Large Subalgebras and the Structure of Crossed Products, Lecture 2: Large Subalgebras and their Basic Properties		University of Wyoming, Laramie		
		1–5 June 2015		
N. Christopher Phillips		 Lecture 1 (1 June 2015): Introduction, Motivation, and the Cuntz Semigroup. Lecture 2 (2 June 2015): Large Subalgebras and their Basic 		
University of Oregon		Properties.		
2 June 2015		 Lecture 3 (4 June 2015): Large Subalgebras and the Radius of Comparison. 		
		 Lecture 4 (5 June 2015 [morning]): Large Subalgebras in Crossed Products by Z. 		
	 Lecture 5 (5 June 2015 [afternoon]): Application to the Radius of Comparison of Crossed Products by Minimal Homeomorphisms. 			
N. C. Phillips (U of Oregon) Large Subalgebras: Basics	2 June 2015 1 / 24	N. C. Phillips (U of Oregon)	Large Subalgebras: Basics	2 June 2015 2 / 24

A rough outline of all five lectures

- Introduction: what large subalgebras are good for.
- Definition of a large subalgebra.
- Statements of some theorems on large subalgebras.
- A very brief survey of the Cuntz semigroup.
- Open problems.
- Basic properties of large subalgebras.
- A very brief survey of radius of comparison.
- Description of the proof that if *B* is a large subalgebra of *A*, then *A* and *B* have the same radius of comparison.
- $\bullet~$ A very brief survey of crossed products by $\mathbb{Z}.$
- Orbit breaking subalgebras of crossed products by minimal homeomorphisms.
- Sketch of the proof that suitable orbit breaking subalgebras are large.
- A very brief survey of mean dimension.
- Description of the proof that for minimal homeomorphisms with Cantor factors, the radius of comparison is at most half the mean dimension.

Definition

Let A be a C*-algebra, and let $a, b \in (K \otimes A)_+$. We say that a is Cuntz subequivalent to b over A, written $a \preceq_A b$, if there is a sequence $(v_n)_{n=1}^{\infty}$ in $K \otimes A$ such that $\lim_{n \to \infty} v_n b v_n^* = a$.

Definition

Let A be an infinite dimensional simple unital C*-algebra. A unital subalgebra $B \subset A$ is said to be *large* in A if for every $m \in \mathbb{Z}_{>0}$, $a_1, a_2, \ldots, a_m \in A, \varepsilon > 0, x \in A_+$ with ||x|| = 1, and $y \in B_+ \setminus \{0\}$, there are $c_1, c_2, \ldots, c_m \in A$ and $g \in B$ such that:

- $0 \le g \le 1.$
- 2 For $j = 1, 2, \ldots, m$ we have $||c_j a_j|| < \varepsilon$.
- **③** For j = 1, 2, ..., m we have $(1 − g)c_j ∈ B$.
- $g \preceq_B y$ and $g \preceq_A x$.
- **5** $||(1-g)x(1-g)|| > 1-\varepsilon$.

Dense subsets

 $B \subset A$ is large in A if for $a_1, a_2, \ldots, a_m \in A$, $\varepsilon > 0$, $x \in A_+$ with ||x|| = 1, and $y \in B_+ \setminus \{0\}$, there are $c_1, c_2, \ldots, c_m \in A$ and $g \in B$ such that:

$$0 \leq g \leq 1.$$

- **2** For j = 1, 2, ..., m we have $||c_j a_j|| < \varepsilon$.
- For j = 1, 2, ..., m we have $(1 g)c_j \in B$.
- $g \preceq_B y$ and $g \preceq_A x$.
- **5** $||(1-g)x(1-g)|| > 1-\varepsilon$.

Lemma

In the definition, it suffices to let $S \subset A$ be a subset whose linear span is dense in A, and verify the hypotheses only when $a_1, a_2, \ldots, a_m \in S$.

Unlike other approximation properties (such as tracial rank), it seems not to be possible to take S to be a generating subset, or even a selfadjoint generating subset. (We can do this for the definition of a centrally large subalgebra.)

```
N. C. Phillips (U of Oregon)
```

2 June 2015

5/24

When A is finite (continued)

From the previous slide:

Proposition

Let A be a finite infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a unital subalgebra satisfying the definition of a large subalgebra except for the condition $\|(1-g)x(1-g)\| > 1-\varepsilon$. Then B is large in A.

It suffices to prove:

Lemma

Let A be a finite simple infinite dimensional unital C*-algebra. Let $x \in A_+$ satisfy ||x|| = 1. Then for every $\varepsilon > 0$ there is $x_0 \in (\overline{xAx})_+ \setminus \{0\}$ such that whenever $g \in A_+$ satisfies $0 \le g \le 1$ and $g \preceq_A x_0$, then $||(1-g)x(1-g)|| > 1 - \varepsilon$.

If we also require $x_0 \preceq_A x$, then we can use x_0 in place of x in the definition.

 $B \subset A$ is large in A if for $a_1, a_2, \ldots, a_m \in A$, $\varepsilon > 0$, $x \in A_+$ with ||x|| = 1, and $y \in B_+ \setminus \{0\}$, there are $c_1, c_2, \ldots, c_m \in A$ and $g \in B$ such that:

- **1** $0 \le g \le 1$.
- 2 For j = 1, 2, ..., m we have $||c_j a_j|| < \varepsilon$.
- For j = 1, 2, ..., m we have $(1 g)c_j \in B$.
- $g \preceq_B y$ and $g \preceq_A x$.
- **3** $||(1-g)x(1-g)|| > 1-\varepsilon$.

Proposition

Let A be a finite infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a unital subalgebra satisfying the definition of a large subalgebra except for condition (5). Then B is large in A.

N. C. Phillips (U of Oregor

Large Subalg

2 June 2015 6 / 2

When A is finite (continued)

To show: $x \in A_+$ with ||x|| = 1, $\varepsilon > 0$. Then there is $y \in (\overline{xAx})_+ \setminus \{0\}$ such that whenever $g \in A_+$ satisfies $0 \le g \le 1$ and $g \preceq_A y$, then $||(1-g)x(1-g)|| > 1 - \varepsilon$.

Choose a sufficiently small number $\varepsilon_0 > 0$. Choose $f: [0,1] \rightarrow [0,1]$ such that f = 0 on $[0, 1 - \varepsilon_0]$ and f(1) = 1. Construct $a, b_j, c_j, d_j \in \overline{f(x)}Af(x)$ for j = 1, 2 such that

 $0 \le d_j \le c_j \le b_j \le a \le 1$, $ab_j = b_j$, $b_jc_j = c_j$, $c_jd_j = d_j$, and $d_j \ne 0$, and $b_1b_2 = 0$. Take $x_0 = d_1$.

If ε_0 is small enough, $g \preceq_A d_1$, and $||(1-g)x(1-g)|| \le 1-\varepsilon$, use

$$\begin{split} \big\| (1-g)(b_1+b_2)(1-g) \big\| &= \big\| (b_1+b_2)^{1/2} (1-g)^2 (b_1+b_2)^{1/2} \big\|, \\ \| (1-g)x(1-g) \| &= \big\| x^{1/2} (1-g)^2 x^{1/2} \big\|, \quad \text{and} \quad (b_1+b_2)^{1/2} x^{1/2} \approx x^{1/2} \\ \text{to get (details omitted)} \end{split}$$

$$\left\|(1-g)(b_1+b_2)(1-g)\right\|>1-\frac{\varepsilon}{3}.$$

Large Subalgebras: Basi

When *A* is finite (continued)

We assumed $g \precsim_A d_1$ and $||(1-g)x(1-g)|| \le 1-\varepsilon$, and we want a contradiction. We have

$$0 \le d_j \le c_j \le b_j \le a \le 1$$
, $ab_j = b_j$, $b_jc_j = c_j$, $c_jd_j = d_j$, and $d_j \ne 0$
for $j = 1, 2$, and $b_1b_2 = 0$. We also have

$$\|(1-g)(b_1+b_2)(1-g)\| > 1-\frac{\varepsilon}{3}.$$
 (1)

From $(b_1 + b_2)(c_1 + c_2) = c_1 + c_2$ one gets, for any $\beta \in [0, 1)$,

$$c_1 + c_2 \precsim_A [(b_1 + b_2) - \beta]_+.$$
 (2)

(If we are in C(X), whenever $(c_1 + c_2)(x) \neq 0$, we have $(b_1 + b_2)(x) = 1 > \beta$.) Take $\beta = 1 - \frac{\varepsilon}{3}$. Combine (2) with the second lemma on the list of basic results on Cuntz equivalence at the first step, (1) at the second step, and $g \preceq_A d_1$ at the last step, to get

$$c_1+c_2\precsim_{\mathcal{A}}ig[(1-g)(b_1+b_2)(1-g)-etaig]_+\oplus g=0\oplus g\precsim_{\mathcal{A}}d_1$$

5

2 June 2015

9 / 24

Lemma

Let A be a finite infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a large subalgebra. Let $m, n \in \mathbb{Z}_{\geq 0}$, let $a_1, a_2, \ldots, a_m \in A$, let $b_1, b_2, \ldots, b_n \in A_+$, let $\varepsilon > 0$, let $x \in A_+$ satisfy ||x|| = 1, and let $y \in B_+ \setminus \{0\}$. Then there are $c_1, c_2, \ldots, c_m \in A$, $d_1, d_2, \ldots, d_n \in A_+$, and $g \in B$ such that:

- **1** $0 \le g \le 1.$
- $||c_j a_j|| < \varepsilon \text{ and } ||d_j b_j|| < \varepsilon.$
- **3** $||c_j|| \le ||a_j||$ and $||d_j|| \le ||b_j||$.

④
$$(1-g)c_j ∈ B$$
 and $(1-g)d_j(1-g) ∈ B$.

• $g \preceq_B y$ and $g \preceq_A x$.

Sketch of proof.

To get $||c_j|| \le ||a_j||$ one takes $\varepsilon > 0$ to be a bit smaller, and scales down c_j for any j for which $||c_j||$ is too big. To get d_j , approximate $b_j^{1/2}$ sufficiently well by r_j (without increasing the norm), and take $d_j = r_j r_j^*$.

When A is finite (continued)

In search of a contradiction, we have gotten

$$c_1 + c_2 \precsim_A d_1$$

with

$$c_1 d_1 = d_1, \quad c_1 c_2 = 0, \quad \text{and} \quad c_2 \neq 0.$$

This looks rather suspicious.

Set $r = (1 - c_1 - c_2) + d_1$. Use basic result (12) at the first step, $c_1 + c_2 \preceq_A d_1$ at the second step, and basic result (13) and $d_1(1 - c_1 - c_2) = 0$ at the third step, to get

$$1 \preceq_{\mathcal{A}} (1-c_1-c_2) \oplus (c_1+c_2) \preceq_{\mathcal{A}} (1-c_1-c_2) \oplus d_1 \sim_{\mathcal{A}} (1-c_1-c_2) + d_1 = r.$$

Thus, there is $v \in A$ such that $||vrv^* - 1|| < \frac{1}{2}$. It follows that $vr^{1/2}$ has a right inverse. Recall that $c_2d_2 = d_2$ and $d_2 \neq 0$. So $rd_2 = 0$, whence $vr^{1/2}d_2 = 0$. Thus $vr^{1/2}$ is not invertible. We have contradicted finiteness of A, and thus proved the lemma.

N. C. Phillips (U of Oregon)

ics

2 June 2015 10 / 2

Simplicity of a large subalgebra

Recall from Lecture 1:

Proposition

Let A be an infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a large subalgebra. Then B is simple.

(The result stated in Lecture 1 also included infinite dimensionality. Once one has simplicity, infinite dimensionality is easy to prove, and we omit it.) The proof of this proposition uses two preliminary lemmas.

Lemma

Let A be a C*-algebra, let $n \in \mathbb{Z}_{>0}$, and let $a_1, a_2, \ldots, a_n \in A$. Set $a = \sum_{k=1}^n a_k$ and $x = \sum_{k=1}^n a_k^* a_k$. Then $a^*a \in \overline{xAx}$.

Lemma

Let A be a unital C*-algebra and let $a \in A_+$. Suppose $\overline{AaA} = A$. Then there exist $n \in \mathbb{Z}_{>0}$ and $x_1, x_2, \ldots, x_n \in A$ such that $\sum_{k=1}^n x_k^* a x_k = 1$.

The first lemma

From the previous slide:

Lemma

Let A be a C*-algebra, let $n \in \mathbb{Z}_{>0}$, and let $a_1, a_2, \ldots, a_n \in A$. Set $a = \sum_{k=1}^n a_k$ and $x = \sum_{k=1}^n a_k^* a_k$. Then $a^*a \in \overline{xAx}$.

Sketch of proof.

Assume $||a_k|| \le 1$ for k = 1, 2, ..., n. Choose $c \in \overline{xAx}$ such that $||c|| \le 1$ and $||ca_k^*a_k - a_k^*a_k||$ is small for k = 1, 2, ..., n. Check that $||ca_k^* - a_k^*||^2 \le 2||ca_k^*a_k - a_k^*a_k||$, so $||ca_k^* - a_k^*||$ is small. Then $||ca^* - a^*||$ is small, so that $||ca^*ac - a^*a||$ is small. Therefore a^*a is arbitrarily close to \overline{xAx} .

N. C. Phillips (U of Oregon)

cs

2 June 2015 13 / 24

Proof of simplicity of B

Recall that we want to prove:

Proposition

Let A be an infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a large subalgebra. Then B is simple.

Let $b \in B_+ \setminus \{0\}$. We show that there are $n \in \mathbb{Z}_{>0}$ and $r_1, r_2, \ldots, r_n \in B$ such that $\sum_{k=1}^n r_k br_k^*$ is invertible.

Use the previous lemma to find $x_1, x_2, \ldots, x_m \in A$ such that $\sum_{k=1}^{m} x_k b x_k^* = 1$. Set

 $M = \max(1, ||x_1||, ..., ||x_m||, ||b||)$ and $\delta = \min(1, \frac{1}{3mM(2M+1)})$.

By definition, there are $y_1, y_2, \ldots, y_m \in A$ and $g \in B_+$ such that $0 \le g \le 1$, $||y_j - x_j|| < \delta$, $(1 - g)y_j \in B$, and $g \preceq_B b$. Set $z = \sum_{k=1}^m y_j b y_j^*$. The number δ has been chosen to ensure that $||z - 1|| < \frac{1}{3}$; we omit details. Then $||(1 - g)z(1 - g) - (1 - g)^2|| < \frac{1}{3}$. N. C. Phillips (U of Oregon) Large Subalgebras: Basics 2 June 2015 15 / 24

The second lemma

From the slide before the previous slide:

Lemma

Let A be a unital C*-algebra and let $a \in A_+$. Suppose $\overline{AaA} = A$. Then there exist $n \in \mathbb{Z}_{>0}$ and $x_1, x_2, \ldots, x_n \in A$ such that $\sum_{k=1}^n x_k^* a x_k = 1$.

Proof.

Choose $n \in \mathbb{Z}_{>0}$ and $y_1, y_2, \dots, y_n, z_1, z_2, \dots, z_n \in A$ such that the element $c = \sum_{k=1}^n y_k a z_k$ satisfies ||c - 1|| < 1. Set

$$r = \sum_{k=1}^{n} z_k^* a y_k^* y_k a z_k, \quad M = \max_k \|y_k\|, \text{ and } s = M^2 \sum_{k=1}^{n} z_k^* a^2 z_k.$$

The previous lemma implies that c^*c is in the hereditary subalgebra generated by r. The relation ||c - 1|| < 1 implies that c is invertible, so ris invertible. Since $r \le s$, it follows that s is invertible. Set $x_k = Ma^{1/2}z_ks^{-1/2}$. Then check that $\sum_{k=1}^n x_k^*ax_k = s^{-1/2}ss^{-1/2} = 1$.

Proof of simplicity of *B* (continued)

We are proving:

Proposition

Let A be an infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a large subalgebra. Then B is simple.

We took $b \in B_+ \setminus \{0\}$. We got $y_1, y_2, \ldots, y_m \in A$ and $g \in B_+$ such that $0 \leq g \leq 1$, $||y_j - x_j|| < \delta$, $(1 - g)y_j \in B$, and $g \preceq_B b$. We defined $z = \sum_{k=1}^m y_j b y_j^*$, and got $||(1 - g)z(1 - g) - (1 - g)^2|| < \frac{1}{3}$.

Set $h = 2g - g^2$. Use basic result (3) on Cuntz comparison on the map $\lambda \mapsto 2\lambda - \lambda^2$ on [0,1], to get $h \sim_B g$. So $h \preceq_B b$. Choose $v \in B$ such that $\|vbv^* - h\| < \frac{1}{3}$.

Take n = m + 1, take $r_j = (1 - g)y_j$ for j = 1, 2, ..., m, and take $r_{m+1} = v$. Then $r_1, r_2, ..., r_n \in B$. One can now check, using $(1 - g)^2 + h = 1$, that $||1 - \sum_{k=1}^n r_k br_k^*|| < \frac{2}{3}$. Therefore $\sum_{k=1}^n r_k br_k^*$ is invertible. This proves simplicity of B.

Traces

For a unital C*-algebra A, we denote by T(A) the set of tracial states on A. We denote by QT(A) the set of normalized 2-quasitraces on A.

If you haven't heard of quasitraces, just pretend they are all tracial states. This is true on exact C*-algebras (in particular, on nuclear ones), and it is possible that it is always true.

Let A be a stably finite unital C*-algebra, and let $\tau \in QT(A)$. Define $d_{\tau} \colon M_{\infty}(A)_{+} \to [0, \infty)$ by $d_{\tau}(a) = \lim_{n \to \infty} \tau(a^{1/n})$.

To understand this, take A = C(X) and $g \in C(X)$ with $0 \le g \le 1$, and take τ to be given by a probability measure μ on X. ($\tau(f) = \int_X f d\mu$.) Set $U = \{x \in X : g(x) \ne 0\}$. Then $g^{1/n} \nearrow \chi_U$ and $d_\tau(g) = \mu(U)$.

Some facts: d_{τ} gives a well defined functional $d_{\tau}: W(A) \to [0, \infty)$ (and also $d_{\tau}: \operatorname{Cu}(A) \to [0, \infty]$) such that $d_{\tau}(\langle a \rangle_A)$ is "the trace of the open support of a". It preserves order and addition, and commutes with countable increasing supremums when they exist. In particular, $d_{\tau}(a) = \sup_{\varepsilon > 0} d_{\tau}((a - \varepsilon)_+)$. Also, $0 \le a \le 1$ implies $\tau(a) \le d_{\tau}(a)$.

Large Subalgebras: Basics

```
N. C. Phillips (U of Oregon)
```

2 June 2015

17 / 24

From the previous slide:

Lemma

Let A be an infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a large subalgebra. Let $\tau \in T(B)$. Then there exists a unique state ω on A such that $\omega|_B = \tau$.

Existence of ω follows from the Hahn-Banach Theorem.

For uniqueness, let ω_1 and ω_2 be states with $\omega_1|_B = \omega_2|_B = \tau$, let $a \in A_+$, and let $\varepsilon > 0$. We show $|\omega_1(a) - \omega_2(a)| < \varepsilon$. We can assume $||a|| \le 1$.

We saw above that *B* is simple and infinite dimensional. The third lemma on the list of basic results on Cuntz equivalence can be used to find $y \in B_+ \setminus \{0\}$ such that $\sup_{\sigma \in QT(B)} d_{\sigma}(y)$ is as small as we want. (For orthogonal elements with $b_1 \sim_B b_2 \sim_B \cdots \sim_B b_n$, we must have $d_{\sigma}(b_1) = d_{\sigma}(b_2) = \cdots = d_{\sigma}(b_n)$, so $nd_{\sigma}(b_1) \leq 1$.) Choose $y \in B_+ \setminus \{0\}$ such that $d_{\tau}(y) < \frac{\varepsilon^2}{64}$. Since *B* is large, there are $c \in A_+$ and $g \in B_+$ such that $||c|| \leq 1$, $||g|| \leq 1$, $||c - a|| < \frac{\varepsilon}{4}$, $(1 - g)c(1 - g) \in B$, and $g \preceq_B y$. So $\omega_j(g^2) = \tau(g^2) \leq d_{\tau}(g^2) < \frac{\varepsilon^2}{64}$.

Bijection on traces

Recall from Lecture 1:

Theorem

Let A be an infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a large subalgebra. Then the restriction map $T(A) \rightarrow T(B)$ is bijective.

(The result stated in Lecture 1 also included the same thing for quasitraces. That result requires much more work, since it depends on the fact that the inclusion of *A* in *B* induces an isomorphism on the subsemigroups of purely positive elements.)

The proof of this proposition uses a preliminary lemma.

Lemma

Let A be an infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a large subalgebra. Let $\tau \in T(B)$. Then there exists a unique state ω on A such that $\omega|_B = \tau$.

```
N. C. Phillips (U of Oregon
```

sics

2 June 2015 18 / 2

We have $a \in A$ and we want to prove that $|\omega_1(a) - \omega_2(a)| < \varepsilon$. We have $||c|| \le 1$, $||g|| \le 1$, $||c-a|| < \frac{\varepsilon}{4}$, $(1-g)c(1-g) \in B$, $\omega_j(g^2) < \frac{\varepsilon^2}{64}$.

The Cauchy-Schwarz inequality gives

$$|\omega_j(\mathbf{rs})| \leq \omega_j(\mathbf{rr}^*)^{1/2}\omega_j(\mathbf{s}^*\mathbf{s})^{1/2}$$

for all $r, s \in A$. Using $||c|| \leq 1$, we then get

$$|\omega_j(\mathsf{gc})| \leq \omega_j(\mathsf{g}^2)^{1/2} \omega_j(\mathsf{c}^2)^{1/2} < rac{arepsilon}{8},$$

$$|\omega_j((1-g)cg)| \le \omega_j ig((1-g)c^2(1-g)ig)^{1/2} \omega_j (g^2)^{1/2} < rac{arepsilon}{8}.$$

So (omitting some algebra at the second step)

$$egin{aligned} & \left|\omega_j(c)- au((1-g)c(1-g))
ight| = \left|\omega_j(c)-\omega_j((1-g)c(1-g))
ight| \ & \leq \left|\omega_j(gc)
ight| + \left|\omega_j((1-g)cg)
ight| < rac{arepsilon}{4}. \end{aligned}$$

Also $|\omega_j(c) - \omega_j(a)| < rac{arepsilon}{4}$. So

$$\left|\omega_j(a)- au((1-g)c(1-g))
ight|<rac{arepsilon}{2}.$$

Large Subalgebras: Basics

Thus $|\omega_1(a) - \omega_2(a)| < \varepsilon$, as desired. The lemma is proved.

Bijection on traces

Recall that we want to prove:

Theorem

Let A be an infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a large subalgebra. Then the restriction map $T(A) \rightarrow T(B)$ is bijective.

Let $\tau \in T(B)$. We show that there is a unique $\omega \in T(A)$ such that $\omega|_B = \tau$. We know that there is a unique state ω on A such that $\omega|_B = \tau$, and it suffices to show that ω is a trace. Thus let $a_1, a_2 \in A$ satisfy $||a_1|| \leq 1$ and $||a_2|| \leq 1$, and let $\varepsilon > 0$. We show that $|\omega(a_1a_2) - \omega(a_2a_1)| < \varepsilon$.

As in the proof of the lemma, find $y \in B_+ \setminus \{0\}$ such that $d_\tau(y) < \frac{\varepsilon^2}{64}$. Since *B* is large, there are $c_1, c_2 \in A$ and $g \in B_+$ such that

 $\|c_j\| \leq 1, \quad \|c_j - a_j\| < rac{arepsilon}{8}, \quad ext{and} \quad (1 - g)c_j \in B$

for j = 1, 2, and such that $||g|| \le 1$ and $g \precsim_B y$. As before, $\omega(g^2) \le d_\tau(y) < \frac{\varepsilon^2}{64}$.

```
N. C. Phillips (U of Oregon)
```

2 June 2015

21 / 24

Bijection on traces (continued)

We got $||a_j|| \le 1$, $||c_j|| \le 1$, $||c_j - a_j|| < \frac{\varepsilon}{8}$, $(1 - g)c_j \in B$, and (at the bottom of the previous slide)

$$\left|\omega((1-g)c_1(1-g)c_2)-\omega(c_1c_2)
ight|<rac{arepsilon}{4}.$$

A similar argument gives

$$\left|\omega((1-g)c_2(1-g)c_1)-\omega(c_2c_1)\right|<rac{arepsilon}{4}.$$

Since $(1-g)c_1$, $(1-g)c_2 \in B$ and $\omega|_B$ is a tracial state, we get

$$\omega((1-g)c_1(1-g)c_2) = \omega((1-g)c_2(1-g)c_1).$$

Therefore $|\omega(c_1c_2) - \omega(c_2c_1)| < \frac{\varepsilon}{2}$.

One checks that $||c_1c_2 - a_1a_2|| < \frac{\varepsilon}{4}$ and $||c_2c_1 - a_2a_1|| < \frac{\varepsilon}{4}$. It now follows that $|\omega(a_1a_2) - \omega(a_2a_1)| < \varepsilon$.

We have $|\omega(a_1a_2) - \omega(a_2a_1)| < \varepsilon$ for all $\varepsilon > 0$, so $\omega(a_1a_2) = \omega(a_2a_1)$.

2 June 2015 23 / 24

Bijection on traces (continued)

We got
$$0 \leq g \leq 1$$
, $\|c_j\| \leq 1$, $\|c_j - a_j\| < \frac{\varepsilon}{8}$, $(1-g)c_j \in B$, $\omega(g^2) < \frac{\varepsilon^2}{64}$.

We claim that

$$\left|\omega((1-g)c_1(1-g)c_2)-\omega(c_1c_2)
ight|<rac{arepsilon}{4}$$

Using the Cauchy-Schwarz inequality as in the proof of the lemma, we get

$$|\omega(gc_1c_2)| \le \omega(g^2)^{1/2} \omega(c_2^*c_1^*c_1c_2)^{1/2} \le \omega(g^2)^{1/2} < \frac{\varepsilon}{8}$$

Similarly, and also at the second step using $\|c_2\| \le 1$, $(1-g)c_1g \in B$, and the fact that $\omega|_B$ is a tracial state,

$$egin{aligned} & \left| \omega((1-g)c_1gc_2)
ight| \leq \omegaig((1-g)c_1g^2c_1^*(1-g)ig)^{1/2}\omega(c_2^*c_2)^{1/2} \ & \leq \omegaig(gc_1^*(1-g)^2c_1gig)^{1/2} \leq \omega(g^2)^{1/2} < rac{arepsilon}{8}. \end{aligned}$$

The claim now follows from the estimate (an algebra step is omitted)

$$\left|\omega((1-g)c_1(1-g)c_2)-\omega(c_1c_2)
ight|\leq \left|\omega((1-g)c_1gc_2)
ight|+\left|\omega(gc_1c_2)
ight|.$$

N. C. Phillips (U of Oregon)

S

2 June 2015 22 / 24

Bijection on traces

We have thus proved:

Theorem

Let A be an infinite dimensional simple unital C*-algebra, and let $B \subset A$ be a large subalgebra. Then the restriction map $T(A) \rightarrow T(B)$ is bijective.