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The transmission behavior of a quantum point contact in a mag-
netic field is calculated, exhibiting in detail the influence of intersub-
band scattering. In contrast to the commonly known reduction of
backscattering by a magnetic field, it is shown here that a weak field
can cause increased backscattering. Nevertheless, the present results
serve to illustrate that backscattering can occur without any effect
on the conductance quantization, which is explained by an indirect
compensation mechanism.

1 Introduction
It was recently discovered by van Wees et al. [17] and Wharam et al. [18]
that the conductance of a nanostructured constriction in a two-dimensional elec-
tron gas (referred to as quantum point contact, QPC) exhibits steps of magnitude
2 e2h if the constriction width is varied. In the modulation-doped GaAs-AlGaAs
heterostructures used to perform the experiments, the spatial extension of the
depletion regions defining the QPC can be varied by changing a gate voltage Vg.
At the origin of the quantized conductance is the formation of one-dimensional
channels in the device:
When B = 0, one-dimensional modes are formed because the confining poten-

tial quantizes electronic motion perpendicular to the device walls. At moderate
magnetic fields, these modes become hybrid channels, or magneto-electric sub-
bands, due to the simultaneous presence of spatial and Landau quantization.
In a high magnetic field, the one-dimensional subbands take the form of edge
channels in which an electron propagates coherently along spatially separated
equipotential lines [12].
At any point in the constriction, these subbands appear as discrete branches

of the dispersion relation E versus k, where k is the wavenumber associated with
the direction of free motion (choosing Landau gauge at B 6= 0).
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As the height and width of the saddle shaped depletion potential are varied,
a subband will cease to contribute to the current when it is pushed above the
Fermi energy at the narrowest point of the constriction. Since each of the one-
dimensional subbands contributes 2 e2h to the conductance G due to a cancellation
between density of states and average velocity [2], there will be a step in G
whenever the width W reaches the cutoff-value for the the highest subband.
Experimentally observed departures from such accurate steps in the conductance
can be attributed to the presence of barrier penetration, above-barrier reflection
and intersubband scattering.
The effects of these complications on the accuracy of the conductance steps

have been investigated theoretically by several authors, using various model po-
tentials [14, 19–25].
To translate scattering properties of the QPC into the conductance measured

between the 2D reservoirs, one can make use of the two-terminal Landauer-type
conductance formula derived in [5]. The conductance is given in units of e2h by

g =
∑
a,b

|Tba|2, (1)

where Tba is the current transmission amplitude from subband a to b, and elec-
tron spin is not considered, as in [5]. The simplest way to obtain well-defined
steps in the conductance versus constriction width is to assume T diagonal and
the diagonal elements either of magnitude one, for channels propagating through
the constriction, or zero for channels that are not. This means if W is the con-
striction width, |Taa(W )|2 must be step functions in W , a condition that is met
whenever the simple introductory explanation above holds where resonances,
tunneling and subband mixing are not considered. For intersubband scattering
to be absent, the transport is required to be adiabatic, this being well satisfied
in the edge channel regime. At B = 0, the electronic motion is generally not
one-dimensional, because scattering between subbands can easily be caused by
the device geometry [22] as well as by disorder [24].
T is indeed diagonal for the model potential treated by Büttiker [23]. How-

ever, as is also stated in [23], conductance steps can still be expected if T is not
diagonal. Büttiker’s argument is that any diagonal T that yields steps in (1)
can be subjected to an arbitrary unitary transformation which creates a non-
diagonal T ′ while leaving the result of (1) unaffected. A physical interpretation
for this can be given by pointing out with Beenakker, van Houten [2] that
conductance quantization may persist as long as intersubband scattering does
not alter the net transmission behavior of a QPC, which is all that is left after
the summation in (1).
A special case of a non-diagonal T has been discussed by Laughton et al. [24]:

They find quantized transmission in the presence of impurities, provided that
only forward scattering takes place. The reason for this was given by Payne [19],
who pointed out that intersubband scattering has no effect on the conductance
steps as long as scattering from subband a to subband b is exactly compensated
by the opposite process from b to a. In that case, channel a carries the same cur-
rent before and after the obstacle until the subband cutoff threshold is reached,
at which time the conductance has a step. For B = 0, it is argued in [19] that
this cancellation of scattering events occurs if both channels are fully populated
up to the Fermi energy. The latter can be satisfied for all except the reflect-
ing channels, so that the conductance remains quantized when the scattering is
purely forward.
Writing the above compensation argument in terms of transmission coeffi-

cients, the absence of significant backscattering means that the net current each
channel sustains only depends on whether or not the channel is conducting at
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all, so that for all b ∑
a

|Tba(W )|2 = Θ(W −Wb), (2)

where Wb in the step function Θ is the cutoff width below which no current can
emerge on the far side of the constriction in final state b. Since |Tab|2 = |Tba|2,
we can exchange the indices in (2) and thus obtain as an equivalent statement∑

b

|Tba(W )|2 = Θ(W −Wa) (3)

for all a. This formula means that the incoming current in each individual
subband a only branches into the available outgoing channels, so that the net
transmission is unity as long as subband a is not cut off.
As was to be expected from the reasoning of Payne, a lowering of the con-

ductance plateaux due to backscattering is also found in [24], as well as in [21].
In the presence of a magnetic field, conductance quantization generally becomes
more accurate due to the reduction of backscattering from impurities [8] as well
as from the constriction geometry [2, 14], and the conductance plateaux broaden
because the subband separation increases.
Guided by the very general, but abstract argument of Büttiker, we now ask

whether a more general T than the one in (2) could also be physically realized.
Put differently, can there be quantization of the conductance if backscattering
is important so that (2) does not hold? The present calculation proves that this
question can be answered affirmatively.
Very recently, a recursive Green’s function calculation has been performed

by Ando [25], yielding results very similar to ours in spite of the completely
different computational method employed here. However, we show that the
action of a weak magnetic field in the non-adiabatic regime cannot be interpreted
in terms of the commonly known reduction of backscattering. To the contrary,
backscattering can actually be increased by the magnetic field while conductance
quantization improves at the same time. The reason for this is a modified current
compensation process that allows for backscattering. This is in contrast to the
results quoted above, which seem to suggest that backscattering is invariably
detrimental to the accuracy of conductance quantization.
The reason why this effect of a magnetic field cannot be seen in the work done

by Ando will be explained in the next section.

2 Model
At B = 0, one can use the fact that the time independent Schrödinger equation
for the ballistic electron motion is formally identical to the Helmholtz equation of
waveguide optics. One characteristic of this “electron optics” is that in the con-
striction, any potential barrier that depends on the longitudinal (x) coordinate
alone can cause no scattering between different channels [22], since a Schrödinger
equation of the type{

p2
x

2m +
p2
y

2m + V ′(x) + V (y)
}

Ψ(x, y) = EΨ(x, y) (4)

is separable.
However, an additional vector potential destroys the formal analogy to optical

waveguides. This becomes significant in weak magnetic fields, where the mag-
netic length is comparable to a characteristic length of the potential variation,
so that neither the waveguide nor the semiclassical skipping orbit pictures are
valid. Under these circumstances, the magnetic field itself becomes a third in-
dependent source of subband mixing besides device geometry and impurities, as
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will now be illustrated by introducing a vector potential in equation (4): If the
barrier Vx is abrupt, subband conservation will only hold in B = 0, but not in
B 6= 0, because there is no choice of gauge or coordinate system for which the
Schrödinger equation{

1
2m

(
~p+ e

c
~A(x, y)

)2
+ V ′(x) + V (y)

}
Ψ(x, y) = EΨ(x, y) (5)

separates for a rectangular barrier V ′(x). Such magnetic-field induced subband
mixing will be investigated here.
Following Büttiker [23], we approximate the transverse confinement by a

quadratic potential
V (y) = 1

2mω
2
0 y

2 (6)

Here, ω0 does not vary with x because we do not consider scattering at the
interfaces between reservoirs and QPC (see [2, 4, 22]). Into this quantum wire
which represents the constriction region, we now introduce an additional barrier
in the form of a multi-step function Vb(x) in the longitudinal direction. Thus
we obtain the saddle-shaped potential landscape of a realistic QPC by piecing
together several identical parabolic wire segments with a bottom offset of Vb.
In our model, to increase Vb is to change two things at the same time in

the classical potential landscape seen by an electron at the fermi energy: rising
barrier height is accompanied by a narrowing of the constriction at EF . The
advantage of this geometry is that it guarantees subband conservation for B = 0,
irrespective of how abrupt the potential variations are, cf. (4). In Ando’s
treatment [25] a magnetic field is never the sole cause of intersubband scattering
since subbands are mixed even at B = 0. Due to its simplicity, the present model
allows to separate the effects of a magnetic field on subband conservation from
the effects of the device geometry. The amount of intersubband scattering can
be determined solely by the magnetic field strength, without having to change
the scattering potential. This feature cannot be exploited if the saddle potential
is continuous and slowly varying since such a Vb(x) entails adiabatic transport
independently of B. Therefore, it is appropriate to consider not a smooth, but
an abrupt potential.

3 Calculations
The electronic motion in our model potential will be found by performing a wave
function matching similar to that in [20, 26] but generalized to the case B 6= 0.
Expressing the magnetic field in terms of the cyclotron frequency ωc = eB

mc , and
choosing the Landau gauge ~A = −By~ex, our starting point is the Hamiltonian

H = 1
2m

{
(px −mωcy)2 + p2

y

}
+ 1

2mω
2
0y

2 + Vx (7)

with a constant potential Vx and an oscillator frequency ω0 independent of x. To
introduce dimensionless variables, we define a hybrid frequency , ω :=

√
ω2

0 + ω2
c ,

and measure frequencies in units of ω, energies in ~ω, and lengths in
√

~
mω . In

these units one has ω2
0 + ω2

c = 1.
The eigenfunctions, normalized to unit 2D current, have the form

Ψ(x, y) =
√

1
|k|

eikx ua(y − ωck) (8)
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where

ua(y − ωck) := 1√√
π a! 2a

e−
1
2 (y−ωck)2

Ha(y − ωck) (a = 0, 1, . . .), (9)

are the harmonic oscillator wavefunctions displaced from the origin by ωck.
For fixed energy E the wave numbers corresponding to a possible solution are

ka = ±
√

2(E − Vx − a)− 1
ω0

. (10)

This means that the index of the highest propagating subband is

amax = int
[
E − Vx −

1
2

]
. (11)

We now relax the assumption Vx = const, allowing N discrete discontinuities
along the x-direction at positions x1, x2, . . . , xN . Let the constant potential in
the N + 1 resulting regions have values V0, V1, . . . , VN . Then in region α =
0 . . . N , the wave number belonging to channel a is

kαa = ±
√

2(E − Vα − a)− 1
ω0

. (12)

We see from (12) and (8) that unless B = 0, the wavefunction is shifted by
unequal amounts in intervals with different Vα. This mismatch means that an
electron incident in subband a from the left will have to evolve into a linear
combination of all possible subbands when it crosses x1. Likewise, the reflected
wave is shifted in the direction opposite to that of the electron incident in a, so
that the reflection, too, violates subband conservation due to the mismatch of
the transverse wavefunctions.
To perform the wave function matching at the discontinuities of Vx, the dis-

placed transverse functions are expanded in the complete set of the unshifted
oscillator eigenfunctions:

ua(y −∆) =
∑
b

cba(∆)ub(y), (13)

the coefficients being [16]

cba(∆) =
∞̂

−∞

ub(y)ua(y −∆) dy

= 1√
a! b! 2a+b

e−( ∆
2 )2 ×

{
2a b! (−∆

2 )a−b La−bb (∆2

2 ) (a ≥ b)
2b a! (∆

2 )b−a Lb−aa (∆2

2 ) (a ≤ b)

where both cases coincide for a = b, and Lb−aa (z) denote associated Laguerre
polynomials (normalized to Ln0 (z) = 1).
Using the linear independence of the set ua(y) and requiring the continuous

differentiability of the matched wavefunction, one obtains a system of linear
equations, the unknowns being the amplitudes Aα±ba with which subbands b are
present in the right- (+) and left-going (−) wave in region α when the electron
is incident from the left in subband a. This linear system is infinite dimensional
because imaginary wavenumbers have to be retained, but it can be well approx-
imated by a system of finite dimension as long as the Lorentz displacement ωck0

a

of the incoming wave is sufficiently small. To arrive at a solution, a standard
linear equation solver was used. The system of equations becomes numerically
singular if the barrier potential is so high or broad as to decouple the left and
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Figure 1: Sketch of the dispersion relation in the regions without barrier potential, for three values of
the magnetic field. EF (indicated by the broken line) is chosen so that the second subband
becomes depopulated just below ωc = ω0. The effect of a potential Vb is to rigidly shift all
the parabolas upward by an amount Vb. When a subband gets pushed above EF due to Vb,
it no longer propagates in the barrier region.

right sides. These restrictions were taken into consideration in our choice of
parameters.
The quantities of interest are the current transmission and reflection proba-

bilities |Tba|2 and |Rba|2, satisfying [27]∑
b

{
|Rba|2 + |Tba|2

}
= 1. (14)

for all a. Using arguments similar to those in [5, 6], it follows that for our choice
of normalization Tba = AN+

ba and Rba = A0−
ba . The sum rule (14) is used to check

the numerical accuracy of the results below.

4 Results
We turn now to the simplest case of a rectangular barrier of length l and height
Vb, i.e. N = 2 and V0 = V2 = 0, V1 = Vb. In a real device, the distance between
the inversion layer and the patterned electrodes defining the wire and barrier
will determine whether or not such an abrupt conduction band variation can
be created. The assumption of an abrupt potential will be unjustified at high
magnetic fields because variations in V ′(x) will always be smooth on the scale of
the small magnetic length. Therefore, weak magnetic fields will be investigated
here, as in [25]. This means that the edge channel picture is invalid, which is
why the magnetic field should no longer be expected to reduce backscattering in
the way it is described in [2, 8, 14].
In zero magnetic field, transverse mode indices a are conserved and transmis-

sion probabilities for mode a are [28]

|Taa|2 = 4k2 |κ|2

|(k2 + κ2) sin κl + 2iκk cosκl|2
, (15)

with k =
√

2(E − a)− 1 and κ =
√

2(E − Vb − a)− 1 in reduced units. Our
calculation is an extension of this to the case B 6= 0. Up to now, the calculations
were most compactly written in units that depend on the magnetic field through
ω. To be able to compare the results at different values of B, all quantities are
now expressed in terms of ω0 instead. After converting to these units, expression
(11) for the highest propagating subband at a given energy must be modified to

amax = int
[
E − Vb√
1 + ω2

c
− 1

2

]
. (16)

6



Figure 2: Conductance g as a function of normalized barrier height Vb
EF

for four values of the magnetic
field.

The dispersion relation in the regions where Vb = 0 is shown in Fig. 1 for
three values of ωc that will now be investigated more closely.
We fix the Fermi energy at E = 2.1 ~ω0 and the barrier length at l = 3.0

√
~

mω0
.

Consider first the case ωc = 0 where, according to Fig. 1(a), the two channels
a = 0, 1 propagate outside the barrier. As Vb is increased, the conductance
exhibits a step which is only approximately at the quantized value g = 1 of the
dimensionless conductance, cf. Fig. 2.This is due to transmission resonances
and tunneling, as discussed in [2]. The plateau in conductance vs. Vb deviates
less from g = 1 when a magnetic field is applied, and it broadens with increasing
field, as the plots for ωc = 0.5ω0 to ωc = 0.9ω0 in Fig. 2 show.
At a magnetic field such that ωc = ω0, Fig. 1(c) tells us that only the a = 0

subband is still below the Fermi energy, which means the electron is forced
to obey subband conservation as in zero field. If we now look at Fig. 3, it
is clear that compared to ωc = 0, the transmission characteristic |T00|2 has
been improved in two ways at ωc = ω0: The resonance in the plateau region is
damped due to the dephasing action of the magnetic field. Also, tunneling is
reduced because some of the longitudinal energy has been drained away into the
transverse motion by the magnetic field. This is also the reason why the drop
in transmission occurs at a slightly lower potential height when ωc = ω0.

Figure 3: Diagonal current transmission |T00|2 as a function of normalized barrier height Vb
EF

for three
values of the magnetic field. Effects of intersubband scattering are seen at ωc = 0.5ω0.
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Figure 4: Off-diagonal current reflection |R10|2 and transmission |T10|2 = |T01|2 as a function of
normalized barrier height Vb

EF
at ωc = 0.5ω0. Reflection occurs before the cutoff potential

is reached; for Vb →∞, an asymptotic value is quickly approached.

Having recognized the beneficial effects of a magnetic field on the transmission
step in the absence of intersubband scattering, we now introduce a second sub-
band by decreasing the field to ωc = 0.5ω0. If subband mixing remained absent,
no significant change in |T00|2 would be expected. However, Fig. 3 shows that
|T00|2 loses its step shape at ωc = 0.5ω0, indicating that a qualitative change
has taken place with respect to the purely one-subband cases.
The most striking observation can be made in Fig. 4 which shows that sig-

nificant off-diagonal reflection occurs in the range of Vb where the conductance
plateau exists. In addition, a plot of the off-diagonal transmission |T10|2 in the
same figure shows that intersubband mixing occurs in the forward direction, too.
Recalling Fig. 2, we can conclude that the conductance quantization is unaf-

fected by intersubband scattering in the forward and backward direction.
A more detailed statement can be made if we inspect |T1a|2+|T0a|2 for a = 0, 1,

shown in Fig. 5. The plot for a = 0 shows that a step shape is not fully recovered
due to the substantial backscattering, so that (2) and (3) do not hold.
It follows that the mechanism for conductance quantization must be such that

the loss in net transmission of incoming channel a = 0 is compensated for by
an increase in net transmission of channel a = 1 in the same range of Vb. This
is exactly what we see in the net transmission from channel a = 1, Fig. 5:
A transmission shoulder appears in a range of Vb where no transmission could
occur if channel number was conserved, since the a = 1 subband is cut off by the
barrier. The physical reason why this compensating transmission enhancement
can take place is that an incoming electron in channel a = 1 will be forced to
“turn the corner” at the barrier if Vb exceeds the cutoff value. While being thus
localized near the interface, a transition to a = 0 can take place, allowing the
electron to propagate forward across the barrier before it reaches the reflecting
edge. Consequently, the transmission shoulder is essentially |T01|2 since |T11|2 is
small when only barrier penetration makes a contribution.
One question that has to be answered to make contact with the compensation

argument of [19] is whether all forward scattering events continue to be cancelled
by the reverse processes even in the absence of time-reversal symmetry caused
by the magnetic field. This can indeed be verified by defining an antiunitary
operationW := KU , whereK denotes complex conjugation and U is a reflection
at the y-axis, i.e. x → −x. The Hamiltonian commutes with W , provided
the barrier potential is chosen to be symmetric, Vb(x) = Vb(−x). This fact is
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Figure 5: Net current transmission |T0a|2 + |T1a|2 as a function of normalized barrier height Vb
EF

for
a = 0, 1 at ωc = 0.5ω0. In the plateau region, the a = 1 subband contributes to the current
even though it is cut off.

sufficient to prove
|Tmn|2 = |Tnm|2. (17)

Analogously, one can deduce |Rmn|2 = |Rnm|2 from the symmetry V (y) =
V (−y). However, this property alone does not explain the quantized conduc-
tance, because we have to take backscattering into account. In fact, an asym-
metric barrier, Vb(x) 6= Vb(−x), continues to yield a conductance similar to Fig.
2, so that the compensation mechanism (17) is not a relevant explanation at all.
The increased reflection that causes |T10|2 + |T00|2 to deviate from step shape

in Fig. 5 is balanced in magnitude by |T01|2. This is due to the peculiar fact
that in the range of Vb where channel a = 1 is cut off while a = 0 propagates in
the barrier region, one has

|R10|2 ≈ |T01|2. (18)

This can be called an indirect compensation mechanism, and it is not based on
a rigorous symmetry argument like that leading to (17). The numerical result
reflected in Fig. 4 and Eq. (18) can be given a qualitative physical interpretation
in the following way: When the magnetic field causes intersubband transitions, it
tends to do so with roughly the same strength for both directions of propagation.
Thus, the appearance of extra reflection |R10|2 is accompanied by the opening
up of an equally effective transmission channel |T01|2. This cooperative effect is
suppressed when Vb exceeds the cutoff height for the last propagating subband,
a = 0, because in that case |R10|2 grows further while |T01|2 must go to zero.
With this result, we have extended the concept of compensation [19] to include
cases where backscattering is significant in one channel but masked by enhanced
transmission in another.
Finally, a remark must be made on the parameters chosen in this example.

The compensation mechanism described here for ωc = 0.5ω0 works analogously
at all magnetic fields for which two subbands are below EF outside the barrier,
i.e. between ωc = 0 and ωc = 0.98ω0 (cf. Eq. 16, Fig. 1). This is why all
graphs in Fig. 2 exhibit a conductance plateau. The parameter ωc = 0.5ω0
treated in the detailed analysis corresponds roughly to the magnetic field at
which intersubband scattering is at a maximum, because subband index must
again be conserved in the limiting cases ωc → 0 and ωc → 0.98ω0.
In the example of [25], the ratio ~ωc

EF
= 0.25 is almost the same as in this work,

but for a Fermi energy at which a third subband just propagates at the narrowest
point of the QPC when the barrier has zero height. It can be inferred from [25]

9



and my calculations that the indirect compensation mechanism continues to
function when more than two subbands are below EF .

5 Conclusion
The wave-function matching applied in [20] has been generalized to allow for
the presence of a magnetic field, resulting in quantitative data on the transmis-
sion properties of a QPC in weak magnetic fields. Since the model geometry
considered here is separable in the absence of a magnetic field, all intersubband
reflection is B-induced.
The fact that conductance quantization in a nanostructured constriction per-

sists in the presence of intersubband scattering cannot always be interpreted in
terms of a mere redistribution in the forward direction of the net current each
incoming channel carries. The net transmission behavior of our barrier for indi-
vidual channels does change in a magnetic field, as is seen in particular in the
occurrence of significant intersubband reflection for a subband that is not cut
off by the barrier. In spite of this backscattering, well-defined conductance steps
are observed, which is in contrast to the negative role backscattering plays in
previous calculations. The mechanism that leads to conductance quantization
has been identified as an indirect current compensation process, in which two in-
coming channels cooperate to form a step-like conductance despite the presence
of backscattering. When plateaux in the conductance of a QPC are observed, it
is therefore not justified a priori to assume that backscattering is absent in all
propagating subbands.

Note added in proof. After submission of this paper, a Rapid Communication
by Castaño and Kirczenow appeared [29], giving another convincing example
that intersubband scattering can be a decisive factor in the formation of quan-
tized conductance steps.
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