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Reminder: Covariant representations

To define the crossed product, we need:

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. A covariant representation of (G ,A, α) on a Hilbert space H
is a pair (v , π) consisting of a unitary representation v : G → U(H) (the
unitary group of H) and a representation π : A → L(H) (the algebra of all
bounded operators on H), satisfying the covariance condition

v(g)π(a)v(g)∗ = π(αg (a))

for all g ∈ G and a ∈ A. It is called nondegenerate if π is nondegenerate.
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Reminder: Twisted convolution

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A.

We let Cc(G ,A, α) be the *-algebra of continuous functions
a : G → A, with pointwise addition and scalar multiplication. Using Haar
measure in the integral, we define multiplication by the following “twisted
convolution”:

(ab)(g) =

∫
G

a(h)αh(b(h−1g)) dh.

Let ∆ be the modular function of G . We define the adjoint by

a∗(g) = ∆(g)−1αg (a(g−1)∗).

We define a norm ‖ · ‖1 on Cc(G ,A, α) by ‖a‖1 =
∫
G ‖a(g)‖ dg . One

checks that ‖ab‖1 ≤ ‖a‖1‖b‖1 and ‖a∗‖1 = ‖a‖1. Then L1(G ,A, α) is the
Banach *-algebra obtained by completing Cc(G ,A, α) in ‖ · ‖1.
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Reminder: Twisted convolution (continued)

Exercise

Assuming suitable versions of Fubini’s Theorem for Banach space valued
integrals,

check that that multiplication in Cc(G ,A, α) is associative.
Further check for a, b ∈ Cc(G ,A, α) that ‖ab‖1 ≤ ‖a‖1‖b‖1, that
(ab)∗ = b∗a∗, and that ‖a∗‖1 = ‖a‖1.
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Reminder: Twisted convolution (continued)

Exercise

Suppose A = C0(X ), and α comes from an action of G on X .

Since we
complete in a suitable norm later on, it suffices to use only the dense
subalgebra Cc(X ) in place of C0(X ). There is an obvious identification of
Cc(G , Cc(X )) with Cc(G × X ). Check that, on Cc(G × X ), the formulas
for multiplication and adjoint become

(f1f2)(g , x) =

∫
G

f1(h, x)f2(h
−1g , h−1x) dh

and
f ∗(g , x) = ∆(g)−1f (g−1, g−1x).
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When G is discrete

If G is discrete, we choose Haar measure to be counting measure.

In this
case, Cc(G ,A, α) is, as a vector space, the group ring A[G ], consisting of
all finite formal linear combinations of elements in G with coefficients in
A. The multiplication and adjoint are given by

(a·g)(b·h) = (a[gbg−1])·(gh) = (aαg (b))·(gh) and (a·g)∗ = α−1
g (a∗)·g−1

for a, b ∈ A and g , h ∈ G , extended linearly. This definition makes sense in
the purely algebraic situation, where it is called the skew group ring.

We also often write l1(G ,A, α) instead of L1(G ,A, α).
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When G is discrete (continued)

Let α : G → Aut(A) be an action of a discrete group G on a unital
C*-algebra A.

In these notes, we will adopt the following fairly commonly
used notation. For g ∈ G , we let ug be the element of Cc(G ,A, α) which
takes the value 1A at g and 0 at the other elements of G . We use the
same notation for its image in l1(G ,A, α) (above) and in C ∗(G ,A, α) and
C ∗

r (G ,A, α) (defined below). It is unitary, and we call it the canonical
unitary associated with g .

In particular, l1(G ,A, α) is the set of all sums
∑

g∈G agug with ag ∈ A

and
∑

g∈G ‖ag‖ <∞. These sums converge in l1(G ,A, α), and hence also
in C ∗(G ,A, α) and C ∗

r (G ,A, α). A general element of C ∗
r (G ,A, α) has

such an expansion, but unfortunately the series one writes down generally
does not converge. See the discussion later.
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takes the value 1A at g and 0 at the other elements of G . We use the
same notation for its image in l1(G ,A, α) (above) and in C ∗(G ,A, α) and
C ∗

r (G ,A, α) (defined below). It is unitary, and we call it the canonical
unitary associated with g .

In particular, l1(G ,A, α) is the set of all sums
∑

g∈G agug with ag ∈ A

and
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g∈G ‖ag‖ <∞. These sums converge in l1(G ,A, α), and hence also
in C ∗(G ,A, α) and C ∗

r (G ,A, α). A general element of C ∗
r (G ,A, α) has
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The integrated form of a covariant representation

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A, and let (v , π) be a covariant representation of (G ,A, α) on
a Hilbert space H.

Then the integrated form of (v , π) is the representation
σ : Cc(G ,A, α) → L(H) given by

σ(a)ξ =

∫
G
π(a(g))v(g)ξ dg .

(This representation is sometimes called v × π or π × v .)

One needs to be more careful with the integral here, because v is generally
only strong operator continuous, not norm continuous. Nevertheless, one
gets ‖σ(a)‖ ≤ ‖a‖1, so σ extends to a representation of L1(G ,A, α). We
use the same notation σ for this extension.
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The integrated form of a covariant representation
(continued)

One needs to check that σ is a representation.

When G is discrete and A
is unital, the formula for σ comes down to σ(aug ) = π(a)v(g) for a ∈ A
and g ∈ G . Then

σ(aug )σ(buh) = π(a)v(g)π(b)v(g)∗v(g)v(h) = π(a)π(αg (b))v(g)v(h)

= π(aαg (b))v(gh) = σ
(
[aαg (b)]ugh

)
= σ

(
(aug )(buh)

)
.

Exercise

Starting from this computation, fill in the details of the proof that the
integrated form representation σ really is a nondegenerate representation
of Cc(G ,A, α).
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The integrated form of a covariant representation
(continued)

Theorem (Proposition 7.6.4 of Pedersen’s book)

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A.

Then the integrated form construction defines a bijection
from the set of covariant representations of (G ,A, α) on a Hilbert space H
to the set of nondegenerate continuous representations of L1(G ,A, α) on
the same Hilbert space.

In particular, since integrated form representations of L1(G ,A, α) are
necessarily contractive, all continuous representations of L1(G ,A, α) are
necessarily contractive.
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The integrated form when G is discrete

If G is discrete and A is unital, then there are homomorphic images of
both G and A inside Cc(G ,A, α),

given by g 7→ ug and a 7→ au1, so it is
clear how to get a covariant representation of (G ,A, α) from a
nondegenerate representation of Cc(G ,A, α). In general, one must use the
multiplier algebra of L1(G ,A, α), which contains copies of M(A) and
M(L1(G )). The point is that M(L1(G )) is the measure algebra of G , and
therefore contains the group elements as point masses.

Exercise

Prove the theorem on the previous slide when G is discrete and A is unital.

For a small taste of the general case, use approximate identities in A to
generalize to the case in which A is not necessarily unital.
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The universal representation and the crossed product

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. We define the universal representation σ of L1(G ,A, α)

to
be the direct sum of all nondegenerate representations of L1(G ,A, α) on
Hilbert spaces. Then we define the crossed product C ∗(G ,A, α) to be the
norm closure of σ(L1(G ,A, α)).

One could of course equally well use the norm closure of σ(Cc(G ,A, α)).

There is a minor set theoretic detail: the collection of all nondegenerate
representations of L1(G ,A, α) is not a set. There are several standard
ways to deal with this problem, but in these notes we will ignore the issue.

Exercise

Give a set theoretically correct definition of the crossed product.

The important point is to preserve the universal property below.
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ways to deal with this problem, but in these notes we will ignore the issue.
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Give a set theoretically correct definition of the crossed product.

The important point is to preserve the universal property below.
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The universal representation and the crossed product
(continued)

It follows that every covariant representation of (G ,A, α) gives a
representation of C ∗(G ,A, α).

(Take the integrated form, and restrict
elements of C ∗(G ,A, α) to the appropriate summand in the direct sum in
the definition above.) The crossed product is, essentially by construction,
the universal C*-algebra for covariant representations of (G ,A, α), in the
same sense that if G is a locally compact group, then C ∗(G ) is the
universal C*-algebra for unitary representations of G .

There are many notations in use for crossed products, including:

C ∗(G ,A, α) and C ∗
r (G ,A, α).

C ∗(A,G , α) and C ∗
r (A,G , α).

A oα G and A oα,r G (used in Williams’ book).

A×α G and A×α,r G (used in Davidson’s book).

G ×α A and G ×α,r A (used in Pedersen’s book).
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The universal representation and the crossed product when
G is discrete

Theorem

Let α : G → Aut(A) be an action of a discrete group G on a unital
C*-algebra A.

Then C ∗(G ,A, α) is the universal C*-algebra generated by a
unital copy of A (that is, the identity of A is supposed to be the identity of
the generated C*-algebra) and unitaries ug , for g ∈ G , subject to the
relations uguh = ugh for g , h ∈ G and ugau∗g = αg (a) for a ∈ A and
g ∈ G .

Corollary

Let A be a unital C*-algebra, and let α ∈ Aut(A). Then the crossed
product C ∗(Z,A, α) is the universal C*-algebra generated by a copy of A
and a unitary u, subject to the relations uau∗ = α(a) for a ∈ A.
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The universal representation and the crossed product when
G is discrete (continued)

Exercise

Based on the discussion above, write down a careful proof of the theorem.
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Regular covariant representations

So far, it is not clear that there are any covariant representations.

Definition (7.7.1 of Pedersen’s book)

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. Let π0 : A → L(H0) be a representation. We define the
regular covariant representation (v , π) of (G ,A, α) on the Hilbert space
H = L2(G ,H0) of L2 functions from G to H as follows. For g , h ∈ G , set

(v(g)ξ)(h) = ξ(g−1h).

For a ∈ A and g ∈ G , set

(π(a)ξ)(h) = π0(αh−1(a))(ξ(h)).

The integrated form of σ, will be called a regular representation of any of
Cc(G ,A, α), L1(G ,A, α), C ∗(G ,A, α), and (when defined) C ∗

r (G ,A, α).
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The Hilbert space of the regular covariant representation

The easy way to construct L2(G ,H) is to take it to be the completion of
Cc(G ,H) in the norm coming from the scalar product

〈ξ, η〉 =

∫
G
〈ξ(g), η(g)〉 dg .
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Reduced crossed products

Exercise

Suppose that G is discrete. Prove that a regular representation really is a
covariant representation.

If A = C, H0 = C, and π0 is the obvious representation of A on H0, then
the regular representation is the usual left regular representation of G .

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. Let λ : L1(G ,A, α) → L(H) be the direct sum of all regular
representations of L1(G ,A, α). We define the reduced crossed product
C ∗

r (G ,A, α) to be the norm closure of λ(L1(G ,A, α)).

As with crossed products, in these notes we ignore the set theoretic
difficulty.
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The relationship between reduced and full crossed products

Implicit in the definition of C ∗
r (G ,A, α) is a representation of L1(G ,A, α),

hence of C ∗(G ,A, α). Thus, there is a homomorphism
C ∗(G ,A, α) → C ∗

r (G ,A, α). By construction, it has dense range, and is
therefore surjective. Moreover, by construction, any regular representation
of L1(G ,A, α) extends to a representation of C ∗

r (G ,A, α).

Theorem (Theorem 7.7.7 of Pedersen’s book)

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. If G is amenable, then C ∗(G ,A, α) → C ∗

r (G ,A, α) is an
isomorphism.

The converse is true for A = C: if C ∗(G ) → C ∗
r (G ) is an isomorphism,

then G is amenable. But it is not true in general. For example, if G acts
on itself by translation, then C ∗(G , C0(G )) → C ∗

r (G , C0(G )) is an
isomorphism for every G . (We will do this below for a discrete group.)
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The crossed product is not too small

Theorem

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A.

Then Cc(G ,A, α) → C ∗
r (G ,A, α) is injective.

We will prove this below in the case of a discrete group. The proof of the
general case can be found in Lemma 2.26 of the book of Williams. It is, I
believe, true that L1(G ,A, α) → C ∗

r (G ,A, α) is injective, and this can
probably be proved by working a little harder in the proof of Lemma 2.26
of the book of Williams, but I have not carried out the details and I do not
know a reference.
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When G is discrete: integrated form of a regular
representation
We specialize to the case of discrete G .

The main tool is the structure of
regular representations. When G is discrete, we can write L2(G ,H0) as a
Hilbert space direct sum

⊕
g∈G H0, and elements of it can be thought of

as families (ξg )g∈G . The following formula for the integrated form of a
regular representation is just a calculation.

Lemma

Let α : G → Aut(A) be an action of a discrete group G on a
C*-algebra A. Let π0 : A → L(H0) be a representation, and let
σ : C ∗

r (G ,A, α) → H = L2(G ,H0) be the associated regular representation.
Let a =

∑
g∈G agug ∈ C ∗

r (G ,A, α), with ag = 0 for all but finitely
many g . For ξ ∈ H and h ∈ G , we then have

(σ(a)ξ)(h) =
∑
g∈G

π0(α
−1
h (ag ))

(
ξ(g−1h)

)
.
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When G is discrete: integrated form of a regular
representation (continued)

In particular, picking off coordinates in L2(G ,H0) gives:

Corollary

Let the hypotheses be as in the Lemma, and let
a =

∑
g∈G agug ∈ C ∗

r (G ,A, α). For g ∈ G , let sg ∈ L(H0,H) be the

isometry which sends η ∈ H0 to the function ξ ∈ L2(G ,H0) given by

ξ(h) =

{
η h = g
0 h 6= g .

Then
s∗hσ(a)sk = π0

(
α−1

h (ahk−1)
)

for all h, k ∈ G .
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Comparing norms

Let α : G → Aut(A) be an action of a discrete group G on a
C*-algebra A. Define norms on Cc(G ,A, α) as follows:

‖ · ‖∞ is the supremum norm.

‖ · ‖1 is the l1 norm.

‖ · ‖ is the restriction of the C*-algebra norm on C ∗(G ,A, α).

‖ · ‖r is the restriction of the C*-algebra norm on C ∗
r (G ,A, α).

Lemma

For every a ∈ Cc(G ,A, α), we have ‖a‖∞ ≤ ‖a‖r ≤ ‖a‖ ≤ ‖a‖1.
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Comparing norms: the proof

The middle of this inequality follows from the definitions.

The last part follows from the observation above that all continuous
representations of L1(G ,A, α) are norm reducing. Here is a direct proof:
for a =

∑
g∈G agug ∈ Cc(G ,A, α), with all but finitely many of the ag

equal to zero, we have∥∥∥∑
g∈G

agug

∥∥∥ ≤ ∑
g∈G

‖ag‖ · ‖ug‖ =
∑

g∈G
‖ag‖ =

∥∥∥∑
g∈G

agug

∥∥∥
1
.

We prove the first part of this inequality. Let a =
∑

g∈G agug , with all but
finitely many of the ag equal to zero, and let g ∈ G . Let π0 : A → L(H0)
be an injective nondegenerate representation. With the notation of the
previous corollary, we have

‖ag‖ = ‖π0(ag )‖ = ‖s∗gσ(a)s1‖ ≤ ‖σ(a)‖ ≤ ‖a‖r.

This completes the proof.
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A is a subalgebra of the reduced crossed product

The lemma implies that the map a 7→ au1, from A to C ∗
r (G ,A, α), is

injective.

We routinely identify A with its image in C ∗
r (G ,A, α) under this

map, thus treating it as a subalgebra of C ∗
r (G ,A, α).

Of course, we can do the same with the full crossed product C ∗(G ,A, α).
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For finite groups, no completion is needed

Corollary

Let α : G → Aut(A) be an action of a finite group G on a C*-algebra A.

Then the maps Cc(G ,A, α) → C ∗(G ,A, α) → C ∗
r (G ,A, α) are bijective.

Proof.

When G is finite, ‖ · ‖1 (the l1 norm) is equivalent to ‖ · ‖∞ (the
supremum norm), and is complete in both. The lemma now implies that
both C* norms are equivalent to these norms, so Cc(G ,A, α) is complete
in both C* norms.
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Coefficients in reduced crossed products

When G is discrete but not finite, things are much more complicated. We
can get started:

Proposition

Let α : G → Aut(A) be an action of a discrete group G on a C*-algebra A.
Then for each g ∈ G , there is a linear map Eg : C ∗

r (G ,A, α) → A with
‖Eg‖ ≤ 1 such that if a =

∑
g∈G agug ∈ Cc(G ,A, α), then Eg (a) = ag .

Moreover, with sg as above, we have s∗hσ(a)sk = π0

(
α−1

h (Ehk−1(a))
)

for
all h, k ∈ G .

Proof.

The first part is immediate from the inequality ‖a‖∞ ≤ ‖a‖r above.

The last statement follows by continuity from “picking off coordinates” in
the regular representation.
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Coefficients in reduced crossed products: Discussion

Thus, for any a ∈ C ∗
r (G ,A, α),

and therefore also for a ∈ C ∗(G ,A, α), it
makes sense to talk about its coefficients ag . The first point is that if
C ∗(G ,A, α) 6= C ∗

r (G ,A, α) (which can happen if G is not amenable, but
not if G is amenable), the coefficients (ag )g∈G do not even uniquely
determine the element a. This is why we are only considering reduced
crossed products here.
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Coefficients in reduced crossed products: Properties

Here are the good things about coefficients.

Proposition

Let α : G → Aut(A) be an action of a discrete group G on a
C*-algebra A. Let the maps Eg : C ∗

r (G ,A, α) → A be as in the previous
proposition. Then:

1 If a ∈ C ∗
r (G ,A, α) and Eg (a) = 0 for all g ∈ G , then a = 0.

2 If π0 : A → L(H0) is a nondegenerate representation such that⊕
g∈G π0 ◦ αg is injective, then the regular representation σ of

C ∗
r (G ,A, α) associated to π0 is injective.

3 If a ∈ C ∗
r (G ,A, α) and E1(a

∗a) = 0, then a = 0.
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Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above.

If a ∈ C ∗
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(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗
r (G ,A, α). Thus, if

E1(a
∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1).

This
completes the proof.
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Injective representations of A always give injective regular
representations of the reduced crossed product

It is true for general locally compact groups, not just discrete groups, that
the regular representation of C ∗

r (G ,A, α) associated to an injective
representation of A is injective. See Theorem 7.7.5 of Pedersen’s book.
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The conditional expectation

The map E1 used in Part (3) of the previous proposition is an example of
what is called a conditional expectation (from C ∗

r (G ,A, α) to A)

that is, it
has the properties given in the following exercise. Part (3) of the previous
proposition asserts that this conditional expectation is faithful.

Exercise

Let α : G → Aut(A) be an action of a discrete group G on a
C*-algebra A. Let E = E1 : C ∗

r (G ,A, α) → A be as above. Prove that E
has the following properties:

1 E (E (b)) = E (b) for all b ∈ C ∗
r (G ,A, α).

2 If b ≥ 0 then E (b) ≥ 0.

3 ‖E (b)‖ ≤ ‖b‖ for all b ∈ C ∗
r (G ,A, α).

4 If a ∈ A and b ∈ C ∗
r (G ,A, α), then E (ab) = aE (b) and

E (ba) = E (b)a.
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The limits of coefficients

Unfortunately, in general
∑

g∈G agug does not converge in C ∗
r (G ,A, α),

and it is very difficult to tell exactly which families of coefficients
correspond to elements of C ∗

r (G ,A, α).

In fact, the situation is intractable
even for the case of the trivial action of Z on C. In this case,
l1(Z,A, α) = l1(Z). The crossed product is the group C*-algebra C ∗(Z),
which can be identified with C (S1). The map l1(Z) → C (S1) is given by
Fourier series: the sequence a = (an)n∈Z>0 goes to the function
ζ 7→

∑
n∈Z anζ

n. (This looks more familiar when expressed in terms of
2π-periodic functions on R: it is t 7→

∑
n∈Z ane

int .) Failure of convergence
of

∑
n∈Z anun corresponds to the fact that the Fourier series of a

continuous function need not converge uniformly. Identifying the
coefficient sequences which correspond to elements of the crossed product
corresponds to giving a criterion for exactly when a sequence (an)n∈Z>0 of
complex numbers is the sequence of Fourier coefficients of some
continuous function on S1, a problem for which I know of no satisfactory
solution.
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The limits of coefficients (continued)

Let’s pursue this a little farther. The regular representation of Z on l2(Z)
gives an injective map λ : C ∗(Z) → L(l2(Z)).

Let δn ∈ l2(Z) be the
function

δn(k) =

{
1 k = n
0 k 6= n.

Then the Fourier coefficient an is recovered as an = 〈λ(a)δ0, δn〉. That is,
λ(a)δ0 ∈ l2(Z) is given by λ(a)δ0 =

∑
n∈Z anδn. Thus, the sequence of

Fourier coefficients of a continuous function is always in l2(Z). (Of course,
we already know this, but the calculation here can be applied to more
general crossed products.) Unfortunately, this fact is essentially useless for
the study of the group C*-algebra. Not only is the Fourier series of a
continuous function always in l2(Z), but the Fourier series of a function in
L∞(S1), which is the group von Neumann algebra of Z, is also always in
l2(Z). One will get essentially no useful information from a criterion which
can’t even exclude any elements of L∞(S1).
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The limits of coefficients (continued)

Even if one understands completely what all the elements of C ∗
r (G ) are,

and even if the action is trivial, understanding the elements of the reduced
crossed product requires that one understand all the elements of the
completed tensor product C ∗

r (G )⊗min A.

As far as I know, this problem is
also in general intractable.

There is just one bright spot: although we will not prove it here, there is
an analog for general crossed products by Z of the fact that the Cesaro
means of the Fourier series of a continuous function always converge
uniformly to the function. See Theorem 8.2.2 of Davidson’s book.

The discussion above is meant to point out the difficulties in dealing with
crossed products by infinite groups. Despite all this, for some problems,
finite groups are harder. Computing the K-theory of a crossed product by
Z/2Z is harder than computing the K-theory of a crossed product by any
of Z, R, or even a (nonabelian) free group!
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crossed product requires that one understand all the elements of the
completed tensor product C ∗

r (G )⊗min A. As far as I know, this problem is
also in general intractable.

There is just one bright spot: although we will not prove it here, there is
an analog for general crossed products by Z of the fact that the Cesaro
means of the Fourier series of a continuous function always converge
uniformly to the function. See Theorem 8.2.2 of Davidson’s book.

The discussion above is meant to point out the difficulties in dealing with
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Preliminaries for computing crossed products

We will shortly do some explicit computations of examples. First, though,
we give some useful preliminaries:

Equivariant maps and functoriality.

Crossed products of exact sequences.

Crossed products and direct limits.

Notation for matrix units.
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Equivariant homomorphisms

Let G be a locally compact group. A C*-algebra A equipped with an
action G → Aut(A) will be called a G-algebra. We sometimes refer to
(G ,A, α) as a G -algebra.

Definition

If (G ,A, α) and (G ,B, β) are G -algebras, then a homomorphism
ϕ : A → B is said to be equivariant (or G -equivariant if the group must be
specified) if for every g ∈ G , we have ϕ ◦ αg = βg ◦ ϕ.

For a fixed locally compact group G , the G -algebras and equivariant
homomorphisms form a category.
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The crossed product construction is functorial for
equivariant homomorphisms

Theorem

Let G be a locally compact group. If (G ,A, α) and (G ,B, β) are
G -algebras and ϕ : A → B is an equivariant homomorphism,

then there is
a homomorphism ψ : Cc(G ,A, α) → Cc(G ,B, β) given by the formula
ψ(a)(g) = ϕ(a(g)) for a ∈ Cc(G ,A, α) and g ∈ G , and this
homomorphism extends by continuity to a homomorphism
L1(G ,A, α) → L1(G ,B, β), and then to homomorphisms

C ∗(G ,A, α) → C ∗(G ,B, β) and C ∗
r (G ,A, α) → C ∗

r (G ,B, β).

This construction makes the crossed product and reduced crossed product
constructions functors from the category of G -algebras to the category of
C*-algebras.

This is straightforward. See the notes for details.
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Full crossed products preserve exact sequences

Theorem

Let 0 → J → A → B → 0 be an exact sequence of G -algebras, with
actions γ on J, α on A, and β on B.

Then the sequence

0 −→ C ∗(G , J, γ) −→ C ∗(G ,A, α) −→ C ∗(G ,B, β) −→ 0

is exact.

Proofs can be found in the three places listed in the notes.

The analog for reduced crossed products is in general false.
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Full crossed products preserve direct limits

Theorem

Let
((

G ,Ai , α
(i)

)
i∈I
, (ϕj ,i )i≤j

)
be a direct system of G -algebras.

Let

A = lim−→Ai , with action α : G → Aut(A) given by αg = lim−→α
(i)
g . Let

ψj ,i : C ∗(G ,Ai , α
(i)

)
→ C ∗(G ,Aj , α

(j)
)

be the map obtained from ϕj ,i . Using these maps in the direct system of
crossed products, there is a natural isomorphism
C ∗(G ,A, α) ∼= lim−→C ∗(G ,Ai , α

(i)
)
.

The proof is done by combining the universal properties of direct limits
and crossed products. See the notes.
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Notation for matrix units

For any index set S , let δs ∈ l2(S) be the standard basis vector,
determined by

δs(t) =

{
1 t = s
0 t 6= s.

For j , k ∈ S , we let the “matrix unit” ej ,k be the rank one operator on
l2(S) given by ej ,kξ = 〈ξ, δk〉δj . This gives the product formula
ej ,kel ,m = δk,lej ,m. Conventional matrix units for Mn are obtained by
taking S = {1, 2, . . . , n}, but we will sometimes want to take S to be a
discrete (even finite) group. For S = {1, 2}, with the obvious choice of
matrix representation, we get

e1,1 =

(
1 0
0 0

)
, e1,2 =

(
0 1
0 0

)
, e2,1 =

(
0 0
1 0

)
, and e2,2 =

(
0 0
0 1

)
.
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Example: The trivial action

Example

If G acts trivially on the C*-algebra A, then

C ∗(G ,A) ∼= C ∗(G )⊗max A and C ∗
r (G ,A) ∼= C ∗

r (G )⊗min A.

We describe how to see this when G is discrete and A is unital. Then
C ∗(G ,A) is the universal unital C*-algebra generated by a unital copy of A
and a commuting unitary representation of G in the algebra. Since C ∗(G )
is the universal unital C*-algebra generated by a unitary representation of
G in the algebra, this is exactly the universal property of the maximal
tensor product.
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Example: The trivial action (continued)

For the reduced crossed product, the point is that a regular covariant
representation of (G ,A)

has the form (λ⊗ 1H0 , 1L2(G) ⊗ π0) for
π0 : A → L(H0) an arbitrary nondegenerate representation and with
λ : G → U(L2(G )) being the left regular representation. As we saw above,
it suffices to take π0 to be a single injective representation. Now we are
looking at C ∗

r (G ) on one Hilbert space and A on another, and taking the
tensor product of the Hilbert spaces. This is exactly how one gets the
minimal tensor product of two C*-algebras.

Note how full and reduced crossed products parallel maximal and minimal
tensor products.
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Example: Inner actions

Example

Let α : G → Aut(A) be an inner action of a discrete group G on a unital
C*-algebra A.

Thus, there is a homomorphism g 7→ zg from G to U(A)
such that αg (a) = zgaz∗g for all g ∈ G and a ∈ A. Then
C ∗(G ,A, α) ∼= C ∗(G )⊗max A. (This is true even if G is not discrete.)

One shows that the crossed product is the same as for the trivial action.
Let ι : G → Aut(A) be the trivial action of G on A. As usual, for g ∈ G
let ug ∈ Cc(G ,A, α) be the standard unitary, but let vg ∈ Cc(G ,A, ι) be
the standard unitary in the crossed product by the trivial action. Define
ϕ0 : Cc(G ,A, α) → Cc(G ,A, ι) by ϕ0(aug ) = azgvg for a ∈ A and g ∈ G ,
and extend linearly. This map is obviously bijective (the inverse sends avg

to az∗gug ) and isometric for ‖ · ‖1.
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Example: Inner actions (continued)

For multiplicativity, it suffices to check the following, for a, b ∈ A and
g , h ∈ H,

using the fact that vg commutes with all elements of A:

ϕ0(aug )ϕ0(buh) = azgvgbzhvh = azgbz∗g zghvgvh

= aαg (b)zghvgh = ϕ0

(
aαg (b)ugh

)
= ϕ0

(
(aug )(buh)

)
.

For preservation of adjoints:

ϕ0(aug )∗ = (azgvg )∗ = v∗g z∗ga∗ = (z∗ga∗zg )z∗gv∗g

= αg−1(a∗)zg−1vg−1 = ϕ0

(
αg−1(a∗)ug−1

)
= ϕ0

(
(aug )∗

)
.

So ϕ0 is an isometric isomorphism of *-algebras, and therefore extends to
an isomorphism of the universal C*-algebras.
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Example: G acting on itself by translation

Example

If G is discrete and acts on itself by translation, then the crossed product
is K (l2(G )).

(This is actually true for general G .)

Let α : G → Aut(C0(G )) denote the action. For g ∈ G , let ug be the
standard unitary, and let δg ∈ C0(G ) be the function χ{g}. Thus
αg (δh) = δgh for g , h ∈ G . Also, span

(
{δg : g ∈ G}

)
is dense in C0(G ).

For g , h ∈ G , we have vg ,h = δgugh−1 ∈ C ∗(G , C0(G ), α). Moreover,

vg1,h1vg2,h2 = δg1ug1h
−1
1
δg2ug2h

−1
2

= δg1αg1h
−1
1

(δg2)ug1h
−1
1

ug2h
−1
2

= δg1δg1h
−1
1 g2

ug1h
−1
1 g2h

−1
2
.

Thus, if g2 6= h1, the answer is zero, while if g2 = h1, the answer is vg1,h2 .
Similarly, v∗g ,h = vh,g . That is, the elements vg ,h satisfy the relations for a

system of matrix units indexed by G . Also, span
(
{vg ,h : g , h ∈ G}

)
is

dense in l1(G , C0(G ), α), and hence in C ∗(G , C0(G ), α).
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For any finite set F ⊂ G , we thus get a homomorphism

ψF : L(l2(F )) → Cc(G , C0(G ), α)

sending the matrix unit eg ,h ∈ L(l2(F )) to vg ,h. If G is finite, we have a
surjective homomorphism L(l2(G )) → C ∗(G , C0(G ), α), necessarily
injective since L(l2(G )) is simple.

In general, one assembles the maps ψF to get an isomorphism
K (l2(G )) → C ∗(G , C0(G ), α). For details, see the notes.

Since the full crossed product is simple, the map to the reduced crossed
product is an isomorphism.

If G acts on G × X by translation in the first factor and trivially in the
second factor, we get the crossed product C (X , K (l2(G ))). (In fact, this is
true for an arbitrary action of G on X . See the notes.)
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