# Lisboa Summer School Course on Crossed Product C*-Algebras 

N. Christopher Phillips

15 June 2009

## Comments on the notes

The handout contains much more material than I will give in the lectures.

## Comments on the notes

The handout contains much more material than I will give in the lectures.
Please let me know of any misprints, mistakes, etc. found in the handout!

## Comments on the notes

The handout contains much more material than I will give in the lectures.
Please let me know of any misprints, mistakes, etc. found in the handout!

Sign up for the operator algebraist email directory, by emailing: ncp@uoregon.edu.

## Outline

A brief outline of the lectures:

## Outline

A brief outline of the lectures:

- Introductory material and basic definitions


## Outline

A brief outline of the lectures:

- Introductory material and basic definitions
- Examples of group actions.


## Outline

A brief outline of the lectures:

- Introductory material and basic definitions
- Examples of group actions.
- Construction of the crossed product of an action by a discrete group.


## Outline

A brief outline of the lectures:

- Introductory material and basic definitions
- Examples of group actions.
- Construction of the crossed product of an action by a discrete group.
- Examples of some elementary computations of crossed products.


## Outline

A brief outline of the lectures:

- Introductory material and basic definitions
- Examples of group actions.
- Construction of the crossed product of an action by a discrete group.
- Examples of some elementary computations of crossed products.
- Simplicity of crossed products by minimal homeomorphisms.


## Outline

A brief outline of the lectures:

- Introductory material and basic definitions
- Examples of group actions.
- Construction of the crossed product of an action by a discrete group.
- Examples of some elementary computations of crossed products.
- Simplicity of crossed products by minimal homeomorphisms.
- Toward the classification of crossed products by minimal homeomorphisms.


## Actions of groups on C*-algebras

## Definition

Let $G$ be a locally compact group, and let $A$ be a $C^{*}$-algebra.

## Actions of groups on C*-algebras

## Definition

Let $G$ be a locally compact group, and let $A$ be a C*-algebra. An action of $G$ on $A$

## Actions of groups on C*-algebras

## Definition

Let $G$ be a locally compact group, and let $A$ be a $C^{*}$-algebra. An action of $G$ on $A$ is a homomorphism $\alpha: G \rightarrow \operatorname{Aut}(A)$,

## Actions of groups on C*-algebras

## Definition

Let $G$ be a locally compact group, and let $A$ be a $C^{*}$-algebra. An action of $G$ on $A$ is a homomorphism $\alpha: G \rightarrow \operatorname{Aut}(A)$, usually written $g \mapsto \alpha_{g}$,

## Actions of groups on C*-algebras

## Definition

Let $G$ be a locally compact group, and let $A$ be a $C^{*}$-algebra. An action of $G$ on $A$ is a homomorphism $\alpha: G \rightarrow \operatorname{Aut}(A)$, usually written $g \mapsto \alpha_{g}$, such that, for every $a \in A$, the function $g \mapsto \alpha_{g}(a)$, from $G$ to $A$, is norm continuous.

## Actions of groups on C*-algebras

## Definition

Let $G$ be a locally compact group, and let $A$ be a $C^{*}$-algebra. An action of $G$ on $A$ is a homomorphism $\alpha: G \rightarrow \operatorname{Aut}(A)$, usually written $g \mapsto \alpha_{g}$, such that, for every $a \in A$, the function $g \mapsto \alpha_{g}(a)$, from $G$ to $A$, is norm continuous.

On a von Neumann algebra, substitute the $\sigma$-weak operator topology for the norm topology.

## Actions of groups on C*-algebras

## Definition

Let $G$ be a locally compact group, and let $A$ be a $C^{*}$-algebra. An action of $G$ on $A$ is a homomorphism $\alpha: G \rightarrow \operatorname{Aut}(A)$, usually written $g \mapsto \alpha_{g}$, such that, for every $a \in A$, the function $g \mapsto \alpha_{g}(a)$, from $G$ to $A$, is norm continuous.

On a von Neumann algebra, substitute the $\sigma$-weak operator topology for the norm topology.

The continuity condition is the analog of requiring that a unitary representation of $G$ on a Hilbert space be continuous in the strong operator topology. It is usually much too strong a condition to require that $g \mapsto \alpha_{g}$ be a norm continuous map from $G$ to the bounded operators on $A$.

## Actions of groups on C*-algebras

## Definition

Let $G$ be a locally compact group, and let $A$ be a $C^{*}$-algebra. An action of $G$ on $A$ is a homomorphism $\alpha: G \rightarrow \operatorname{Aut}(A)$, usually written $g \mapsto \alpha_{g}$, such that, for every $a \in A$, the function $g \mapsto \alpha_{g}(a)$, from $G$ to $A$, is norm continuous.

On a von Neumann algebra, substitute the $\sigma$-weak operator topology for the norm topology.

The continuity condition is the analog of requiring that a unitary representation of $G$ on a Hilbert space be continuous in the strong operator topology. It is usually much too strong a condition to require that $g \mapsto \alpha_{g}$ be a norm continuous map from $G$ to the bounded operators on $A$.

Of course, if $G$ is discrete, it doesn't matter. In this course, we will concentrate on discrete $G$.

## We will construct crossed products

Given $\alpha: G \rightarrow \operatorname{Aut}(A)$, we will construct a crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$

## We will construct crossed products

Given $\alpha: G \rightarrow \operatorname{Aut}(A)$, we will construct a crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ and a reduced crossed product $C^{*}$-algebra $C_{\mathrm{r}}^{*}(G, A, \alpha)$.

## We will construct crossed products

Given $\alpha: G \rightarrow \operatorname{Aut}(A)$, we will construct a crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ and a reduced crossed product $C^{*}$-algebra $C_{r}^{*}(G, A, \alpha)$. (There are many other commonly used notations. See Remark 3.16 in the notes.)

## We will construct crossed products

Given $\alpha: G \rightarrow \operatorname{Aut}(A)$, we will construct a crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ and a reduced crossed product $C^{*}$-algebra $C_{r}^{*}(G, A, \alpha)$. (There are many other commonly used notations. See Remark 3.16 in the notes.)

If $A$ is unital and $G$ is discrete, it is a suitable completion of the algebraic skew group ring $A[G]$, with multiplication determined by $\operatorname{gag}^{-1}=\alpha_{g}(a)$ for $g \in G$ and $a \in A$.

## Motivation for group actions on C*-algebras and their crossed products

Let $G$ be a locally compact group obtained as a semidirect product $G=N \rtimes H$. The action of $H$ on $N$ gives actions of $H$ on the full and reduced group $C^{*}$-algebras $C^{*}(N)$ and $C_{\mathrm{r}}^{*}(N)$, and one has $C^{*}(G) \cong C^{*}\left(H, C^{*}(N)\right)$ and $C_{\mathrm{r}}^{*}(G) \cong C_{\mathrm{r}}^{*}\left(H, C^{*}(N)\right)$.

## Motivation for group actions on C*-algebras and their crossed products

Let $G$ be a locally compact group obtained as a semidirect product $G=N \rtimes H$. The action of $H$ on $N$ gives actions of $H$ on the full and reduced group $C^{*}$-algebras $C^{*}(N)$ and $C_{r}^{*}(N)$, and one has $C^{*}(G) \cong C^{*}\left(H, C^{*}(N)\right)$ and $C_{\mathrm{r}}^{*}(G) \cong C_{\mathrm{r}}^{*}\left(H, C^{*}(N)\right)$.

Probably the most important group action is time evolution: if a C*-algebra $A$ is supposed to represent the possible states of a physical system in some manner, then there should be an action $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(A)$ which describes the time evolution of the system. Actions of $\mathbb{Z}$, which are easier to study, can be though of as "discrete time evolution".

## Motivation for group actions on C*-algebras and their crossed products

Let $G$ be a locally compact group obtained as a semidirect product $G=N \rtimes H$. The action of $H$ on $N$ gives actions of $H$ on the full and reduced group $C^{*}$-algebras $C^{*}(N)$ and $C_{r}^{*}(N)$, and one has $C^{*}(G) \cong C^{*}\left(H, C^{*}(N)\right)$ and $C_{\mathrm{r}}^{*}(G) \cong C_{\mathrm{r}}^{*}\left(H, C^{*}(N)\right)$.

Probably the most important group action is time evolution: if a C*-algebra $A$ is supposed to represent the possible states of a physical system in some manner, then there should be an action $\alpha: \mathbb{R} \rightarrow \operatorname{Aut}(A)$ which describes the time evolution of the system. Actions of $\mathbb{Z}$, which are easier to study, can be though of as "discrete time evolution".

Crossed products are a common way of constructing simple $C^{*}$-algebras. We will see some examples later.

## Motivation for group actions on C*-algebras and their crossed products (continued)

If one has a homeomorphism $h$ of a locally compact Hausdorff space $X$, the crossed product $C^{*}(\mathbb{Z}, X, h)$ sometimes carries considerable information about the dynamics of $h$. The best known example is the result of Giordano, Putnam, and Skau on minimal homeomorphisms of the Cantor set: isomorphism of the transformation group $C^{*}$-algebras is equivalent to strong orbit equivalence of the homeomorphisms.

## Motivation for group actions on C*-algebras and their crossed products (continued)

If one has a homeomorphism $h$ of a locally compact Hausdorff space $X$, the crossed product $C^{*}(\mathbb{Z}, X, h)$ sometimes carries considerable information about the dynamics of $h$. The best known example is the result of Giordano, Putnam, and Skau on minimal homeomorphisms of the Cantor set: isomorphism of the transformation group $C^{*}$-algebras is equivalent to strong orbit equivalence of the homeomorphisms.

For compact groups, equivariant indices take values on the equivariant K-theory of a suitable $C^{*}$-algebra with an action of the group. When the group is not compact, one usually needs instead the K-theory of the crossed product $C^{*}$-algebra, or of the reduced crossed product $C^{*}$-algebra. (When the group is compact, this is the same thing.)

## Motivation for group actions on C*-algebras and their crossed products (continued)

If one has a homeomorphism $h$ of a locally compact Hausdorff space $X$, the crossed product $C^{*}(\mathbb{Z}, X, h)$ sometimes carries considerable information about the dynamics of $h$. The best known example is the result of Giordano, Putnam, and Skau on minimal homeomorphisms of the Cantor set: isomorphism of the transformation group $C^{*}$-algebras is equivalent to strong orbit equivalence of the homeomorphisms.

For compact groups, equivariant indices take values on the equivariant K-theory of a suitable $C^{*}$-algebra with an action of the group. When the group is not compact, one usually needs instead the K-theory of the crossed product $C^{*}$-algebra, or of the reduced crossed product $C^{*}$-algebra. (When the group is compact, this is the same thing.)
In other situations as well, the K-theory of the full or reduced crossed product is the appropriate substitute for equivariant K-theory.

## The commutative case

## Definition

A continuous action of a topological group $G$ on a topological space $X$ is a continuous function $G \times X \rightarrow X$, usually written $(g, x) \mapsto g \cdot x$ or $(g, x) \mapsto g x$, such that $(g h) x=g(h x)$ for all $g, h \in G$ and $x \in X$ and $1 \cdot x=x$ for all $x \in X$.

## The commutative case

## Definition

A continuous action of a topological group $G$ on a topological space $X$ is a continuous function $G \times X \rightarrow X$, usually written $(g, x) \mapsto g \cdot x$ or $(g, x) \mapsto g x$, such that $(g h) x=g(h x)$ for all $g, h \in G$ and $x \in X$ and $1 \cdot x=x$ for all $x \in X$.

For a continuous action of a locally compact group $G$ on a locally compact Hausdorff space $X$, there is a corresponding action $\alpha: G \rightarrow \operatorname{Aut}\left(C_{0}(X)\right)$, given by $\alpha_{g}(f)(x)=f\left(g^{-1} x\right)$.

## The commutative case

## Definition

A continuous action of a topological group $G$ on a topological space $X$ is a continuous function $G \times X \rightarrow X$, usually written $(g, x) \mapsto g \cdot x$ or $(g, x) \mapsto g x$, such that $(g h) x=g(h x)$ for all $g, h \in G$ and $x \in X$ and $1 \cdot x=x$ for all $x \in X$.

For a continuous action of a locally compact group $G$ on a locally compact Hausdorff space $X$, there is a corresponding action $\alpha: G \rightarrow \operatorname{Aut}\left(C_{0}(X)\right)$, given by $\alpha_{g}(f)(x)=f\left(g^{-1} x\right)$.
(If $G$ is not abelian, the inverse is necessary to get $\alpha_{g} \circ \alpha_{h}=\alpha_{g h}$ rather than $\alpha_{h g}$.)

## The commutative case (continued)

## Exercise

Let $G$ be a locally compact group, and let $X$ be a locally compact Hausdorff space. Prove that the formulas given above determine a one to one correspondence between continuous actions of $G$ on $X$ and continuous actions of $G$ on $C_{0}(X)$.

## The commutative case (continued)

## Exercise

Let $G$ be a locally compact group, and let $X$ be a locally compact Hausdorff space. Prove that the formulas given above determine a one to one correspondence between continuous actions of $G$ on $X$ and continuous actions of $G$ on $C_{0}(X)$. (The main point is to show that an action on $X$ is continuous if and only if the corresponding action on $C_{0}(X)$ is continuous.)

## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups,

## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple.

## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

I should at least mention some of the other directions:

## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

I should at least mention some of the other directions:

- Coactions and actions of C* Hopf algebras ("quantum groups").


## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

I should at least mention some of the other directions:

- Coactions and actions of C* Hopf algebras ("quantum groups").
- Von Neumann algebra crossed products.


## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

I should at least mention some of the other directions:

- Coactions and actions of C* Hopf algebras ("quantum groups").
- Von Neumann algebra crossed products.
- Smooth crossed products.


## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

I should at least mention some of the other directions:

- Coactions and actions of C* Hopf algebras ("quantum groups").
- Von Neumann algebra crossed products.
- Smooth crossed products.
- C*-algebras of groupoids.


## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

I should at least mention some of the other directions:

- Coactions and actions of C* Hopf algebras ("quantum groups").
- Von Neumann algebra crossed products.
- Smooth crossed products.
- C*-algebras of groupoids.
- K-theory of crossed products: the Baum-Connes conjecture.


## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

I should at least mention some of the other directions:

- Coactions and actions of C* Hopf algebras ("quantum groups").
- Von Neumann algebra crossed products.
- Smooth crossed products.
- C*-algebras of groupoids.
- K-theory of crossed products: the Baum-Connes conjecture.
- The Connes spectrum and its generalizations.


## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

I should at least mention some of the other directions:

- Coactions and actions of C* Hopf algebras ("quantum groups").
- Von Neumann algebra crossed products.
- Smooth crossed products.
- C*-algebras of groupoids.
- K-theory of crossed products: the Baum-Connes conjecture.
- The Connes spectrum and its generalizations.
- Ideal structure of crossed products.


## More about these lectures

There are many directions in the theory of crossed products. These lectures are biased towards the general problem of classifying crossed products by finite groups, by $\mathbb{Z}$, and by more complicated groups, in cases in which these crossed products are expected to be simple. (However, we will not get very far in that direction.)

I should at least mention some of the other directions:

- Coactions and actions of C* Hopf algebras ("quantum groups").
- Von Neumann algebra crossed products.
- Smooth crossed products.
- C*-algebras of groupoids.
- K-theory of crossed products: the Baum-Connes conjecture.
- The Connes spectrum and its generalizations.
- Ideal structure of crossed products.

For more, see the end of Section 1 of the notes.

## Examples of group actions on C*-algebras

We will give some examples of group actions on C*-algebras. (Not all of them give interesting crossed products.)

## Examples of group actions on C*-algebras

We will give some examples of group actions on C*-algebras. (Not all of them give interesting crossed products.)

We start with examples of group actions on locally compact spaces, which give rise to examples of group actions on commutative C*-algebras.

## Examples of group actions on C*-algebras

We will give some examples of group actions on C*-algebras. (Not all of them give interesting crossed products.)

We start with examples of group actions on locally compact spaces, which give rise to examples of group actions on commutative $C^{*}$-algebras.

We will discuss some of their crossed products later, but in some of the examples we state the results immediately.

## Examples of group actions on C*-algebras

We will give some examples of group actions on C*-algebras. (Not all of them give interesting crossed products.)

We start with examples of group actions on locally compact spaces, which give rise to examples of group actions on commutative C*-algebras.

We will discuss some of their crossed products later, but in some of the examples we state the results immediately. As one goes through the commutative examples, note that a closed orbit of the form $G x \cong G / H$ gives rise to a quotient of the crossed product isomorphic to $K\left(L^{2}(G / H)\right) \otimes C^{*}(H)$

## Examples of group actions on C*-algebras

We will give some examples of group actions on C*-algebras. (Not all of them give interesting crossed products.)

We start with examples of group actions on locally compact spaces, which give rise to examples of group actions on commutative C*-algebras.

We will discuss some of their crossed products later, but in some of the examples we state the results immediately. As one goes through the commutative examples, note that a closed orbit of the form $G x \cong G / H$ gives rise to a quotient of the crossed product isomorphic to $K\left(L^{2}(G / H)\right) \otimes C^{*}(H)$

There are more examples in the notes.

## Example 1

## Example

The group $G$ is arbitrary locally compact, the space $X$ consists of just one point, and the action is trivial.

## Example 1

## Example

The group $G$ is arbitrary locally compact, the space $X$ consists of just one point, and the action is trivial.

This gives the trivial action of $G$ on the $C^{*}$-algebra $\mathbb{C}$. The full and reduced crossed products are the usual full and reduced group $C^{*}$-algebras $C^{*}(G)$ and $C_{r}^{*}(G)$.

## Example 2

## Example

The group $G$ is arbitrary locally compact, $X=G$, and the action is given by the group operation: $g \cdot x=g x$. (This action is called (left) translation.)

## Example 2

## Example

The group $G$ is arbitrary locally compact, $X=G$, and the action is given by the group operation: $g \cdot x=g x$. (This action is called (left) translation.)

The full and reduced crossed products are both isomorphic to $K\left(L^{2}(G)\right)$.

## Example 2

## Example

The group $G$ is arbitrary locally compact, $X=G$, and the action is given by the group operation: $g \cdot x=g x$. (This action is called (left) translation.)

The full and reduced crossed products are both isomorphic to $K\left(L^{2}(G)\right)$.
More generally, if $H \subset G$ is a closed subgroup, then $G$ acts continuously on $G / H$ by translation. The trivial action above is the case $H=G$.

## Example 2

## Example

The group $G$ is arbitrary locally compact, $X=G$, and the action is given by the group operation: $g \cdot x=g x$. (This action is called (left) translation.)

The full and reduced crossed products are both isomorphic to $K\left(L^{2}(G)\right)$.
More generally, if $H \subset G$ is a closed subgroup, then $G$ acts continuously on $G / H$ by translation. The trivial action above is the case $H=G$.

It turns out that $C^{*}(G, G / H) \cong K\left(L^{2}(G / H)\right) \otimes C^{*}(H)$. Note that there is no "twisting".

## Example 3

## Example

Take $X=S^{1}=\{\zeta \in \mathbb{C}:|\zeta|=1\}$. Taking $G=S^{1}$, acting by translation, gives a special case of a previous example.

## Example 3

## Example

Take $X=S^{1}=\{\zeta \in \mathbb{C}:|\zeta|=1\}$. Taking $G=S^{1}$, acting by translation, gives a special case of a previous example. But we can also take $G$ to be the finite subgroup (isomorphic to $\mathbb{Z} / n \mathbb{Z}$ ) of $S^{1}$ of order $n$ generated by $\exp (2 \pi i / n)$, still acting by translation (in this case, usually called rotation).

## Example 3

## Example

Take $X=S^{1}=\{\zeta \in \mathbb{C}:|\zeta|=1\}$. Taking $G=S^{1}$, acting by translation, gives a special case of a previous example. But we can also take $G$ to be the finite subgroup (isomorphic to $\mathbb{Z} / n \mathbb{Z}$ ) of $S^{1}$ of order $n$ generated by $\exp (2 \pi i / n)$, still acting by translation (in this case, usually called rotation). Or we can fix $\theta \in \mathbb{R}$, and take $G=\mathbb{Z}$, with $n \in \mathbb{Z}$ acting by $\zeta \mapsto \exp (2 \pi i n \theta) \zeta$.

## Example 3

## Example

Take $X=S^{1}=\{\zeta \in \mathbb{C}:|\zeta|=1\}$. Taking $G=S^{1}$, acting by translation, gives a special case of a previous example. But we can also take $G$ to be the finite subgroup (isomorphic to $\mathbb{Z} / n \mathbb{Z}$ ) of $S^{1}$ of order $n$ generated by $\exp (2 \pi i / n)$, still acting by translation (in this case, usually called rotation). Or we can fix $\theta \in \mathbb{R}$, and take $G=\mathbb{Z}$, with $n \in \mathbb{Z}$ acting by $\zeta \mapsto \exp (2 \pi i n \theta) \zeta$. These are rational rotations (for $\theta \in \mathbb{Q})$ or irrational rotations (for $\theta \notin \mathbb{Q}$ ).

## Example 3

## Example

Take $X=S^{1}=\{\zeta \in \mathbb{C}:|\zeta|=1\}$. Taking $G=S^{1}$, acting by translation, gives a special case of a previous example. But we can also take $G$ to be the finite subgroup (isomorphic to $\mathbb{Z} / n \mathbb{Z}$ ) of $S^{1}$ of order $n$ generated by $\exp (2 \pi i / n)$, still acting by translation (in this case, usually called rotation). Or we can fix $\theta \in \mathbb{R}$, and take $G=\mathbb{Z}$, with $n \in \mathbb{Z}$ acting by $\zeta \mapsto \exp (2 \pi i n \theta) \zeta$. These are rational rotations (for $\theta \in \mathbb{Q})$ or irrational rotations ( for $\theta \notin \mathbb{Q}$ ).

The crossed product for the action of $\mathbb{Z} / n \mathbb{Z}$ turns out to be isomorphic to $C\left(S^{1}, M_{n}\right)$. (Note that there is no "twisting".)

## Example 3

## Example

Take $X=S^{1}=\{\zeta \in \mathbb{C}:|\zeta|=1\}$. Taking $G=S^{1}$, acting by translation, gives a special case of a previous example. But we can also take $G$ to be the finite subgroup (isomorphic to $\mathbb{Z} / n \mathbb{Z}$ ) of $S^{1}$ of order $n$ generated by $\exp (2 \pi i / n)$, still acting by translation (in this case, usually called rotation). Or we can fix $\theta \in \mathbb{R}$, and take $G=\mathbb{Z}$, with $n \in \mathbb{Z}$ acting by $\zeta \mapsto \exp (2 \pi i n \theta) \zeta$. These are rational rotations (for $\theta \in \mathbb{Q}$ ) or irrational rotations ( for $\theta \notin \mathbb{Q}$ ).

The crossed product for the action of $\mathbb{Z} / n \mathbb{Z}$ turns out to be isomorphic to $C\left(S^{1}, M_{n}\right)$. (Note that there is no "twisting".)

The crossed products for the actions of $\mathbb{Z}$ are the well known (rational or irrational) rotation algebras. (This will be essentially immediate from the definitions.)

## Example 4

## Example

Take $X=\{0,1\}^{\mathbb{Z}}$, with elements being described as $x=\left(x_{n}\right)_{n \in \mathbb{Z}}$. Take $G=\mathbb{Z}$, with action generated by the shift homeomorphism $h(x)_{n}=x_{n-1}$ for $x \in X$ and $n \in \mathbb{Z}$.

## Example 4

## Example

Take $X=\{0,1\}^{\mathbb{Z}}$, with elements being described as $x=\left(x_{n}\right)_{n \in \mathbb{Z}}$. Take $G=\mathbb{Z}$, with action generated by the shift homeomorphism $h(x)_{n}=x_{n-1}$ for $x \in X$ and $n \in \mathbb{Z}$.

Further examples ("subshifts") can be gotten by restricting to invariant subsets of $X$. One can also replace $\{0,1\}$ by some other compact metric space $S$.

## Example 5

## Example

Fix a prime $p$, and let $X=\mathbb{Z}_{p}$, the group of $p$-adic integers.

## Example 5

## Example

Fix a prime $p$, and let $X=\mathbb{Z}_{p}$, the group of $p$-adic integers. (This group can be defined as the completion of $\mathbb{Z}$ in the metric $d(m, n)=p^{-d}$ when $p^{d}$ is the largest power of $p$ which divides $n-m$.

## Example 5

## Example

Fix a prime $p$, and let $X=\mathbb{Z}_{p}$, the group of $p$-adic integers. (This group can be defined as the completion of $\mathbb{Z}$ in the metric $d(m, n)=p^{-d}$ when $p^{d}$ is the largest power of $p$ which divides $n-m$. Alternatively, it is $\lim _{\longleftrightarrow} \mathbb{Z} / p^{d} \mathbb{Z}$.)

## Example 5

## Example

Fix a prime $p$, and let $X=\mathbb{Z}_{p}$, the group of $p$-adic integers. (This group can be defined as the completion of $\mathbb{Z}$ in the metric $d(m, n)=p^{-d}$ when $p^{d}$ is the largest power of $p$ which divides $n-m$. Alternatively, it is $\lim \mathbb{Z} / p^{d} \mathbb{Z}$.) It is a compact topological group, and as a metric space it is homeomorphic to the Cantor set. Let $h: X \rightarrow X$ be the homeomorphism defined on the dense subset $\mathbb{Z}$ by $h(n)=n+1$.

## Example 5

## Example

Fix a prime $p$, and let $X=\mathbb{Z}_{p}$, the group of $p$-adic integers. (This group can be defined as the completion of $\mathbb{Z}$ in the metric $d(m, n)=p^{-d}$ when $p^{d}$ is the largest power of $p$ which divides $n-m$. Alternatively, it is $\lim \mathbb{Z} / p^{d} \mathbb{Z}$.) It is a compact topological group, and as a metric space it is homeomorphic to the Cantor set. Let $h: X \rightarrow X$ be the homeomorphism defined on the dense subset $\mathbb{Z}$ by $h(n)=n+1$.

Many generalizations are possible in the inverse limit version of the construction. One need not use a prime, nor even the same number at each stage of the inverse limit.

## Example 6

## Example

Take $X=S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|_{2}=1\right\}$. Then the homeomorphism $x \mapsto-x$ has order 2 , and so gives an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $S^{n}$.

## Example 6

## Example

Take $X=S^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|_{2}=1\right\}$. Then the homeomorphism $x \mapsto-x$ has order 2 , and so gives an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $S^{n}$.

The crossed product turns out to be isomorphic to the section algebra of a locally trivial but nontrivial bundle over the real projective space $\mathbb{R} P^{n}=S^{n} /(\mathbb{Z} / 2 \mathbb{Z})$ with fiber $M_{2}$.

## Example 7

## Example

Take $X=S^{1}=\{\zeta \in \mathbb{C}:|\zeta|=1\}$, and consider the order 2 homeomorphism $\zeta \mapsto \bar{\zeta}$. We get an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $S^{1}$.

## Example 8

## Example

The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $S^{1} \times S^{1}$ as follows.

## Example 8

## Example

The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $S^{1} \times S^{1}$ as follows. For

$$
n=\left(\begin{array}{ll}
n_{1,1} & n_{1,2} \\
n_{2,1} & n_{2,2}
\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})
$$

## Example 8

## Example

The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $S^{1} \times S^{1}$ as follows. For

$$
n=\left(\begin{array}{ll}
n_{1,1} & n_{1,2} \\
n_{2,1} & n_{2,2}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

let $n$ act on $\mathbb{R}^{2}$ via the usual matrix multiplication.

## Example 8

## Example

The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $S^{1} \times S^{1}$ as follows. For

$$
n=\left(\begin{array}{ll}
n_{1,1} & n_{1,2} \\
n_{2,1} & n_{2,2}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

let $n$ act on $\mathbb{R}^{2}$ via the usual matrix multiplication. Since $n$ has integer entries, one gets $n \mathbb{Z}^{2} \subset \mathbb{Z}^{2}$,

## Example 8

## Example

The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $S^{1} \times S^{1}$ as follows. For

$$
n=\left(\begin{array}{ll}
n_{1,1} & n_{1,2} \\
n_{2,1} & n_{2,2}
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})
$$

let $n$ act on $\mathbb{R}^{2}$ via the usual matrix multiplication. Since $n$ has integer entries, one gets $n \mathbb{Z}^{2} \subset \mathbb{Z}^{2}$, and thus the action is well defined on $\mathbb{R}^{2} / \mathbb{Z}^{2} \cong S^{1} \times S^{1}$.

## Example 9

Notation: If $A$ is a unital $C^{*}$-algebra and $u \in A$ is unitary, then $\operatorname{Ad}(u)$ is the automorphism $a \mapsto u a u^{*}$ of $A$.

## Example 9

Notation: If $A$ is a unital $C^{*}$-algebra and $u \in A$ is unitary, then $\operatorname{Ad}(u)$ is the automorphism $a \mapsto u a u^{*}$ of $A$.

## Example

Let $G$ be a locally compact group, let $A$ be a unital $C^{*}$-algebra, and let $g \mapsto z_{g}$ be a norm continuous group homomorphism from $G$ to the unitary group $U(A)$ of $A$.

## Example 9

Notation: If $A$ is a unital $C^{*}$-algebra and $u \in A$ is unitary, then $\operatorname{Ad}(u)$ is the automorphism $a \mapsto u a u^{*}$ of $A$.

## Example

Let $G$ be a locally compact group, let $A$ be a unital $C^{*}$-algebra, and let $g \mapsto z_{g}$ be a norm continuous group homomorphism from $G$ to the unitary group $U(A)$ of $A$. Then the formula

$$
\alpha_{g}(a)=\operatorname{Ad}\left(z_{g}\right)
$$

for $g \in G$ and $a \in A$,

## Example 9

Notation: If $A$ is a unital $C^{*}$-algebra and $u \in A$ is unitary, then $\operatorname{Ad}(u)$ is the automorphism $a \mapsto u a u^{*}$ of $A$.

## Example

Let $G$ be a locally compact group, let $A$ be a unital $C^{*}$-algebra, and let $g \mapsto z_{g}$ be a norm continuous group homomorphism from $G$ to the unitary group $U(A)$ of $A$. Then the formula

$$
\alpha_{g}(a)=\operatorname{Ad}\left(z_{g}\right)
$$

for $g \in G$ and $a \in A$, defines an action of $G$ on $A$.

## Example 9

Notation: If $A$ is a unital $C^{*}$-algebra and $u \in A$ is unitary, then $\operatorname{Ad}(u)$ is the automorphism $a \mapsto u a u^{*}$ of $A$.

## Example

Let $G$ be a locally compact group, let $A$ be a unital $C^{*}$-algebra, and let $g \mapsto z_{g}$ be a norm continuous group homomorphism from $G$ to the unitary group $U(A)$ of $A$. Then the formula

$$
\alpha_{g}(a)=\operatorname{Ad}\left(z_{g}\right)
$$

for $g \in G$ and $a \in A$, defines an action of $G$ on $A$.

Actions obtained this way are called inner actions.

## Example 9

Notation: If $A$ is a unital $C^{*}$-algebra and $u \in A$ is unitary, then $\operatorname{Ad}(u)$ is the automorphism $a \mapsto u a u^{*}$ of $A$.

## Example

Let $G$ be a locally compact group, let $A$ be a unital $C^{*}$-algebra, and let $g \mapsto z_{g}$ be a norm continuous group homomorphism from $G$ to the unitary group $U(A)$ of $A$. Then the formula

$$
\alpha_{g}(a)=\operatorname{Ad}\left(z_{g}\right)
$$

for $g \in G$ and $a \in A$, defines an action of $G$ on $A$.

Actions obtained this way are called inner actions.
The crossed product turns out to be isomorphic to the crossed product by the trivial action.

## Example 10

An action via inner automorphisms is not necessarily an inner action. There are no counterexamples with $G=\mathbb{Z}$ (trivial)

## Example 10

An action via inner automorphisms is not necessarily an inner action. There are no counterexamples with $G=\mathbb{Z}$ (trivial) or $G$ finite cyclic and $A$ is simple (easy; see exercise below).

## Example 10

An action via inner automorphisms is not necessarily an inner action. There are no counterexamples with $G=\mathbb{Z}$ (trivial) or $G$ finite cyclic and $A$ is simple (easy; see exercise below). Here is the smallest counterexample.

## Example

Let $A=M_{2}$, let $G=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ with generators $g_{1}$ and $g_{2}$, and set

## Example 10

An action via inner automorphisms is not necessarily an inner action. There are no counterexamples with $G=\mathbb{Z}$ (trivial) or $G$ finite cyclic and $A$ is simple (easy; see exercise below). Here is the smallest counterexample.

## Example

Let $A=M_{2}$, let $G=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ with generators $g_{1}$ and $g_{2}$, and set
$\alpha_{1}=\mathrm{id}_{A}, \quad \alpha_{g_{1}}=\operatorname{Ad}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad \alpha_{g_{2}}=\operatorname{Ad}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad$ and $\quad \alpha_{g_{1} g_{2}}=\operatorname{Ad}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

## Example 10

An action via inner automorphisms is not necessarily an inner action. There are no counterexamples with $G=\mathbb{Z}$ (trivial) or $G$ finite cyclic and $A$ is simple (easy; see exercise below). Here is the smallest counterexample.

## Example

Let $A=M_{2}$, let $G=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ with generators $g_{1}$ and $g_{2}$, and set
$\alpha_{1}=\mathrm{id}_{A}, \quad \alpha_{g_{1}}=\operatorname{Ad}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad \alpha_{g_{2}}=\operatorname{Ad}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad$ and $\quad \alpha_{g_{1} g_{2}}=\operatorname{Ad}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
These define an action $\alpha: G \rightarrow \operatorname{Aut}(A)$ such that $\alpha_{g}$ is inner for all $g \in G$,

## Example 10

An action via inner automorphisms is not necessarily an inner action. There are no counterexamples with $G=\mathbb{Z}$ (trivial) or $G$ finite cyclic and $A$ is simple (easy; see exercise below). Here is the smallest counterexample.

## Example

Let $A=M_{2}$, let $G=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ with generators $g_{1}$ and $g_{2}$, and set
$\alpha_{1}=\mathrm{id}_{A}, \quad \alpha_{g_{1}}=\operatorname{Ad}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad \alpha_{g_{2}}=\operatorname{Ad}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad$ and $\quad \alpha_{g_{1} g_{2}}=\operatorname{Ad}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
These define an action $\alpha: G \rightarrow \operatorname{Aut}(A)$ such that $\alpha_{g}$ is inner for all $g \in G$, but such that there is no homomorphism $g \mapsto z_{g} \in U(A)$ such that $\alpha_{g}=\operatorname{Ad}\left(z_{g}\right)$ for all $g \in G$.

## Example 10

An action via inner automorphisms is not necessarily an inner action. There are no counterexamples with $G=\mathbb{Z}$ (trivial) or $G$ finite cyclic and $A$ is simple (easy; see exercise below). Here is the smallest counterexample.

## Example

Let $A=M_{2}$, let $G=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ with generators $g_{1}$ and $g_{2}$, and set
$\alpha_{1}=\mathrm{id}_{A}, \quad \alpha_{g_{1}}=\operatorname{Ad}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad \alpha_{g_{2}}=\operatorname{Ad}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad$ and $\quad \alpha_{g_{1} g_{2}}=\operatorname{Ad}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
These define an action $\alpha: G \rightarrow \operatorname{Aut}(A)$ such that $\alpha_{g}$ is inner for all $g \in G$, but such that there is no homomorphism $g \mapsto z_{g} \in U(A)$ such that $\alpha_{g}=\operatorname{Ad}\left(z_{g}\right)$ for all $g \in G$. The point is that the implementing unitaries for $\alpha_{g_{1}}$ and $\alpha_{g_{2}}$ commute up to a scalar,

## Example 10

An action via inner automorphisms is not necessarily an inner action. There are no counterexamples with $G=\mathbb{Z}$ (trivial) or $G$ finite cyclic and $A$ is simple (easy; see exercise below). Here is the smallest counterexample.

## Example

Let $A=M_{2}$, let $G=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ with generators $g_{1}$ and $g_{2}$, and set
$\alpha_{1}=\mathrm{id}_{A}, \quad \alpha_{g_{1}}=\operatorname{Ad}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad \alpha_{g_{2}}=\operatorname{Ad}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad$ and $\quad \alpha_{g_{1} g_{2}}=\operatorname{Ad}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
These define an action $\alpha: G \rightarrow \operatorname{Aut}(A)$ such that $\alpha_{g}$ is inner for all $g \in G$, but such that there is no homomorphism $g \mapsto z_{g} \in U(A)$ such that $\alpha_{g}=\operatorname{Ad}\left(z_{g}\right)$ for all $g \in G$. The point is that the implementing unitaries for $\alpha_{g_{1}}$ and $\alpha_{g_{2}}$ commute up to a scalar, but can't be appropriately modified to commute exactly.

## Example 10

An action via inner automorphisms is not necessarily an inner action. There are no counterexamples with $G=\mathbb{Z}$ (trivial) or $G$ finite cyclic and $A$ is simple (easy; see exercise below). Here is the smallest counterexample.

## Example

Let $A=M_{2}$, let $G=(\mathbb{Z} / 2 \mathbb{Z})^{2}$ with generators $g_{1}$ and $g_{2}$, and set
$\alpha_{1}=\mathrm{id}_{A}, \quad \alpha_{g_{1}}=\operatorname{Ad}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad \alpha_{g_{2}}=\operatorname{Ad}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad$ and $\quad \alpha_{g_{1} g_{2}}=\operatorname{Ad}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
These define an action $\alpha: G \rightarrow \operatorname{Aut}(A)$ such that $\alpha_{g}$ is inner for all $g \in G$, but such that there is no homomorphism $g \mapsto z_{g} \in U(A)$ such that $\alpha_{g}=\operatorname{Ad}\left(z_{g}\right)$ for all $g \in G$. The point is that the implementing unitaries for $\alpha_{g_{1}}$ and $\alpha_{g_{2}}$ commute up to a scalar, but can't be appropriately modified to commute exactly.

The crossed product turns out to be isomorphic to $M_{4}$.

## Example 11 (continued)

## Exercise

Let $A$ be a simple unital $C^{*}$-algebra, and let $\alpha: \mathbb{Z} / n \mathbb{Z} \rightarrow \operatorname{Aut}(A)$ be an action such that each automorphism $\alpha_{g}$, for $g \in \mathbb{Z} / n \mathbb{Z}$, is an inner automorphism.

## Example 11 (continued)

## Exercise

Let $A$ be a simple unital $C^{*}$-algebra, and let $\alpha: \mathbb{Z} / n \mathbb{Z} \rightarrow \operatorname{Aut}(A)$ be an action such that each automorphism $\alpha_{g}$, for $g \in \mathbb{Z} / n \mathbb{Z}$, is an inner automorphism. Prove that $\alpha$ is an inner action in the sense above.

## Example 11 (continued)

## Exercise

Let $A$ be a simple unital $C^{*}$-algebra, and let $\alpha: \mathbb{Z} / n \mathbb{Z} \rightarrow \operatorname{Aut}(A)$ be an action such that each automorphism $\alpha_{g}$, for $g \in \mathbb{Z} / n \mathbb{Z}$, is an inner automorphism. Prove that $\alpha$ is an inner action in the sense above.

## Problem

Find a counterexample when $A$ is not assumed simple.

## Example 11 (continued)

## Exercise

Let $A$ be a simple unital $C^{*}$-algebra, and let $\alpha: \mathbb{Z} / n \mathbb{Z} \rightarrow \operatorname{Aut}(A)$ be an action such that each automorphism $\alpha_{g}$, for $g \in \mathbb{Z} / n \mathbb{Z}$, is an inner automorphism. Prove that $\alpha$ is an inner action in the sense above.

## Problem

Find a counterexample when $A$ is not assumed simple. (I presume that a counterexample exists, but I do not know of one.)

## Example 11 (continued)

## Exercise

Let $A$ be a simple unital $C^{*}$-algebra, and let $\alpha: \mathbb{Z} / n \mathbb{Z} \rightarrow \operatorname{Aut}(A)$ be an action such that each automorphism $\alpha_{g}$, for $g \in \mathbb{Z} / n \mathbb{Z}$, is an inner automorphism. Prove that $\alpha$ is an inner action in the sense above.

## Problem

Find a counterexample when $A$ is not assumed simple. (I presume that a counterexample exists, but I do not know of one.)

## Exercise

Prove the statements made in the example on the previous slide.

## Example 12

## Example

For $\theta \in \mathbb{R}$, let $A_{\theta}$ be the rotation algebra,

## Example 12

## Example

For $\theta \in \mathbb{R}$, let $A_{\theta}$ be the rotation algebra, which is the universal $C^{*}$-algebra generated by two unitaries $u$ and $v$ satisfying the commutation relation $v u=\exp (2 \pi i \theta) u v$.

## Example 12

## Example

For $\theta \in \mathbb{R}$, let $A_{\theta}$ be the rotation algebra, which is the universal $C^{*}$-algebra generated by two unitaries $u$ and $v$ satisfying the commutation relation $v u=\exp (2 \pi i \theta) u v$. (The convention $e^{2 \pi i \theta}$ instead of $e^{i \theta}$ has become so standard that it can't be changed.)

## Example 12

## Example

For $\theta \in \mathbb{R}$, let $A_{\theta}$ be the rotation algebra, which is the universal $C^{*}$-algebra generated by two unitaries $u$ and $v$ satisfying the commutation relation $v u=\exp (2 \pi i \theta) u v$. (The convention $e^{2 \pi i \theta}$ instead of $e^{i \theta}$ has become so standard that it can't be changed.) (If $\theta \notin \mathbb{Q}$, then $A_{\theta}$ is known to be simple.

## Example 12

## Example

For $\theta \in \mathbb{R}$, let $A_{\theta}$ be the rotation algebra, which is the universal C*-algebra generated by two unitaries $u$ and $v$ satisfying the commutation relation $v u=\exp (2 \pi i \theta) u v$. (The convention $e^{2 \pi i \theta}$ instead of $e^{i \theta}$ has become so standard that it can't be changed.) (If $\theta \notin \mathbb{Q}$, then $A_{\theta}$ is known to be simple. Thus, one may take any $\mathrm{C}^{*}$-algebra generated by two unitaries satisfying the appropriate commutation relation.)

## Example 12

## Example

For $\theta \in \mathbb{R}$, let $A_{\theta}$ be the rotation algebra, which is the universal C*-algebra generated by two unitaries $u$ and $v$ satisfying the commutation relation $v u=\exp (2 \pi i \theta) u v$. (The convention $e^{2 \pi i \theta}$ instead of $e^{i \theta}$ has become so standard that it can't be changed.) (If $\theta \notin \mathbb{Q}$, then $A_{\theta}$ is known to be simple. Thus, one may take any $C^{*}$-algebra generated by two unitaries satisfying the appropriate commutation relation.) The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $A_{\theta}$ by sending the matrix

$$
n=\left(\begin{array}{ll}
n_{1,1} & n_{1,2} \\
n_{2,1} & n_{2,2}
\end{array}\right)
$$

to the automorphism determined by

## Example 12

## Example

For $\theta \in \mathbb{R}$, let $A_{\theta}$ be the rotation algebra, which is the universal C*-algebra generated by two unitaries $u$ and $v$ satisfying the commutation relation $v u=\exp (2 \pi i \theta) u v$. (The convention $e^{2 \pi i \theta}$ instead of $e^{i \theta}$ has become so standard that it can't be changed.) (If $\theta \notin \mathbb{Q}$, then $A_{\theta}$ is known to be simple. Thus, one may take any $C^{*}$-algebra generated by two unitaries satisfying the appropriate commutation relation.) The group $\mathrm{SL}_{2}(\mathbb{Z})$ acts on $A_{\theta}$ by sending the matrix

$$
n=\left(\begin{array}{ll}
n_{1,1} & n_{1,2} \\
n_{2,1} & n_{2,2}
\end{array}\right)
$$

to the automorphism determined by
$\alpha_{n}(u)=\exp \left(\pi i n_{1,1} n_{2,1} \theta\right) u^{n_{1,1}} v^{n_{2,1}} \quad$ and $\quad \alpha_{n}(v)=\exp \left(\pi i n_{1,2} n_{2,2} \theta\right) u^{n_{1,2}} v^{n_{2,2}}$.

## Example 12 (continued)

The algebra $A_{\theta}$ is often considered to be a noncommutative analog of the torus $S^{1} \times S^{1}$

## Example 12 (continued)

The algebra $A_{\theta}$ is often considered to be a noncommutative analog of the torus $S^{1} \times S^{1}$ (more accurately, of $A_{0} \cong C\left(S^{1} \times S^{1}\right)$ ),

## Example 12 (continued)

The algebra $A_{\theta}$ is often considered to be a noncommutative analog of the torus $S^{1} \times S^{1}$ (more accurately, of $A_{0} \cong C\left(S^{1} \times S^{1}\right)$ ), and this action is the analog of the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $S^{1} \times S^{1}$ above.

## Example 12 (continued)

The algebra $A_{\theta}$ is often considered to be a noncommutative analog of the torus $S^{1} \times S^{1}$ (more accurately, of $A_{0} \cong C\left(S^{1} \times S^{1}\right)$ ), and this action is the analog of the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $S^{1} \times S^{1}$ above.

The group $\mathrm{SL}_{2}(\mathbb{Z})$ has finite subgroups of orders $2,3,4$, and 6 .

## Example 12 (continued)

The algebra $A_{\theta}$ is often considered to be a noncommutative analog of the torus $S^{1} \times S^{1}$ (more accurately, of $A_{0} \cong C\left(S^{1} \times S^{1}\right)$ ), and this action is the analog of the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $S^{1} \times S^{1}$ above.

The group $\mathrm{SL}_{2}(\mathbb{Z})$ has finite subgroups of orders $2,3,4$, and 6 . Restriction of the action gives actions of these groups on rotation algebras.

## Example 12 (continued)

The algebra $A_{\theta}$ is often considered to be a noncommutative analog of the torus $S^{1} \times S^{1}$ (more accurately, of $A_{0} \cong C\left(S^{1} \times S^{1}\right)$ ), and this action is the analog of the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $S^{1} \times S^{1}$ above.

The group $\mathrm{SL}_{2}(\mathbb{Z})$ has finite subgroups of orders $2,3,4$, and 6 . Restriction of the action gives actions of these groups on rotation algebras. The crossed products by these actions have been intensively studied.

## Example 12 (continued)

The algebra $A_{\theta}$ is often considered to be a noncommutative analog of the torus $S^{1} \times S^{1}$ (more accurately, of $A_{0} \cong C\left(S^{1} \times S^{1}\right)$ ), and this action is the analog of the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on $S^{1} \times S^{1}$ above.

The group $\mathrm{SL}_{2}(\mathbb{Z})$ has finite subgroups of orders $2,3,4$, and 6 . Restriction of the action gives actions of these groups on rotation algebras. The crossed products by these actions have been intensively studied. Recently, it has been proved that for $\theta \notin \mathbb{Q}$ they are all AF .

## Example 13

## Example

Let $A_{\theta}$ be generated by unitaries $u$ and $v$ as in the previous example.

## Example 13

## Example

Let $A_{\theta}$ be generated by unitaries $u$ and $v$ as in the previous example. For $\zeta_{1}, \zeta_{2} \in S^{1}$, the unitaries $\zeta_{1} u$ and $\zeta_{2} v$ satisfy the same commutation relation.

## Example 13

## Example

Let $A_{\theta}$ be generated by unitaries $u$ and $v$ as in the previous example. For $\zeta_{1}, \zeta_{2} \in S^{1}$, the unitaries $\zeta_{1} u$ and $\zeta_{2} v$ satisfy the same commutation relation. Therefore there is an action $\alpha: S^{1} \times S^{1} \rightarrow \operatorname{Aut}\left(A_{\theta}\right)$ determined by

## Example 13

## Example

Let $A_{\theta}$ be generated by unitaries $u$ and $v$ as in the previous example. For $\zeta_{1}, \zeta_{2} \in S^{1}$, the unitaries $\zeta_{1} u$ and $\zeta_{2} v$ satisfy the same commutation relation. Therefore there is an action $\alpha: S^{1} \times S^{1} \rightarrow \operatorname{Aut}\left(A_{\theta}\right)$ determined by

$$
\alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(u)=\zeta_{1} u \quad \text { and } \quad \alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(v)=\zeta_{2} v .
$$

## Example 13

## Example

Let $A_{\theta}$ be generated by unitaries $u$ and $v$ as in the previous example. For $\zeta_{1}, \zeta_{2} \in S^{1}$, the unitaries $\zeta_{1} u$ and $\zeta_{2} v$ satisfy the same commutation relation. Therefore there is an action $\alpha: S^{1} \times S^{1} \rightarrow \operatorname{Aut}\left(A_{\theta}\right)$ determined by

$$
\alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(u)=\zeta_{1} u \quad \text { and } \quad \alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(v)=\zeta_{2} v .
$$

Checking continuity of the action requires a $3 \varepsilon$ argument.

## Example 13

## Example

Let $A_{\theta}$ be generated by unitaries $u$ and $v$ as in the previous example. For $\zeta_{1}, \zeta_{2} \in S^{1}$, the unitaries $\zeta_{1} u$ and $\zeta_{2} v$ satisfy the same commutation relation. Therefore there is an action $\alpha: S^{1} \times S^{1} \rightarrow \operatorname{Aut}\left(A_{\theta}\right)$ determined by

$$
\alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(u)=\zeta_{1} u \quad \text { and } \quad \alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(v)=\zeta_{2} v .
$$

Checking continuity of the action requires a $3 \varepsilon$ argument.
If we fix $\zeta_{1}, \zeta_{2} \in S^{1}$, then $\alpha_{\left(\zeta_{1}, \zeta_{2}\right)}$ generates an action of $\mathbb{Z}$.

## Example 13

## Example

Let $A_{\theta}$ be generated by unitaries $u$ and $v$ as in the previous example. For $\zeta_{1}, \zeta_{2} \in S^{1}$, the unitaries $\zeta_{1} u$ and $\zeta_{2} v$ satisfy the same commutation relation. Therefore there is an action $\alpha: S^{1} \times S^{1} \rightarrow \operatorname{Aut}\left(A_{\theta}\right)$ determined by

$$
\alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(u)=\zeta_{1} u \quad \text { and } \quad \alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(v)=\zeta_{2} v .
$$

Checking continuity of the action requires a $3 \varepsilon$ argument.
If we fix $\zeta_{1}, \zeta_{2} \in S^{1}$, then $\alpha_{\left(\zeta_{1}, \zeta_{2}\right)}$ generates an action of $\mathbb{Z}$. If both have finite order, we get an action of a finite cyclic group.

## Example 13

## Example

Let $A_{\theta}$ be generated by unitaries $u$ and $v$ as in the previous example. For $\zeta_{1}, \zeta_{2} \in S^{1}$, the unitaries $\zeta_{1} u$ and $\zeta_{2} v$ satisfy the same commutation relation. Therefore there is an action $\alpha: S^{1} \times S^{1} \rightarrow \operatorname{Aut}\left(A_{\theta}\right)$ determined by

$$
\alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(u)=\zeta_{1} u \quad \text { and } \quad \alpha_{\left(\zeta_{1}, \zeta_{2}\right)}(v)=\zeta_{2} v .
$$

Checking continuity of the action requires a $3 \varepsilon$ argument.
If we fix $\zeta_{1}, \zeta_{2} \in S^{1}$, then $\alpha_{\left(\zeta_{1}, \zeta_{2}\right)}$ generates an action of $\mathbb{Z}$. If both have finite order, we get an action of a finite cyclic group. For example, there is an action of $\mathbb{Z} / n \mathbb{Z}$ generated by the automorphism which sends $u$ to $\exp (2 \pi i / n) u$ and $v$ to $v$.

## Example 14

## Example

Recall that the Cuntz algebra $\mathcal{O}_{n}$ is the universal unital $C^{*}$-algebra on generators $s_{1}, s_{2}, \ldots, s_{n}$, subject to the relations $s_{j}^{*} s_{j}=1$ for $1 \leq j \leq n$ and $\sum_{j=1}^{n} s_{j} s_{j}^{*}=1$. (It is in fact simple.)

## Example 14

## Example

Recall that the Cuntz algebra $\mathcal{O}_{n}$ is the universal unital $C^{*}$-algebra on generators $s_{1}, s_{2}, \ldots, s_{n}$, subject to the relations $s_{j}^{*} s_{j}=1$ for $1 \leq j \leq n$ and $\sum_{j=1}^{n} s_{j} s_{j}^{*}=1$. (It is in fact simple.)
There is an action of $\left(S^{1}\right)^{n}$ on $\mathcal{O}_{n}$ such that $\alpha_{\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)}\left(s_{j}\right)=\zeta_{j} s_{j}$ for $1 \leq j \leq n$.

## Example 14

## Example

Recall that the Cuntz algebra $\mathcal{O}_{n}$ is the universal unital $C^{*}$-algebra on generators $s_{1}, s_{2}, \ldots, s_{n}$, subject to the relations $s_{j}^{*} s_{j}=1$ for $1 \leq j \leq n$ and $\sum_{j=1}^{n} s_{j} s_{j}^{*}=1$. (It is in fact simple.)
There is an action of $\left(S^{1}\right)^{n}$ on $\mathcal{O}_{n}$ such that $\alpha_{\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)}\left(s_{j}\right)=\zeta_{j} s_{j}$ for $1 \leq j \leq n$.

In fact, regarding $\left(S^{1}\right)^{n}$ as the diagonal unitary matrices, this action extends to an action of the unitary group $U\left(M_{n}\right)$ on $\mathcal{O}_{n}$, defined as follows.

## Example 14

## Example

Recall that the Cuntz algebra $\mathcal{O}_{n}$ is the universal unital $C^{*}$-algebra on generators $s_{1}, s_{2}, \ldots, s_{n}$, subject to the relations $s_{j}^{*} s_{j}=1$ for $1 \leq j \leq n$ and $\sum_{j=1}^{n} s_{j} s_{j}^{*}=1$. (It is in fact simple.)
There is an action of $\left(S^{1}\right)^{n}$ on $\mathcal{O}_{n}$ such that $\alpha_{\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)}\left(s_{j}\right)=\zeta_{j} s_{j}$ for $1 \leq j \leq n$.

In fact, regarding $\left(S^{1}\right)^{n}$ as the diagonal unitary matrices, this action extends to an action of the unitary group $U\left(M_{n}\right)$ on $\mathcal{O}_{n}$, defined as follows. If $u=\left(u_{j, k}\right)_{j, k=1}^{n} \in M_{n}$ is unitary, then define an automorphism $\alpha_{u}$ of $\mathcal{O}_{n}$ by the following action on the generating isometries $s_{1}, s_{2}, \ldots, s_{n}$ :

## Example 14

## Example

Recall that the Cuntz algebra $\mathcal{O}_{n}$ is the universal unital $C^{*}$-algebra on generators $s_{1}, s_{2}, \ldots, s_{n}$, subject to the relations $s_{j}^{*} s_{j}=1$ for $1 \leq j \leq n$ and $\sum_{j=1}^{n} s_{j} s_{j}^{*}=1$. (It is in fact simple.)
There is an action of $\left(S^{1}\right)^{n}$ on $\mathcal{O}_{n}$ such that $\alpha_{\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)}\left(s_{j}\right)=\zeta_{j} s_{j}$ for $1 \leq j \leq n$.

In fact, regarding $\left(S^{1}\right)^{n}$ as the diagonal unitary matrices, this action extends to an action of the unitary group $U\left(M_{n}\right)$ on $\mathcal{O}_{n}$, defined as follows. If $u=\left(u_{j, k}\right)_{j, k=1}^{n} \in M_{n}$ is unitary, then define an automorphism $\alpha_{u}$ of $\mathcal{O}_{n}$ by the following action on the generating isometries $s_{1}, s_{2}, \ldots, s_{n}$ :

$$
\alpha_{u}\left(s_{j}\right)=\sum_{k=1}^{n} u_{k, j} s_{k}
$$

## Example 14

## Example

Recall that the Cuntz algebra $\mathcal{O}_{n}$ is the universal unital $C^{*}$-algebra on generators $s_{1}, s_{2}, \ldots, s_{n}$, subject to the relations $s_{j}^{*} s_{j}=1$ for $1 \leq j \leq n$ and $\sum_{j=1}^{n} s_{j} s_{j}^{*}=1$. (It is in fact simple.)
There is an action of $\left(S^{1}\right)^{n}$ on $\mathcal{O}_{n}$ such that $\alpha_{\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)}\left(s_{j}\right)=\zeta_{j} s_{j}$ for $1 \leq j \leq n$.

In fact, regarding $\left(S^{1}\right)^{n}$ as the diagonal unitary matrices, this action extends to an action of the unitary group $U\left(M_{n}\right)$ on $\mathcal{O}_{n}$, defined as follows. If $u=\left(u_{j, k}\right)_{j, k=1}^{n} \in M_{n}$ is unitary, then define an automorphism $\alpha_{u}$ of $\mathcal{O}_{n}$ by the following action on the generating isometries $s_{1}, s_{2}, \ldots, s_{n}$ :

$$
\alpha_{u}\left(s_{j}\right)=\sum_{k=1}^{n} u_{k, j} s_{k} .
$$

This determines a continuous action of the compact group $U\left(M_{n}\right)$ on $\mathcal{O}_{n}$.

## Example 14

## Example

Recall that the Cuntz algebra $\mathcal{O}_{n}$ is the universal unital $C^{*}$-algebra on generators $s_{1}, s_{2}, \ldots, s_{n}$, subject to the relations $s_{j}^{*} s_{j}=1$ for $1 \leq j \leq n$ and $\sum_{j=1}^{n} s_{j} s_{j}^{*}=1$. (It is in fact simple.)
There is an action of $\left(S^{1}\right)^{n}$ on $\mathcal{O}_{n}$ such that $\alpha_{\left(\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}\right)}\left(s_{j}\right)=\zeta_{j} s_{j}$ for $1 \leq j \leq n$.

In fact, regarding $\left(S^{1}\right)^{n}$ as the diagonal unitary matrices, this action extends to an action of the unitary group $U\left(M_{n}\right)$ on $\mathcal{O}_{n}$, defined as follows. If $u=\left(u_{j, k}\right)_{j, k=1}^{n} \in M_{n}$ is unitary, then define an automorphism $\alpha_{u}$ of $\mathcal{O}_{n}$ by the following action on the generating isometries $s_{1}, s_{2}, \ldots, s_{n}$ :

$$
\alpha_{u}\left(s_{j}\right)=\sum_{k=1}^{n} u_{k, j} s_{k} .
$$

This determines a continuous action of the compact group $U\left(M_{n}\right)$ on $\mathcal{O}_{n}$. Any individual automorphism from this action gives an action of $\mathbb{Z}$ on $\mathcal{O}_{n}$.

## Example 14 (continued)

## Exercise

Verify that the formula above does in fact define a continuous action of $U\left(M_{n}\right)$ on $\mathcal{O}_{n}$.

## Example 14 (continued)

## Exercise

Verify that the formula above does in fact define a continuous action of $U\left(M_{n}\right)$ on $\mathcal{O}_{n}$.
(Check that the elements $\zeta_{j} s_{j}$ satisfy the required relations. Use a $3 \varepsilon$ argument to prove continuity.)

## Example 15

## Example

Let $k_{1}, k_{2}, \ldots$ be integers with all $k_{n} \geq 2$. Consider the UHF algebra $A$ of type $\prod_{n=1}^{\infty} k_{n}$.

## Example 15

## Example

Let $k_{1}, k_{2}, \ldots$ be integers with all $k_{n} \geq 2$. Consider the UHF algebra $A$ of type $\prod_{n=1}^{\infty} k_{n}$. We construct it as $\bigotimes_{n=1}^{\infty} M_{k_{n}}$,

## Example 15

## Example

Let $k_{1}, k_{2}, \ldots$ be integers with all $k_{n} \geq 2$. Consider the UHF algebra $A$ of type $\prod_{n=1}^{\infty} k_{n}$. We construct it as $\bigotimes_{n=1}^{\infty} M_{k_{n}}$, or, in more detail, as $\lim _{\longrightarrow} A_{n}$ with $A_{n}=M_{k_{1}} \otimes M_{k_{2}} \otimes \cdots \otimes M_{k_{n}}$.

## Example 15

## Example

Let $k_{1}, k_{2}, \ldots$ be integers with all $k_{n} \geq 2$. Consider the UHF algebra $A$ of type $\prod_{n=1}^{\infty} k_{n}$. We construct it as $\bigotimes_{n=1}^{\infty} M_{k_{n}}$, or, in more detail, as $\underline{\longrightarrow} A_{n}$ with $A_{n}=M_{k_{1}} \otimes M_{k_{2}} \otimes \cdots \otimes M_{k_{n}}$. Note that $A_{n}=A_{n-1} \otimes M_{k_{n}}$, and the $\operatorname{map} \varphi_{n}: A_{n-1} \rightarrow A_{n}$ is given by $a \mapsto a \otimes 1_{M_{k n}}$.

## Example 15

## Example

Let $k_{1}, k_{2}, \ldots$ be integers with all $k_{n} \geq 2$. Consider the UHF algebra $A$ of type $\prod_{n=1}^{\infty} k_{n}$. We construct it as $\bigotimes_{n=1}^{\infty} M_{k_{n}}$, or, in more detail, as $\lim _{\longrightarrow} A_{n}$ with $A_{n}=M_{k_{1}} \otimes M_{k_{2}} \otimes \cdots \otimes M_{k_{n}}$. Note that $A_{n}=A_{n-1} \otimes M_{k_{n}}$, and the $\operatorname{map} \varphi_{n}: A_{n-1} \rightarrow A_{n}$ is given by $a \mapsto a \otimes 1_{M_{k n}}$.

Let $G$ be a locally compact group, and let $\beta^{(n)}: G \rightarrow \operatorname{Aut}\left(M_{k_{n}}\right)$ be an action of $G$ on $M_{k_{n}}$.

## Example 15

## Example

Let $k_{1}, k_{2}, \ldots$ be integers with all $k_{n} \geq 2$. Consider the UHF algebra $A$ of type $\prod_{n=1}^{\infty} k_{n}$. We construct it as $\bigotimes_{n=1}^{\infty} M_{k_{n}}$, or, in more detail, as $\underline{\lim } A_{n}$ with $A_{n}=M_{k_{1}} \otimes M_{k_{2}} \otimes \cdots \otimes M_{k_{n}}$. Note that $A_{n}=A_{n-1} \otimes M_{k_{n}}$, and the $\operatorname{map} \varphi_{n}: A_{n-1} \rightarrow A_{n}$ is given by $a \mapsto a \otimes 1_{M_{k n}}$.

Let $G$ be a locally compact group, and let $\beta^{(n)}: G \rightarrow \operatorname{Aut}\left(M_{k_{n}}\right)$ be an action of $G$ on $M_{k_{n}}$. Then define an action $\alpha^{(n)}: G \rightarrow \operatorname{Aut}\left(A_{n}\right)$ by

$$
\alpha_{g}^{(n)}\left(a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}\right)=\beta_{g}^{(1)}\left(a_{1}\right) \otimes \beta_{g}^{(2)}\left(a_{2}\right) \otimes \cdots \otimes \beta_{g}^{(n)}\left(a_{n}\right) .
$$

## Example 15

## Example

Let $k_{1}, k_{2}, \ldots$ be integers with all $k_{n} \geq 2$. Consider the UHF algebra $A$ of type $\prod_{n=1}^{\infty} k_{n}$. We construct it as $\bigotimes_{n=1}^{\infty} M_{k_{n}}$, or, in more detail, as $\underline{\lim } A_{n}$ with $A_{n}=M_{k_{1}} \otimes M_{k_{2}} \otimes \cdots \otimes M_{k_{n}}$. Note that $A_{n}=A_{n-1} \otimes M_{k_{n}}$, and the $\operatorname{map} \varphi_{n}: A_{n-1} \rightarrow A_{n}$ is given by $a \mapsto a \otimes 1_{M_{k n}}$.

Let $G$ be a locally compact group, and let $\beta^{(n)}: G \rightarrow \operatorname{Aut}\left(M_{k_{n}}\right)$ be an action of $G$ on $M_{k_{n}}$. Then define an action $\alpha^{(n)}: G \rightarrow \operatorname{Aut}\left(A_{n}\right)$ by

$$
\alpha_{g}^{(n)}\left(a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}\right)=\beta_{g}^{(1)}\left(a_{1}\right) \otimes \beta_{g}^{(2)}\left(a_{2}\right) \otimes \cdots \otimes \beta_{g}^{(n)}\left(a_{n}\right) .
$$

One checks immediately that $\varphi_{n} \circ \alpha_{g}^{(n-1)}=\alpha_{g}^{(n)} \circ \varphi_{n}$ for all $n \in \mathbb{Z}_{>0}$ and $g \in G$,

## Example 15

## Example

Let $k_{1}, k_{2}, \ldots$ be integers with all $k_{n} \geq 2$. Consider the UHF algebra $A$ of type $\prod_{n=1}^{\infty} k_{n}$. We construct it as $\bigotimes_{n=1}^{\infty} M_{k_{n}}$, or, in more detail, as $\underline{\lim } A_{n}$ with $A_{n}=M_{k_{1}} \otimes M_{k_{2}} \otimes \cdots \otimes M_{k_{n}}$. Note that $A_{n}=A_{n-1} \otimes M_{k_{n}}$, and the $\operatorname{map} \varphi_{n}: A_{n-1} \rightarrow A_{n}$ is given by $a \mapsto a \otimes 1_{M_{k n}}$.

Let $G$ be a locally compact group, and let $\beta^{(n)}: G \rightarrow \operatorname{Aut}\left(M_{k_{n}}\right)$ be an action of $G$ on $M_{k_{n}}$. Then define an action $\alpha^{(n)}: G \rightarrow \operatorname{Aut}\left(A_{n}\right)$ by

$$
\alpha_{g}^{(n)}\left(a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}\right)=\beta_{g}^{(1)}\left(a_{1}\right) \otimes \beta_{g}^{(2)}\left(a_{2}\right) \otimes \cdots \otimes \beta_{g}^{(n)}\left(a_{n}\right) .
$$

One checks immediately that $\varphi_{n} \circ \alpha_{g}^{(n-1)}=\alpha_{g}^{(n)} \circ \varphi_{n}$ for all $n \in \mathbb{Z}_{>0}$ and $g \in G$, so there is a direct limit action $g \mapsto \alpha_{g}$ of $G$ on $A=\underline{\lim } A_{n}$.

## Example 15

## Example

Let $k_{1}, k_{2}, \ldots$ be integers with all $k_{n} \geq 2$. Consider the UHF algebra $A$ of type $\prod_{n=1}^{\infty} k_{n}$. We construct it as $\bigotimes_{n=1}^{\infty} M_{k_{n}}$, or, in more detail, as $\underline{\lim } A_{n}$ with $A_{n}=M_{k_{1}} \otimes M_{k_{2}} \otimes \cdots \otimes M_{k_{n}}$. Note that $A_{n}=A_{n-1} \otimes M_{k_{n}}$, and the $\operatorname{map} \varphi_{n}: A_{n-1} \rightarrow A_{n}$ is given by $a \mapsto a \otimes 1_{M_{k n}}$.

Let $G$ be a locally compact group, and let $\beta^{(n)}: G \rightarrow \operatorname{Aut}\left(M_{k_{n}}\right)$ be an action of $G$ on $M_{k_{n}}$. Then define an action $\alpha^{(n)}: G \rightarrow \operatorname{Aut}\left(A_{n}\right)$ by

$$
\alpha_{g}^{(n)}\left(a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}\right)=\beta_{g}^{(1)}\left(a_{1}\right) \otimes \beta_{g}^{(2)}\left(a_{2}\right) \otimes \cdots \otimes \beta_{g}^{(n)}\left(a_{n}\right) .
$$

One checks immediately that $\varphi_{n} \circ \alpha_{g}^{(n-1)}=\alpha_{g}^{(n)} \circ \varphi_{n}$ for all $n \in \mathbb{Z}_{>0}$ and $g \in G$, so there is a direct limit action $g \mapsto \alpha_{g}$ of $G$ on $A=\underline{\longrightarrow} A_{n}$. (One needs a $3 \varepsilon$ argument to prove continuity.)

## Example 15 (continued)

The easiest way to get such an action is to choose a unitary representation $g \mapsto u_{n}(g)$ on $\mathbb{C}^{k_{n}}$, and set $\beta_{g}^{(n)}(a)=u_{n}(g) a u_{n}(g)^{*}$ for $g \in G$ and $a \in M_{k_{n}}$.

## Example 15 (continued)

The easiest way to get such an action is to choose a unitary representation $g \mapsto u_{n}(g)$ on $\mathbb{C}^{k_{n}}$, and set $\beta_{g}^{(n)}(a)=u_{n}(g) a u_{n}(g)^{*}$ for $g \in G$ and $a \in M_{k_{n}}$. In this case, the resulting action is called a product type action.

## Example 15 (continued)

The easiest way to get such an action is to choose a unitary representation $g \mapsto u_{n}(g)$ on $\mathbb{C}^{k_{n}}$, and set $\beta_{g}^{(n)}(a)=u_{n}(g) a u_{n}(g)^{*}$ for $g \in G$ and $a \in M_{k_{n}}$. In this case, the resulting action is called a product type action.

As a specific example, take $G=\mathbb{Z} / 2 \mathbb{Z}$, and for every $n$ take $k_{n}=2$ and take $\beta^{(n)}$ to be generated by

## Example 15 (continued)

The easiest way to get such an action is to choose a unitary representation $g \mapsto u_{n}(g)$ on $\mathbb{C}^{k_{n}}$, and set $\beta_{g}^{(n)}(a)=u_{n}(g) a u_{n}(g)^{*}$ for $g \in G$ and $a \in M_{k_{n}}$. In this case, the resulting action is called a product type action.

As a specific example, take $G=\mathbb{Z} / 2 \mathbb{Z}$, and for every $n$ take $k_{n}=2$ and take $\beta^{(n)}$ to be generated by $\operatorname{Ad}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

## Example 15 (continued)

The easiest way to get such an action is to choose a unitary representation $g \mapsto u_{n}(g)$ on $\mathbb{C}^{k_{n}}$, and set $\beta_{g}^{(n)}(a)=u_{n}(g) a u_{n}(g)^{*}$ for $g \in G$ and $a \in M_{k_{n}}$. In this case, the resulting action is called a product type action.

As a specific example, take $G=\mathbb{Z} / 2 \mathbb{Z}$, and for every $n$ take $k_{n}=2$ and take $\beta^{(n)}$ to be generated by $\operatorname{Ad}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.

## Exercise

Prove that the actions above really are continuous.

## Example 16

## Example

Let $A$ be a unital $C^{*}$-algebra. The tensor flip is the automorphism

## Example 16

## Example

Let $A$ be a unital $C^{*}$-algebra. The tensor flip is the automorphism $\varphi \in \operatorname{Aut}\left(A \otimes_{\max } A\right)$ of order 2 determined by the formula

## Example 16

## Example

Let $A$ be a unital $C^{*}$-algebra. The tensor flip is the automorphism $\varphi \in \operatorname{Aut}\left(A \otimes_{\max } A\right)$ of order 2 determined by the formula $\varphi(a \otimes b)=b \otimes a$ for $a, b \in A$.

## Example 16

## Example

Let $A$ be a unital $C^{*}$-algebra. The tensor flip is the automorphism $\varphi \in \operatorname{Aut}\left(A \otimes_{\max } A\right)$ of order 2 determined by the formula $\varphi(a \otimes b)=b \otimes a$ for $a, b \in A$. (Use the universal property of $A \otimes_{\max } A$.) This gives an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $A \otimes_{\max } A$.

## Example 16

## Example

Let $A$ be a unital $C^{*}$-algebra. The tensor flip is the automorphism $\varphi \in \operatorname{Aut}\left(A \otimes_{\max } A\right)$ of order 2 determined by the formula $\varphi(a \otimes b)=b \otimes a$ for $a, b \in A$. (Use the universal property of $A \otimes_{\max } A$.) This gives an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $A \otimes_{\max } A$.

Similarly, the same formula defines a tensor flip action of $\mathbb{Z} / 2 \mathbb{Z}$ on $A \otimes_{\min } A$.

## Example 16

## Example

Let $A$ be a unital $C^{*}$-algebra. The tensor flip is the automorphism $\varphi \in \operatorname{Aut}\left(A \otimes_{\max } A\right)$ of order 2 determined by the formula $\varphi(a \otimes b)=b \otimes a$ for $a, b \in A$. (Use the universal property of $A \otimes_{\max } A$.) This gives an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $A \otimes_{\max } A$.

Similarly, the same formula defines a tensor flip action of $\mathbb{Z} / 2 \mathbb{Z}$ on $A \otimes_{\min } A$. (Choose an injective representation $\pi: A \rightarrow L(H)$, and consider $\pi \otimes \pi$ as a representation of $A \otimes \min A$ on $H \otimes H$.)

## Example 16

## Example

Let $A$ be a unital $C^{*}$-algebra. The tensor flip is the automorphism $\varphi \in \operatorname{Aut}\left(A \otimes_{\max } A\right)$ of order 2 determined by the formula $\varphi(a \otimes b)=b \otimes a$ for $a, b \in A$. (Use the universal property of $A \otimes_{\max } A$.) This gives an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $A \otimes_{\max } A$.

Similarly, the same formula defines a tensor flip action of $\mathbb{Z} / 2 \mathbb{Z}$ on $A \otimes_{\min } A$. (Choose an injective representation $\pi: A \rightarrow L(H)$, and consider $\pi \otimes \pi$ as a representation of $A \otimes \min A$ on $H \otimes H$.)

In a similar manner, the symmetric group $S_{n}$ acts on the $n$-fold maximal and minimal tensor products of $A$ with itself.

## Example 16

## Example

Let $A$ be a unital $C^{*}$-algebra. The tensor flip is the automorphism $\varphi \in \operatorname{Aut}\left(A \otimes_{\max } A\right)$ of order 2 determined by the formula $\varphi(a \otimes b)=b \otimes a$ for $a, b \in A$. (Use the universal property of $A \otimes_{\max } A$.) This gives an action of $\mathbb{Z} / 2 \mathbb{Z}$ on $A \otimes_{\max } A$.

Similarly, the same formula defines a tensor flip action of $\mathbb{Z} / 2 \mathbb{Z}$ on $A \otimes_{\min } A$. (Choose an injective representation $\pi: A \rightarrow L(H)$, and consider $\pi \otimes \pi$ as a representation of $A \otimes \min A$ on $H \otimes H$.)

In a similar manner, the symmetric group $S_{n}$ acts on the $n$-fold maximal and minimal tensor products of $A$ with itself.

There is also a "tensor shift", a noncommutative analog, defined on $\bigotimes_{n \in \mathbb{Z}} A$, of the shift on $S^{\mathbb{Z}}$.

## Covariant representations

To define the crossed product, we need:

## Covariant representations

To define the crossed product, we need:

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a C*-algebra $A$.

## Covariant representations

To define the crossed product, we need:

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a $C^{*}$-algebra $A$. A covariant representation of $(G, A, \alpha)$ on a Hilbert space $H$ is

## Covariant representations

To define the crossed product, we need:

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a C*-algebra $A$. A covariant representation of $(G, A, \alpha)$ on a Hilbert space $H$ is a pair $(v, \pi)$ consisting of a unitary representation $v: G \rightarrow U(H)$ (the unitary group of $H$ )

## Covariant representations

To define the crossed product, we need:

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a C*-algebra $A$. A covariant representation of $(G, A, \alpha)$ on a Hilbert space $H$ is a pair $(v, \pi)$ consisting of a unitary representation $v: G \rightarrow U(H)$ (the unitary group of $H$ ) and a representation $\pi: A \rightarrow L(H)$ (the algebra of all bounded operators on $H$ ),

## Covariant representations

To define the crossed product, we need:

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a C*-algebra $A$. A covariant representation of $(G, A, \alpha)$ on a Hilbert space $H$ is a pair $(v, \pi)$ consisting of a unitary representation $v: G \rightarrow U(H)$ (the unitary group of $H$ ) and a representation $\pi: A \rightarrow L(H)$ (the algebra of all bounded operators on $H$ ), satisfying the covariance condition

$$
v(g) \pi(a) v(g)^{*}=\pi\left(\alpha_{g}(a)\right)
$$

for all $g \in G$ and $a \in A$.

## Covariant representations

To define the crossed product, we need:

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a C*-algebra $A$. A covariant representation of $(G, A, \alpha)$ on a Hilbert space $H$ is a pair $(v, \pi)$ consisting of a unitary representation $v: G \rightarrow U(H)$ (the unitary group of $H$ ) and a representation $\pi: A \rightarrow L(H)$ (the algebra of all bounded operators on $H$ ), satisfying the covariance condition

$$
v(g) \pi(a) v(g)^{*}=\pi\left(\alpha_{g}(a)\right)
$$

for all $g \in G$ and $a \in A$. It is called nondegenerate if $\pi$ is nondegenerate.

## Covariant representations

To define the crossed product, we need:

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a C*-algebra $A$. A covariant representation of $(G, A, \alpha)$ on a Hilbert space $H$ is a pair $(v, \pi)$ consisting of a unitary representation $v: G \rightarrow U(H)$ (the unitary group of $H$ ) and a representation $\pi: A \rightarrow L(H)$ (the algebra of all bounded operators on $H$ ), satisfying the covariance condition

$$
v(g) \pi(a) v(g)^{*}=\pi\left(\alpha_{g}(a)\right)
$$

for all $g \in G$ and $a \in A$. It is called nondegenerate if $\pi$ is nondegenerate.

By convention, unitary representations are strong operator continuous.

## Covariant representations

To define the crossed product, we need:

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a C*-algebra $A$. A covariant representation of $(G, A, \alpha)$ on a Hilbert space $H$ is a pair $(v, \pi)$ consisting of a unitary representation $v: G \rightarrow U(H)$ (the unitary group of $H$ ) and a representation $\pi: A \rightarrow L(H)$ (the algebra of all bounded operators on $H$ ), satisfying the covariance condition

$$
v(g) \pi(a) v(g)^{*}=\pi\left(\alpha_{g}(a)\right)
$$

for all $g \in G$ and $a \in A$. It is called nondegenerate if $\pi$ is nondegenerate.

By convention, unitary representations are strong operator continuous. Representations of C*-algebras, and of other *-algebras are *-representations (and, similarly, homomorphisms are *-homomorphisms).

## Remarks on Banach space valued integration

The crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ is the universal $C^{*}$-algebra for covariant representations of $(G, A, \alpha)$,

## Remarks on Banach space valued integration

The crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ is the universal $C^{*}$-algebra for covariant representations of $(G, A, \alpha)$, in essentially the same way that the (full) group $C^{*}$-algebra $C^{*}(G)$ is the universal $C^{*}$-algebra for unitary representations of $G$.

## Remarks on Banach space valued integration

The crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ is the universal $C^{*}$-algebra for covariant representations of $(G, A, \alpha)$, in essentially the same way that the (full) group $C^{*}$-algebra $C^{*}(G)$ is the universal $C^{*}$-algebra for unitary representations of $G$. We construct it in a similar way to the group C*-algebra. We start with the analog of $L^{1}(G)$.

## Remarks on Banach space valued integration

The crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ is the universal $C^{*}$-algebra for covariant representations of $(G, A, \alpha)$, in essentially the same way that the (full) group $C^{*}$-algebra $C^{*}(G)$ is the universal $C^{*}$-algebra for unitary representations of $G$. We construct it in a similar way to the group C*-algebra. We start with the analog of $L^{1}(G)$.

For a general locally compact group, one needs an appropriate notion of integration of Banach space valued functions.

## Remarks on Banach space valued integration

The crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ is the universal $C^{*}$-algebra for covariant representations of $(G, A, \alpha)$, in essentially the same way that the (full) group $C^{*}$-algebra $C^{*}(G)$ is the universal $C^{*}$-algebra for unitary representations of $G$. We construct it in a similar way to the group C*-algebra. We start with the analog of $L^{1}(G)$.

For a general locally compact group, one needs an appropriate notion of integration of Banach space valued functions. One must prove that twisted convolution below is well defined, associative, distributive, and satisfies $(a b)^{*}=b^{*} a^{*}$.

## Remarks on Banach space valued integration

The crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ is the universal $C^{*}$-algebra for covariant representations of $(G, A, \alpha)$, in essentially the same way that the (full) group $C^{*}$-algebra $C^{*}(G)$ is the universal $C^{*}$-algebra for unitary representations of $G$. We construct it in a similar way to the group C*-algebra. We start with the analog of $L^{1}(G)$.

For a general locally compact group, one needs an appropriate notion of integration of Banach space valued functions. One must prove that twisted convolution below is well defined, associative, distributive, and satisfies $(a b)^{*}=b^{*} a^{*}$. Once one has the appropriate notion of integration, the proofs are similar to the proofs of the corresponding facts about convolution in $L^{1}(G)$.

## Remarks on Banach space valued integration

The crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ is the universal $C^{*}$-algebra for covariant representations of $(G, A, \alpha)$, in essentially the same way that the (full) group $C^{*}$-algebra $C^{*}(G)$ is the universal $C^{*}$-algebra for unitary representations of $G$. We construct it in a similar way to the group C*-algebra. We start with the analog of $L^{1}(G)$.

For a general locally compact group, one needs an appropriate notion of integration of Banach space valued functions. One must prove that twisted convolution below is well defined, associative, distributive, and satisfies $(a b)^{*}=b^{*} a^{*}$. Once one has the appropriate notion of integration, the proofs are similar to the proofs of the corresponding facts about convolution in $L^{1}(G)$. Integration of continuous functions with compact support is much easier than integration of $L^{1}$ functions,

## Remarks on Banach space valued integration

The crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ is the universal $C^{*}$-algebra for covariant representations of $(G, A, \alpha)$, in essentially the same way that the (full) group $C^{*}$-algebra $C^{*}(G)$ is the universal $C^{*}$-algebra for unitary representations of $G$. We construct it in a similar way to the group $C^{*}$-algebra. We start with the analog of $L^{1}(G)$.

For a general locally compact group, one needs an appropriate notion of integration of Banach space valued functions. One must prove that twisted convolution below is well defined, associative, distributive, and satisfies $(a b)^{*}=b^{*} a^{*}$. Once one has the appropriate notion of integration, the proofs are similar to the proofs of the corresponding facts about convolution in $L^{1}(G)$. Integration of continuous functions with compact support is much easier than integration of $L^{1}$ functions, but the "right" way to do this is to define measurable Banach space valued functions and their integrals.

## Remarks on Banach space valued integration

The crossed product $C^{*}$-algebra $C^{*}(G, A, \alpha)$ is the universal $C^{*}$-algebra for covariant representations of $(G, A, \alpha)$, in essentially the same way that the (full) group $C^{*}$-algebra $C^{*}(G)$ is the universal $C^{*}$-algebra for unitary representations of $G$. We construct it in a similar way to the group $C^{*}$-algebra. We start with the analog of $L^{1}(G)$.

For a general locally compact group, one needs an appropriate notion of integration of Banach space valued functions. One must prove that twisted convolution below is well defined, associative, distributive, and satisfies $(a b)^{*}=b^{*} a^{*}$. Once one has the appropriate notion of integration, the proofs are similar to the proofs of the corresponding facts about convolution in $L^{1}(G)$. Integration of continuous functions with compact support is much easier than integration of $L^{1}$ functions, but the "right" way to do this is to define measurable Banach space valued functions and their integrals. This has been done; one reference is Appendix B of the book of Williams. Things simplify considerably if $G$ is second countable and $A$ is separable, but neither of these conditions is necessary.

## Twisted convolution

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a C*-algebra $A$.

## Twisted convolution

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a $C^{*}$-algebra $A$. We let $C_{\mathrm{c}}(G, A, \alpha)$ be the ${ }^{*}$-algebra of continuous functions $a: G \rightarrow A$, with pointwise addition and scalar multiplication.

## Twisted convolution

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a $C^{*}$-algebra $A$. We let $C_{\mathrm{c}}(G, A, \alpha)$ be the *-algebra of continuous functions $a: G \rightarrow A$, with pointwise addition and scalar multiplication. Using Haar measure in the integral, we define multiplication by the following "twisted convolution":

$$
(a b)(g)=\int_{G} a(h) \alpha_{h}\left(b\left(h^{-1} g\right)\right) d h
$$

## Twisted convolution

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a $C^{*}$-algebra $A$. We let $C_{\mathrm{c}}(G, A, \alpha)$ be the *-algebra of continuous functions $a: G \rightarrow A$, with pointwise addition and scalar multiplication. Using Haar measure in the integral, we define multiplication by the following "twisted convolution":

$$
(a b)(g)=\int_{G} a(h) \alpha_{h}\left(b\left(h^{-1} g\right)\right) d h
$$

Let $\Delta$ be the modular function of $G$. We define the adjoint by

$$
a^{*}(g)=\Delta(g)^{-1} \alpha_{g}\left(a\left(g^{-1}\right)^{*}\right)
$$

## Twisted convolution

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a $C^{*}$-algebra $A$. We let $C_{\mathrm{c}}(G, A, \alpha)$ be the *-algebra of continuous functions $a: G \rightarrow A$, with pointwise addition and scalar multiplication. Using Haar measure in the integral, we define multiplication by the following "twisted convolution":

$$
(a b)(g)=\int_{G} a(h) \alpha_{h}\left(b\left(h^{-1} g\right)\right) d h
$$

Let $\Delta$ be the modular function of $G$. We define the adjoint by

$$
a^{*}(g)=\Delta(g)^{-1} \alpha_{g}\left(a\left(g^{-1}\right)^{*}\right)
$$

We define a norm $\|\cdot\|_{1}$ on $C_{c}(G, A, \alpha)$ by $\|a\|_{1}=\int_{G}\|a(g)\| d g$.

## Twisted convolution

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a $C^{*}$-algebra $A$. We let $C_{\mathrm{c}}(G, A, \alpha)$ be the *-algebra of continuous functions $a: G \rightarrow A$, with pointwise addition and scalar multiplication. Using Haar measure in the integral, we define multiplication by the following "twisted convolution":

$$
(a b)(g)=\int_{G} a(h) \alpha_{h}\left(b\left(h^{-1} g\right)\right) d h
$$

Let $\Delta$ be the modular function of $G$. We define the adjoint by

$$
a^{*}(g)=\Delta(g)^{-1} \alpha_{g}\left(a\left(g^{-1}\right)^{*}\right)
$$

We define a norm $\|\cdot\|_{1}$ on $C_{c}(G, A, \alpha)$ by $\|a\|_{1}=\int_{G}\|a(g)\| d g$. One checks that $\|a b\|_{1} \leq\|a\|_{1}\|b\|_{1}$ and $\left\|a^{*}\right\|_{1}=\|a\|_{1}$.

## Twisted convolution

## Definition

Let $\alpha: G \rightarrow \operatorname{Aut}(A)$ be an action of a locally compact group $G$ on a $C^{*}$-algebra $A$. We let $C_{\mathrm{c}}(G, A, \alpha)$ be the *-algebra of continuous functions $a: G \rightarrow A$, with pointwise addition and scalar multiplication. Using Haar measure in the integral, we define multiplication by the following "twisted convolution":

$$
(a b)(g)=\int_{G} a(h) \alpha_{h}\left(b\left(h^{-1} g\right)\right) d h
$$

Let $\Delta$ be the modular function of $G$. We define the adjoint by

$$
a^{*}(g)=\Delta(g)^{-1} \alpha_{g}\left(a\left(g^{-1}\right)^{*}\right)
$$

We define a norm $\|\cdot\|_{1}$ on $C_{c}(G, A, \alpha)$ by $\|a\|_{1}=\int_{G}\|a(g)\| d g$. One checks that $\|a b\|_{1} \leq\|a\|_{1}\|b\|_{1}$ and $\left\|a^{*}\right\|_{1}=\|a\|_{1}$. Then $L^{1}(G, A, \alpha)$ is the Banach *-algebra obtained by completing $C_{\mathrm{c}}(G, A, \alpha)$ in $\|\cdot\|_{1}$.

## Twisted convolution (continued)

## Exercise

Assuming suitable versions of Fubini's Theorem for Banach space valued integrals,

## Twisted convolution (continued)

## Exercise

Assuming suitable versions of Fubini's Theorem for Banach space valued integrals, check that that multiplication in $C_{\mathrm{c}}(G, A, \alpha)$ is associative.

## Twisted convolution (continued)

## Exercise

Assuming suitable versions of Fubini's Theorem for Banach space valued integrals, check that that multiplication in $C_{\mathrm{c}}(G, A, \alpha)$ is associative. Further check for $a, b \in C_{\mathrm{c}}(G, A, \alpha)$ that $\|a b\|_{1} \leq\|a\|_{1}\|b\|_{1}$,

## Twisted convolution (continued)

## Exercise

Assuming suitable versions of Fubini's Theorem for Banach space valued integrals, check that that multiplication in $C_{\mathrm{c}}(G, A, \alpha)$ is associative. Further check for $a, b \in C_{\mathrm{c}}(G, A, \alpha)$ that $\|a b\|_{1} \leq\|a\|_{1}\|b\|_{1}$, that $(a b)^{*}=b^{*} a^{*}$,

## Twisted convolution (continued)

## Exercise

Assuming suitable versions of Fubini's Theorem for Banach space valued integrals, check that that multiplication in $C_{\mathrm{c}}(G, A, \alpha)$ is associative. Further check for $a, b \in C_{c}(G, A, \alpha)$ that $\|a b\|_{1} \leq\|a\|_{1}\|b\|_{1}$, that $(a b)^{*}=b^{*} a^{*}$, and that $\left\|a^{*}\right\|_{1}=\|a\|_{1}$.

## Twisted convolution (continued)

## Exercise

Suppose $A=C_{0}(X)$, and $\alpha$ comes from an action of $G$ on $X$.

## Twisted convolution (continued)

## Exercise

Suppose $A=C_{0}(X)$, and $\alpha$ comes from an action of $G$ on $X$. Since we complete in a suitable norm later on, it suffices to use only the dense subalgebra $C_{\mathrm{c}}(X)$ in place of $C_{0}(X)$.

## Twisted convolution (continued)

## Exercise

Suppose $A=C_{0}(X)$, and $\alpha$ comes from an action of $G$ on $X$. Since we complete in a suitable norm later on, it suffices to use only the dense subalgebra $C_{\mathrm{c}}(X)$ in place of $C_{0}(X)$. There is an obvious identification of $C_{\mathrm{c}}\left(G, C_{\mathrm{c}}(X)\right)$ with $C_{\mathrm{c}}(G \times X)$.

## Twisted convolution (continued)

## Exercise

Suppose $A=C_{0}(X)$, and $\alpha$ comes from an action of $G$ on $X$. Since we complete in a suitable norm later on, it suffices to use only the dense subalgebra $C_{\mathrm{c}}(X)$ in place of $C_{0}(X)$. There is an obvious identification of $C_{\mathrm{c}}\left(G, C_{\mathrm{c}}(X)\right)$ with $C_{\mathrm{c}}(G \times X)$. Check that, on $C_{\mathrm{c}}(G \times X)$, the formulas for multiplication and adjoint become

$$
\left(f_{1} f_{2}\right)(g, x)=\int_{G} f_{1}(h, x) f_{2}\left(h^{-1} g, h^{-1} x\right) d h
$$

## Twisted convolution (continued)

## Exercise

Suppose $A=C_{0}(X)$, and $\alpha$ comes from an action of $G$ on $X$. Since we complete in a suitable norm later on, it suffices to use only the dense subalgebra $C_{\mathrm{c}}(X)$ in place of $C_{0}(X)$. There is an obvious identification of $C_{\mathrm{c}}\left(G, C_{\mathrm{c}}(X)\right)$ with $C_{\mathrm{c}}(G \times X)$. Check that, on $C_{\mathrm{c}}(G \times X)$, the formulas for multiplication and adjoint become

$$
\left(f_{1} f_{2}\right)(g, x)=\int_{G} f_{1}(h, x) f_{2}\left(h^{-1} g, h^{-1} x\right) d h
$$

and

$$
f^{*}(g, x)=\Delta(g)^{-1} \overline{f\left(g^{-1}, g^{-1} x\right)}
$$

