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In various recent model calculations on the transport properties of microstructures, trans-
mission resonances have been found that exhibit the asymmetric Fano lineshape. In par-
ticular one often encounters points of vanishing transmission or reflection as a resonance
is crossed. The interference effects that cause this phenomenon are identified in this pa-
per using first a coupled-channel theory that starts from the full scattering Hamiltonian,
and secondly a more general S-matrix approach. The latter is model-independent and
thus yields predictions for the possible lineshapes in a wide variety of systems. Model-
independent results are desirable because knowledge of the microstructure potentials is
often incomplete. We show for the most general multiprobe, multisubband structure that
the total transmssion never varies by more than unity on resonance, generalizing a result
previously known only for resonant tunneling structures. The role of symmetry is investi-
gated to clarify which features (e.g. reflection zeros) are a consequence of special invariance
properties and which are robust in the unsymmetric case. The effect of a resonance is found
to decrease with increasing number of leads in a rotationally symmetric structure. Only in
a two-probe geometry can zeros in transmission and reflection occur together for a single
resonance. The known result that resonances in symmetric resonant tunneling devices al-
ways display exactly unit variation of the transmission is shown to be violated in structures
where the nonresonant transmission exceeds one. Time reversal invariance is not required
in the present treatment. Two model systems displaying asymmetric resonances are dis-
cussed. Their advantage is that the resonance lifetime can be tuned externally, making it
possible to test a scaling property of the Fano lineshape that we derive below.
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Figure 1: The Fano lineshape, Eq. (1), for various values of the parameter q.

1. INTRODUCTION

A relatively new arena has been opened for the quantum theory of scattering since it
became clear that the electrical linear response of open multiterminal conductors can
be related to its transmission and reflection properties.[1] While three-dimensional (3D)
scattering theory is well-developed, the confining potentials defining a microstructure
force us to consider the scattering of particles whose asymptotic motion is not free. In
the absence of magnetic fields, these systems can be called “electron waveguides”. A
scattering theory for such systems of reduced dimensionality must take into account the
different boundary conditions for the stationary states, as well as the different symme-
tries that play a role. In spherically symmetric 3D scattering, angular momentum is a
good quantum number and serves to reduce the problem to a one-dimensional equation
for the radial wavefunction. The presence of leads in a microstructure makes it impos-
sible to retain a continuous rotation symmetry. Even if some other set of conserved
quantities exists such that the time-independent Schrödinger equation of the system
is completely separable, the resulting purely one-dimensional scattering problem obeys
different boundary conditions than the radial problem in 3D. In general, separability
cannot be expected, and only the asymptotic motion in the leads is of a one-dimensional
nature if we consider the leads as semi-infinite and straight. We use the term quasi-one
dimensional (Q1D) to emphasize this fact. A motivation for pursuing the formula-
tion of a Q1D scattering theory can be drawn from numerical studies of such systems
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Elastic scattering resonances in Q1D systems do not always
exhibit the symmetric Breit-Wigner (BW) lineshape familiar from 3D scattering, but
instead show an asymmetric lineshape when the nonresonant transmission is significant.
Often, but not always [2, 7] (cf. Section 2.3), these resonances can be explained in
terms of coupling between a bound state and a continuum in different subbands of the
quantum wire leads.

Although the Breit-Wigner peak [12] is the most common resonance lineshape ob-
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served in atomic and nuclear scattering, it has been known for some time that the most
general resonant lineshape (which includes the BW as a special case) is described by the
asymmetric Fano function, see Fig. (1):

f(ε) =
(ε+ q)2

ε2 + 1
. (1)

Here, ε = (E − ER)/Γ is the (dimensionless) energy from resonance, Γ is the resonance
width, and q is the asymmetry parameter. Strongly asymmetric Fano lineshapes are
familiar for inelastic autoionizing resonances in atoms[13]; however Simpson and Fano[14]
explicitly noted their occurence in spherically-symmetric elastic scattering in 1963. In
fact this lineshape is implicit in much earlier work in nuclear scattering where strong
asymmetries were measured in elastic neutron scattering [15, 16]. To be precise one
finds [14] that the elastic scattering partial cross-section near a resonance in angular
momentum channel l (neglecting spin) has the form

σl =
2π~2

p2
(2l + 1) sin2 θ̄l

(ε− cot θ̄l)2

ε2 + 1
, (2)

with p denoting the particle momentum and θ̄l the background phase shift in the absence
of the resonance. Hence σl is proportional to the Fano function with q = − cot θ̄l. The
only assumption needed is that θ̄l is roughly constant with energy across the resonance.
Here we see explicitly that in the limit θ̄l → 0 (q → ∞) of small background phase
shift one recovers the Breit-Wigner lineshape; whereas q → 0 yields a symmetric anti-
resonance (BW dip, known in photoabsorption as a window resonance [17]). Note that in
the spherically symmetric case σl varies between zero and 2π~2 (2l+1)/p2, the minimum
and maximum values allowed by unitarity of the S-matrix. In particular, the cross section
vanishes at ε = −q.

In the inelastic case, the characteristic asymmetry with an absorption zero has the
well-known interpretation of interference between transition amplitudes from a bound
initial state to an unbound final state either directly or via a quasibound (autoionizing)
intermediate state. A similar interpretation applies for asymmetric elastic resonances in
which scattering via a quasi-bound level interferes with direct (potential) scattering. An
important feature of elastic Fano resonances is that the asymmetry parameter depends
only on the background phase-shift and not on the strength of the coupling to the quasi-
bound level; i. e. , if one could tune this coupling without changing the background
scattering the resulting lineshapes should all scale onto the same curve given by Eq. (1).
Such an experiment has not been done yet, but may be possible for the first time in a
solid-state device [18].

We can categorize the previous work on Q1D resonace phenomena according to the
two main goals that are being pursued. Firstly, it is of interest to establish a connec-
tion between the lineshape and physical parameters determining the actual mechanism
that gives rise to the resonance (such as matrix elements of the scattering potential).
Secondly, one may seek general statements about possible lineshape features (e.g. re-
garding the limits within which the transmission can vary) which are independent of
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details of the underlying model. The latter is of particular value in microstructures
where a complete knowledge of the potentials is often unattainable. Both goals could be
reached simultaneously if all Q1D resonances were describable by a single generic model
system in which only a few parameters are unknown. Solving that model would then be
tantamount to solving the general problem.

In a recent paper [11], Tekman and Bagwell used a two-band model with a delta
function coupling potential to reproduce asymmetric resonances of the type seen in
numerical simulations. The lineshape derived in that model calculation is indeed well
approximated by Eq. (1). A more general two-band approach for arbitrary coupling
potentials has been used by Gurvitz and Levinson [19], but only symmetric lineshapes
were considered. These models do not describe resonance phenomena in structures
with more than one propagating subband per lead, or with more than two leads. We
explore in Section 2 the maximum range of validity of the two-channel model used by
Gurvitz and Levinson, which we recognize as a reformulation of Feshbach’s theory of
coupled scattering channels [20]. The microscopic expressions that we obtain for the
Fano lineshape parameters in a generalization of that approach indeed lead us to some
predictions that do not depend on the actual potential. But we also show that there
are real two-band systems which display Fano resonances and still defy a satisfactory
description in terms of the coupled-channel approach of Section 2.

This suggests that general predictions for Q1D resonance lineshapes require a model-
independent formalism. A powerful tool in this situation is the S-matrix method, which
is also used to derive Eq. (2). In work by Büttiker [21] and other authors [22, 23, 24],
various special cases of Q1D scattering are treated by exploiting the analytical properties
of the S-matrix. All except the study by Shao et al. [24] consider exclusively symmetric
(Breit-Wigner) lineshapes. The latter reference, in turn, restricts itself to a single-mode
two-probe structure. More than two leads were treated only in Ref. [22] (but only
resonant tunneling was considered there).

In Section 3 we provide a general Q1D S-matrix theory for multiprobe, multisubband
structures. We first observe that the usual textbook approach leads to wrong predictions,
so we have to scrutinize the way in which the connection between quasi-bound states and
resonance denominators in the S-matrix is made if there are no continuous symmetries.
In the presence of discrete symmetries we derive rigorously the resonance lineshapes for
a multilead structure in the single-subband regime. Then we investigate the effects of
symmetry breaking in two-probe structures with arbitrarily many subbands, and lastly,
treat the multilead, multisubband case. Finally, Fano resonances in microstructures have
not yet been clearly seen experimentally (although some data taken on quantum point
contacts is suggestive [25]); we propose in Section 4 two experiments for observing such
resonances and compare numerical model calculations on these systems with the results
derived in the preceding Sections.
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2. FESHBACH APPROACH

The most obvious difference between Q1D and three-dimensional scattering is the sub-
band structure that exists in a quantum wire. At a given energy, particles in the asymp-
totic region of the wire leads can have different momenta, depending on their subband
index. In particular, a bound state in one subband (imaginary wavenumber in the leads)
can coexist with an unbound state in another subband. In three-dimensional scattering
from a potential that vanishes outside of some scattering region, all incoming and scat-
tered particles have a momentum of the same magnitude if their energy is the same –
unless incoming and outgoing particles are of a different kind. The latter case is referred
to as multichannel scattering. Although we are dealing with elastic scattering, it is
possible to consider the quantum wire as a multichannel system if we treat the different
subbands as “channels”. The resonances considered in this section are analogous to those
arising in multichannel scattering when a closed and an open channel are coupled, the
channels in our case being the propagating and cut-off subbands. For completeness and
to point out the modifications we have made to the theory, subsection 2.1 contains some
material already covered in Ref. [19]. Feshbach’s approach has in fact been employed ear-
lier to describe resonances in a waveguide geometry [26], but nonresonant transmission
was assumed to be absent.

The Fano function will be derived in this microscopic approach, and an even stronger
prediction for the lineshape is given in Subsection 2.2 by making use of inversion sym-
metry.

2.1. COUPLED-CHANNEL EQUATIONS

We consider a non-uniform quantum wire described by the Schrödinger equation[
− ~2

2m
∇2 + U(x) +W (y) + V̂ xy

]
Ψ(x, y) = EΨ(x, y). (3)

In the absence of the coupling operator V̂ xy, the problem is separable and the transverse
potential W (y) gives rise to modes φn(y):[

− ~2

2m
d2

dy2
+W (y)

]
φ(y) = En φn(y). (4)

Unlike Ref. [19], we do not assume V̂ xy to be a real local scalar function. This will
enable us to investigate if the present approach is applicable to the case of magnetic-field
induced coupling [9]. Expanding

Ψ(x, y) =
∞∑

n=1

ψn(x)φn(y), (5)

we obtain the coupled-channel equations for ψn(x),[
E − En − K̂ − U(x)

]
ψn(x) =

∞∑
l=1

V̂nl ψl(x), (6)
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where K̂ ≡ −(~2/2m)d2/dx2, and the coupling matrix element V̂nl ≡
∫
dy φl(y) V̂ xyφn(y)

still acts on x. Now choose an energy in the single-subband regime, E1 ≤ E < E2.
Provided that the diagonal elements V̂nn vanish far away from the scattering region,
only channel n = 1 will then have unbound solutions in the absence of off-diagonal
coupling: [

K̂ + U(x) + V̂11 + E1

]
χp

k(x) = E χp
k(x), (7)

where the index p = 1, 2 distinguishes scattering states according to the direction from
which the incident wave comes. Specifically, χp

k has the asymptotic form

χp
k(x) =

{
tbg e±ikx (x→ ±∞)
e±ikx + rbg

± e
∓ikx (x→ ∓∞)

(8)

with the upper signs for p = 1 (incident wave from the left). The superscript in the
transmission and reflection amplitudes tbg, rbg

± emphasizes the fact that these scattering
states describe the background (i.e. nonresonant) scattering in the open channel [27].
Let E be close to the energy of a bound state [28] of the uncoupled channel n = 2,[

K̂ + U(x) + V̂22 + E2

]
Φ0(x) = E0 Φ0(x). (9)

If no other channels exhibit bound states in the neighborhood of E0, we can make the
approximation of truncating the sum in Eq. (6) at n = 2. The resulting system of
equations [

E − E1 − K̂ − U(x)− V̂11

]
ψ1(x) = V̂12 ψ2(x), (10)[

E − E2 − K̂ − U(x)− V̂22

]
ψ2(x) = V̂21 ψ1(x) (11)

is solved in Appendix A using the ansatz [17]

ψ2(x) = AΦ0(x). (12)

This is slightly more direct than the procedure in Ref. [19] because it leads to an exact
solution of Eqs. (10), (11) without approximating the Green’s function for the second
channel and subsequently summing a Born series. The result obtained by the latter
method is the same. This ansatz has the physical interpretation that the probability
amplitude of the metastable state is dominated by the original bound state wavefunction.
From the asymptotic form of the resulting ψ1 for x→∞, we can extract the transmission,

T = |tbg|2 (E − ER + δ)2

(E − ER)2 + Γ2
. (13)

Instead of the original bound-state energy E0, a shifted quasibound-state energy ER ≡
E0 + ∆ appears in this expression, due to the real part ∆ of the self energy acquired
by the bound state. The real quantity δ determines the asymmetry of the lineshape.
Defining reduced variables

ε ≡ E − ER

Γ
, q ≡ δ

Γ
, (14)
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we arrive at the Fano function,

T = |tbg|2 (ε+ q)2

ε2 + 1
. (15)

If the asymmetry parameter q vanishes, we obtain a Breit-Wigner dip. Only this case
received further attention in Ref. [19], although the Fano lineshape is implicit in that
work. A symmetric peak in T arises if we take the limit |q| → ∞ with q2|tbg|2 = c2 where
c2 ≤ 1 (as required by T ≤ 1),

T → c2
1

ε2 + 1
. (16)

This implies that the symmetric peak can occur only if tbg → 0, and that the Breit-
Wigner lineshape constitutes a special case of the Fano function that results when the
transmission zero occurs infinitely far from resonance. The constant c2 in Eq. (16) is
only constrained to be less than unity. However, in the next Section we show that c2 = 1
if the system has inversion symmetry because then q and tbg are related to each other
with no additional free parameters. The preceding discussion already shows that the
Fano function with an exact transmission zero is the general lineshape for resonances in
the two-channel Feshbach approach.

2.2. INVERSION SYMMETRY

In this subsection, we extend the approach of Ref. [19] in a different direction, in order
to make contact with the predictions of the S-matrix theory to be developed later. Not
all the parameters |tbg|2, δ, Γ and ER in Eq. (103) are independent if the problem has
inversion symmetry. We shall see in particular that in this case T not only goes through
zero but also through unity at resonance. Further, q will be shown to be independent of
the coupling matrix elements.

To this end, it is convenient to consider the reflection R and then use current conserva-
tion, R+T = 1, to deduce relations between the parameters. Inversion symmetry in the
Hamiltonian of Eq. (3) implies that the potentials U(x) and W (y) must be symmetric,
so that the transverse modes have a definite parity. Since V̂ xy has to be invariant under
inversion, it follows immediately that the diagonal coupling matrix elements V̂nn are
symmetric under x → −x. But this implies that the bound state Φ0(x) in Eq. (9) has
a definite parity, and that the scattering states in Eq. (7) satisfy rbg

+ = rbg
− ≡ rbg. The

unitarity of the S-matrix for the uncoupled channel n = 1 then makes (tbg)∗rbg purely
imaginary. These observations are used in Appendix B to deduce that δ and Γ are now
related by

q2 =
δ2

Γ2
=

∣∣∣∣rbg

tbg

∣∣∣∣2 . (17)

The asymmetry parameter q therefore depends only on the background transmission t
and not on the two parameters characterizing BW resonances, ER and Γ. These three
are the only parameters needed to determine the lineshape in a symmetric structure,
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instead of the four required in the general case of Equation (13), which now takes the
form

T =
1

1 + q2
(E − ER + qΓ)2

(E − ER)2 + Γ2
. (18)

This explicit relation also confirms that Eq. (15) yields a Breit-Wigner dip when the
non-resonant transmission is unity, while the other extreme of tbg → 0 leads to a peak
of the form

T → 1
ε2 + 1

, (19)

cf. Eq. (16) with c2 = 1.

2.3. FAILURES OF THE COUPLED-CHANNEL MODEL

One assumption on which the preceding analysis hinges is that the two-channel approxi-
mation is valid. But this will break down if the bound state can couple to the scattering
state indirectly by way of a transition to one or more intermediate closed channels. In
Appendix C of Ref. [19] this case is discussed, and it is found that for one additional
channel (e.g. n = 3) the coupling matrix element V̂12 simply has to be replaced by

V̂12 + V̂13G3 V̂32 (20)

in Eq. (10), likewise for V̂21. For additional intermediate channels, terms of higher order
in V̂ xy appear. Thus the formalism can accomodate this complication.

However, we discovered that the crucial ansatz of Eq. (12) which was successfully
employed in Refs. [20, 26, 17] and is equivalent to the treatment in Ref. [19], breaks
down for certain types of coupling operators. The example we consider is scattering in a
quantum wire with a transverse magnetic field, which was studied in Ref. [9]. First let us
discuss to what extent we have succeeded in keeping the preceding treatment sufficiently
general to be applicable to this model system. Assuming a harmonic quantum wire
potential W (y) with force constant mω2

0, and choosing the Landau gauge A = −By x̂
to represent a magnetic field B along the z axis, the Schrödinger equation becomes[

1
2m

{
(px −mωcy)2 + p2

y

}
+

1
2
mω2

0y
2 + U(x)

]
ψ(x, y) = E ψ(x, y). (21)

Here, ωc = eB
mc is the cyclotron frequency, and U(x) is an additional longitudinal potential

describing a finite-depth square well of length L,

U(x) = −U0 Θ(
L

2
− |x|). (22)

Since U(x) is symmetric, the Hamiltonian in Eq. (21) has inversion symmetry. The
coupling operator of Section 2 is now the perturbation due to the magnetic field in Eq.
(21),

V̂ xy = −ωc y px +
1
2
mω2

c y
2. (23)
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Figure 2: Positions of the transmission minimum (solid dots) and maximum (open dots) versus ω2
c/ω2

0 for
resonances due to a bound state in (a) subband n = 2 and (b) n = 3. The system consists of a
quantum wire with a rectangular well of length L = 3.5

p
~/mω0 and depth U0 = 2 ~ω0. The

n = 3 resonance is much narrower than the one with n = 2, so minima and maxima are almost
indistinguishable on the energy scale in (b). In both plots, the curves start out linearly in ω2

c/ω2
0 ,

indicating a quadratic energy shift at small ωc, although the coupled-channel model predicts
an ω4

c law in case (b). Insets: the corresponding resonance lineshapes at ω2
c/ω2

0 = 0.002.

Due to the parity of the transverse harmonic oscillator eigenfunctions, at most one of
the terms in this sum can contribute to the matrix elements V̂nl. In particular, one has

V̂12 = V̂21 = −ωc

√
~

2mω0
px, (24)

whereas the diagonal elements V̂11 and V̂22 simply yield a constant proportional to ω2
c .

Equation (24) shows why we needed to generalize the Feshbach approach to coupling
operators that are not scalar potentials. Note that V̂12 satisfies the criterion of Appendix
A, so that we might hope to apply the previous results to this case. This will be done by
comparing the ωc dependence of the resonance position as obtained from exact numerical
calculations with that predicted by the approximation. First note that only matrix
elements between transverse subbands that differ by exactly 1 in their mode index [like
the one in Eq. (24)] have a linear dependence on ωc. All others either vanish due to
parity or go as ω2

c .
A resonance occurs in our model system when the well potential U(x) causes bound

states to split off from a subband n > 1 which lie in the continuum of the lowest
subband. The bound state becomes metastable when a magnetic field is switched on,
so the resonance linewidth depends on ωc. The same is true for the energy shifts ∆, δ
and η. From their definitions in Eqs. (95), (96) and (105) it follows that ∆ , δ , η ∝ ω2

c

if the quasi-bound state occurs in subband n = 2, whereas ∆ , δ , η ∝ ω4
c for resonances

originating from higher subbands, n ≥ 3. This conclusion holds irrespective of the
number of intermediate closed channels we take into account [29], because that simply
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adds to V̂1n terms containing two or more matrix elements, cf. Eq. (20). It is in fact
necessary to include more than two subbands in the calculation because a bound state
in subband n = 3 cannot couple at all to the propagating subband n = 1 if only these
two channels are taken into account. But a resonance does arise in this case [9], see
inset to Fig. 2 (b). The numerical results show that the n = 3 resonance is narrower
than the one arising from a bound state in n = 2, which is consistent with the weaker
coupling expected for n = 3. We consider here a structure of the same dimensions as
in Ref. [9], and record the resonance position as a function of ωc. In Fig. 2 (a), the
quadratic law is confirmed for the n = 2 resonance of Fig. 3 in Ref. [9]. However, the
n = 3 resonance does not shift with ω4

c , as seen in Fig. 2 (b). If we do not truncate the
coupled-channel equations, Eq. (6), but instead take intermediate channels into account
by substitutions of the kind shown in Eq. (20), then all the formal steps in the Feshbach
treatment are valid for the present example, except the the ansatz Eq. (12). The notion
of the metastable state wavefunction as a slightly modified bound state wavefunction
cannot lead to the correct solution here. The reason is that the magnetic field not only
couples bound state and continuum, but modifies the continuum itself. The special
property of V̂ xy in Eq. (23) is that it is not localized in the x-direction. The propagating
subband far away from the scattering region has a transverse wavefunction that is no
longer given by φn(y), but by a shifted harmonic oscillator function. To construct the
correct wavefunction in the asymptotic region, one therefore needs a superposition of
different φn, which means that their respective coefficients ψn(x) in the expansion of
Eq. (5) cannot in general decay with |x|. In particular, the ansatz ψn = AΦ0 for a
quasibound state in subband n is not justified when ωc 6= 0, unless the admixture of φn

in the true transverse wavefunction of the propagating subband happens to be negligible.
The example treated here matches the qualitative description given at the beginning

of this Section – quasibound states in one subband lying in the continuum of a propa-
gating subband – but cannot be modeled with the present approach. Still, the resonance
lineshapes found numerically are of the Fano type, and exact transmission zeros persist,
as do the points of unit transmission expected due to inversion symmetry. The expla-
nation for this will be given in the next Section. One might ask whether all resonances
in Q1D systems can be described in terms of quasibound states splitting off from non-
propagating subbands. The answer is negative; examples are the resonant stub structure
[7] and the Aharonov-Bohm ring with two leads attached [2]. In both cases one finds
resonances of the Fano lineshape even when the motion between all junctions occuring
in the geometry is treated as purely one-dimensional [30], i.e., no subband structure is
taken into account. Those resonances display zero and unit transmission if the system is
symmetric, even though the derivation that led us to this phenomenon above does not
apply. A more general treatment is thus called for, and that is the task we take up now.

3. S-MATRIX APPROACH

The Feshbach approach enabled us to relate all the parameters determining the resonance
lineshape and position to properties of the original Hamiltonian. The linewidth Γ is
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obviously a measure of the coupling that renders the originally bound state metastable
(note that in this paper Γ is the half-width of the Breit-Wigner resonance, whereas
sometimes Γ is used to denote the full width). As is well-known for the case of Breit-
Wigner resonances, 2Γ/~ is the decay rate of this quasibound state [31]. Instead of
starting from a bound state and introducing a coupling to the continuum, we could
equivalently start with a metastable state whose decay rate is given by 2Γ, and derive
the resulting transmission behavior. This procedure is in fact more general because it
makes no assumptiuons about the number of subbands participating in the metastable
state. We shall see in this section that the results derived previouly are confirmed and
extended if we make use of the relation between quasibound states and poles of the
S-matrix, established in subsection 3.1.

The S-matrix relates the amplitudes of the incomig and outgoing waves in all the
subbands of all the leads. If the total number of subbands in all leads is N , we can
specify the incoming and outgoing amplitudes by complex N -vectors I and O and write

O = S I, (25)

where the N × N matrix S is unitary at real energies E, due to current conservation.
We have to address here a point that might cause confusion. If S is the unit matrix,
that does not imply the absence of any scattering as it does in conventional scattering
theory. Instead, S = 1 corresponds to perfect reflection of all incoming waves, without
intersubband transitions. The representation in Eq. (25) is convenient for extracting
measurable quantities from S when dealing with multilead structures. The quantities of
interest in a multiprobe experiment are the conductance coefficients relating the current
in a given lead to the voltages of all the attached reservoirs. The Landauer-Büttiker
formula [1] allows us to calculate these coefficients from the matrix elements of S as
defined above.

In Subsection 3.1 we briefly review the connection between quasi-bound states and
resonances, and show that the standard approach of multichannel scattering theory in
the absence of symmetries does not correctly reproduce the statements derived in Section
2 because one arrives at a lineshape expression that contains too many parameters. This
raises the question of whether S-matrix theory intrinsically provides too little information
to make strong predictions, e.g. about the existence of transmission zeros. To prove
that this is not so, we start by considering scattering geometries with symmetries that
reduce the number of free parameters in the problem. In Subsection 3.2 we discuss
Q1D structures with a discrete rotation symmetry and derive a multiprobe lineshape
formula. The differences between the multilead system and a purely two-dimensional
problem will be discussed in Subsection 3.3. In Subsection 3.4, we proceed to the most
general multisubband and multilead structures. Finally, the special case of multisubband
two-probe structures is addressed in Subsection 3.5.

3.1. POLES OF THE S-MATRIX

A resonance that arises from the coupling between a bound state and a continuum can
be associated with a metastable state that has an exponentially decaying time depen-
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dence. Since that time dependence is e−iEt/~ for time-independent Hamiltonians, such
a quasibound state is a solution of the Schrödinger equation for complex Ē ≡ ER − iΓ
with Γ > 0. At that Ē, a set of outgoing waves with exponential growth in the leads
exists in the absence of any incoming waves [32] (referred to in nuclear physics as Gamow
states [33]). This means that the determinant of S−1 vanishes there, and consequently
at least one eigenvalue of S−1 must be zero. The corresponding eigenvalue λj of S thus
has a pole at Ē. This pole will appear in the matrix elements of S, too, if they contain
contributions from this eigenvalue. Therefore, one can speak of a pole of the matrix S.
This is precisely the phenomenon which occurred in Section 2, as can be seen from the
resonance denominators in Eqs. (102) and (107). Thus, the results of that section are a
special case of the conclusions to be derived later.

For real E, λj is unimodular and can be written as λj ≡ e2iθj with θj real. The linear
approximation to λj in the complex plane near resonance that maps real energies E onto
the unit circle and has a pole at Ē is [34]

λj(E) ≈ e2iθ̄j
E − Ē∗

E − Ē
≡ e2iθ̄je−2iθ (26)

where θ is the phase angle of E − Ē (E real),

tan θ =
Γ

E − ER
, (27)

and θ̄j is an arbitrary phase that we assume to be slowly varying with E. This leads to

θj ≈ θ̄j − arctan
Γ

E − ER
(28)

so that we now have the energy dependence of the resonant eigenvalue λj in terms of
ER, Γ and the phase θ̄j . We assume that the zero of det(S−1) is a simple one so that
only a single λj is resonant and all others vary slowly with E.

The problem is how to deduce the reflection and transmission coefficients from a
knowledge of just the eigenvalues of S. This is possible only if the number of independent
matrix elements in S does not exceed its dimension. Being an N ×N unitary matrix, S
in general has N2 independent parameters, so that it is not uniquely determined by its
N eigenvalues. Another N(N − 1) parameters must be implicit in the transformation
that diagonalizes S, unless there are unitary or antiunitary (time-reversal) symmetries
in the problem that imply additional relations between elements of S. If this is not the
case, we are faced with a situation familiar from the theory of multichannel scattering.
The approach commonly taken there [35, 34] is to make the ansatz that each S-matrix
element Smn will itself exhibit a resonance denominator as in Eq. (26):

Smn = Sbg
mn − i

γm δ∗n
E − ER + iΓ

, (29)

where Sbg is the background scattering matrix in the absence of the resonance and ~γ,
~δ are complex vectors which must satisfy ~γ = Sbg~δ and |~γ|2 = |~δ|2 = 2Γ so that S is
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unitary. The individual |γm|2, |δn|2 are then interpreted as partial widths for leaving
and entering the resonance [34]. However, Eq. (29) contains more than N2 parameters
since Sbg is itself a general unitary matrix. It turns out that the parameterization in Eq.
(29) underconstrains the S-matrix, allowing lineshapes that cannot arise in reality from
a nondegenerate, simple and isolated resonance pole. For instance, according to Eq. (29)
a 2× 2 S-matrix with Sbg

12 = Sbg
21 = 1 gives rise to a transmission S12 that never goes to

zero if |γ1|2 6= Γ. To see this, note first that δ2 = γ1 so that γ1δ
∗
2 = |γ1|2. According to

the definition in Eq. (27),

1
E − ER + iΓ

=
1√

(E − ER)2 + Γ2
e−iθ, (30)

so that we can write

S12 = 1 +
|γ1|2

2Γ

(
e−2iθ − 1

)
. (31)

Across the resonance, 2θ varies by 2π, and |S12|2 = 0 can only occur if |γ1|2 = Γ. However
we show below that transmission zeros are present in the most general two-probe (2×2)
Q1D resonant S-matrix. A simplified version of Eq. (29) which assumes the background
S-matrix to be diagonal is often used[35] and in particular was employed by Büttiker [21]
to derive the lineshape of resonances in Q1D structures with time-reversal symmetry.
With this further approximation we no longer have too many parameters, but too few
of them. The results in that case are consistent with our work, but one always arrives
at symmetric resonance lineshapes. This is all that is needed in the resonant tunneling
regime on which Ref. [21] focuses, because we have already seen in Section 2 that the
Breit-Wigner lineshape results when the nonresonant transmission is negligible. But as
pointed out in the Introduction, we wish to understand the implications of interference
between resonant and nonresonant scattering in the general case.

3.2. N-FOLD ROTATION SYMMETRY

Low-dimensional systems always break full rotational symmetry because leads are at-
tached to the sample. However, we can perform the analog of the preceding partial wave
analysis if the scattering geometry still is invariant under a finite rotation group. The in-
version symmetry considered in Section 2 for the two-probe case is a special case of this,
the rotation group being C2. The fourfold symmetry of the cross junction has been used
by Schult et al. [4] to perform a numerical phase shift analysis of the resonances found
in that system. There is one complication that does not arise in purely two-dimensional
systems, namely the possibility of more than one propagating subband in the leads.
In that case, symmetry alone does not suffice to diagonalize the S-matrix because it is
impossible to transform different subbands of one lead into each other by means of a
symmetry operation. Therefore we first consider the case where each lead supports ex-
actly one propagating subband. Each component of the amplitude vectors I and O then
refers to a different lead. For a general N -lead geometry in the single-subband regime
with symmetry group CN , there are N one-dimensional irreducible representations with
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characters
χ(q)(p) = e−2πipq/N , (p, q = 1, . . . N). (32)

Here, p labels the elements Rp of the rotation group, and q enumerates the representa-
tions. From the N degenerate scattering states corresponding to an incoming electron in
exactly one of the leads, we can form symmetrized eigenfunctions by taking the incoming
waves as I(q) with components

I(q)
p =

1√
N
χ(q)(p)∗. (33)

For any rotation Rp, one then has Rp I(q) = χ(q)(p) I(q). But since Rp leaves the system
invariant, a rotation of the incoming wave amplitudes Rp I leads to outgoing waves Rp O.
For the symmetrized waves this means

Rp O = S Rp I(q) = χ(q)(p)S I(q) = χ(q)(p)O. (34)

This implies that O transforms under the rotations in the same way as I(q). Since the
representations are one-dimensional, it follows that O ∝ I(q), so that the I(q) are an
eigenbasis of S. The unitary transformation relating the matrix elements of S between
incoming and outgoing waves in leads m and n to the diagonal elements λj is then given
by

Smn =
1
N

N∑
j=1

χ(m)(j)∗ λj χ
(n)(j) (35)

=
1
N

N∑
j=1

e2iθj e2πi(m−n)j/N . (36)

This shows that Smn only depends on the angle 2π(m − n)/N between leads m and
n, and it is an exact expression for the multiprobe scattering amplitude. Now assume
without loss of generality that θN is the resonant eigenphase while all other θj are slowly
varying with energy. Then we abbreviate the sum over the nonresonant eigenvalues by

N−1∑
j=1

e2iθj e2πi(m−n)j/N ≡ ρmn e
2iθ̃mn (37)

where clearly ρ ≤ N − 1. With this one obtains for the scattering probabilities (which
determine the conductance coefficients)

|Smn|2 =
(
ρmn − 1
N

)2

+ 4
ρmn

N2
sin2(θ̃mn −

π

2
− θN ). (38)

The factor sin2(. . .) in the above expression in fact leads to the Fano lineshape, as we
now show. Denote the slowly-varying phases by θ̄ and use Eq. (28) for θN . Then

sin2(θ̄ + θN ) = sin2

[
θ̄ + arctan

Γ
E − ER

]
(39)

= sin2(θ̄)

[
E − ER + Γ cot θ̄

]2

(E − ER)2 + Γ2
(40)
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Figure 3: Variation of the S matrix elements in the complex plane as the resonace is crossed for two
symmetric structures in the single-subband regime: (a) four-probe, (b) two-probe geometry.
All Smn trace out a circle (thin line) of radius 1/N lying entirely inside the unit circle (bold
line). As shown in (b), the case N = 2 is special because all Smn must describe circles that go
through zero and unit modulus.

The factor sin2 θ̄ is just the value that sin2(θ̄ + θN ) would assume in the absence of any
resonant contribution to the phase shift. The resonant behavior is described entirely by
the second factor, which takes on the form of the Fano function if we set ε = (E−ER)/Γ
and q = cot θ̄. We see that the asymmetry parameter in these units is again solely
determined by the backgound phase shift. As noted in Section 1 below Eq. (2), the
Breit-Wigner peak arises for negligible nonresonant scattering, sin2 θ̄ = 0. Equation
(38) implies that the effect of a resonance on any matrix element of S decreases as the
number of leads, N , increases. More precisely, we can deduce∣∣∣∣ρmn − 1

N

∣∣∣∣ ≤ |Smn| ≤
∣∣∣∣ρmn + 1

N

∣∣∣∣ . (41)

Thus, |Smn| varies exactly by 2/N if ρmn ≥ 1, and by 2ρmn/N otherwise. The maximum
variation in |Smn| is therefore 2/N , and |Smn|2 varies by no more than 4(N − 1)/N2.
The latter is stricly less than unity for N > 2, i.e. the transmission probabilities cannot
assume all values allowed by unitarity unless N = 2. On the other hand, both zero and
unit transmission are reached on resonance if N = 2. The reason is that N = 2 implies
ρmn = 1, which is the necessary and sufficient condition for a zero in |Smn|2 because it
makes the first term in Eq. (38) vanish. In that case we get

|Smn|2 =

{
4

N2 sin2(θN − θ1) (m 6= n)
1− 4N−1

N2 sin2(θN − θ1) (m = n)
(42)

which varies by unity for N = 2. We still get this expression for N > 2 provided that
ρmn = 1 for m 6= n. This occurs when all the nonresonant eigenphases are the same:

θ1 = θ2 = . . . = θN−1. (43)

The special role of N = 2 is illustrated in Fig. 3.
The general lineshape given by Eq. (38) has the Fano form superimposed on a slowly

varying baseline, cf. Eq. (39). The transmission for N = 2 can be written using the
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definition Eq. (28) as

T = |S21|2 = |tbg|2 (E − ER + δ)2

(E − ER)2 + Γ2
, (44)

where we have identified
|tbg|2 = sin2(θ̄1 − θ̄2) (45)

as the (slowly-varying) transmission in the absence of the resonance, and introduced the
energy shift

δ = Γcot(θ̄1 − θ̄2). (46)

This is the Fano lineshape, Eq. (1), with ε = (E − ER)/Γ and q = δ/Γ = cot(θ̄1 − θ̄2).
From Eq. (36) with N = 2, we can also conclude S11 = S22, S12 = S21 and

i
S11

S21
= cot(θ2 − θ1). (47)

This relation also holds in the absence of any resonances, and in particular for the
nonresonant S-matrix Sbg with θ1 = θ̄1. This allows us to write for the asymmetry
parameter

q =
δ

Γ
= cot(θ2 − θ̄) = i

rbg

tbg
, (48)

where rbg = Sbg
11 and tbg = Sbg

21. Whereas Eq. (17) only determined the magnitude of q,
this expression gives the sign, too.

We have thus provided a generalization of the result derived in Subsection 2.2 without
any assumptions about the mechanism creating the resonance. These considerations are
also valid if a homogenous magnetic field is applied perpendicular to the plane of the
structure, because that has no effect on the rotation symmetries. The quantum wire
structure with magnetic field discussed in Subsection 2.3 can therefore be described in
the present formalism.

3.3. COMPARISON BETWEEN CONTINUOUS AND DISCRETE
SYMMETRIES

As is to be expected, there is a strong formal similarity between the systems with con-
tinuous and discrete rotational symmetries, respectively. The S-matrix element in Eq.
(36) can be rewritten as

Smn − δmn =
2i
N

N∑
j=1

eiθj sin θj e
2πi(m−n)j/N . (49)

Compare this to the scattering amplitude f(φ) in a rotationally invariant two-dimensional
system (where φ is the angle with the beam direction). Since f(φ) is extracted from the
asymptotic form of the scattering state by subtracting out the unscattered plane wave
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component (leaving only the radial outgoing wave) it is related to matrix elements of
S − 1. One finds for particles with momentum p

f(φ) =

√
2~
πp

∑
j

eiθj sin θj e
iqφ (50)

where the eigenphases θj now have the interpretation of phase shifts in angular momen-
tum channel j. Except for the prefactors in the definition of the scattering amplitude,
Eqs. (50) and (49) are identical in form. In particular, one can obtain the 2D limit from
the Q1D expression when N →∞.

However, the scattering properties of a Q1D structure are measured in a different way
than those of a purely 2D system. Whereas the latter is characterized by cross sections,
the former requires us to determine the conductance coefficients gmn. The differential
cross section is obtained from f(φ) through

dσ

dφ
= |f(φ)|2 =

2~
πp

∑
q

∑
r

ei(θq−θr) sin θq sin θr e
i(q−r)φ. (51)

In contrast, the conductance coefficients are not related to the absolute square of Eq.
(49), but instead to |Smn|2 directly. These differ only for m = n, but this difference has
physical consequences.

While S must account for all of the incident flux, f(φ) only represents the scattered
portion of the incident flux. Flux conservation in two dimensions is satisfied because
the radially outgoing flux measured by the total cross section σ is canceled by the
interference terms between the scattered radial and unscattered plane wave, which is
just the content of the optical theorem, σ ∝ Im f(0) (since this interference is important
only in the forward direction). On the other hand, flux conservation in Q1D simply
means that T ≡ 1−|Snn|2 is equal to the total transmission. Both T and the total cross
section vanish when S = 1. The similarity goes further, in that the two-dimensional
expression

σ =
4~
p

∑
j

sin2 θj . (52)

predicts a zero in σ on resonance whenever the phase shifts in all nonresonant channels
are zero or multiples of π; under the same conditions, Eq. (42) yields a zero in the total
transmission, not the reflection (except for the case N = 2 where both occurs). But
one also observes that T goes to zero on resonance even if the nonresonant eigenphases
(modulo π) are not zero, as long as they are all equal. This difference is caused by
the way in which the background phase shifts enter into σ and T , respectively. In Eq.
(38), θ̃mn contains all nonresonant phase shifts whereas the partial cross sections in Eq.
(52) only contain a single eigenphase. This implies that the asymmetry of the resonance
lineshape in two dimensions gives us information about a single background phase shift,
whereas the asymmetry in Q1D is influenced by all background phases simultaneously. In
other words, channels with different symmetry labels do not interfere in the total cross
section, but do interfere in the total transmission. As a corollary, the N → ∞ limit of
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the total transmission T cannot be directly identified with the total cross section of a
system with continuous symmetry. This can also be seen from Eq. (38) for the reflection
|Snn|2, which shows no resonant variation at all if we let N →∞.

3.4. MULTISUBBAND, MULTILEAD STRUCTURES WITHOUT
SYMMETRIES

For the multilead structure with discrete rotation symmetry and a single subband per
lead, we were able to derive the inequality (41). As a consequence, the resonant variation
∆T of the total transmission from one lead into all the others satisfies

∆T ≤ 4(N − 1)/N2. (53)

In the absence of symmetries, we no longer know the transformation that brings S to
the diagonal form Λ,

U S U † = Λ, (54)

unless we solve the scattering problem itself. Therefore, the constraints on ∆T will
become weaker.

For a two-probe structure with time reversal symmetry, various authors [21, 22, 23]
showed for the special case of Breit-Wigner resonances in the resonant tunneling regime
that the conductance cannot vary by more than e2/h on resonance, independently of
the number of propagating subbands per lead. Since the more general Fano lineshape
occurs in the presence of significant background transmission, it is worth asking what
the maximum conductance variation will be in this case. In particular, if complete
destructive interference between resonant and background transmission could still occur
even for a total background larger than unity, this would imply a resonant conductance
variation that exceeds e2/h according to the two-probe Landauer formula [1],

G =
e2

h
T. (55)

This equation relates the conductance G to the total transmission T . The generalization
of this quantity to a structure with arbitrary number of subbands and leads is the
transmission from all subbands of one lead into all the subbands of all other leads. We
first want to prove the following theorem:

∆T ≤ 1 (56)

independent of the number of subbands or leads in the structure, and independent of the
nonresonant transmission. This means that complete destructive interference in T is
impossible if the background is larger than one.

In terms of the S-matrix of dimension N as defined in Eq. (25), we can define the total
transmission by assigning different labels to the subbands in the incoming and outgoing
leads, respectively. Let a run over all the subbands in the incoming lead and b enumerate
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all the subbands in all the other leads, so that all N subbands are indexed either by a
or b. Then

T =
∑
ab

|Sba|2. (57)

According to Eq. (54), we can express S in terms of its eigenvalues,

Sba =
N∑

j=1

U∗jb λj Ujb. (58)

Now assume without loss of generality λ1 to be resonant so that its phase is given by
Eq. (28),

λ1 = e2iθ̄1 e−2iθ. (59)

Here, 2θ varies by 2π on resonance. The other eigenvalues are assumed constant and
will be written as

λj = e2iθ̄j . (60)

In order to compare with the ansatz in Eq. (29), we split off the resonant term in Sba to
obtain

Sba =
N∑

j=1

U∗jb e
2iθ̄j Uja + U∗1bU1a

(
e2iθ̄1 e−2iθ − e2iθ̄1

)
. (61)

The first term is just the nonresonant transmission, Sbg
bl . Using Eq. (27), this can also

be written as
Sba = Sbg

ba − 2iΓU∗1bU1a e
2iθ̄1

1
E − ER + iΓ

. (62)

This has the same form as Eq. (29) but gives us an explicit expression for the partial
decay width: one can set

γn = δ∗n =
√

2Γ eiθ̄1 U∗1n. (63)

Clearly, this no longer contains too many independent parameters because we have
simply reexpressed S in terms of its eigenvalues and eigenvectors. It is useful to define

A2 ≡
∑

a

|U1a|2, (64)

B2 ≡
∑

b

|U1b|2

so that A2 +B2 = 1. Then Γa ≡ 2ΓA2 is the partial decay rate of the quasibound state
into the incoming lead, and similarly Γb ≡ 2ΓB2 measures the decay into all other leads.
Since Γ = (Γa + Γb)/2, we can also write

A2 =
Γa

Γa + Γb
. (65)
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Returning to Eq. (61), the total resonant transmission becomes

T =
∑
ab

|Sbg
ba |

2 + 4 sin2 θ
∑
ab

|U1b|2 |U1a|2

+

{∑
ab

Sbg
baU1bU

∗
1a e

−2iθ̄1

(
e2iθ − 1

)
+ c.c.

}
. (66)

The first cross term (curly brackets) can be written more explicitly as

∑
ab

N∑
j=1

U∗jb e
2iθ̄j UjaU1bU

∗
1a e

−2iθ̄1

(
e2iθ − 1

)

=
(
e2iθ − 1

) ∑
ab

|U1b|2 |U1a|2 + e−2iθ̄1

(
e2iθ − 1

) N∑
j=2

e2iθ̄j
∑
ab

U∗jbU1bUjaU
∗
1a.(67)

Now we note that the unitarity of the transformation U ,∑
b

U∗jbU1b +
∑

a

U∗jaU1a = δj,1, (68)

implies for j 6= 1

∑
b

U∗jbU1b

∑
a

UjaU
∗
1a = −

∣∣∣∣∣∑
a

UjaU
∗
1a

∣∣∣∣∣
2

≡ −Q2
j . (69)

Using this and the definitions of A2, B2 in Eq. (67) and adding the complex conjugate,
the cross terms in Eq. (66) now take the form

−4A2B2 sin2 θ

+4
N∑

j=2

Q2
j

[
sin2(θ + θ̄j − θ̄1)− sin2(θ̄j − θ̄1)

]
. (70)

Substituting this into Eq. (66), the total transmission is now

T =
∑
ab

|Sbg
ba |

2 − 4
N∑

j=2

Q2
j sin2(θ̄j − θ̄1)

+4
N∑

j=2

Q2
j sin2(θ + θ̄j − θ̄1). (71)

Using the definition of θ as in Eq. (39) we see that the last term is a superposition of
Fano lineshapes, but in general with differing prefactors and asymmetry parameters. It
can be shown that such a sum again yields a Fano function plus some constant. This is
then added to the constant terms in Eq. (71). The question now is what the maximum
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variation in T can be. As 2θ varies by 2π in Eq. (71), T shows the largest variation if
and only if the nonresonant phase shifts satisfy

sin2(θ̄j − θ̄1) = C (72)

for all j ≥ 2 (with Qj 6= 0). Then one can use the unitarity of U to derive

N∑
j=2

Q2
j = A2B2, (73)

which leads to

T =
∑
ab

|Sbg
ba |

2 − 4A2B2 sin2(θ̄2 − θ̄1)

+4A2B2 sin2(θ + θ̄2 − θ̄1). (74)

Still assuming Eq. (72) is satisfied, some further algebra leads to the following result for
the total background transmission:

T bg =
∑
ab

|Sbg
ba |

2 = 4A2B2 sin2(θ̄2 − θ̄1). (75)

This cancels the second term in Eq. (74). The total transmission therefore has the pure
Fano lineshape and goes to zero at some energy:

T = 4A2B2 sin2(θ + θ̄2 − θ̄1). (76)

This holds whenever the nonresonant eigenphases are such as to maximize the variation
in T . The magnitude of this variation ∆T now still depends on A2B2. Recalling the
definitions in Eq. (64), we observe that A2B2 ≤ 1/4 and consequently ∆T ≤ 1. We have
thus shown for the most general lineshape that the resonant transmission never varies
by more than unity, independent of the number of subbands or leads.

The resonant tunneling transmission constitutes a special case of Eq. (76) because Eq.
(72) automatically holds there: when the background transmission vanishes, Sbg

ba = 0
for all a, b, so that the cross terms in Eq. (66) actually have to vanish. Thus Eq. (70)
must yield zero, which requires that Eq. (72) hold with C = 0. We therefore can use Eq.
(76) with θ̄2 − θ̄1 = 0 and obtain the Breit-Wigner lineshape for the total transmission,
independently of the number of subbands or leads,

T = 4A2B2 Γ2

(E − ER)2 + Γ2
. (77)

A further implication of the above calculation is that if T bg > 1 then Eq. (75) cannot
be true, so that Eq. (72) must be violated. But then the maximum variation ∆T = 1 is
impossible. This happens, e.g., in quantum point contacts above the second conductance
step. Whereas resonances on the first quantized plateau display unit variation in T as
shown in Ref. [19], this cannot occur on higher plateaus. It is worth emphasizing this
because a naive generalization of the two-channel result of Ref. [19] would state that
antiresonances on the n-th conductance plateau drop to a minimum value of (n − 1)
times the conductance quantum.
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3.5. MULTISUBBAND TWO-PROBE STRUCTURES

The quantum constriction is a two-probe structure, and we now specialize the discus-
sion to such systems to explore if further statements can be made when there are only
two leads, but arbitrarily many subbands. In this case A2 and B2 measure the decay
probabilities of the quasibound state into the left and right lead, respectively. A strong
statement that has been proved in the resonant tunneling regime (T bg → 0) is that sym-
metric two-probe structures structures always exhibit ∆T = 1 on resonance [21, 23]. This
theorem is no longer valid in general when there is more than one propagating subband
in the leads and nonresonant transmission is appreciable, because in that case one can
have T bg > 1 and the above discussion applies. In fact, as Eq. (71) allows Breit-Wigner
lineshapes even if Eq. (72) does not hold [36], S-matrix theory allows Breit-Wigner line-
shapes that do not vary by unity in symmetric systems. Whether there exist potentials
that actually produce such resonances is an open question.

We do recover the resonant tunneling result, however, if the condition in Eq. (72) is
satisfied. To see this, note that if the system has inversion or reflection symmetry, the
rows of U (being eigenvectors of S) satisfy

Uja = ±Ujb (j = 1 . . . N), (78)

where a and b refer to the same subband in the left and right lead, respectively. This
implies A2 = B2 = 1/2 and thus ∆T = 1 in Eq. (76). We note two special cases of Eq.
(72). First, the resonant tunneling limit. One can use Eq. (65) to write Eq. (77) in the
form known from the asymmetric double barrier [21, 37],

T =
Γl Γr

(E − ER)2 + (Γl + Γr)2/4
. (79)

Here, we have identified l ≡ a and r ≡ b since Γl, Γr are simply the partial decay rates
into the left and right lead, respectively.

The resonant tunneling structure, however, is not the only example in which Eq.
(72) is satisfied. Another special case in which Eq. (76) must hold is the two-probe
structure with only one propagating subband per lead. There, the sums over j in Eq.
(71) contain just a single term because N = 2. This confirms our result in Section 2 that
the Fano lineshape with exact transmission zeros will occur invariably if the S-matrix is
of dimension N = 2, but unit transmission need not be reached on resonance if there are
no symmetries.

4. QUASI-ONE-DIMENSIONAL MODEL SYSTEMS

One result derived in the previous section is that the Fano function is the generic reso-
nance lineshape for any S-matrix of dimension 2, under the condition that the only rapid
variation in energy occurs in one of the eigenphases. The distinction between quasi- and
purely one-dimensional systems did not enter that discussion since a 2× 2 S-matrix can
describe both cases.
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To understand why the Fano function is never seen in purely one-dimensional scatter-
ing, we have to come back to the general physical differences between Q1D and strictly
one dimension. In the latter case, exemplified by a double-barrier resonant tunneling de-
vice [31], background transmission |tbg|2 and decay rate Γ of the metastable state are not
independent. Well-defined resonances with small Γ require low background transmission,
which simply gives the Breit-Wigner lineshape. In a Q1D system, on the other hand, an
electron entering the region where the quasi-bound state is localized does not necessarily
enter that state itself, because the existence of a second scattering channel allows reso-
nant and nonresonant transmission to occur in parallel as two distinct processes. The
background transmission can still be large even if the coupling to the quasi-bound level
(which determines Γ) is small, (e.g. due to approximate symmetry).

Since the energy shifts δ in Eqs. (109), (44) are proportional to Γ, the asymmetry
parameter q defining the lineshape is actually independent of Γ. If Γ can be varied while
|tbg|2 is roughly constant across resonance, a series of Fano lineshapes will be obtained
which can be collapsed onto a curve characterized by a single asymmetry parameter q
by rescaling the energy axis. This scaling property may be tested for the first time in
transport experiments.

In addition to the quantum wire structure studied in Ref. [9] and discussed in Subsec-
tion 2.3, we have explored two different systems which might exhibit Fano resonances
when appropriately perturbed to create a quasi-bound level in the continuum. Since we
desire external control over the resonance lifetime, it is necessary to minimize broad-
ening due to inelastic scattering or disorder. The aim must therefore be to fabricate
such structures with atomic precision, which has not yet been achieved with quantum
wires suitable for transport measurements [38]. We thus consider Fano resonances in a
three-dimensional heterostructure with a tilted magnetic field, and in a two-dimensional
electron gas with an in-plane magnetic field. These systems can be realized purely by
crystal growth (e.g., molecular beam epitaxy). Furthermore, they can be mapped onto
the quantum wire problem already solved in Ref. [9] and discussed above in Subsection
2.3.

4.1. QUANTUM WELL IN TILTED MAGNETIC FIELD

One way to achieve ideal parabolic quantum wire confinement is by applying a homoge-
nous magnetic field B to a three-dimensional free electron gas. The motion along the
field lines is free, whereas the transverse orbits are quantized into Landau levels (LL)
which in the Landau gauge yield harmonic oscillator wavefunctions. The calculation
is described in Ref. [18]. Here, we describe the proposed experiment and present the
predicted results.

Consider a layered structure of the type shown in Fig. 4). The emitter and collector
regions are degenerately doped, the spacer layers are of the same composition as the
contacts but undoped. the central part consists of a single undoped well with a band
gap that is lower than in the contacts. In the region made up of the well and spacer
layers transport is assumed to be ballistic. There will be some band bending at the well
interfaces, but we neglect this effect in the numerical calculation because it only affects
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Figure 4: A finite quantum well (shaded region) in a magnetic field B that is tilted with respect to the
vertical direction x. We measure the current across the well as a function of B. The undoped
well is separated from the doped contacts by undoped spacer layers of the same composition
as the contacts.

the exact resonance energies but not their shape. Since the structure contains no tunnel
barriers, it is possible to drive a current without large voltage drop. We can therefore
use the linear response approximation in which the net current is determined only by the
transmission at the Fermi energy EF . At a given carrier concentration in the contacts
(determined by the doping), we can vary EF by changing the magnetic field. Since the
LL degeneracy is proportional to B, one can make EF approach the the bottom of the
lowest LL, E1, by increasing B. At the same time, E1 itself increases with B so that EF

will eventually be pulled up together with E1. The calculation has to include the effect
of spin splitting, which is done in Appendix C. The result for EF as a function of B is
shown in the inset to Fig. 5.

The scattering problem at EF is described by the Hamiltonian

H =
1

2m
[
(px −mωz y)2 + p2

y + (pz +mωx y)2
]
+ U(x)± 1

2
g∗µBB (80)

where we defined
ωz ≡

eBz

mc
, ωx ≡

eBx

mc
(81)

and chose the gauge A = −Bz y x̂ + Bx y ẑ to describe the tilted magnetic field B =
Bx x̂ + Bz ẑ. We denote by U(x) the effective potential due to the conduction band
modulation in the growth direction x. In the Zeeman term, we introduced the electronic
g-factor g∗ and the Bohr magneton, µB = e~/2mec, which involves the bare electron
mass instead of the effective mass.

Since [H, pz] = 0, we use the ansatz

Ψ(x, y, z) = ψ(x, y) eikzz (82)

to obtain a two-dimensional Schrödinger equation for ψ. Comparison with Eq. (21) then
shows that the resulting equation is precisely the Schrödinger equation of a parabolic
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Figure 5: Transmission of a finite well as a function of magnetic field B in units of B0. The tilt
angles are sin α = 0.12 (dashed-dotted line), 0.1 (dashed line) and 0.08 (solid line). We chose a
GaxIn1−xSb-InSb-GaxIn1−xSb structure with well width L = 25.9 nm and depth V = 168meV.
The large electronic g-factor and small effective mass of this compound combine to give η ≈ 1/3,
cf. [43]. Inset: Dependence of the Fermi energy on magnetic field B for B > Bth. The straight
dashed lines show the first (n = 1±) and second (n = 2−) spin-split Landau levels, and the
dotted line represents the position of a resonance. The Fermi energy at B0 is E0.

quantum wire, shifted by ~kz
mωx

, with a transverse magnetic field

B′ = ∇× (−Bzyx̂) = Bz ẑ. (83)

The current I flowing through a y−z plane of the heterostructure (areaAyz) is obtained
by integrating the x component of the current density over y and z, and summing over all
kz. The result is I = Ayz Bx

e
hc I

′, where I ′ is the current flowing through the equivalent
quantum wire (this has no kz dependence). In the following, we divide out the (known)
degeneracy = Ayz Bx

e
hc . If one assumes U(x) to be a rectangular well, the transmission

behavior of the heterostructure at low bias voltages in a tilted magnetic field follows
straightforwardly from the numerical results of Refs. [9, 39].

The resulting transmission curves for the material system GaInSb-InSb-GaInSb and a
particular choice of parameters are shown in Fig. 5 for a particular resonance at various
small tilt angles α. The scaling property of the resonances (due to the independence of
the asymmetry parameter q on tilt angle) is found to be well satisfied in this system [18]

4.2. TWO-DIMENSIONAL ELECTRON GAS WITH A GROOVE

Extremely high precision fabrication has been reported using the technique of cleaved
edge overgrowth [40]. We propose to apply this method to create a two-dimensional
electron gas (2DEG) divided by a thin straight groove in the conduction band bottom
as shown in Fig. 6 (a).

The conductance is measured in linear transport from one side of the trench to the
other, with a magnetic field B applied parallel to the trench. The Fermi energy EF of
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Figure 6: (a) A 2D electron gas forms at the interface between the n+ doped high-band-gap region 3
and the undoped lower-gap material 1 with a quantum well. The band gaps must satisfy
E1

g < E2
g < E3

g . The effect of the well at the edge is to create a trench of lower effective
potential in the 2D electron gas. A magnetic field B is applied parallel to the trench, i.e.
pointing out of the page. (b) Conductance as a function of Fermi energy for a groove of length
L = 3.5

p
~/mω0 and depth U0 = 2 ~ω0. The magnetic field is such that ωc = 0.2 ω0.

the 2DEG is varied by means of additional gating, and the conductance as a function of
EF will be a convolution of a one-dimensional density of states and the Fano lineshape,
with a decay width determined by the magnitude of B. We neglect spin for the sake
of clarity because it does not affect the proposed mechanism. If the 2DEG is in the
xz-plane and the depression in the conduction band extends along the z-axis, we choose
the Landau gauge A = −B y x̂ to represent the field B = B ẑ. The trench potential is
denoted by U(x), and the vertical confinement potential creating the 2DEG subbands is
W (y). Since z is a cyclic coordinate in the Hamiltonian, we use the ansatz

Ψ(x, y, z) = ψ(x, y) eikzz (84)

to obtain a two-dimensional Schrödinger equation for ψ:[
1

2m
{
(px −mωcy)2 + p2

y

}
+ U(x) +W (y)

]
ψ(x, y) =

(
E − ~2k2

z

2m

)
ψ(x, y). (85)

Far away from the trench, where U(x) = const, this is just the Schrödinger equation of
a quantum wire with confining potential W (y) in a transverse magnetic field, so ψ(x, y)
are the scattering states of this wire at energy E′ = E − ~2k2

z
2m . This means the y motion

is quantized into modes (namely the subbands of the 2DEG) whereas one has reflected
and transmitted plane waves in the x direction. In the absence of a magnetic field, x
and y degrees of freedom are decoupled. This situation is again very similar to Eq. (21)
if we specialize to a harmonic confinement, W (y) = 1

2mω
2
0y

2, except for the fact that
kz no longer labels degenerate eigenstates and thus appears in the dispersion relation.
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If we solve Eq. (85) to obtain the transmission probabilities T (E′) across the potential
well V (x), then the conductance is

G =
e2

h

Emax∫
0

dE g(E)T (EF − E), (86)

where Emax = EF − ~ω0/2, and g(E) = Lz
2π

√
2m
~2E

is the one-dimensional density of
states which is peaked at E = 0. In Fig. (6) (b) we plot the resulting transmission for a
structure with the same values of ω0, L and U0 as in the models discussed above. The
asymmetries are still recognizable although the original Fano lineshape does not occur
here. In particular, one can decide from the convoluted lineshape if the corresponding
Fano resonance has a positive or negative asymmetry parameter: if the minimum in T
occurs for lower E than the maximum, then G also shows a dip before the bump.

IfG is measured as a function of EF over a sufficiently wide range, then the convolution
in Eq. (86) can be unfolded by Laplace transformation to get back T (E).

5. CONCLUSION

We have attempted to shed light on the general properties of resonance lineshapes in
systems where the asymptotic motion of the scattered particle is confined. The Feshbach
approach was applied to scattering in a quantum wire without time reversal invariance
and provides microscopic expressions for all lineshape parameters. In agreement with
previous work, it predicts that there is always a transmission zero on resonance whereas
a reflection zero is a consequence of additional symmetries. To reconcile this result with
the more globally valid S-matrix formalism, we had to abandon the ansatz used in Refs.
[21, 34, 35, 23]. A more careful treatment then leads to a theory of multilead geometries
with or without symmetries which reproduces and generalizes the results of Section 2.
The Fano function arises as the most general resonance lineshape, under the assumption
that the background can be considered constant over the width of the resonace. The
Breit-Wigner lineshape appears as a special case when the nonresonant channels with
which the resonant scattering can interfere suffer no phase shifts.

As a result of our comparison between scattering in two-dimensional rotationally in-
variant systems and symmetric Q1D structures in the single-subband regime, we saw that
in both cases we could classify resonances according to the irreducible representations
of the respective symmetry groups. For continuous symmetry, the asymmetry of the
resonance lineshape depends only on the phase shift for direct (nonresonant) scattering
in the angular momentum channel that exhibits the resonance. The phase shifts in all
other angular momentum channels simply give rise to a baseline in the total cross section
but do not interfere with the resonant scattering. The situation is different for discrete
symmetries, in that the nonresonant phase shifts of all channels influence the lineshape
asymmetry through interference. The reason for this is that we measure cross sections
in two and three dimensions, but conductance coefficients (or transmission probabilities)
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in Q1D systems. These quantities do not become equivalent in the limit of infinitely
many leads. In fact, the effect of a resonance in Q1D vanishes with increasing number N
of leads. More precisely, both the total transmission and individual S-matrix elements
vary by at most 4(N − 1)/N2 which is less than unity for N > 2.

More generally, we find that independent of the number of subbands or leads, the
total transmission of a Q1D structure cannot vary by more than unity when a resonance
is crossed. But the well-known result for resonances in resonant-tunneling structures
[21, 22, 23], that the total transmission of a two-probe structure varies exactly by one
if the system is symmetric, does not remain valid in general. As an example for this
consider a ballistic constriction. If there is only one propagating subband, Gurvitz and
Levinson [19] predict the occurrence of exact transmission zeros (antiresonances) on the
conductance plateau close to the second subband threshold. This does not generalize
to higher plateaus, i.e. an antiresonance on a higher quantized plateau cannot dip
all the way down to the level of the previous plateau. We were able to derive this
because our approach allows us to consider two-probe structures with more than one
propagating subband as well. Our predictions are consistent with numerical calculations
[41]. Moreover, we can now state that the lineshape will be of the asymmetric Fano
lineshape if the plateau is not well quantized or if the resonance occurs in the step
region.

The elastic Fano resonance obeys a scaling property in that lineshapes with different
width Γ fall onto a single curve when plotted in reduced units ε, provided the background
transmission is the same. This effect can be tested in transport experiments if one has
a means of varying Γ without significantly altering the background transmission. The
two model systems we discuss (quantum well and quantum groove in a magnetic field)
have this property, but direct observation of the Fano lineshape is possible only in the
quantum well configuration.

We acknowledge R. Wheeler for the important suggestion of tuning through resonance
with a magnetic field. We also thank M. Büttiker, M. Reed and R. Adair for helpful
discussions. This work was supported by ARO grant no. DAAH04-93-G0009.

A. SOLUTION OF THE COUPLED CHANNEL EQUATIONS

In this Appendix we solve the coupled channel equations Eqs. (10,11) with the ansatz of
Eq. (12), namely ψ2(x) = AΦ0(x). Inserting this into Eq. (10), we get an inhomogenous
equation for |ψ1〉 which can be solved with the retarded Green’s operator (no label is
necessary to distinguish it from its advanced counterpart since the latter is not used
here)

Ĝ1 ≡
[
E − E1 − K̂ − U − V̂11 + i 0+

]−1
. (87)

Acting with this on Eq. (10), the general solution to that inhomogenous equation is
found to be

|ψ1〉 = |χ1
k〉+AĜ1 V̂12 |Φ0〉. (88)
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With this, Eq. (11) becomes

A(E − E0)|Φ0〉 = V̂21 |χ1
k〉+A V̂21 Ĝ1 V̂12 |Φ0〉, (89)

which can be closed with 〈Φ0| to get

A =
〈Φ0|V̂21 |χ1

k〉
E − E0 − 〈Φ0|V̂21 Ĝ1 V̂12 |Φ0〉

(90)

and finally

|ψ1〉 = |χ1
k〉+ Ĝ1 V̂12 |Φ0〉

〈Φ0|V̂21 |χ1
k〉

E − E0 − 〈Φ0|V̂21 Ĝ1 V̂12 |Φ0〉
. (91)

Using the explicit form of the retarded Green’s function in one dimension, [42]

G1(x, x′) =
m

i~2ktbg

{
χ1

k(x)χ
2
k(x

′) (x > x′)
χ1

k(x
′)χ2

k(x) (x < x′),
(92)

we obtain for x→∞

ψ1(x) = χ1
k(x) +

m

i~2ktbg
χ1

k(x)
〈(χ2

k)
∗|V̂12 |Φ0〉〈Φ0|V̂21 |χ1

k〉
E − E0 − 〈Φ0|V̂21 Ĝ1 V̂12 |Φ0〉

(93)

and for x→ −∞

ψ1(x) = χ1
k(x) +

m

i~2ktbg
χ2

k(x)
〈(χ1

k)
∗|V̂12 |Φ0〉 〈Φ0|V̂21 |χ1

k〉
E − E0 − 〈Φ0|V̂21 Ĝ1 V̂12 |Φ0〉

. (94)

The matrix element in the denominator of Eq. (93) is a self energy due to the coupling
between bound state and continuum, and will be denoted by

〈Φ0|V̂21 Ĝ1 V̂12 |Φ0〉 ≡ ∆− iΓ, (95)

where ∆ and Γ are real. It is of crucial importance for the existence of exact transmission
zeros that the numerator,

m

i~2ktbg
〈(χ2

k)
∗|V̂12 |Φ0〉 〈Φ0|V̂21 |χ1

k〉 ≡ δ − iΓ, (96)

has the same imaginary part −Γ, but in general a different real part, δ. The proof cannot
proceed as in Ref. [19] when we admit a more general V̂ xy, as is needed for magnetic-field
induced coupling. Here we provide a generalized proof that requires the hermiticity of
V̂ xy and the additional property V̂ ∗

nl = ±V̂nl. This is sufficient for the application we
investigate in Subsection 2.3.

30



Using the definition of the Green’s function, Eq. (92), we can rewrite the lefthand side
in Eq. (95) as

m

i~2ktbg

∫
dx dx′ χ2

k(x
′)V̂ x′

12 Φ0(x′) Φ0(x) V̂ x
21 χ

1
k(x) (97)

=
m

i~2ktbg

 ∫
x>x′

dx dx′ +
∫

x<x′

dx dx′

 Φ0(x) V̂ x
21 χ

1
k(x)χ

2
k(x

′)V̂ x′
12 Φ0(x′)

= 〈Φ0|V̂21 Ĝ1 V̂12 |Φ0〉+
m

i~2ktbg

∫
x<x′

dx dx′ Φ0(x) V̂ x
21 χ

1
k(x)χ

2
k(x

′)V̂ x′
12 Φ0(x′)

− m

i~2ktbg

∫
x<x′

dx dx′ Φ0(x) V̂ x
21 χ

2
k(x)χ

1
k(x

′)V̂ x′
12 Φ0(x′)

= 〈Φ0|V̂21 Ĝ1 V̂12 |Φ0〉

+
m

i~2ktbg

∫
x<x′

dx dx′ Φ0(x) V̂ x
21

[
χ1

k(x)χ
2
k(x

′)− χ2
k(x)χ

1
k(x

′)
]
V̂ x′

12 Φ0(x′).

The difference in brackets can be written with the help of Eqs. (A14) of Ref. [19] as

1
(tbg)∗

[
χ1

k(x)χ
1
k(x

′)∗ − χ1
k(x)

∗ χ1
k(x

′)
]

=
i

(tbg)∗
f(x, x′), (98)

where f(x, x′) ≡ 2 Im
[
χ1

k(x)
∗ χ1

k(x
′)
]

is real and satisfies f(x, x′) = −f(x′, x). We
therefore have to show that∫

x<x′

dx dx′ Φ0(x) V̂ x
21 f(x, x′) V̂ x′

12 Φ0(x′) (99)

is real. This is immediately clear if V̂ x′
12 and V̂ x

21 are either both real or both imaginary.
The latter happens if they are proportional to px = −i~∂/∂x, e.g., and this is the case
in the example studied in Section 2.3. Therefore, we conclude for the matrix elements
occuring in Eq. (93) that

m

i~2ktbg
〈(χ2

k)
∗|V̂12 |Φ0〉 〈Φ0|V̂21 |χ1

k〉 = 〈Φ0|V̂21 Ĝ1 V̂12 |Φ0〉+ δ, (100)

where δ is real.
Using Eq. (8) for the scattering states, we get for x→∞

ψ1(x) = tbg eikx

[
1 +

δ − iΓ
E − E0 −∆ + iΓ

]
(101)

which leads to the new transmission coefficient

T = |tbg|2
∣∣∣∣1 +

δ − iΓ
E − E0 −∆ + iΓ

∣∣∣∣2 (102)

= |tbg|2 (E − E0 −∆ + δ)2

(E − E0 −∆)2 + Γ2
. (103)
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B. REFLECTION ZEROS IN SYMMETRIC STRUCTURES

The scattering state given by Eq. (91) is normalized to the same incident flux as |χ1
k〉

because G1(x, x′) only adds outgoing waves originating from point sources at x′ in the
region of the bound state. Thus, current conservation must hold for the reflection and
transmission probabilities in the presence of coupling, R + T = 1. Let us now consider
the reflection R. Using Eq. (A 14) of Ref. [19] and the asymptotic form of χ2

k we can
rewrite Eq. (94) as

ψ1(x) = eikx + rbg
+ e−ikx +

m

i~2k
e−ikx

[
rbg
+ /t

bg〈(χ2
k)
∗|V̂12 |Φ0〉+ 1/(tbg)∗〈χ2

k|V̂12 |Φ0〉
]
〈Φ0|V̂21 |χ1

k〉

E − E0 − 〈Φ0|V̂21 Ĝ1 V̂12 |Φ0〉
= eikx + (104)

rbg
+ e−ikx

[
1 +

δ − iΓ +m/(i~2krbg
+ (tbg)∗)〈χ2

k|V̂12 |Φ0〉 〈Φ0|V̂21 |χ1
k〉

E − E0 −∆ + iΓ

]
,

where the definition Eq. (95) was used.
In an inversion symmetric structure, the remarks in Section 2.2 together with the

hermiticity of V̂ xy lead to the conclusion that the remaining combination of matrix
elements in Eq. (104),

η ≡ m

i~2kr(tbg)∗
〈χ2

k|V̂12 |Φ0〉 〈Φ0|V̂21 |χ1
k〉 (105)

is real because
〈χ2

k|V̂12 |Φ0〉 = ±〈Φ0|V̂21 |χ1
k〉∗. (106)

The reflection probability thus has the form

R = |rbg|2
∣∣∣∣1 +

δ − iΓ + η

E − E0 −∆ + iΓ

∣∣∣∣2 (107)

= |rbg|2 (E − ER + δ + η)2

(E − ER)2 + Γ2
, (108)

where we have again used the shifted resonance energy ER = E0 +∆. This shows that R
indeed goes to zero in the presence of inversion symmetry, implying T = 1. The distance
between the points of unit and zero transmission is η, as can be seen from comparison
with Eq. (103). Imposing the condition R+ T = 1 yields

δ = −|rbg|2η, Γ2 = |rbg tbg|2η2. (109)

From this we obtain Eq. (17). Instead of q, we could also use tbg as the third lineshape
parameter. For a given resonance, ER and η can be read off directly from the positions
of the minimum and maximum, while |tbg|2 is the transmission baseline away from res-
onance. If |tbg|2 is not exactly constant, one has to find the best fit by interpolating
between the values of |tbg|2 to the left and right of the resonance.
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C. TUNING THE FERMI ENERGY WITH A MAGNETIC
FIELD

Here we discuss the dependence of the Fermi energy on the magnetic field, neglecting
disorder. Consider a three-dimensional electron gas (effective mass m∗) in a homogenous
magnetic field along the z axis: the energy eigenvalues are

En = ~ωc (n− 1
2
) +

~2k2
z

2m∗ ±
1
2
g∗ µBB (n = 1, 2, . . .) (110)

and have a degeneracy per unit area (perpendicular to the magnetic field) of

D =
eB

hc
(111)

We want to determine the Fermi energy at T = 0 for a given electron density ρ which is
fixed by the doping. First consider fully spin-polarized electrons in the lowest LL. Only
the low-energy Zeeman term in Eq. (110) is then relevant, so that the minimum energy
is

E0 ≡
1
2

~ωc −
1
2
|g∗µBB| =

1
2

~ωc (1− α) , (112)

where we defined η ≡ |g∗|m∗/2me which determines the Zeeman splitting, and assumed
B > 0. If α < 1, the spin splitting is less than the cyclotron frequency ωc ≡ eB/m∗c.
The density must satisfy

ρ = D

EF∫
E0

g(E) dE (113)

with the one-dimensional density of states,

g(E) =
1
2π

[
~2

2m∗ (E − E0)
]− 1

2

. (114)

The integral yields

ρ =
eB

πhc

[
2m∗

~2
(EF − E0)

] 1
2

, (115)

so that the Fermi energy as a function of magnetic field becomes

EF =
1
2

~ω (1− η) +
~2

2m∗

(
πρhc

eB

)2

. (116)

This relation is correct only if EF is in the spin-polarized lowest LL, so that the magnetic
field has to be greater than a threshold field determined by the condition

EF =
1
2

~ω + min(
1
2
|g∗µBB| ~ω −

1
2
|g∗µBB|) =

1
2

~ωc (1 + min(η, 2− η)) . (117)
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Equating this with Eq. (116), one obtains an expression for the threshold field,

B0 =
(

πρ2

4 min(1, η)

) 1
3 hc

e
. (118)

In view of the specific example treated in this paper, we assume η < 1 from now on.
This does not affect the basic mechanism. In units of B0, we can rewrite Eq. (116) as

EF = ~ωc

[
1
2

(1− η) + η

(
B0

B

)3
]

(B ≥ B0). (119)

For InSb with its strong spin-orbit coupling [43], one has η ≈ 1/3 so that we estimate
B0 ≈ 12T if the doping is ρ = 10−7 cm−3. The Zeeman splitting is then ~ηωc = ~ωc/3.

Now we consider how EF behaves when B < B0, so that both spin directions are
present. We still assume that only the lowest LL is populated. In straightforward
generalization of the previous procedure, EF must now satisfy

ρ =
1
π

eB

hc

√
2m
~2

[√
EF −

1
2

~ωc +
1
2
g∗ µBB +

√
EF −

1
2

~ωc −
1
2
g∗ µBB

]
. (120)

Here, the two terms in square brackets count the number of spin-up and spin-down
electrons below EF , respectively. Solving this for EF ,

EF = ~ωc

[
1
2

+
1
2
π4~3ρ2

m3ω3
c

+
1
8
η2 m3ω3

c

π4~3ρ2

]
, (121)

The assumption that EF is below the second LL threshold will be valid for magnetic
fields greater than the minimum value determined by

EF =
3
2

~ωc −
1
2
g∗µBB =

1
2

~ωc (3− η) . (122)

The solution for this threshold field is

B3
th =

π

2
ρ2

(
hc

e

)3 (
1
η

)2 (
1− 1

2
η −

√
1− η

)
. (123)

At ρ = 1017cm−3 in InSb one obtains for the threshold field the value Bth ≈ 5.0T . Using
the threshold field for spin polarization, B0, as a unit, one can write the Fermi energy
as

EF =
1
2

~ωc +
1
4

~ωcη

[(
B0

B

)3

+
(
B

B0

)3
]

(Bth ≤ B ≤ B0). (124)

The function given by Eq. (119) and Eq. (124) is plotted in the inset to Fig. 5.
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