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Comments

There is a related set of notes posted on the web. See the link at:

http://www.uoregon.edu/∼ncp/Courses/LisbonCrossedProducts/
LisbonCrossedProducts.html

This is accessible from my home page:

http://www.uoregon.edu/∼ncp

The notes contain most of what I will say during these lectures, and much
more besides.

Also see the slides from the Lisbon course, four links on the
same website. There is a great deal of overlap.

Please let me know of any misprints, mistakes, etc. found in the notes,
slides, etc. I will also post the slides from these lectures on my website, at:

http://www.uoregon.edu/∼ncp/Courses/SeoulCrossedProducts/
SeoulCrossedProducts.html

(also available from a link on my home page).
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Outline
There are many directions in the theory of crossed products. These
lectures are biased towards the general problem of classifying crossed
products,

in cases in which they are expected to be simple. (However, we
will not get very far in that direction.) See the end of Section 1 of the
notes for other directions.

A brief outline of the lectures:

Introductory material, basic definitions, and examples of group
actions.

Construction of the crossed product of an action by a discrete group.

Examples of some elementary computations of crossed products.

Simplicity of crossed products by minimal homeomorphisms.

Toward the classification of crossed products by minimal
homeomorphisms.

Actions of Zd : an outline of the subgroupoid subalgebra method.
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Actions of groups on C*-algebras

Definition

Let G be a locally compact group, and let A be a C*-algebra.

An action of
G on A is a homomorphism α : G → Aut(A), usually written g 7→ αg ,
such that, for every a ∈ A, the function g 7→ αg (a), from G to A, is norm
continuous.

On a von Neumann algebra, substitute the σ-weak operator topology for
the norm topology.

The continuity condition is the analog of requiring that a unitary
representation of G on a Hilbert space be continuous in the strong
operator topology. It is usually much too strong a condition to require
that g 7→ αg be a norm continuous map from G to the bounded operators
on A.

Of course, if G is discrete, it doesn’t matter. In this course, we will
concentrate on discrete G .
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We will construct crossed products

Given α : G → Aut(A), we will construct a crossed product C*-algebra
C ∗(G ,A, α)

and a reduced crossed product C*-algebra C ∗r (G ,A, α). (There
are many other commonly used notations. See Remark 3.16 in the notes.)

If A is unital and G is discrete, it is a suitable completion of the algebraic
skew group ring A[G ], with multiplication determined by gag−1 = αg (a)
for g ∈ G and a ∈ A.
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Motivation for group actions on C*-algebras and their
crossed products

Let G be a locally compact group obtained as a semidirect product
G = N o H. The action of H on N gives actions of H on the full and
reduced group C*-algebras C ∗(N) and C ∗r (N), and one has
C ∗(G ) ∼= C ∗(H, C ∗(N)) and C ∗r (G ) ∼= C ∗r (H, C ∗r (N)).

Probably the most important group action is time evolution: if a
C*-algebra A is supposed to represent the possible states of a physical
system in some manner, then there should be an action α : R → Aut(A)
which describes the time evolution of the system. Actions of Z, which are
easier to study, can be thought of as “discrete time evolution”.

Crossed products are a common way of constructing simple C*-algebras.
We will see some examples later.
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Motivation for group actions on C*-algebras and their
crossed products (continued)

If one has a homeomorphism h of a locally compact Hausdorff space X ,
the crossed product C ∗(Z,X , h) sometimes carries considerable
information about the dynamics of h. The best known example is the
result of Giordano, Putnam, and Skau on minimal homeomorphisms of the
Cantor set: isomorphism of the transformation group C*-algebras is
equivalent to strong orbit equivalence of the homeomorphisms.

For compact groups, equivariant indices take values on the equivariant
K-theory of a suitable C*-algebra with an action of the group. When the
group is not compact, one usually needs instead the K-theory of the
crossed product C*-algebra, or of the reduced crossed product C*-algebra.
(When the group is compact, this is the same thing.)

In other situations as well, the K-theory of the full or reduced crossed
product is the appropriate substitute for equivariant K-theory.
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The commutative case

Definition

A continuous action of a topological group G on a topological space X is
a continuous function G × X → X , usually written (g , x) 7→ g · x or
(g , x) 7→ gx , such that (gh)x = g(hx) for all g , h ∈ G and x ∈ X and
1 · x = x for all x ∈ X .

For a continuous action of a locally compact group G on a locally compact
Hausdorff space X , there is a corresponding action α : G → Aut(C0(X )),
given by αg (f )(x) = f (g−1x).

(If G is not abelian, the inverse is necessary to get αg ◦ αh = αgh rather
than αhg .)

One should check that these formulas determine a one to one
correspondence between continuous actions of G on X and continuous
actions of G on C0(X ). (The main point is to check that the continuity
conditions match.)
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1 · x = x for all x ∈ X .

For a continuous action of a locally compact group G on a locally compact
Hausdorff space X , there is a corresponding action α : G → Aut(C0(X )),
given by αg (f )(x) = f (g−1x).

(If G is not abelian, the inverse is necessary to get αg ◦ αh = αgh rather
than αhg .)

One should check that these formulas determine a one to one
correspondence between continuous actions of G on X and continuous
actions of G on C0(X ). (The main point is to check that the continuity
conditions match.)
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Examples of group actions on C*-algebras

We will give some examples of actions of a group G on C*-algebras. (Not
all of them give interesting crossed products.)

We start with examples of group actions on locally compact spaces X ,
which give rise to examples of group actions on commutative C*-algebras.

We will discuss some of their crossed products later, but in some of the
examples we state the results immediately. As one goes through the
commutative examples, note that a closed orbit of the form Gx ∼= G/H
gives rise to a quotient of the crossed product isomorphic to
K (L2(G/H))⊗ C ∗(H).

There are more examples in the notes, and there is more detail on these in
the Lisbon slides.
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Examples of actions on compact spaces

G is arbitrary, X is a point, and the action is trivial.

The full and
reduced crossed products are the usual full and reduced group
C*-algebras C ∗(G ) and C ∗r (G ).

X = G , and the action is given by (left) translation: g · x = gx . The
full and reduced crossed products are both isomorphic to K (L2(G )).

If H ⊂ G is a closed subgroup, then G acts continuously on G/H by
translation. It turns out that C ∗(G , G/H) ∼= K (L2(G/H))⊗ C ∗(H).
Note that there is no “twisting”.

If H ⊂ G is a closed subgroup, then H acts continuously on G by
translation. It turns out that C ∗(H,G ) is stably isomorphic to
K (L2(H))⊗ C0(G/H). Stably, there is no “twisting”.

X = S1 = {ζ ∈ C : |ζ| = 1}, G = Z, and the action is rotation by
multiples of a fixed angle 2πθ. These are rational rotations (for
θ ∈ Q) or irrational rotations (for θ 6∈ Q), and the crossed products
are the well known (rational or irrational) rotation algebras.
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Examples of actions on compact spaces (continued)

Take X = {0, 1}Z, with elements being described as x = (xn)n∈Z.
Take G = Z, with action generated by the shift homeomorphism
h(x)n = xn−1 for x ∈ X and n ∈ Z.

Subshifts: In the previous example, replace X by an invariant subset.

More general shifts and subshifts: replace {0, 1} by some other
compact metric space S .

Let X = Zp, the group of p-adic integers. It is a compact topological
group, and as a metric space it is homeomorphic to the Cantor set.
Let h : X → X be the homeomorphism defined on the dense subset Z
by h(n) = n + 1, and take the action of Z it generates. Many
variations are possible.
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Examples of actions on compact spaces (continued)

Take X = Sn = {x ∈ Rn+1 : ‖x‖2 = 1}. Multiplication by −1
generates an action of Z/2Z.

The crossed product turns out to be
isomorphic to the section algebra of a locally trivial but nontrivial
bundle over the real projective space RPn = Sn/(Z/2Z) with
fiber M2.

Complex conjugation generates an action of Z/2Z on S1 ⊂ C.

Take G = SL2(Z). It acts linearly on R2 (as a subgroup of GL2(R)),
fixing Z2, so the action is well defined on R2/Z2 ∼= S1 × S1.
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Examples of actions on noncommutative C*-algebras

There is a trivial action of G on any C*-algebra A.

The full crossed
product turns out to be C ∗(G )⊗max A, and the reduced crossed
product turns out to be C ∗r (G )⊗min A.

If A is unital and u ∈ A is unitary, let Ad(u) be the automorphism
a 7→ uau∗. Now let G be locally compact, let A be unital, and let
g 7→ zg be a norm continuous group homomorphism from G to the
unitary group U(A) of A. Then g 7→ Ad(zg ) defines an action of G
on A. These actions are called inner. The crossed products turn out
to be the same as for the trivial action.

An action via inner automorphisms is not necessarily an inner action.
Let A = M2, let G = (Z/2Z)2 with generators g1 and g2, and set

α1 = idA, αg1 = Ad
(

1 0
0 −1

)
, αg2 = Ad ( 0 1

1 0 ) , αg1g2 = Ad
(

0 1
−1 0

)
.

The point is that the implementing unitaries for αg1 and αg2 commute
up to a scalar, but can’t be appropriately modified to commute
exactly. The crossed product turns out to be isomorphic to M4.
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Examples of actions on C*-algebras (continued)

For θ ∈ R, let Aθ be the rotation algebra,

the universal C*-algebra
generated by unitaries u and v satisfying vu = exp(2πiθ)uv . The
group G = SL2(Z) acts on Aθ by sending the matrix n =

( n1,1 n1,2
n2,1 n2,2

)
to the automorphism

αn(u) = exp(πin1,1n2,1θ)u
n1,1vn2,1 , αn(v) = exp(πin1,2n2,2θ)u

n1,2vn2,2 .

This is the noncommutative version of the action of SL2(Z) on
S1 × S1 above.

Restrict the action of the previous example to finite subgroups. We
now know that for θ 6∈ Q the crossed products are all AF.

There is an action α : S1 × S1 → Aut(Aθ) determined by

α(ζ1,ζ2)(u) = ζ1u and α(ζ1,ζ2)(v) = ζ2v .

Restrict the previous action to subgroups of S1 × S1. For example, a
single such automorphism generates an action of Z.
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Examples of actions on C*-algebras (continued)

Let s1, s2, . . . , sn be the standard generators of the Cuntz algebra On,
satisfying s∗j sj = 1 for 1 ≤ j ≤ n and

∑n
j=1 sjs

∗
j = 1.

There is an

action of (S1)n on On such that α(ζ1,ζ2,...,ζn)(sj) = ζjsj for 1 ≤ j ≤ n.

Regarding (S1)n as the diagonal unitary matrices, this action extends
to an action of the unitary group U(Mn) on On. If
u = (uj ,k)nj ,k=1 ∈ Mn is unitary, then αu ∈ Aut(On) is determined by

αu(sj) =
n∑

k=1

uk,jsk .

Any individual automorphism from this action gives an action of Z on
On.

The first example on this slide generalizes to give gauge actions on
graph C*-algebras.
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Examples of actions on C*-algebras (continued)

Let A be the UHF algebra
⊗∞

n=1 Mkn , let G be a locally compact
group, and let β(n) : G → Aut(Mkn) be an action of G on Mkn .

Define an action α : G → Aut(A) by

αg (a1 ⊗ · · · ⊗ an ⊗ 1⊗ · · · ) = β
(1)
g (a1)⊗ · · · ⊗ β

(n)
g (an)⊗ 1⊗ · · · .

If each β(n) above is the inner action coming from a unitary
representation of G on Ckn , then α is called a product type action.

As a specific example, take G = Z/2Z, and for every n take kn = 2
and take β(n) to be generated by Ad

(
1 0
0 −1

)
.

Let A be a unital C*-algebra. The tensor flip is the action of Z/2Z on
A⊗max A generated by a⊗ b 7→ b ⊗ a.

There is also a tensor flip on A⊗min A.

The symmetric group Sn acts on the n-fold maximal and minimal
tensor products of A with itself.

There is also a “tensor shift”, a noncommutative analog, defined on⊗
n∈Z A, of the shift on SZ.
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Covariant representations
To define the crossed product, we need:

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. A covariant representation of (G ,A, α) on a Hilbert space H
is a pair (v , π) consisting of a unitary representation v : G → U(H) (the
unitary group of H) and a representation π : A → L(H) (the algebra of all
bounded operators on H), satisfying the covariance condition

v(g)π(a)v(g)∗ = π(αg (a))

for all g ∈ G and a ∈ A. It is called nondegenerate if π is nondegenerate.

By convention, unitary representations are strong operator continuous.
Representations of C*-algebras, and of other *-algebras are
*-representations (and, similarly, homomorphisms are *-homomorphisms).
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Remarks on Banach space valued integration

The crossed product C*-algebra C ∗(G ,A, α) is the universal C*-algebra for
covariant representations of (G ,A, α),

in essentially the same way that the
(full) group C*-algebra C ∗(G ) is the universal C*-algebra for unitary
representations of G . We construct it in a similar way to the group
C*-algebra. We start with the analog of L1(G ).

For a general locally compact group, one needs an appropriate notion of
integration of Banach space valued functions. One must prove that
twisted convolution below is well defined, associative, distributive, and
satisfies (ab)∗ = b∗a∗. Once one has the appropriate notion of integration,
the proofs are similar to the proofs of the corresponding facts about
convolution in L1(G ). Integration of continuous functions with compact
support is much easier than integration of L1 functions, but the “right”
way to do this is to define measurable Banach space valued functions and
their integrals. This has been done; one reference is Appendix B of the
book of Williams. Things simplify considerably if G is second countable
and A is separable, but neither of these conditions is necessary.
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Twisted convolution

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A.

We let Cc(G ,A, α) be the *-algebra of continuous functions
a : G → A with compact support, with pointwise addition and scalar
multiplication. Using Haar measure in the integral, we define
multiplication by the following “twisted convolution”:

(ab)(g) =

∫
G

a(h)αh(b(h−1g)) dh.

Let ∆ be the modular function of G . We define the adjoint by

a∗(g) = ∆(g)−1αg (a(g−1)∗).

We define a norm ‖ · ‖1 on Cc(G ,A, α) by ‖a‖1 =
∫
G ‖a(g)‖ dg . One

checks that ‖ab‖1 ≤ ‖a‖1‖b‖1 and ‖a∗‖1 = ‖a‖1. Then L1(G ,A, α) is the
Banach *-algebra obtained by completing Cc(G ,A, α) in ‖ · ‖1.
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Twisted convolution (continued)

Exercise

Assuming suitable versions of Fubini’s Theorem for Banach space valued
integrals,

check that that multiplication in Cc(G ,A, α) is associative.
Further check for a, b ∈ Cc(G ,A, α) that ‖ab‖1 ≤ ‖a‖1‖b‖1, that
(ab)∗ = b∗a∗, and that ‖a∗‖1 = ‖a‖1.
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When G is discrete

If G is discrete, we choose Haar measure to be counting measure.

In this
case, Cc(G ,A, α) is, as a vector space, the group ring A[G ], consisting of
all finite formal linear combinations of elements in G with coefficients in
A. The multiplication and adjoint are given by

(a·g)(b·h) = (a[gbg−1])·(gh) = (aαg (b))·(gh) and (a·g)∗ = α−1
g (a∗)·g−1

for a, b ∈ A and g , h ∈ G , extended linearly. This definition makes sense in
the purely algebraic situation, where it is called the skew group ring.

We also often write l1(G ,A, α) instead of L1(G ,A, α).
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When G is discrete (continued)

Let α : G → Aut(A) be an action of a discrete group G on a unital
C*-algebra A.

In these notes, we will adopt the following fairly commonly
used notation. For g ∈ G , we let ug be the element of Cc(G ,A, α) which
takes the value 1A at g and 0 at the other elements of G . We use the
same notation for its image in l1(G ,A, α) (above) and in C ∗(G ,A, α) and
C ∗r (G ,A, α) (defined below). It is unitary, and we call it the canonical
unitary associated with g .

In particular, l1(G ,A, α) is the set of all sums
∑

g∈G agug with ag ∈ A

and
∑

g∈G ‖ag‖ < ∞. These sums converge in l1(G ,A, α), and hence also
in C ∗(G ,A, α) and C ∗r (G ,A, α). A general element of C ∗r (G ,A, α) has
such an expansion, but unfortunately the series one writes down generally
does not converge. See the discussion later.
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The integrated form of a covariant representation

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A, and let (v , π) be a covariant representation of (G ,A, α) on
a Hilbert space H.

Then the integrated form of (v , π) is the representation
σ : Cc(G ,A, α) → L(H) given by

σ(a)ξ =

∫
G

π(a(g))v(g)ξ dg .

(This representation is sometimes called v × π or π × v .)

One needs to be more careful with the integral here, because v is generally
only strong operator continuous, not norm continuous. Nevertheless, one
gets ‖σ(a)‖ ≤ ‖a‖1, so σ extends to a representation of L1(G ,A, α). We
use the same notation σ for this extension.
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The integrated form of a covariant representation
(continued)

One needs to check that σ is a representation.

When G is discrete and A
is unital, the formula for σ comes down to σ(aug ) = π(a)v(g) for a ∈ A
and g ∈ G . Then

σ(aug )σ(buh) = π(a)v(g)π(b)v(g)∗v(g)v(h) = π(a)π(αg (b))v(g)v(h)

= π(aαg (b))v(gh) = σ
(
[aαg (b)]ugh

)
= σ

(
(aug )(buh)

)
.

Exercise

Starting from this computation, fill in the details of the proof that the
integrated form representation σ really is a nondegenerate representation
of Cc(G ,A, α).
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The integrated form of a covariant representation
(continued)

Theorem (Proposition 7.6.4 of Pedersen’s book)

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A.

Then the integrated form construction defines a bijection
from the set of covariant representations of (G ,A, α) on a Hilbert space H
to the set of nondegenerate continuous representations of L1(G ,A, α) on
the same Hilbert space.

In particular, since integrated form representations of L1(G ,A, α) are
necessarily contractive, all continuous representations of L1(G ,A, α) are
necessarily contractive.
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The integrated form when G is discrete

If G is discrete and A is unital, then there are homomorphic images of
both G and A inside Cc(G ,A, α),

given by g 7→ ug and a 7→ au1, so it is
clear how to get a covariant representation of (G ,A, α) from a
nondegenerate representation of Cc(G ,A, α). In general, one must use the
multiplier algebra of L1(G ,A, α), which contains copies of M(A) and
M(L1(G )). The point is that M(L1(G )) is the measure algebra of G , and
therefore contains the group elements as point masses.

Exercise

Prove the theorem on the previous slide when G is discrete and A is unital.

For a small taste of the general case, use approximate identities in A to
generalize to the case in which A is not necessarily unital.
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The universal representation and the crossed product

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. We define the universal representation σ of L1(G ,A, α)

to
be the direct sum of all nondegenerate representations of L1(G ,A, α) on
Hilbert spaces. Then we define the crossed product C ∗(G ,A, α) to be the
norm closure of σ(L1(G ,A, α)).

One could of course equally well use the norm closure of σ(Cc(G ,A, α)).

There is a minor set theoretic detail: the collection of all nondegenerate
representations of L1(G ,A, α) is not a set. There are several standard
ways to deal with this problem, but in these notes we will ignore the issue.

Exercise

Give a set theoretically correct definition of the crossed product.

The important point is to preserve the universal property below.
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The universal representation and the crossed product
(continued)

It follows that every covariant representation of (G ,A, α) gives a
representation of C ∗(G ,A, α).

(Take the integrated form, and restrict
elements of C ∗(G ,A, α) to the appropriate summand in the direct sum in
the definition above.) The crossed product is, essentially by construction,
the universal C*-algebra for covariant representations of (G ,A, α), in the
same sense that if G is a locally compact group, then C ∗(G ) is the
universal C*-algebra for unitary representations of G .

There are many notations in use for crossed products, including:

C ∗(G ,A, α) and C ∗r (G ,A, α).

C ∗(A,G , α) and C ∗r (A,G , α).

A oα G and A oα,r G (used in Williams’ book).

A×α G and A×α,r G (used in Davidson’s book).

G ×α A and G ×α,r A (used in Pedersen’s book).
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the universal C*-algebra for covariant representations of (G ,A, α), in the
same sense that if G is a locally compact group, then C ∗(G ) is the
universal C*-algebra for unitary representations of G .

There are many notations in use for crossed products, including:

C ∗(G ,A, α) and C ∗r (G ,A, α).

C ∗(A,G , α) and C ∗r (A,G , α).

A oα G and A oα,r G (used in Williams’ book).

A×α G and A×α,r G (used in Davidson’s book).

G ×α A and G ×α,r A (used in Pedersen’s book).
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The universal representation and the crossed product when
G is discrete

Theorem

Let α : G → Aut(A) be an action of a discrete group G on a unital
C*-algebra A.

Then C ∗(G ,A, α) is the universal C*-algebra generated by a
unital copy of A (that is, the identity of A is supposed to be the identity of
the generated C*-algebra) and unitaries ug , for g ∈ G , subject to the
relations uguh = ugh for g , h ∈ G and ugau∗g = αg (a) for a ∈ A and
g ∈ G .

Corollary

Let A be a unital C*-algebra, and let α ∈ Aut(A). Then the crossed
product C ∗(Z,A, α) is the universal C*-algebra generated by a copy of A
and a unitary u, subject to the relations uau∗ = α(a) for a ∈ A.
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The universal representation and the crossed product when
G is discrete (continued)

Exercise

Based on the discussion above, write down a careful proof of the theorem.
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Regular covariant representations

So far, it is not clear that there are any covariant representations.

Definition (7.7.1 of Pedersen’s book)

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. Let π0 : A → L(H0) be a representation. We define the
regular covariant representation (v , π) of (G ,A, α) on the Hilbert space
H = L2(G ,H0) of L2 functions from G to H0 as follows. For g , h ∈ G , set

(v(g)ξ)(h) = ξ(g−1h).

For a ∈ A and g ∈ G , set

(π(a)ξ)(h) = π0(αh−1(a))(ξ(h)).

The integrated form of σ will be called a regular representation of any of
Cc(G ,A, α), L1(G ,A, α), C ∗(G ,A, α), and (when defined) C ∗r (G ,A, α).
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The Hilbert space of the regular covariant representation

The easy way to construct L2(G ,H0) is to take it to be the completion of
Cc(G ,H0) in the norm coming from the scalar product

〈ξ, η〉 =

∫
G
〈ξ(g), η(g)〉 dg .
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Reduced crossed products

Exercise

Suppose that G is discrete. Prove that a regular representation really is a
covariant representation.

If A = C, H0 = C, and π0 is the obvious representation of A on H0, then
the regular representation is the usual left regular representation of G .

Definition

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. Let λ : L1(G ,A, α) → L(H) be the direct sum of all regular
representations of L1(G ,A, α). We define the reduced crossed product
C ∗r (G ,A, α) to be the norm closure of λ(L1(G ,A, α)).

As with crossed products, in these notes we ignore the set theoretic
difficulty.
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The relationship between reduced and full crossed products

Implicit in the definition of C ∗r (G ,A, α) is a representation of L1(G ,A, α),

hence of C ∗(G ,A, α). Thus, there is a homomorphism
C ∗(G ,A, α) → C ∗r (G ,A, α). By construction, it has dense range, and is
therefore surjective. Moreover, by construction, any regular representation
of L1(G ,A, α) extends to a representation of C ∗r (G ,A, α).

Theorem (Theorem 7.7.7 of Pedersen’s book)

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A. If G is amenable, then C ∗(G ,A, α) → C ∗r (G ,A, α) is an
isomorphism.

The converse is true for A = C: if C ∗(G ) → C ∗r (G ) is an isomorphism,
then G is amenable. But it is not true in general. For example, if G acts
on itself by translation, then C ∗(G , C0(G )) → C ∗r (G , C0(G )) is an
isomorphism for every G . (We will do this below for a discrete group.)
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But it is not true in general. For example, if G acts
on itself by translation, then C ∗(G , C0(G )) → C ∗r (G , C0(G )) is an
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The crossed product is not too small

Theorem

Let α : G → Aut(A) be an action of a locally compact group G on a
C*-algebra A.

Then Cc(G ,A, α) → C ∗r (G ,A, α) is injective.

We will prove this below in the case of a discrete group. The proof of the
general case can be found in Lemma 2.26 of the book of Williams. It is, I
believe, true that L1(G ,A, α) → C ∗r (G ,A, α) is injective, and this can
probably be proved by working a little harder in the proof of Lemma 2.26
of the book of Williams, but I have not carried out the details and I do not
know a reference.
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When G is discrete: integrated form of a regular
representation
We specialize to the case of discrete G .

The main tool is the structure of
regular representations. When G is discrete, we can write L2(G ,H0) as a
Hilbert space direct sum

⊕
g∈G H0, and elements of it can be thought of

as families (ξg )g∈G . The following formula for the integrated form of a
regular representation is just a calculation.

Lemma

Let α : G → Aut(A) be an action of a discrete group G on a
C*-algebra A. Let π0 : A → L(H0) be a representation, and let
σ : C ∗r (G ,A, α) → L(H) = L(L2(G ,H0)) be the associated regular
representation. Let a =

∑
g∈G agug ∈ C ∗r (G ,A, α), with ag = 0 for all but

finitely many g . For ξ ∈ H and h ∈ G , we then have

(σ(a)ξ)(h) =
∑
g∈G

π0(α
−1
h (ag ))

(
ξ(g−1h)

)
.
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When G is discrete: integrated form of a regular
representation (continued)

In particular, picking off coordinates in L2(G ,H0) gives:

Corollary

Let the hypotheses be as in the Lemma, and let
a =

∑
g∈G agug ∈ C ∗r (G ,A, α). For g ∈ G , let sg ∈ L(H0,H) be the

isometry which sends η ∈ H0 to the function ξ ∈ L2(G ,H0) given by

ξ(h) =

{
η h = g
0 h 6= g .

Then
s∗hσ(a)sk = π0

(
α−1

h (ahk−1)
)

for all h, k ∈ G .
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Comparing norms

Let α : G → Aut(A) be an action of a discrete group G on a
C*-algebra A. Define norms on Cc(G ,A, α) as follows:

‖ · ‖∞ is the supremum norm.

‖ · ‖1 is the l1 norm.

‖ · ‖ is the restriction of the C*-algebra norm on C ∗(G ,A, α).

‖ · ‖r is the restriction of the C*-algebra norm on C ∗r (G ,A, α).

Lemma

For every a ∈ Cc(G ,A, α), we have ‖a‖∞ ≤ ‖a‖r ≤ ‖a‖ ≤ ‖a‖1.
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Comparing norms: the proof

The middle of this inequality follows from the definitions.

The last part follows from the observation above that all continuous
representations of L1(G ,A, α) are norm reducing. Here is a direct proof:
for a =

∑
g∈G agug ∈ Cc(G ,A, α), with all but finitely many of the ag

equal to zero, we have∥∥∥∑
g∈G

agug

∥∥∥ ≤ ∑
g∈G

‖ag‖ · ‖ug‖ =
∑

g∈G
‖ag‖ =

∥∥∥∑
g∈G

agug

∥∥∥
1
.

We prove the first part of this inequality. Let a =
∑

g∈G agug , with all but
finitely many of the ag equal to zero, and let g ∈ G . Let π0 : A → L(H0)
be an injective nondegenerate representation. With the notation of the
previous corollary, we have

‖ag‖ = ‖π0(ag )‖ = ‖s∗gσ(a)s1‖ ≤ ‖σ(a)‖ ≤ ‖a‖r.

This completes the proof.
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A is a subalgebra of the reduced crossed product

The lemma implies that the map a 7→ au1, from A to C ∗r (G ,A, α), is
injective.

We routinely identify A with its image in C ∗r (G ,A, α) under this
map, thus treating it as a subalgebra of C ∗r (G ,A, α).

Of course, we can do the same with the full crossed product C ∗(G ,A, α).
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For finite groups, no completion is needed

Corollary

Let α : G → Aut(A) be an action of a finite group G on a C*-algebra A.

Then the maps Cc(G ,A, α) → C ∗(G ,A, α) → C ∗r (G ,A, α) are bijective.

Proof.

When G is finite, ‖ · ‖1 (the l1 norm) is equivalent to ‖ · ‖∞ (the
supremum norm), and is complete in both. The lemma now implies that
both C* norms are equivalent to these norms, so Cc(G ,A, α) is complete
in both C* norms.
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Coefficients in reduced crossed products

When G is discrete but not finite, things are much more complicated. We
can get started:

Proposition

Let α : G → Aut(A) be an action of a discrete group G on a C*-algebra A.
Then for each g ∈ G , there is a linear map Eg : C ∗r (G ,A, α) → A with
‖Eg‖ ≤ 1 such that if a =

∑
g∈G agug ∈ Cc(G ,A, α), then Eg (a) = ag .

Moreover, with sg as above, we have s∗hσ(a)sk = π0

(
α−1

h (Ehk−1(a))
)

for
all h, k ∈ G .

Proof.

The first part is immediate from the inequality ‖a‖∞ ≤ ‖a‖r above.

The last statement follows by continuity from “picking off coordinates” in
the regular representation.
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Coefficients in reduced crossed products: Discussion

Thus, for any a ∈ C ∗r (G ,A, α),

and therefore also for a ∈ C ∗(G ,A, α), it
makes sense to talk about its coefficients ag . The first point is that if
C ∗(G ,A, α) 6= C ∗r (G ,A, α) (which can happen if G is not amenable, but
not if G is amenable), the coefficients (ag )g∈G do not even uniquely
determine the element a. This is why we are only considering reduced
crossed products here.
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Coefficients in reduced crossed products: Properties

Here are the good things about coefficients.

Proposition

Let α : G → Aut(A) be an action of a discrete group G on a
C*-algebra A. Let the maps Eg : C ∗r (G ,A, α) → A be as in the previous
proposition. Then:

1 If a ∈ C ∗r (G ,A, α) and Eg (a) = 0 for all g ∈ G , then a = 0.

2 If π0 : A → L(H0) is a nondegenerate representation such that⊕
g∈G π0 ◦ αg is injective, then the regular representation σ of

C ∗r (G ,A, α) associated to π0 is injective.

3 If a ∈ C ∗r (G ,A, α) and E1(a
∗a) = 0, then a = 0.
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Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above.

If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G ,

whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0.

Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0.

Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G .

Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition,

we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G .

So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0.

This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α).

Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
.

By
continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α).

Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g ,

so a = 0 by Part (1). This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1).

This
completes the proof.

N. Christopher Phillips (U. of Oregon) SNU crossed products course: Lecture 1 12 December 2009 45 / 50



Proof of the properties of coefficients
(1): Let π0 : A → L(H0) be a representation, and let the notation be as
above. If a ∈ C ∗r (G ,A, α) satisfies Eg (a) = 0 for all g ∈ G , then
s∗hσ(a)sk = 0 for all h, k ∈ G , whence σ(a) = 0. Since π0 is arbitrary, it
follows that a = 0.

(2): Suppose a ∈ C ∗r (G ,A, α) and σ(a) = 0. Fix l ∈ G . Taking h = g−1

and k = l−1g−1 in the previous proposition, we get (π0 ◦ αg )(El(a)) = 0
for all g ∈ G . So El(a) = 0. This is true for all l ∈ G , so a = 0.

(3): As before, let a =
∑

g∈G agug ∈ Cc(G ,A, α). Then
a∗a =

∑
g ,h∈G u∗ga∗gahuh, so

E1(a
∗a) =

∑
g∈G

u∗ga∗gagug =
∑
g∈G

α−1
g

(
Eg (a)∗Eg (a)

)
.

In particular, for each fixed g , we have E1(a
∗a) ≥ α−1

g

(
Eg (a)∗Eg (a)

)
. By

continuity, this inequality holds for all a ∈ C ∗r (G ,A, α). Thus, if
E1(a

∗a) = 0, then Eg (a)∗Eg (a) = 0 for all g , so a = 0 by Part (1). This
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Injective representations of A always give injective regular
representations of the reduced crossed product

It is true for general locally compact groups, not just discrete groups, that
the regular representation of C ∗r (G ,A, α) associated to an injective
representation of A is injective. See Theorem 7.7.5 of Pedersen’s book.
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The conditional expectation

The map E1 used in Part (3) of the previous proposition is an example of
what is called a conditional expectation (from C ∗r (G ,A, α) to A)

that is, it
has the properties given in the following exercise. Part (3) of the previous
proposition asserts that this conditional expectation is faithful.

Exercise

Let α : G → Aut(A) be an action of a discrete group G on a
C*-algebra A. Let E = E1 : C ∗r (G ,A, α) → A be as above. Prove that E
has the following properties:

1 E (E (b)) = E (b) for all b ∈ C ∗r (G ,A, α).

2 If b ≥ 0 then E (b) ≥ 0.

3 ‖E (b)‖ ≤ ‖b‖ for all b ∈ C ∗r (G ,A, α).

4 If a ∈ A and b ∈ C ∗r (G ,A, α), then E (ab) = aE (b) and
E (ba) = E (b)a.
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The limits of coefficients

Unfortunately, in general
∑

g∈G agug does not converge in C ∗r (G ,A, α),
and it is very difficult to tell exactly which families of coefficients
correspond to elements of C ∗r (G ,A, α).

In fact, the situation is intractable
even for the case of the trivial action of Z on C. In this case,
l1(Z,A, α) = l1(Z). The crossed product is the group C*-algebra C ∗(Z),
which can be identified with C (S1). The map l1(Z) → C (S1) is given by
Fourier series: the sequence a = (an)n∈Z>0 goes to the function
ζ 7→

∑
n∈Z anζ

n. (This looks more familiar when expressed in terms of
2π-periodic functions on R: it is t 7→

∑
n∈Z ane

int .) Failure of convergence
of

∑
n∈Z anun corresponds to the fact that the Fourier series of a

continuous function need not converge uniformly. Identifying the
coefficient sequences which correspond to elements of the crossed product
corresponds to giving a criterion for exactly when a sequence (an)n∈Z>0 of
complex numbers is the sequence of Fourier coefficients of some
continuous function on S1, a problem for which I know of no satisfactory
solution.
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The limits of coefficients (continued)

Let’s pursue this a little farther. The regular representation of Z on l2(Z)
gives an injective map λ : C ∗(Z) → L(l2(Z)).

Let δn ∈ l2(Z) be the
function

δn(k) =

{
1 k = n
0 k 6= n.

Then the Fourier coefficient an is recovered as an = 〈λ(a)δ0, δn〉. That is,
λ(a)δ0 ∈ l2(Z) is given by λ(a)δ0 =

∑
n∈Z anδn. Thus, the sequence of

Fourier coefficients of a continuous function is always in l2(Z). (Of course,
we already know this, but the calculation here can be applied to more
general crossed products.) Unfortunately, this fact is essentially useless for
the study of the group C*-algebra. Not only is the Fourier series of a
continuous function always in l2(Z), but the Fourier series of a function in
L∞(S1), which is the group von Neumann algebra of Z, is also always in
l2(Z). One will get essentially no useful information from a criterion which
can’t even exclude any elements of L∞(S1).
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The limits of coefficients (continued)

Even if one understands completely what all the elements of C ∗r (G ) are,
and even if the action is trivial, understanding the elements of the reduced
crossed product requires that one understand all the elements of the
completed tensor product C ∗r (G )⊗min A.

As far as I know, this problem is
also in general intractable.

There is just one bright spot: although we will not prove it here, there is
an analog for general crossed products by Z of the fact that the Cesaro
means of the Fourier series of a continuous function always converge
uniformly to the function. See Theorem 8.2.2 of Davidson’s book.

The discussion above is meant to point out the difficulties in dealing with
crossed products by infinite groups. Despite all this, for some problems,
finite groups are harder. Computing the K-theory of a crossed product by
Z/2Z is harder than computing the K-theory of a crossed product by any
of Z, R, or even a (nonabelian) free group!
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Z/2Z is harder than computing the K-theory of a crossed product by any
of Z, R, or even a (nonabelian) free group!
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