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Abstract We establish the linear independence of time-frequency translates for func-
tions f on R

d having one-sided decay limx∈H, |x |→∞ | f (x)|ec|x | log |x | = 0 for all
c > 0, which do not vanish on an affine half-space H ⊂ R

d .
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1 Introduction

The Heil–Ramanathan–Topiwala (HRT) conjecture [12] states that time-frequency
translates of a non-zero square integrable function f onRd are linearly independent.1

There have been a few partial results on this conjecture, mostly focusing on finding
conditions on � ⊂ R

d × R
d which guarantee that time-frequency translates

G( f,�) :=
{
MaTb f = e2π ia· f (· − b) : (a, b) ∈ �

}

1 The original HRT conjecture was only for R, but the question is also open for higher dimensions.
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along � are linearly independent [3,5–7,16]. Other interesting results related to the
HRT conjecture can be found in [1,10,11]. In [4], the authors found a one-sided decay
condition that guarantees that arbitrary time-frequency shifts are linearly independent.

The goal of this paper is to generalize the main result of the authors [4] to higher
dimensions. We point out that the generalization to higher dimensions of linear inde-
pendence does not always follow expectations. Using the Fourier transform it is easy
to see that in R, translates of L p functions are linearly independent for 1 ≤ p < ∞.
However, the situation in Rd is quite different, as all translates of L p functions in Rd

are linearly independent if and only if p ≤ 2d
d−1 , by the results of Edgar and Rosenblatt

[8,19].
The main theorem of this paper can be formulated as follows.

Theorem 1.1 Let H be an affine half-space in R
d , i.e., H = {x ∈ R

d : 〈x, v〉 > a}
for some v ∈ R

d \{0} and a ∈ R. Let f : Rd → C be a Lebesgue measurable function
which does not vanish almost everywhere on H. Assume that for all c > 0,

lim
x∈H, |x |→∞ | f (x)|ec|x | log |x | = 0. (1.1)

Then, the set G( f,R2d) of time-frequency translates of f is linearly independent. That
is, G( f,�) is linearly independent for any � ⊂ R

2d .

Note that, unlike the one-dimensional case,wemustmake the additional assumption
that a function f does not vanish on a half-space. This is because in one dimension,
functions which vanish on a tail trivially have linearly independent time-frequency
shifts. However, if there is a function f ∈ L2(R) with linearly dependent time-
frequency shifts, then 1[−1,0] ⊗ f ∈ L2(R2) vanishes on a half-space {(x1, x2) ∈ R

2 :
x1 > 0} and has linearly dependent time-frequency shifts. However, it is possible to
remove the assumption that f does not vanish on a half-space in Theorem 1.1 provided
we weaken the corresponding conclusion. This is shown in Theorem 3.5.

There are several new ingredients employed in extending the one-dimensional result
[4, Theorem1.1] to the higher-dimensional Theorem 1.1. First, we prove a generaliza-
tion of the Montgomery–Vaughan inequality [17] to higher dimensions, Theorem 2.1,
using the theory of Beurling–Selberg extremal functions for Euclidean balls developed
by Holt and Vaaler [13]. We also show a higher-dimensional analogue of the Turán–
Nazarov inequality, Theorem 2.2, from the corresponding one-dimensional result [18].
Using this we extend the lower bound estimate on products of trigonometric polyno-
mials from [4] to higher dimensions. Then, we establish the key sufficient condition for
the linear independence of time-frequency translates, Theorem 3.1, using the concept
of an extended half-space, which induces a total order on R

d . We also introduce the
notion of directional quasi-norm that enables us to prove Theorem 3.3, which provides
a sharper version of Theorem 1.1.

2 Useful Facts

In this section, we recall generalizations of the Montgomery–Vaughan inequality and
the Turán–Nazarov inequality toRd . We will also provide proofs of the exact inequal-
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1680 M. Bownik, D. Speegle

ities that we need in our development. In Theorem 2.1 we assume that the dimension
d is fixed; all constants are allowed to (implicitly) depend on d.

Theorem 2.1 (Holt, Vaaler) Fix d ∈ N. For every δ > 0, there exists R > 0 such that
whenever a trigonometric polynomial

u(x) =
m∑
j=1

c j e
2π i〈a j ,x〉, c j ∈ C, a j ∈ R

d , (2.1)

satisfies min{|a j − ak | : j 
= k} ≥ δ, we have

|BR(y)|
2

m∑
j=1

|c j |2 ≤
∫

BR(y)

∣∣u(x)
∣∣2 dx for all y ∈ R

d . (2.2)

Here, |BR(y)| is d-dimensional Lebesgue measure of the Euclidean ball BR(y) of
radius R centered at y.

Proof This is an immediate corollary to [13, Theorem 4]. We briefly include the
relevant facts for completeness; all references are to [13] and notation is from [13,
Theorem 1]. Let ξ , δ, and ν be real numbers with δ > 0 and ν > −1. Define uν(ξ, δ)

to be the infimum of

1

2

∫ ∞

−∞
(
T (x) − S(x)

)|x |2ν+1 dx,

where the infimum is over all pairs of entire functions S and T of exponential type at
most 2πδ such that

S(x) ≤ sgn(x − ξ) ≤ T (x) for all x ∈ R.

By the estimate [13, p. 204], there is a constant A, depending only on ν, such that

uν(ξ, δ) ≤ δ−1ξ2ν+1
(
1 + A

ξ2δ2

)
whenever ξδ ≥ 1. (2.3)

By [13, Theorem 4] applied for ν = (d − 2)/2 we have

ωd−1

(
(2ν + 2)−1R2ν+2 − uν(R, δ)

) m∑
j=1

|c j |2 ≤
∫

BR(y)

∣∣u(x)
∣∣2 dx . (2.4)

Here,ωd−1 is the surface area of the unit sphere Sd−1 ⊂ R
d .We note that [13, Theorem

4] requires balls to be centered at 0. However, in the special case when d = 2ν + 2,
it holds more generally for every ball since the exponent in [13, (1.28)] vanishes and
translations correspond to unimodular modifications of coefficients c j , j = 1, . . . ,m.
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Choose R > 0 such that δR ≥ 1 and

1

δR

(
1 + A

R2δ2

)
<

1

2d
.

It follows by (2.3) that

(2ν + 2)−1R2ν+2 − uν(R, δ) ≥ (2ν + 2)−1R2ν+2 − δ−1R2ν+1
(
1 + A

R2δ2

)

≥ R2ν+1
(
R

d
− R

2d

)
= Rd

2d
.

Combining this with (2.4) and the fact that |BR(y)| = Rdωd−1/d yields (2.2). �
We will also need a higher-dimensional analogue of the Turán–Nazarov inequality

[18]. A similar result forZd -periodic trigonometric polynomials u, which corresponds
to the case when a j ∈ Z

d in (2.1), was considered by Fontes-Merz [9]. Theorem 2.2
also appears in [2, Lemma 12], but without a proof that we provide below.

Theorem 2.2 (Higher-dimensional Turán–Nazarov inequality) Let u be a trigono-
metric polynomial of order m as in (2.1). Let E be any measurable subset of positive
measure of a ball BR(y) ⊂ R

d , R > 0, y ∈ R
d . There exists an absolute and

dimensionless constant A such that

sup
x∈BR(y)

|u(x)| ≤
(
d2d A

|BR(y)|
|E |

)m−1

sup
x∈E

|u(x)|. (2.5)

Proof Recall that one-dimensional Turán–Nazarov inequality [18] guarantees the
existence of an absolute constant A such that for any univariate trigonometric poly-
nomial

ũ(r) =
m∑
j=1

c̃ j e
2π i ã j r , c̃ j ∈ C, ã j ∈ R, (2.6)

and any measurable subset Ẽ of positive measure of an interval I ⊂ R we have

sup
r∈I

|ũ(r)| ≤
(
A|I |
|Ẽ |

)m−1

sup
r∈Ẽ

|ũ(r)|. (2.7)

Let z0 ∈ BR(y) be a point that achieves the maximum of |u|, i.e.,

|u(z0)| = sup
x∈BR(y)

|u(x)|.

For any direction ω ∈ Sd−1 = {x ∈ R
d : |x | = 1} define a ray section of E by

Eω = {
r ∈ [0,∞) : z0 + rω ∈ E

}
.
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1682 M. Bownik, D. Speegle

Let σ be (d−1)-dimensional Lebesgue measure on Sd−1. By the spherical integration
formula we have

|E | =
∫

Rd
1E (x)dx =

∫

Sd−1

∫ ∞

0
1E (z0 + rω)rd−1drdσ(ω)

=
∫

Sd−1

∫ 2R

0
1Eω(r)rd−1drdσ(ω)

≤ (2R)d−1
∫

Sd−1
|Eω|dσ(ω) ≤ (2R)d−1σ(Sd−1) ess sup

ω∈Sd−1
|Eω|.

Since |BR(y)| = Rdσ(Sd−1)/d, there exists ω0 ∈ Sd−1 such that Eω0 is Lebesgue
measurable and |Eω0 |

2R
≥ 1

d2d
|E |

|BR(y)| . (2.8)

Define a univariate trigonometric polynomial ũ by

ũ(r) = u(z0 + rω0) =
m∑
j=1

c̃ j e
2π i ã j r , where c̃ j = c j e

2π i〈a j ,z0〉, ã j = 〈a j , ω0〉.

Applying (2.7) for ũ and Ẽ = Eω0 ⊂ [0, 2R], by (2.8) we have

sup
x∈BR(y)

|u(x)| = |u(z0)| ≤ sup
r∈[0,2R]

|ũ(r)| ≤
(
A

2R

|Eω0 |
)m−1

sup
r∈Eω0

|ũ(r)|

≤
(
d2d A

|BR(y)|
|E |

)m−1

sup
x∈E

|u(x)|.

This proves (2.5). �
As a consequence of Theorems 2.1 and 2.2 we obtain the following generalization

of [3, Proposition 2.2].

Proposition 2.3 Let u be a non-zero trigonometric polynomial as in (2.1). Let R > 0.
Then there exists a constant C > 0, depending only on u and R, such that

sup
x∈BR(y)

|u(x)| ≥ C for all y ∈ R
d . (2.9)

Proof Let δ = min{|a j − ak | : j 
= k} > 0. Let R0 > 0 be the corresponding radius
as in Theorem 2.1. Then,

1

2

m∑
j=1

|c j |2 ≤ 1

|BR0(y)|
∫

BR0 (y)

∣∣u(x)
∣∣2 dx ≤ sup

x∈BR0 (y)
|u(x)|2. (2.10)
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This shows (2.9) when R ≥ R0. If R < R0, then by Theorem 2.2, there exists a
constant c > 0 such that

sup
x∈BR(y)

|u(x)| ≥ c sup
x∈BR0 (y)

|u(x)|.

By (2.10) this again shows (2.9). �

3 Proof of the Main Theorem

We start by introducing a technical sufficient condition (3.1) for the linear indepen-
dence of time-frequency translates of a measurable function, which generalizes the
one-dimensional condition in [4]. This is a main ingredient in the proof of our main
result, Theorem 1.1. Define the space of all Lebesgue measurable functions on the real
line by

M = { f : Rd → C is Lebesgue measurable}.

As is customary, we shall identify functions inMwhich are equal almost everywhere.

Definition 3.1 Given an orthonormal basis {v j }dj=1 of Rd define an extended half-
space by

H {v j } =
d⋃
j=1

{x ∈ R
d : 〈x, v j 〉 > 0 and 〈x, vi 〉 = 0 for all i = 1, . . . , j − 1}.

Note that the extended half-space H {v j } essentially coincides with the open half-
space

H = {x ∈ R
d : 〈x, v1〉 > 0} ⊂ H {v j } ⊂ H̄ = {x ∈ R

d : 〈x, v1〉 ≥ 0}.

Indeed, H {v j } \ H ⊂ {x ∈ R
d : 〈x, v1〉 = 0} has measure zero.

Theorem 3.1 Let H {v j } be an extended half-space, and H = {x ∈ R
d : 〈x, v1〉 >

a}, a ∈ R, be an affine half-space, and f ∈ M. Suppose that for any non-zero
trigonometric polynomial u, any finite subset B = {b1, . . . , bn} ⊂ H {v j }, and any
M > 0, the set

E = Eu,M,B =
{
x ∈ H : |u(x) f (x)| > M

n∑
i=1

| f (x + bi )|
}

(3.1)

has positive measure. Then, G( f,R2d) is linearly independent.

Proof Suppose for the sake of contradiction that there exist b1, . . . , bN ∈ R
d and

trigonometric polynomials u1, . . . , uN such that
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N∑
i=1

ui (x) f (x − bi ) = 0 for a.e. x ∈ R
d .

The extended half-space H {v j } induces a total order ≺ on R
d given by

x ≺ y ⇐⇒ y − x ∈ H {v j }.

This is a consequence of the observation that two extended half-spaces H {v j } and
−H {v j } = H {−v j } form a partition of Rd \ {0}. Hence, without loss of generality we
can assume that

b1 ≺ · · · ≺ bN . (3.2)

Moreover, we can also assume that ||ui ||∞ ≤ 1 for all i = 1, . . . , N .
We shall prove that our hypothesis (3.1) implies that there exist sets of positive

measure Q1, . . . , QN ⊂ H such that the matrix

MN =

⎛
⎜⎜⎜⎝

u1(x1) f (x1 − b1) u2(x1) f (x1 − b2) · · · uN (x1) f (x1 − bN )

u1(x2) f (x2 − b1) u2(x2) f (x2 − b2) · · · uN (x2) f (x2 − bN )
...

...

u1(xN ) f (xN − b1) u2(xN ) f (xN − b2) · · · uN (xN ) f (xN − bN )

⎞
⎟⎟⎟⎠

has non-zero determinant for almost all (x1, . . . , xN ) ∈ Q1 × · · · × QN . This contra-
dicts our hypothesis that the sum of the rows of M are zero almost everywhere.

For each 1 ≤ n ≤ N , and (x1, . . . , xn) ∈ (Rd)n , we consider the principal n × n
submatrix of MN given by

Mn = Mn(x1, . . . , xn) =
⎛
⎜⎝
u1(x1) f (x1 − b1) · · · un(x1) f (x1 − bn)

...
...

un(xn) f (xn − b1) · · · un(xn) f (xn − bn)

⎞
⎟⎠ .

Wewill show by induction the existence of sets of positivemeasure Q1, . . . , Qn ⊂ R
d

and positive constants c1, . . . , cn and δ1, . . . , δn such that

| f (x − b j )| ≤ cn for a.e. x ∈
n⋃

i=1

Qi , j = 1, . . . , n, (3.3)

| det Mn(x1, . . . , xn)| ≥ δn for a.e. (x1, . . . , xn) ∈ Q1 × · · · × Qn . (3.4)

The base case n = 1 follows trivially from the presence of strict inequality in
(3.1). Suppose that (3.3) and (3.4) hold for some 1 ≤ n < N . Let 	 be the set
of all permutations of {1, . . . , n + 1} such that σ(n + 1) 
= n + 1. Then, for any
(x1, . . . , xn, xn+1) ∈ Q1 × · · · × Qn × R

d ,
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| det Mn+1(x1, . . . , xn, xn+1)|
≥ |un+1(xn+1) f (xn+1 − bn+1) det Mn(x1, . . . , xn)|

−
∣∣∣∣
∑
σ∈	

n+1∏
k=1

uσ(k)(xk) f (xk − bσ(k))

∣∣∣∣

≥ δn|un+1(xn+1) f (xn+1 − bn+1)| − n!(cn)n
n∑

i=1

| f (xn+1 − bi )|.

(3.5)

The last estimate is a consequence of breaking the sum over σ ∈ 	 with σ(n+1) = i ,
where 1 ≤ i ≤ n. By our hypothesis (3.1), the set

E=
{
xn+1 ∈ H : |un+1(xn+1 + bn+1) f (xn+1)| > M

n∑
i=1

| f (xn+1 + (bn+1 − bi ))|
}
,

where M = 2n!(cn)n/δn , has positive measure. This is because bn+1 − bi ∈ H {v j }
for i = 1, . . . , n by (3.2). We momentarily set Qn+1 = bn+1 + E . Then, by (3.5) we
have that for almost every (x1, . . . , xn+1) ∈ Q1 × · · · × Qn+1,

| det Mn+1(x1, . . . , xn+1)| ≥ δn

2
|un+1(xn+1) f (xn+1 − bn+1)| > 0.

Thus, by restricting to a (positive measure) subset of Qn+1 if necessary, we can find
two constants cn+1, δn+1 > 0 such that (3.3) and (3.4) hold, as desired. This completes
the proof of Theorem 3.1. �

In order to establish Theorem 1.1 we will need the following lemma about products
of trigonometric polynomials, which is a consequence of the Turán–Nazarov inequal-
ity. Lemma 3.2 is a straightforward generalization of the one-dimensional result [4,
Lemma 3.5].

Lemma 3.2 Let u be a non-zero trigonometric polynomial, let B = {b1, . . . , bn} ⊂
R
d be a finite set, and let R > 0. Then, there exists a constant η = η(u, n, R) > 0

such that for any y ∈ R
d and any k ≥ 2, there exists a measurable subset E ⊂ BR(y)

with |E | > |BR(y)|/2 such that

sup
x∈E

n∑
i(1)=1

· · ·
n∑

i(k)=1

∣∣∣∣
k∏
j=1

u

(
x +

j∑
l=1

bi(l)

)∣∣∣∣
−1

≤ eηk log k . (3.6)

Proof Recall that BR(y) denotes a ball centered at y ∈ R
d with radius R > 0. For

any b ∈ R
d and t > 0 we define

Eb(t) = {x ∈ BR(y) : |u(x + b)| < t}. (3.7)
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1686 M. Bownik, D. Speegle

By Proposition 2.3 we have (2.9). Combining this with Theorem 2.2 yields

t ≥ sup
x∈Eb(t)

|u(x + b)| ≥ C(d2d A)1−m
( |Eb(t)|

|BR(y)|
)m−1

.

Thus,
|Eb(t)| ≤ C ′|BR(y)|t1/(m−1) for all t > 0, (3.8)

where the constant C ′ depends on d, R and u, but not on b or y.
For fixed k ∈ N define the set

	 =
{ n∑

i=1

αi bi :
n∑

i=1

αi ≤ k, αi ∈ N0

}
.

Since the sequence (α1, . . . , αn, k − (α1 + · · · + αn)) represents a partition of k into
n + 1 blocks, we have

#|	| ≤
(
k + n

k

)
≤ Ckn . (3.9)

For any subset σ = {σ(1), . . . , σ (k)} ⊂ 	 of size k, define the function

fσ (x) =
k∏

i=1

1

|u(x + σ(i))| .

Let t > 0. Suppose that for some x ∈ BR(y) we have

n∑
i(1)=1

· · ·
n∑

i(k)=1

∣∣∣∣
k∏
j=1

u

(
x +

j∑
l=1

bi(l)

)∣∣∣∣
−1

> t. (3.10)

By taking averages, this implies that there exists a subset σ ⊂ 	 of size k such that
fσ (x) > t/nk . Since fσ is a product of k functions, at least one of them must take
value greater than (t/nk)1/k . That is,

x ∈
k⋃

i=1

Eσ(i)

(
n

t1/k

)
⊂

⋃
b∈	

Eb

(
n

t1/k

)
,

where Eb(t) is given by (3.7). Thus, using (3.8) and (3.9), the Lebesgue measure of
the set of points x ∈ BR(y) satisfying (3.10) is bounded by

∣∣∣∣
⋃
b∈	

Eb

(
n

t1/k

)∣∣∣∣ ≤ #|	|max
b∈	

∣∣∣∣Eb

(
n

t1/k

)∣∣∣∣ ≤ CknC ′|BR(y)| n
1/(m−1)

t1/k(m−1)

≤ C ′′|BR(y)|knt− 1
k(m−1) .
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If we wish that the measure of this set does not exceed |BR(y)|/2, we are led to the
inequality

t > (2C ′′)(m−1)kkn(m−1)k .

Thus, there exists a constant η > 0, which is independent of the choice of k ≥ 2,
such that t = eηk log k satisfies the above bound. Consequently, the set E of points
x ∈ BR(y) such that the inequality (3.10) fails has measure at least |BR(y)|/2. This
completes the proof of Lemma 3.2. �

We are now ready to state Theorem 3.3. As we will see, the main result of the paper,
Theorem 1.1, follows immediately from it.

Theorem 3.3 Let {v j }dj=1 be an orthonormal basis of Rd . Define the corresponding

directional quasi-norm as a mapping N : Rd → [0,∞) given for x ∈ R
d by

N (x) =
d∑
j=1

〈x, v j 〉+, where y+ = max(y, 0). (3.11)

Let f : R
d → C be a Lebesgue measurable function that does not vanish almost

everywhere on an affine half-space H = {x ∈ R
d : 〈x, v1〉 > a}, a ∈ R. Assume that

f satisfies for all c > 0,

lim
t→∞ ect log t sup

x∈H,N (x)>t
| f (x)| = 0. (3.12)

Then, the set G( f,R2d) of time-frequency translates of f is linearly independent.

In the proof of Theorem 3.3 we will need the following lemma.

Lemma 3.4 Let B = {b1, . . . , bn} be a finite subset of an extended half-space H {v j }.
Then, there exists δ > 0 such that for any k ∈ N and any choice of i(l) ∈ {1, . . . , n},
l = 1, . . . , k we have

N

( k∑
l=1

bi(l)

)
> δk.

Proof We shall proceed by induction on the dimension d. Lemma 3.4 is trivially true
when d = 1. Assume by inductive hypothesis that it is true in the dimension d − 1.
Without loss of generality, we can assume that elements of B are arranged in increasing
order ≺ as in the proof of Theorem 3.1, i.e., b1 ≺ · · · ≺ bn . Let s = 1, . . . , n be the
largest index such that 〈bs, v1〉 = 0. If such s does not exist, thenwe let s = 0. Observe
that

0 < 〈bs+1, v1〉 ≤ · · · ≤ 〈bn, v1〉. (3.13)
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On the other hand, the elements {b1, . . . , bs} lie in the subspace span{v2, . . . , vd},
which we can identify with R

d−1. Since H {v j }dj=2 is an extended half-space in R
d−1,

by the inductive hypothesis there exists δ > 0 such that

N

( k∑
l=1, i(l)≤s

bi(l)

)
> δ(k − k0), (3.14)

where k0 is the number of l = 1, . . . , k such that i(l) > s. Moreover, we have

N

( k∑
l=1

bi(l)

)
≥ N

( k∑
l=1, i(l)≤s

bi(l)

)
− k0dC, (3.15)

where C = max{|bi | : i = 1, . . . , n}. Indeed, (3.15) follows easily from
〈 k∑
l=1

bi(l), v j

〉

+
≥

〈 k∑
l=1, i(l)≤s

bi(l), v j

〉

+
− k0C for all j = 1, . . . , d.

Combining (3.14) and (3.15) we have

N

( k∑
l=1

bi(l)

)
> δ(k − k0) − k0dC ≥ δ

2
k, if k0 ≤ εk, (3.16)

where ε = δ/(2δ + 2dC). However, if k0 > εk, then by (3.13) we have

N

( k∑
l=1

bi(l)

)
≥

〈 k∑
l=1

bi(l), v1

〉

+
≥

〈 k∑
l=1, i(l)>s

bi(l), v1

〉

≥ k0〈bs+1, v1〉 ≥ ε〈bs+1, v1〉k. (3.17)

Combining (3.16) with (3.17) completes the proof of Lemma 3.4. �

Proof of Theorem 3.3 Let H = {x ∈ R
d : 〈x, v〉 > a} be an affine half-space, where

v ∈ R
d \ {0} and a ∈ R. Choose any orthonormal basis {v j }dj=1 ⊂ R

d such that
v1 = v/|v|. By Theorem 3.1 it suffices to show that for any trigonometric polynomial
u 
= 0, any finite subset B = {b1, . . . , bn} ⊂ H {v j } and any M > 0, the set Eu,M,B

given by (3.1) has positive measure.
On the contrary, suppose that for some choice of u, B, and M > 0 we have

| f (x)| ≤ M
n∑

i=1

| f (x + bi )|
|u(x)| for a.e. x ∈ H. (3.18)
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By recursion, (3.18) implies that

| f (x)| ≤ Mk
n∑

i(1)=1

· · ·
n∑

i(k)=1

∣∣∣∣ f
(
x +

k∑
l=1

bi(l)

)∣∣∣∣
k∏
j=1

∣∣∣∣u
(
x +

j−1∑
l=1

bi(l)

)∣∣∣∣
−1

. (3.19)

By the non-vanishing hypothesis on f , there exists a constant ε > 0, such that the
set {x ∈ H : | f (x)| > ε} has positive measure. By the Lebesgue differentiability
theorem applied to that set, there exists a ball BR(y) ⊂ H and such that

|{x ∈ BR(y) : | f (x)| > ε}| > |BR(y)|/2. (3.20)

Observe that the quasi-norm N defined by (3.11) satisfies the triangle inequality
N (x + z) ≤ N (x) + N (z). Thus, for any x ∈ BR(y) and z ∈ R

d ,

N (x + z) ≥ N (z) − N (−x) ≥ N (z) − √
d(R + |y|).

By Lemma 3.4 and the Cauchy–Schwarz inequality

N (x) ≤
d∑
j=1

|〈x, v j 〉| ≤ √
d

( d∑
j=1

|〈x, v j 〉|2
)1/2

= √
d|x |, (3.21)

there exists δ > 0 such that

N

(
x +

k∑
l=1

bi(l)

)
≥ δk − √

d(R + |y|) ≥ δk/2 for k ≥ k0 := 2
√
d(R + |y|)/δ.

Thus, for any x ∈ BR(y) and k ≥ k0,

∣∣∣∣ f
(
x +

k∑
l=1

bi(l)

)∣∣∣∣ ≤ sup
z∈H, N (z)>δk/2

| f (z)|. (3.22)

Here, we used the following fact: x ∈ H and b ∈ H {v j } �⇒ x + b ∈ H .
Combining (3.19) and (3.22) with Lemma 3.2 yields a subset Ek ⊂ BR(y) with

|Ek | > |BR(y)|/2 such that

| f (x)| ≤ Mkeηk log k sup
z∈H, N (z)>δk/2

| f (z)| for x ∈ Ek . (3.23)

By (3.20) the set Ek must non-trivially intersect with the set {x ∈ BR(y) : | f (x)| > ε}.
Hence, we conclude that

sup
z∈H, N (z)>δk/2

| f (z)| ≥ εM−ke−ηk log k for k ≥ k0.
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This contradicts our decay hypothesis (3.12) and completes the proof of Theorem 3.3.
�

As an immediate consequence of Theorem 3.3 we can deduce Theorem 1.1.

Proof of Theorem 1.1 Suppose that a function f satisfies the decay condition (1.1).
That is, for all c > 0,

lim
t→∞ ect log t sup

x∈H,|x |>t
| f (x)| = 0.

Combining this with (3.21) implies the weaker decay condition (3.12). Consequently,
Theorem 3.3 yields the desired conclusion. �

We end by presenting a decay condition that is a more direct generalization of the
main theorem in [4]. Indeed, the condition (3.24) is automatically satisfied on the
real line since any finite subset B ⊂ R can be arranged in increasing order. Then,
depending on the sign of v ∈ R, the decay condition (3.25) corresponds to one-sided
limit as x → ∞ or x → −∞. Thus, Theorem 3.5 implies the main result in [4].

Theorem 3.5 Let B = {b1, b2, . . . , bn} be a finite subset of Rd . Suppose there exists
a vector v ∈ R

d and 1 ≤ j0 ≤ n such that

〈v, b j0〉 < 〈v, b j 〉 for all 1 ≤ j ≤ n, j 
= j0. (3.24)

Let f : Rd → C be a non-zero Lebesgue measurable function satisfying the direc-
tional decay condition

lim
x∈Rd , 〈x,v〉→∞

| f (x)|ec〈x,v〉 log(〈x,v〉) = 0 for all c > 0. (3.25)

Then, if u1, . . . , un are trigonometric polynomials such that

n∑
j=1

u j (x) f (x + b j ) = 0 for a.e. x ∈ R
d , (3.26)

then u j0 = 0. In particular, if 〈v, bi 〉 
= 〈v, b j 〉 for all i 
= j , then G( f,Rd × (−B))

is linearly independent.

Remark 3.1 Note that unlike Theorem 1.1 we do not assume that f does not vanish
on a half-space. Moreover, the decay condition (1.1) is weakened by the condition
(3.25) that does not impose any decay in directions perpendicular to a vector v ∈ R

d .
As a consequence, the conclusion of Theorem 3.5 must also be weakened. Indeed, the
following simple example shows that we cannot expect that the remaining polynomials
satisfy u1 = · · · = un = 0. Define f : R2 → R by

f (x1, x2) =
{
ex2 if x1 ∈ [0, 1],
0 otherwise.
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Then, f satisfies the hypothesis of Theorem 3.5 with B = {
(0, 0), (0, 1), (−1, 0)

}
and v = (1, 0), but G(

f, {0} × B
)
is linearly dependent.

Proof of Theorem 3.5 On the contrary suppose that there exists a solution to (3.26)
with a non-zero u j0 . Then,

| f (x)| ≤ M
n∑

j=1, j 
= j0

| f (x + b j − b j0)|
|u j0(x)|

for a.e. x ∈ R
d ,

where M = max(||u1||∞, . . . , ||un||∞). Hence, the same inequality as in (3.18) holds
true. Define a directional quasi-norm Ñ (x) = 〈x, v〉+. By the assumption (3.24),
Lemma 3.4 holds for the set B̃ = {b j − b j0 : 1 ≤ j 
= j0 ≤ n} and quasi-norm Ñ in
place of B and N , resp. Moreover, the same argument as in the proof of Theorem 3.3
works for the quasi-norm Ñ in place of the original one given by (3.11). As a result
we obtain a contradiction with our hypotheses that u j0 
= 0, thus completing the proof
of Theorem 3.5. �
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