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Comments on the notes

The handout contains much more material than I will give in the lectures.

Please let me know of any misprints, mistakes, etc. found in the handout!

Sign up for the operator algebraist email directory, by emailing:
ncp@uoregon.edu.
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Outline

A brief outline of the lectures:

Introductory material and basic definitions

Examples of group actions.

Construction of the crossed product of an action by a discrete group.

Examples of some elementary computations of crossed products.

Simplicity of crossed products by minimal homeomorphisms.

Toward the classification of crossed products by minimal
homeomorphisms.
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Actions of groups on C*-algebras

Definition

Let G be a locally compact group, and let A be a C*-algebra.

An action of
G on A is a homomorphism α : G → Aut(A), usually written g 7→ αg ,
such that, for every a ∈ A, the function g 7→ αg (a), from G to A, is norm
continuous.

On a von Neumann algebra, substitute the σ-weak operator topology for
the norm topology.

The continuity condition is the analog of requiring that a unitary
representation of G on a Hilbert space be continuous in the strong
operator topology. It is usually much too strong a condition to require
that g 7→ αg be a norm continuous map from G to the bounded operators
on A.

Of course, if G is discrete, it doesn’t matter. In this course, we will
concentrate on discrete G .
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We will construct crossed products

Given α : G → Aut(A), we will construct a crossed product C*-algebra
C ∗(G ,A, α)

and a reduced crossed product C*-algebra C ∗r (G ,A, α). (There
are many other commonly used notations. See Remark 3.16 in the notes.)

If A is unital and G is discrete, it is a suitable completion of the algebraic
skew group ring A[G ], with multiplication determined by gag−1 = αg (a)
for g ∈ G and a ∈ A.
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Motivation for group actions on C*-algebras and their
crossed products

Let G be a locally compact group obtained as a semidirect product
G = N o H. The action of H on N gives actions of H on the full and
reduced group C*-algebras C ∗(N) and C ∗r (N), and one has
C ∗(G ) ∼= C ∗(H, C ∗(N)) and C ∗r (G ) ∼= C ∗r (H, C ∗(N)).

Probably the most important group action is time evolution: if a
C*-algebra A is supposed to represent the possible states of a physical
system in some manner, then there should be an action α : R→ Aut(A)
which describes the time evolution of the system. Actions of Z, which are
easier to study, can be though of as “discrete time evolution”.

Crossed products are a common way of constructing simple C*-algebras.
We will see some examples later.
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Motivation for group actions on C*-algebras and their
crossed products (continued)

If one has a homeomorphism h of a locally compact Hausdorff space X ,
the crossed product C ∗(Z,X , h) sometimes carries considerable
information about the dynamics of h. The best known example is the
result of Giordano, Putnam, and Skau on minimal homeomorphisms of the
Cantor set: isomorphism of the transformation group C*-algebras is
equivalent to strong orbit equivalence of the homeomorphisms.

For compact groups, equivariant indices take values on the equivariant
K-theory of a suitable C*-algebra with an action of the group. When the
group is not compact, one usually needs instead the K-theory of the
crossed product C*-algebra, or of the reduced crossed product C*-algebra.
(When the group is compact, this is the same thing.)

In other situations as well, the K-theory of the full or reduced crossed
product is the appropriate substitute for equivariant K-theory.
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The commutative case

Definition

A continuous action of a topological group G on a topological space X is
a continuous function G × X → X , usually written (g , x) 7→ g · x or
(g , x) 7→ gx , such that (gh)x = g(hx) for all g , h ∈ G and x ∈ X and
1 · x = x for all x ∈ X .

For a continuous action of a locally compact group G on a locally compact
Hausdorff space X , there is a corresponding action α : G → Aut(C0(X )),
given by αg (f )(x) = f (g−1x).

(If G is not abelian, the inverse is necessary to get αg ◦ αh = αgh rather
than αhg .)
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The commutative case (continued)

Exercise

Let G be a locally compact group, and let X be a locally compact
Hausdorff space. Prove that the formulas given above determine a one to
one correspondence between continuous actions of G on X and continuous
actions of G on C0(X ).

(The main point is to show that an action on X is
continuous if and only if the corresponding action on C0(X ) is continuous.)
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More about these lectures
There are many directions in the theory of crossed products. These
lectures are biased towards the general problem of classifying crossed
products by finite groups, by Z, and by more complicated groups,

in cases
in which these crossed products are expected to be simple. (However, we
will not get very far in that direction.)

I should at least mention some of the other directions:

Coactions and actions of C* Hopf algebras (“quantum groups”).

Von Neumann algebra crossed products.

Smooth crossed products.

C*-algebras of groupoids.

K-theory of crossed products: the Baum-Connes conjecture.

The Connes spectrum and its generalizations.

Ideal structure of crossed products.

For more, see the end of Section 1 of the notes.
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Examples of group actions on C*-algebras

We will give some examples of group actions on C*-algebras. (Not all of
them give interesting crossed products.)

We start with examples of group actions on locally compact spaces, which
give rise to examples of group actions on commutative C*-algebras.

We will discuss some of their crossed products later, but in some of the
examples we state the results immediately. As one goes through the
commutative examples, note that a closed orbit of the form Gx ∼= G/H
gives rise to a quotient of the crossed product isomorphic to
K (L2(G/H))⊗ C ∗(H)

There are more examples in the notes.
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Example 1

Example

The group G is arbitrary locally compact, the space X consists of just one
point, and the action is trivial.

This gives the trivial action of G on the C*-algebra C. The full and
reduced crossed products are the usual full and reduced group C*-algebras
C ∗(G ) and C ∗r (G ).
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Example 2

Example

The group G is arbitrary locally compact, X = G , and the action is given
by the group operation: g · x = gx . (This action is called (left) translation.)

The full and reduced crossed products are both isomorphic to K (L2(G )).

More generally, if H ⊂ G is a closed subgroup, then G acts continuously
on G/H by translation. The trivial action above is the case H = G .

It turns out that C ∗(G , G/H) ∼= K (L2(G/H))⊗C ∗(H). Note that there is
no “twisting”.
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Example 3

Example

Take X = S1 = {ζ ∈ C : |ζ| = 1}. Taking G = S1, acting by translation,
gives a special case of a previous example.

But we can also take G to be
the finite subgroup (isomorphic to Z/nZ) of S1 of order n generated by
exp(2πi/n), still acting by translation (in this case, usually called
rotation). Or we can fix θ ∈ R, and take G = Z, with n ∈ Z acting by
ζ 7→ exp(2πinθ)ζ. These are rational rotations (for θ ∈ Q) or irrational
rotations (for θ 6∈ Q).

The crossed product for the action of Z/nZ turns out to be isomorphic to
C (S1,Mn). (Note that there is no “twisting”.)

The crossed products for the actions of Z are the well known (rational or
irrational) rotation algebras. (This will be essentially immediate from the
definitions.)
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Example 4

Example

Take X = {0, 1}Z, with elements being described as x = (xn)n∈Z. Take
G = Z, with action generated by the shift homeomorphism h(x)n = xn−1

for x ∈ X and n ∈ Z.

Further examples (“subshifts”) can be gotten by restricting to invariant
subsets of X . One can also replace {0, 1} by some other compact metric
space S .
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Example 5

Example

Fix a prime p, and let X = Zp, the group of p-adic integers.

(This group
can be defined as the completion of Z in the metric d(m, n) = p−d when
pd is the largest power of p which divides n −m. Alternatively, it is
lim←−Z/pdZ.) It is a compact topological group, and as a metric space it is
homeomorphic to the Cantor set. Let h : X → X be the homeomorphism
defined on the dense subset Z by h(n) = n + 1.

Many generalizations are possible in the inverse limit version of the
construction. One need not use a prime, nor even the same number at
each stage of the inverse limit.
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Example 6

Example

Take X = Sn = {x ∈ Rn+1 : ‖x‖2 = 1}. Then the homeomorphism
x 7→ −x has order 2, and so gives an action of Z/2Z on Sn.

The crossed product turns out to be isomorphic to the section algebra of a
locally trivial but nontrivial bundle over the real projective space
RPn = Sn/(Z/2Z) with fiber M2.
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Example 7

Example

Take X = S1 = {ζ ∈ C : |ζ| = 1}, and consider the order 2
homeomorphism ζ 7→ ζ. We get an action of Z/2Z on S1.
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Example 8

Example

The group SL2(Z) acts on S1 × S1 as follows.

For

n =

(
n1,1 n1,2

n2,1 n2,2

)
∈ SL2(Z),

let n act on R2 via the usual matrix multiplication. Since n has integer
entries, one gets nZ2 ⊂ Z2, and thus the action is well defined on
R2/Z2 ∼= S1 × S1.

N. Christopher Phillips () Lisboa Summer School Course on Crossed Product C*-Algebras15 June 2009 19 / 35



Example 8

Example

The group SL2(Z) acts on S1 × S1 as follows. For

n =

(
n1,1 n1,2

n2,1 n2,2

)
∈ SL2(Z),

let n act on R2 via the usual matrix multiplication. Since n has integer
entries, one gets nZ2 ⊂ Z2, and thus the action is well defined on
R2/Z2 ∼= S1 × S1.

N. Christopher Phillips () Lisboa Summer School Course on Crossed Product C*-Algebras15 June 2009 19 / 35



Example 8

Example

The group SL2(Z) acts on S1 × S1 as follows. For

n =

(
n1,1 n1,2

n2,1 n2,2

)
∈ SL2(Z),

let n act on R2 via the usual matrix multiplication.

Since n has integer
entries, one gets nZ2 ⊂ Z2, and thus the action is well defined on
R2/Z2 ∼= S1 × S1.

N. Christopher Phillips () Lisboa Summer School Course on Crossed Product C*-Algebras15 June 2009 19 / 35



Example 8

Example

The group SL2(Z) acts on S1 × S1 as follows. For

n =

(
n1,1 n1,2

n2,1 n2,2

)
∈ SL2(Z),

let n act on R2 via the usual matrix multiplication. Since n has integer
entries, one gets nZ2 ⊂ Z2,

and thus the action is well defined on
R2/Z2 ∼= S1 × S1.

N. Christopher Phillips () Lisboa Summer School Course on Crossed Product C*-Algebras15 June 2009 19 / 35



Example 8

Example

The group SL2(Z) acts on S1 × S1 as follows. For

n =

(
n1,1 n1,2

n2,1 n2,2

)
∈ SL2(Z),

let n act on R2 via the usual matrix multiplication. Since n has integer
entries, one gets nZ2 ⊂ Z2, and thus the action is well defined on
R2/Z2 ∼= S1 × S1.

N. Christopher Phillips () Lisboa Summer School Course on Crossed Product C*-Algebras15 June 2009 19 / 35



Example 9

Notation: If A is a unital C*-algebra and u ∈ A is unitary, then Ad(u) is
the automorphism a 7→ uau∗ of A.

Example

Let G be a locally compact group, let A be a unital C*-algebra, and let
g 7→ zg be a norm continuous group homomorphism from G to the unitary
group U(A) of A. Then the formula

αg (a) = Ad(zg ),

for g ∈ G and a ∈ A, defines an action of G on A.

Actions obtained this way are called inner actions.

The crossed product turns out to be isomorphic to the crossed product by
the trivial action.
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Example 10

An action via inner automorphisms is not necessarily an inner action.
There are no counterexamples with G = Z (trivial)

or G finite cyclic and A
is simple (easy; see exercise below). Here is the smallest counterexample.

Example

Let A = M2, let G = (Z/2Z)2 with generators g1 and g2, and set

α1 = idA, αg1 = Ad
(

1 0
0 −1

)
, αg2 = Ad ( 0 1

1 0 ) , and αg1g2 = Ad
(

0 1
−1 0

)
.

These define an action α : G → Aut(A) such that αg is inner for all
g ∈ G , but such that there is no homomorphism g 7→ zg ∈ U(A) such that
αg = Ad(zg ) for all g ∈ G . The point is that the implementing unitaries
for αg1 and αg2 commute up to a scalar, but can’t be appropriately
modified to commute exactly.

The crossed product turns out to be isomorphic to M4.
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Example 11 (continued)

Exercise

Let A be a simple unital C*-algebra, and let α : Z/nZ→ Aut(A) be an
action such that each automorphism αg , for g ∈ Z/nZ, is an inner
automorphism.

Prove that α is an inner action in the sense above.

Problem

Find a counterexample when A is not assumed simple. (I presume that a
counterexample exists, but I do not know of one.)

Exercise

Prove the statements made in the example on the previous slide.
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Example 12

Example

For θ ∈ R, let Aθ be the rotation algebra,

which is the universal
C*-algebra generated by two unitaries u and v satisfying the commutation
relation vu = exp(2πiθ)uv . (The convention e2πiθ instead of e iθ has
become so standard that it can’t be changed.) (If θ 6∈ Q, then Aθ is
known to be simple. Thus, one may take any C*-algebra generated by two
unitaries satisfying the appropriate commutation relation.) The group
SL2(Z) acts on Aθ by sending the matrix

n =

(
n1,1 n1,2

n2,1 n2,2

)
to the automorphism determined by

αn(u) = exp(πin1,1n2,1θ)u
n1,1vn2,1 and αn(v) = exp(πin1,2n2,2θ)u

n1,2vn2,2 .
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Example 12 (continued)

The algebra Aθ is often considered to be a noncommutative analog of the
torus S1 × S1

(more accurately, of A0
∼= C (S1 × S1)), and this action is

the analog of the action of SL2(Z) on S1 × S1 above.

The group SL2(Z) has finite subgroups of orders 2, 3, 4, and 6. Restriction
of the action gives actions of these groups on rotation algebras. The
crossed products by these actions have been intensively studied. Recently,
it has been proved that for θ 6∈ Q they are all AF.
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Example 13

Example

Let Aθ be generated by unitaries u and v as in the previous example.

For
ζ1, ζ2 ∈ S1, the unitaries ζ1u and ζ2v satisfy the same commutation
relation. Therefore there is an action α : S1 × S1 → Aut(Aθ) determined
by

α(ζ1,ζ2)(u) = ζ1u and α(ζ1,ζ2)(v) = ζ2v .

Checking continuity of the action requires a 3ε argument.

If we fix ζ1, ζ2 ∈ S1, then α(ζ1,ζ2) generates an action of Z. If both have
finite order, we get an action of a finite cyclic group. For example, there is
an action of Z/nZ generated by the automorphism which sends u to
exp(2πi/n)u and v to v .
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Example 14

Example

Recall that the Cuntz algebra On is the universal unital C*-algebra on
generators s1, s2, . . . , sn, subject to the relations s∗j sj = 1 for 1 ≤ j ≤ n
and

∑n
j=1 sjs

∗
j = 1. (It is in fact simple.)

There is an action of (S1)n on On such that α(ζ1,ζ2,...,ζn)(sj) = ζjsj for
1 ≤ j ≤ n.

In fact, regarding (S1)n as the diagonal unitary matrices, this action
extends to an action of the unitary group U(Mn) on On, defined as follows.
If u = (uj ,k)nj ,k=1 ∈ Mn is unitary, then define an automorphism αu of On

by the following action on the generating isometries s1, s2, . . . , sn:

αu(sj) =
n∑

k=1

uk,jsk .

This determines a continuous action of the compact group U(Mn) on On.
Any individual automorphism from this action gives an action of Z on On.
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Example 14 (continued)

Exercise

Verify that the formula above does in fact define a continuous action of
U(Mn) on On.

(Check that the elements ζjsj satisfy the required relations. Use a
3ε argument to prove continuity.)
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Example 15

Example

Let k1, k2, . . . be integers with all kn ≥ 2. Consider the UHF algebra A of
type

∏∞
n=1 kn.

We construct it as
⊗∞

n=1 Mkn , or, in more detail, as lim−→An

with An = Mk1 ⊗Mk2 ⊗ · · · ⊗Mkn . Note that An = An−1 ⊗Mkn , and the
map ϕn : An−1 → An is given by a 7→ a⊗ 1Mkn

.

Let G be a locally compact group, and let β(n) : G → Aut(Mkn) be an
action of G on Mkn . Then define an action α(n) : G → Aut(An) by

α
(n)
g (a1 ⊗ a2 ⊗ · · · ⊗ an) = β

(1)
g (a1)⊗ β

(2)
g (a2)⊗ · · · ⊗ β

(n)
g (an).

One checks immediately that ϕn ◦ α
(n−1)
g = α

(n)
g ◦ ϕn for all n ∈ Z>0 and

g ∈ G , so there is a direct limit action g 7→ αg of G on A = lim−→An. (One
needs a 3ε argument to prove continuity.)
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Example 15 (continued)

The easiest way to get such an action is to choose a unitary representation

g 7→ un(g) on Ckn , and set β
(n)
g (a) = un(g)aun(g)∗ for g ∈ G and

a ∈ Mkn .

In this case, the resulting action is called a product type action.

As a specific example, take G = Z/2Z, and for every n take kn = 2 and
take β(n) to be generated by Ad

(
1 0
0 −1

)
.

Exercise

Prove that the actions above really are continuous.
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Example 16

Example

Let A be a unital C*-algebra. The tensor flip is the automorphism

ϕ ∈ Aut(A⊗max A) of order 2 determined by the formula
ϕ(a⊗ b) = b ⊗ a for a, b ∈ A. (Use the universal property of A⊗max A.)
This gives an action of Z/2Z on A⊗max A.

Similarly, the same formula defines a tensor flip action of Z/2Z on
A⊗min A. (Choose an injective representation π : A→ L(H), and consider
π ⊗ π as a representation of A⊗min A on H ⊗ H.)

In a similar manner, the symmetric group Sn acts on the n-fold maximal
and minimal tensor products of A with itself.

There is also a “tensor shift”, a noncommutative analog, defined on⊗
n∈Z A, of the shift on SZ.
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ϕ(a⊗ b) = b ⊗ a for a, b ∈ A. (Use the universal property of A⊗max A.)
This gives an action of Z/2Z on A⊗max A.

Similarly, the same formula defines a tensor flip action of Z/2Z on
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Covariant representations
To define the crossed product, we need:

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. A covariant representation of (G ,A, α) on a Hilbert space H
is a pair (v , π) consisting of a unitary representation v : G → U(H) (the
unitary group of H) and a representation π : A→ L(H) (the algebra of all
bounded operators on H), satisfying the covariance condition

v(g)π(a)v(g)∗ = π(αg (a))

for all g ∈ G and a ∈ A. It is called nondegenerate if π is nondegenerate.

By convention, unitary representations are strong operator continuous.
Representations of C*-algebras, and of other *-algebras are
*-representations (and, similarly, homomorphisms are *-homomorphisms).
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Remarks on Banach space valued integration

The crossed product C*-algebra C ∗(G ,A, α) is the universal C*-algebra for
covariant representations of (G ,A, α),

in essentially the same way that the
(full) group C*-algebra C ∗(G ) is the universal C*-algebra for unitary
representations of G . We construct it in a similar way to the group
C*-algebra. We start with the analog of L1(G ).

For a general locally compact group, one needs an appropriate notion of
integration of Banach space valued functions. One must prove that
twisted convolution below is well defined, associative, distributive, and
satisfies (ab)∗ = b∗a∗. Once one has the appropriate notion of integration,
the proofs are similar to the proofs of the corresponding facts about
convolution in L1(G ). Integration of continuous functions with compact
support is much easier than integration of L1 functions, but the “right”
way to do this is to define measurable Banach space valued functions and
their integrals. This has been done; one reference is Appendix B of the
book of Williams. Things simplify considerably if G is second countable
and A is separable, but neither of these conditions is necessary.
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Twisted convolution

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A.

We let Cc(G ,A, α) be the *-algebra of continuous functions
a : G → A, with pointwise addition and scalar multiplication. Using Haar
measure in the integral, we define multiplication by the following “twisted
convolution”:

(ab)(g) =

∫
G

a(h)αh(b(h−1g)) dh.

Let ∆ be the modular function of G . We define the adjoint by

a∗(g) = ∆(g)−1αg (a(g−1)∗).

We define a norm ‖ · ‖1 on Cc(G ,A, α) by ‖a‖1 =
∫
G ‖a(g)‖ dg . One

checks that ‖ab‖1 ≤ ‖a‖1‖b‖1 and ‖a∗‖1 = ‖a‖1. Then L1(G ,A, α) is the
Banach *-algebra obtained by completing Cc(G ,A, α) in ‖ · ‖1.
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Twisted convolution (continued)

Exercise

Assuming suitable versions of Fubini’s Theorem for Banach space valued
integrals,

check that that multiplication in Cc(G ,A, α) is associative.
Further check for a, b ∈ Cc(G ,A, α) that ‖ab‖1 ≤ ‖a‖1‖b‖1, that
(ab)∗ = b∗a∗, and that ‖a∗‖1 = ‖a‖1.
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Twisted convolution (continued)

Exercise

Suppose A = C0(X ), and α comes from an action of G on X .

Since we
complete in a suitable norm later on, it suffices to use only the dense
subalgebra Cc(X ) in place of C0(X ). There is an obvious identification of
Cc(G , Cc(X )) with Cc(G × X ). Check that, on Cc(G × X ), the formulas
for multiplication and adjoint become

(f1f2)(g , x) =

∫
G

f1(h, x)f2(h
−1g , h−1x) dh

and
f ∗(g , x) = ∆(g)−1f (g−1, g−1x).
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