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Linear-response theory for open (infinite) systems leads to an expression for the current response
which contains surface terms in addition to the usual bulk Kubo term. We show that this surface
term vanishes identically if the correct order of limits is maintained in the derivation: the system
size L must be taken to infinity before the adiabatic turn-on rate § of the perturbation is taken

to zero.

In contrast to recent claims this shows that linear-response theory for open systems is

gauge-invariant without modification of the continuity equation. We show that a simpler derivation
of the Landauer-Biittiker equations may be obtained consistently from the bulk Kubo term, noting
that surface terms arising here are nonvanishing because they involve the opposite order of limits,

6 — 0, then L — oo.

The connection between resistance and scattering
properties of an open phase-coherent system, described
by Landauer! and Biittiker,? has proved to be an invalu-
able tool in understanding the wealth of transport phe-
nomena that are observed in mesoscopic systems.® Given
the S matrix elements for scattering from subband a in
lead n to subband a’ in lead m, one can relate the currents
and voltages in the leads by I, = 3", gmn V,, where the
conductance coefficients are determined for m # n by

grn = 5 [AB P EN S Smneal (1)

(gmm follows from current conservation). The original
derivation of this multiprobe formula by Biittiker? for
T = 0 is independent of the presence of a homogeneous
magnetic field, because the cancellation between group
velocity and density of states on which it relies still occurs
at B # 0. The simplicity and generality of Eq. (1) made
it desirable to establish whether it followed from standard
linear-response theory (LRT) applied to open systems.*
For the case of multilead structures in a nonzero magnetic
field this was first shown by Baranger and Stone,® and
subsequently several different treatments were given.6™8

Shortly thereafter, Sols® challenged the validity of
these derivations, arguing that due to a boundary term
arising only for open systems, the Kubo formula could
not be derived consistently without inserting an addi-
tional term into the continuity equation. Indeed, it was
argued that this surface term violated gauge invariance
(since it vanished in some gauges and supposedly did
not in others) and that the more general requirement
of gauge invariance necessitates the proposed modifica-

0163-1829/93/48(23)/17569(4)/$06.00 48

tion of the continuity equation.® Actually, Appendix D
of Ref. 5 presented a proof that the surface term in ques-
tion vanished identically in the noninteracting limit. The
inconsistency according to Sols arose because subsequent
manipulations leading to the Biittiker equations give rise
to surface terms which were found to be nonzero and yet
apparently had the same form as those shown to van-
ish in Appendix D. We have reexamined this issue and
the closely related question of the invariance of LRT un-
der global gauge transformations. Our results resolve the
apparent contradiction by clarifying that the two limits
that arise for LRT in open systems, the limit of the infi-
nite system size and the adiabatic turn-on of the pertur-
bation, do not commute. The two apparently identical
surface terms noted by Sols differ precisely in the inter-
change of these limits and we show that they vanish in
one order and not in the other as found in Ref. 5. Hence
Eq. (1) follows rigorously from LRT; a minor modifica-
tion of our derivation proves the gauge invariance of LRT
without modification of the continuity equation. In addi-
tion, our analysis leads to a derivation of Eq. (1) which
is somewhat simpler than that in Ref. 5, since it only
employs properties of the scattering wave functions and
makes clear the role of the adiabatic turn-on in break-
ing time-reversal symmetry. This derivation is similar to
that given in Ref. 6, except that we identify the central
role of the above limits, clarifying in this way both the
conceptual and technical steps leading to Eq. (1).

In Refs. 4-7 and 9, an open conductor is represented
by a finite sample region connected to N straight semi-
infinite leads on which the external potential ¢ assumes
constant but unequal values. We start with an adiabati-
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cally switched-on dc perturbation of the form I(r) = —e lim 0 di' Bt /ﬁd)\
60 J_ o 0
Vit)=¢e r) ¢(r) e’ dr, 2
=< [otste ® i (e, e ) 0). (9

where p(r) is the electron density operator. The expec- Applying the continuity equation ep(r,t’) = —Vj(r,t)
tation value of the current density caused by the pertur- in the interaction picture and integrating by parts, one

bation in linear order can be written as® arrives at
J

Y B
I() = lim [ dt'e / dA < 3, —ihA) [_ /dr’j(r’,t') V(') + / ds' j. (s, 1) ¢(s')] > : 4)
60/ o 0 8’00

where j, is the normal component of the current density, and the surface s’ must be taken to infinity because the
original integral, Eq. (3), is of infinite range for the open system. However, in the bulk term, which we denote by
JX(r) because it leads to the Kubo formula, the spatial integral only has to be extended over the finite region A
where the perturbing electric field E = —V'¢ is nonzero. To bring out the issue very clearly, let us now integrate by
parts in the bulk term J¥ (r), noting that A is finite so the surface §.4 is not to be taken to infinity. We obtain

J&(r) = lim Odt’e‘”’ Aﬁd)\ <j(r, —3ihA) [—e Air'p(r’,t')qﬁ(r’,t’) —/aiis'jJ_(s’,t’) ¢(s',t')]>. (5)

§—0 J_ o

The surface term in this equation differs from the one in Note first that the bulk term in IX only vanishes when
Eq. (4) only in sign and in the absence of the s’ — oo we take the limit § — 0, so the order of limits leading
limit. Now we can determine the total current I, in to the surface expression for IX is uniquely determined.
lead m by integrating J(r) over a cross section of lead m. Conversely, the limit s’ — oo in Eq. (4) must be taken
Let IXand I}, denote the contributions of J¥ and the before § can go to zero. The reason is that in calculating
surface term in Eq. (4) to I,,. The subtle point emerges the LRT current as a trace over the unperturbed eigen-
once we take the limit § — 0 in the above expression states, we assume that the system was in equilibrium in
for IX  as the property V - JX = 0 and the nonlocal the distant past, which is achieved by § > 0. Matrix el-
Onsager relation for o4. in a magnetic field imply that ements of the perturbation, Eq. (2), in the unperturbed
the bulk term in Eq. (5) vanishes upon integration over basis give rise to the spatial integral of infinite range.
a lead cross section, leaving only the surface term.® This This is the asymptotic limit, which must consequently
is physically reasonable because the dc currents in the precede the adiabatic limit, § — 0. It is not immedi-
leads are uniquely determined by the voltages outside of ately obvious that this subtle difference really matters;
A. But since the only restriction on A was that E = 0 therefore, we now evaluate both surface terms carefully,
outside of it, nothing now prevents us from taking 0.4 — to show that I, vanishes while IX does not. Inserting
co. Thus IX becomes identical to —1I', except for the many-body eigenstates |a) and executing the integrals
interchange of the limits. If these two limits commuted over t and A, one obtains from Eq. (5)

we would obtain the absurd result I,,, = IX + I/ = 0.
j

X = /dym ) (6)
) Pz - P, 1 , .
— d - @ d / ! /
it [ay I P e [ 416111 ()]e) (alis (5)18) 616,
f
where the y,, integral extends over a cross section of lead dEL 7Y%,
m. The expression for I/, is the same, only with 8.4 Eha(r) = ‘27f dka era® x4 o (v), (8)

replaced by s’ — oo.

In the noninteracting limit, the statistical weights P,
can be replaced by Fermi functions f(E,), and |a) be-
come single-particle scattering states which, in lead I,
have the asymptotic form

where X!, are the transverse wave functions and kY , is

the outgoing (+) or incoming (—) wave number. With

the above choice of normalization, the symbolic sums

over collective labels have the explicit form Y, 6 —

L . . > p 20 JAE. In the following, subscripts a imply a de-

Vo =VEap = & ot Z Stip,ata §iar- (7) pendence on the energy variable E, while indices b belong

a! to energies E’. As was shown in Ref. 5, current conserva-

tion implies the following properties for two wire eigen-

Here, the label a consists of the energy F, subband index functions at the same energy in the asymptotic region:°

a, and lead p of the incident wave. An analogous defini-

t?on holds for Wﬁ = 1/:53,,”1. The quantum wire eigenfunc- /dyz GRS o oiobaia s (9)

tions have the form 2mh
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with the notation 0 = =+, and the round brackets for
the single-particle current matrix elements. If ¢! is the
propagation threshold of subband a in lead I, Eq. (6)
leads to integrals of the type

* * o f(E') — f(E) Fs(E',E)
/Eng / W= TE E-Brim> 10

b

where
Fo(B\E) = [ a5 (6Baglio () ¥Eey)
X('l/]gapljl(sl)lwg'bq) (11)

contains the current matrix elements and thus vanishes
at threshold. The surface S of integration is 8.A for IX,
and is taken to infinity for I/,. Although we wish to let
0A — oo eventually, we can do so only after § — 0. Note
also that I(—E};E—:gﬁ is nonsingular on the real axis.

We now evaluate the integral over E’ in Eq. (10) by
Cauchy’s theorem. A similar approach is taken in Refs.
6 and 11 to obtain Eq. (1) from the Kubo term IX. In
general, the integrand in Eq. (10) may have a compli-
cated singularity structure in the complex plane, arising
both from the “Matsubara” poles of the first factor and
the singularities of the S matrix contained in Fs(E, E").
However, since asymptotically the wave functions have
a plane-wave dependence on z’ (the longitudinal coor-
dinate in the lead), we shall see that contributions from

the return contour may always be made to vanish as long
]

Fs(E',E)
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FIG. 1. The two possible contours that yield exponential
decay in z’ off the real axis for the various terms in Eq. (13).
Open dots: two possible locations of the pole at E' = E —ihd.

as the correct half plane is chosen to close the contour.
This is so even if the return contour is a finite (not in-
finite) distance from the real axis.!? Since the locations
of all the singularities of the integrand in Eq. (10) are
independent of both the asymptotic and adiabatic lim-
its except for the pole at E/ = E — ihé, for convenience
we choose contours Cy, C2 (shown schematically in Fig.
1), which, by assumption, enclose only the latter pole.
Hence C; will contain no singularities at all, and terms
that in the asymptotic limit may be closed in the upper-
half plane will give zero contribution. C, will enclose the
pole at E' = E — i¢hé unless it approaches the real axis
outside the range of the E’ integration (i.e., unless F is
less than the subband threshold relevant for the term in
question). By this convenient choice of contours we need
only evaluate the residue at £/ = E — iA§ and see how
it depends explicitly on the order of the asymptotic vs
adiabatic limits.
The residue theorem yields with v = 1,2

(/:odE’ +/CdE’) HE) = 1(B) — onis,0F — ) LEZM) —F(B) p g _ins ), (12)

E' - FE E'—E +ihs

—ihé

where the step function © enters, since C, encloses a pole only if E > €7, and 4, » reflects the fact that no poles are
enclosed by C;. The additional minus sign is due to the negative sense in which C encloses the pole. Along C,,
the limit S — oo enables us to apply the asymptotic forms of ¢, and 93 in the second current matrix element in

Fs(E',E) to get in lead [

(VoapliL (8) ¥ 5bq) = Sa1 6pt (€L alFL1E55) + 8pt Y Stgorn(€alis|Eler)
bl

00 > St ara(EharliLlEle) + ) Sty araSia s (ErarliLléhe)s (13)

irrespective of whether § = 0 or not in Eq. (12). For E’
in the complex plane, the imaginary parts of the wave
numbers satisfy

sgn [ImkY,(E’)] = +sgn (Im E’) . (14)

This can easily be checked for the special case ki, oc

+4/E' — €, but holds even in asymmetric leads at B # 0
where E' = ¢} can occur for nonzero k. Note that the
branch point at €] causes no problems, since Fs(E’, E)
vanishes there. The first and third terms of Eq. (13) de-
eik[—b”’, so that they acquire an exponen-
—k(E")z’

pend on ¢!,
tial decay factor e when integrated along the con-
tour C,. For the other two terms in Eq. (13), we choose
C; to obtain positive imaginary parts in kﬂ_b(E’). The
asymptotic limit 2’ — oo causes the contributions from
C1 and C, to vanish identically. The result is that the real

a'b’!

f

axis integrals over E’ in Eq. (10) vanish due to Cauchy’s
theorem unless C, encloses a pole. Its residue in Eq. (12)
contains a factor eX-s(E=if)e'  For F # €] we can ex-

pand the outgoing wave number as k' ,(E) — i v 1(E)

where the group velocity v(E) = 14E is negative. We

thus pick up a decaying exponential of the form

Fs(E —iké, E)  exp [—6 |[v™1(E)| 2] . (15)

This exhibits clearly the noncommutability of the limit-
ing procedures: In I, we take ' — oo first, causing Eq.
(15) and with it I}, itself to vanish. Moreover, since all
boundary terms encountered in a gauge transformation®
contain Eq. (10) with the above order of limits, this ob-
servation establishes the gauge invariance of LRT.

On the other hand, IX is nonzero because now § — 0
is performed first in Eq. (15), yielding
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lim oodE’ f(E")— f(E) Fs(E',E) let r in Eq. (6) go to infinity as well. Considering only
5§50 J.a E' — FE E' — E + ihé n # m, 7 of the 16 terms in Fg(FE, E) vanish identically
* ) , due to Kronecker § factors such as 0pmdpn. When the

= —27id,20(E —¢}) f'(E) Fs(E, E) . (16) sums over the incident wave parameters p,a or ¢,b are

performed as prescribed by Eq. (6), five more terms drop
out due to the unitarity of the S matrix,

ZZ

Here, we sum over all subbands propagating at energy
E. This leaves the following four terms in Fs(E, E):
J

6 6 S:m a'a nm b'b ( T—nb|jL|£lna) (E—?—a' |J-L|51b’) + 6qm5pnsmn,a’a5nm,b’b ( Tblji.lgfa’) (£za|ji_!£ib’)
+6P7n6 S:Lm a' asmn b'b (gia’ I].ngzb) (gTb’ I]_ng’-r—na) + 5qn5pns:‘nn,b'bsmn,a’a ( :—nb’ |jJ-l£:—na’) (Ezaljllgzb) ’ (18)

where a sum over propagating subbands a’, b’ must be performed. The first two terms require integration along C;
in Eq. (16) and hence yield no residue. For the third term, Eq. (9) yields zero. In Ref. 6, it is not noticed that this
term does survive the contour integration and only vanishes due to Eq. (9), which is not equivalent to the unitarity
of the S matrix, but follows instead from the translational invariance of the asymptotic wire Hamiltonians. That this
property of the model is important in deriving Eq. (1) was recognized solely in Ref. 5. In the present treatment, the

This result leads to Eq. (1), as we now show by taking the
asymptotic limit S — oo. The integral over s’ in Eq. (6)
becomes a sum of integrals over isolated quantum wire
cross sections, Y fdyn, along which ¢ assumes its con-
stant values V,,. Our expression for the total current at
this stage already has the form I,, = IX = 3 gmn Va.
The product of current matrix elements at the same en-
ergy in Fs(E,E) can be evaluated with Eq. (13) if we

= Snmbara = 0. (17)

np a'c mp,ac

remarks below Eq. (14) allow us to conclude that no other symmetries of the leads are essential.

Our expression for IX
then given by

now contains only the last term in Eq. (18).

The conductance coeflicients for m # n are

_dﬁﬁ%/@nz:E: %zLdEmE—me)

P,g=1a,b=1

X 6gnbpn
lbl

——/dE

where Eq. (9) has been used. This is the desired result,
Eq. (1). Comparing the first and last terms in Eq. (18),
we see that they differ only in the order of m and n. It
is the sign of § that caused the first term to make no
contribution to Eq. (16), so that g,,, depends only on
scattering probabilities from n to m, and not vice versa,
as required by causality. Finally we comment that the

a'a

(St prtSmnata (E7o 9L IETar) (€2aliLE™s)] g

)] ZE |Smn,a’a|2 ) (19)

[
vanishing of I}, can also be demonstrated in the presence

of interactions: the essential point is the smoothness of
the integrand in Eq. (10) on the real axis for § # 0, which
is preserved in the interacting case.
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