
{

1, if x appears in column y of µk/µk−1

0, otherwise.

The partition shape of µk can be recovered from the matrices T1, . . . TK as follows.
Define the matrix T (k) by “stacking” the matrices T1, . . . , Tk (see Example 6.7
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below). In other words,

T (k) :=




T1
...

Tk



 .

Since A satisfies property (iv), the partition µk can be recovered by upward justifying
the nonzero entries of T (k). In particular, the entire collection T1, . . . , TK uniquely
determines the matrix A.

We now define the “complementary” Lk × M matrix Sk by

Sk[x, y] := 1 − Tk[x, M − y + 1]

and S(k) as the corresponding column matrix with block entries S1, . . . , Sk . It
is easy that if the nonzero entries of S(k) are justified upwards, we get the dual
partition (µk)∗ in rectangle (M Mk ) where Mk := ∑k

i=1 Li . Hence S1, . . . , SK
determines some matrix B in the same way that T1, . . . , TK determines A. Also
note that we can recover Tk from Sk by applying the complementary operation to
Sk . Theorem 6.5 is a consequence of the following proposition.

Proposition 6.6. The collection S1, . . . , SK determines a configuration matrix for
the sequence (L1, . . . , L K ; M − N ).

Proof. Let B = [B1 | · · · | BK ] denote the matrix corresponding to the collection
S1, . . . , SK . We will show that B is a configuration matrix for the sequence
(L1, . . . , L K ; M − N ). In this case, property (v) is the most challenging to prove.
Hence most the argument to dedicated to this part of the proof.

First, note that B trivially satisfies property (i). Next, we observe that A satisfies
properties (ii) and (iii) if and only if the matrix T (K ) has M columns where each
column sum is equal to N . Since S(K ) has the same number of columns as T (K )

with column sums of M − N , we get that B also satisfies properties (ii) and (iii).
Property (iv) follows from the fact that if we upwards justify the entries of S(k) we
get the shape of the dual partition (µk)∗.

We now prove that B satisfies property (v) by contradiction. Suppose there exists
Bk and integers j, l such that

l∑

i=1

(Bk[i, j] − Bk[i, j + 1]) < Bk[l + 1, j + 1].

This implies there exists an integer l ′ such that

(6-8)
M∑

i=l ′+1

(Sk[ j, i] − Sk[ j + 1, i]) < 0
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with

(6-9) Sk[ j, l ′ + 1] = 0 and Sk[ j + 1, l ′ + 1] = 1.

Conversely, assume there exists an integer l ′ such that (6-8) and (6-9) are true. By
(6-9), there exists an integer l ′′ such that

M∑

i=l ′+1

Sk[ j, i] =
l ′′∑

i=1

Bk[i, j] and
M∑

i=l ′+1

Sk[ j + 1, i] ≤
l ′′+1∑

i=1

Bk[i, j + 1].

Hence by (6-8),

−Bk[l ′′+1, j +1]+
l ′′∑

i=1

(Bk[i, j]−Bk[i, j +1])≤
M∑

i=l ′+1

(Sk[ j, i]−Sk[ j +1, i])< 0.

Observe that if (6-8) is true for l, then there is always some integer l ′ ≤ l for which
both (6-8) and (6-9) are true. Thus the failure of property (v) is equivalent to (6-8).
By definition of Sk and (6-8), we have

M−l ′∑

i=1

(Tk[ j + 1, i] − Tk[ j, i]) < 0.

Since the row sums of Tk equal N ,

M∑

i=M−l ′+1

(Tk[ j, i] − Tk[ j + 1, i]) < 0.

Therefore the matrix A also fails to satisfy property (v) which is a contradiction.
This completes the proof. "

Example 6.7. Consider N = 4 and L = (2, 2, 2, 1) as in Example 6.4. Then µ4, as
a union of Littlewood–Richardson skew tableaux, is equal to

1 1 1 1 1 1 1
2 2 2 2 2 1 1
1 2 2 1 1 2 2
2 2 2 1 1 1 1
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We have

T (4) =





1 1 1 1 0 0 0
1 1 1 1 0 0 0
1 0 0 0 1 1 1
1 1 1 0 1 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1





# S(4) =





1 1 1 0 0 0 0
1 1 1 0 0 0 0
0 0 0 1 1 1 0
1 1 0 1 0 0 0
0 0 0 0 1 1 1
0 0 1 1 0 0 1
0 0 0 0 1 1 1





Upward justifying the nonzero entries of S(4) gives the union of Littlewood–
Richardson skew tableaux and corresponding configuration matrix

1 1 1 1 1 1 1
2 2 2 2 1 1 2
2 2 2 2 1 1 1

B =




3 0 3 0 1 0 0
0 3 0 1 2 1 0
0 0 0 2 0 2 3



 ,

and hence (2, 2, 2, 1) ∈ TFF(7/3, 3).

7. Examples and tables of TFF sequences

This section is divided into two parts. In the first part we give several examples
of existence of tight fusion frames using skew Littlewood–Richardson tableaux as
in Example 4.5. In the second part, we give a complete list of tight fusion frame
sequences for N ≤ 9 and α ≤ 2 by listing all maximal elements in the partial order
induced by majorization.

Examples of skew Littlewood–Richardson tableaux. The following are some ex-
amples of Littlewood–Richardson tableaux in the cases of N = 3, 5, 7. Readers
who are interested in combinatorial spatial and Naimark duality as discussed in
Section 6 are encouraged to apply the bijective constructions to these examples.

N = 3 and L = (3, 2, 1), L = (2, 1, 1, 1), and L = (1, 1, 1, 1):

1 1 1 1 1 1
2 2 2 2 2 2
3 3 3 1 1 1

1 1 1 1 1
2 2 2 1 1
1 1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

N = 5 and L = (2, 2, 2, 2) and L = (3, 3, 3, 3):

1 1 1 1 1 1 1 1
2 2 2 2 2 2 1 1
1 1 2 2 1 1 2 2
2 2 1 1 1 1 1 1
2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 1 1 2 2
3 3 3 3 3 3 1 1 1 1 1 1
2 2 3 3 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3 3 3
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N = 7 and L = (4, 3, 3, 1, 1) and L = (3, 2, 2, 2, 1):

1 1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 1 1 1
4 4 4 4 4 4 4 1 1 2 2 2
1 1 3 3 3 1 1 2 2 3 3 3
2 2 2 2 3 3 1 1 1 1 1 1
3 3 3 3 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 1 1 1
1 1 1 1 1 1 1 2 2 2
2 2 2 2 2 1 1 1 1 1
1 2 2 1 1 2 2 2 2 2
2 2 2 1 1 1 1 1 1 1

Tables of maximal tight fusion frames. At the end of this section we give a com-
plete list of tight fusion frames for N ≤ 9 and α ≤ 2 by listing all maximal elements
in the partial order induced by majorization. These lists are generated by applying
the techniques developed in this paper. In particular, we use the following methods

• Constructing Littlewood–Richardson tableaux as in Corollary 4.4.

• Recursive construction using spatial and Naimark duality.

• Recursive construction using Lemma 7.1.

• Applying inequalities of Theorem 3.3 or 5.4.

The following lemma follows from the Naimark duality.

Lemma 7.1. Assume that L1 = N (α − 1). Then, L ∈ TFF(α, N ) if and only if
L′ ∈ TFF(α̃ − 1, N (α − 1)) where L′ = (L2 ≥ · · · ≥ Lk) and 1/α + 1/α̃ = 1.

It is easy to see that maximality under the majorization partial order is preserved
under these dualities and the lemma above. Unfortunately, there are several TFF
sequences missed by majorization and the recursive generation techniques men-
tioned above. These sequences were only found by brute force construction of
Littlewood–Richardson tableaux. The first maximal tight fusion frame sequence
missed by recursion is (4, 2, 2, 2, 1) where N = 6. Hence, it might be of interest to
illustrate how to construct a tight fusion frame for this sequence.

Example 7.2. Let N = 6 and L = (4, 2, 2, 2, 1). The first step in our construc-
tion is identifying a skew Littlewood–Richardson tableaux corresponding to our
TFF sequence.

1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 1 1
3 3 3 3 3 3 1 1 1 2 2
4 4 4 4 4 4 1 1 1 1 1
1 2 2 1 2 1 2 2 2 2 2
2 2 2 2 2 1 1 1 1 1 1
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The above tableaux shows the existence of projections P1, . . . , P5 in !6 with

(7-1)
5∑

i=1

Pi = 11
6

I, rank P1 =4, rank P2 = rank P3 = rank P4 =2, rank P5 =1.

By Corollary 4.6, the tableaux also contains information on the eigenvalues of the
intermediate partial sums of projections in (7-1).

sum of projections eigenvalue list

P1 (1, 1, 1, 1, 0, 0)

P1 + P2
( 11

6 , 9
6 , 1, 1, 3

6 , 1
6

)

P1 + P2 + P3
( 11

6 , 11
6 , 11

6 , 1, 5
6 , 4

6

)

P1 + · · · + P4
( 11

6 , 11
6 , 11

6 , 11
6 , 11

6 , 5
6

)

P1 + · · · + P5
(11

6 , 11
6 , 11

6 , 11
6 , 11

6 , 11
6

)

Equipped with this information and a symbolic computation program such as
Mathematica we can construct an explicit tight fusion frame in !6 associated with
the sequence (4, 2, 2, 2, 1). The matrix below shows an orthonormal basis (column)
vectors for the corresponding ranges of projections Pi , i = 1, . . . , 5.





1 0 0 0 5
6 0 −

√
5

72 0
√

5
72 0 0

0 1 0 0 0 1
2 − 1

2
√

2
− 1

3 − 1
2
√

2
1
3

1
3

0 0 1 0 0 0 0
√

5
3 0

√
5

6

√
5

6

0 0 0 1 0 0 0 0 0
√

5
12 −

√
5

12

0 0 0 0 0 −
√

3
2

1
2
√

6
− 1√

3
1

2
√

6
1√
3

1√
3

0 0 0 0 −
√

11
6 0 −

√
55
72 0

√
55
72 0 0





A direct calculation shows that: (i) columns are orthonormal to each other in
every block, and (ii) rows are orthogonal with norms

√
11/6. This proves the

existence of a TFF (7-1).

It is worth noting that the Example 7.2 can not be obtained using the spectral
tetris construction (STC). The STC has been recently introduced by Casazza et al.
[2012] who gave an algorithmic way of constructing sparse fusion frames. Among
other things, the authors have shown that the ranks L of spectral tetris fusion frames
must necessarily satisfy L ! L′, where L′ is a sequence of ranks of the reference
fusion frame.
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Moreover, in the tight case this condition is also sufficient, and hence [Casazza
et al. 2012, Theorem 3.3] characterizes possible ranks obtained by the STC in the
case when the frame bound α ≥ 2. Combining this with Naimark complements, see
Theorem 2.6, this yields TFFs also in the case 1 < α < 2. In particular, we have
TFF(11/6, 6) = TFF(11/5, 5). A direct calculation of the reference fusion frame
corresponding to eigenvalues (11/5, 11/5, 11/5, 11/5, 11/5) yields a TFF sequence
(3, 3, 3, 2). This happens to be another maximal element of TFF(11/6, 6) which
is not comparable with (4, 2, 2, 2, 1) with respect to the majorization relation !.
Hence, the above example can not be obtained by the STC even when paired with
Naimark duality.

List of maximal TFF sequences for N ≤ 9 and α ≤ 2.

N = 3
α max elements
1 (3)

4/3 (1, 1, 1, 1)

5/3 (2, 1, 1, 1)

2 (3, 3)

N = 4
α max elements
1 (4)

5/4 (1, 1, 1, 1, 1)

6/4 (2, 2, 2)

7/4 (3, 1, 1, 1, 1), (2, 2, 2, 1)

2 (4, 4)

N = 5
α max elements
1 (5)

6/5 (1, 1, 1, 1, 1, 1)

7/5 (2, 2, 1, 1, 1)

8/5 (3, 2, 1, 1, 1), (2, 2, 2, 2)

9/5 (4, 1, 1, 1, 1, 1), (3, 2, 2, 2)

2 (5, 5)

N = 6
α max elements
1 (6)

7/6 (1, 1, 1, 1, 1, 1, 1)

8/6 (2, 2, 2, 2)

9/6 (3, 3, 3)

10/6 (4, 2, 2, 2)

11/6 (5, 1, 1, 1, 1, 1, 1), (4, 2, 2, 2, 1), (3, 3, 3, 2)

2 (6, 6)
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N = 7
α max elements
1 (7)

8/7 (1, 1, 1, 1, 1, 1, 1, 1)

9/7 (2, 2, 2, 1, 1, 1)

10/7 (3, 3, 1, 1, 1, 1), (3, 2, 2, 2, 1)

11/7 (4, 3, 1, 1, 1, 1), (4, 2, 2, 2, 1)

12/7 (5, 2, 2, 1, 1, 1), (4, 3, 3, 1, 1), (3, 3, 3, 3)

13/7 (6, 1, 1, 1, 1, 1, 1, 1), (5, 2, 2, 2, 2), (4, 3, 3, 3)

2 (7, 7)

N = 8
α max elements
1 (8)

9/8 (1, 1, 1, 1, 1, 1, 1, 1, 1)

10/8 (2, 2, 2, 2, 2)

11/8 (3, 2, 2, 2, 2), (3, 3, 2, 1, 1, 1)

12/8 (4, 4, 4)

13/8 (5, 3, 2, 1, 1, 1), (5, 2, 2, 2, 2), (4, 4, 2, 2, 1)

14/8 (6, 2, 2, 2, 2), (5, 3, 3, 2, 1), (4, 4, 4, 2)

15/8 (7, 1, 1, 1, 1, 1, 1, 1), (6, 2, 2, 2, 2, 1), (5, 3, 3, 2, 2), (4, 4, 4, 3)

2 (8, 8)

N = 9
α max elements
1 (9)

10/9 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

11/9 (2, 2, 2, 2, 1, 1, 1)

12/9 (3, 3, 3, 3)

13/9 (4, 4, 1, 1, 1, 1, 1), (4, 3, 2, 2, 2), (3, 3, 3, 3, 1)

14/9 (5, 4, 1, 1, 1, 1, 1), (5, 3, 2, 2, 2), (4, 3, 3, 3, 1)

15/9 (6, 3, 3, 3)

16/9 (7, 2, 2, 2, 1, 1, 1), (6, 3, 3, 3, 1), (5, 4, 4, 2, 1), (4, 4, 4, 4)

17/9 (8, 1, 1, 1, 1, 1, 1, 1, 1, 1), (7, 2, 2, 2, 2, 2), (6, 3, 3, 3, 2), (5, 4, 4, 4)

2 (9, 9)

The following sequences are missed by the recursive construction of spatial
and Naimark duality and Lemma 7.1. These sequences were obtained applying
Theorem 3.3 and constructing Littlewood–Richardson tableaux.
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N TFF sequences
6 (4, 2, 2, 2, 1)

7 (4, 3, 3, 1, 1), (5, 2, 2, 2, 2)

8 (5, 3, 3, 2, 1), (6, 2, 2, 2, 2, 1), (5, 3, 3, 2, 2)

9 (6, 3, 3, 3, 1), (5, 4, 4, 2, 1), (7, 2, 2, 2, 2, 2), (6, 3, 3, 3, 2), (5, 4, 4, 4)

We also remark that the sequences (4, 4, 2, 2, 1) for N = 8 and (4, 3, 3, 3, 1)

for N = 9 can be recursively found from the “missed” sequences (4, 3, 3, 1, 1) for
N = 7 and (4, 2, 2, 2, 1) for N = 6, respectively. Finally, among the eleven maximal
TFF sequences listed above only the sequence (5, 4, 4, 4) for N = 9 can be obtained
using the spectral tetris construction (STC) paired with the Naimark duality. A
construction of explicit tight fusion frames corresponding to the remaining ten
maximal TFF sequences requires a procedure similar to Example 7.2.
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