
Nanoporous compound materials for

optical applications –

Microlasers and microresonators

F. Laeri

Darmstadt University of Technology

D-64289 Darmstadt (Germany)

J. U. Nöckel
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1 Introduction

Since many decades nanoporous materials, for example zeolites, play an eminently important

role in the catalysis of oil refining and petrochemistry. On the other hand, molecular sieve

materials have also begun to attract some attention as optical material in recent years. It

was realized that their nanometer size pores allow to host guest molecules giving so substance

to a new class of optical material with properties which neither the host, nor the guest alone

could ever possess. In this way new pigments and luminophores were realized as well as

novel optically nonlinear and switching materials. The various actually realized materials

are reviewed in this book in chapter Nanoporous compound materials for optical applications

– Material design and properties.

A closer look at the approach of arranging molecules in an ordered framework of pores

reveals a series of aspects of fundamental interest: For example, the stereometric restric-

tions which the pore framework imposes on the motional degrees of freedom of the enclosed

molecules reduces their diffusion to one dimensional diffusion in channel pores [1]. Or, as

with the concentration also the average distance between two guest molecules is controlled,

their dipolar near field interaction can so be adjusted. In optimal circumstances optical

excitation energy can then be transferred nonradiatively over distances of several microme-

ters [2]. That are just two examples of new phenomena in molecular sieves, which at this

moment are still studied to achieve full understanding, and which will soon find their way

into applications in science and technology.

In this chapter we will be concerned with another new optical application of nanopo-

rous compound materials, namely microlasers in which light is generated by organic dyes

embedded in wavelength size resonators of molecular sieve material. In these laser devices the

dye molecules are enclosed in nanometer size channel pores of the molecular sieve, whereas

the crystalline sieve material itself which forms the resonator has exterior dimensions on

the order of a few micrometers. Figure 1 illustrates the arrangement of the molecular dye

dipoles which are aligned in the pores of a hexagonally shaped AlPO4-5 molecular sieve host.

In this example of molecular sieve material the channel pores point to the direction of the

crystal c-axis. If the enclosed species of dye molecules have an elongated shape and exhibit

a transition dipole moment along their elongation axis, then the dipoles end up oriented

parallel to the host c-axis as well.

A dipole can not emit in direction of its axis. Therefore the emission of the dipoles shown

in Fig. 1 occurs in a plane normal to the host crystal c-axis. Once the light emitted by the

dipoles arrives at the boundary of the molecular sieve crystal, part of it is reflected back into
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Figure 1: Schematic picture of the arrangement of the molecular dye dipoles in the channel

pores of the hexagonal molecular sieve host crystal AlPO4-5. The spatial cosine-

square emission efficiency of a dipole is represented as doughnut shaped surface

around the dipole axes.

the material. In fact, given the hexagonal geometry there is even a bundle of directions for

which total internal reflection occurs. Figure 2 illustrates how optical rays of this bundle

loop around the crystal, and, reflected by the hexagonal sides, form a whispering gallery

mode. In that way regularly shaped crystals of molecular sieve hosts form microresonator

environments for the light emission of inclosed dye molecule guests, and if the molecules

provide sufficient optical gain, laser oscillations will build up [3].

Light emission in a microcavity environment, however, is in many respect different from

the familiar emission into free space, such as fluorescence. In fact, this difference can be

striking. For example, to achieve laser action in a conventional millimeter size (or larger) laser

resonator the pump must overcome a certain threshold. In a microlaser in which the resonator

is of the size of a few wavelengths, however, lasing can occur without threshold. That means

that every absorbed pump quantum is transformed into a laser photon. Therefore, in order

to appreciate the significance of light generation in molecular sieve based microlasers, we

need to understand the differences between the emission processes of a molecule in a free

space environment as opposed to emission in a microcavity environment.

In the following we will review spontaneous as well as stimulated light emission of molecules,

and we will show that the respective emission rate is not an inherent molecular property,

but is a function of its environment, or more precisely, of the mode density of the electro-

magnetic field. This becomes apparent when in the distance of a half to a few wavelengths
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Figure 2: Light which is confined by total internal reflection at the hexagonal boundaries

can circulate inside the molecular sieve crystal as whispering gallery mode.

of the molecule mirrors exist. But this is indeed exactly the situation of here discussed dye

molecules which are enclosed in a molecular sieve microresonator.

On the other hand, we know that emission and absorption of radiation is accompanied

by a transition of the molecule from a state with energy E1 to a state with energy E2.

The frequency of the emitted or absorbed light is then ω = |E1−E2|/~, where ~ is Planck’s

constant. The presence of ~ clearly shows that emission and absorption of light is intrinsically

a quantum mechanical process. Therefore our discussion will have to involve the quantum

aspects of the interaction of the dye molecules with the light field, as well as the quantum

nature of the light field itself.

The situation is even more peculiar because the resonators of the molecular sieve micro-

lasers have a hexagonal outline. For a hexagonal resonator one can not find an orthogonal

coordinate system in which the wave equation can be solved by the usual method of separa-

tion of variables. Thus we will have to discuss the properties of microresonators in view of

this impediment.

In consideration of these facts we have organized the discussion in the following way:

In the first section we introduce the concept of modes of the electromagnetic field as its

countable degrees of freedom, and based on this, we introduce the quantized optical field.

In the next section fluorescence, i.e. spontaneous emission in a free space environment is

discussed, and the frame is set for the treatment of cavity effects in the next section, in

7



which spontaneous emission in a resonator environment is examined. Then the effect of a

resonator on stimulated emission and laser action are surveyed. After this we characterize

the peculiarities of microresonators, and finally we present the most recent achievements and

realizations of molecular sieve microlasers.
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2 The concept of modes of the electromagnetic field and

its quantization

In optics in general, and particularly when lasers are involved, the notion of modes is ubiq-

uitous. As this term is used in many different and disparate circumstances it is necessary

to define the term for further usage. In this section we give a short tutorial introduction of

the concept of modes of the electromagnetic field, and we show the important role the mode

concept plays in the procedure of the canonical quantization of the field. An account of the

mode structure of resonators and particularly microresonators is then presented in section

6.

2.1 The dynamics of the classical field

A convenient way to introduce the mode concept is to consider a simple realization of the

electromagnetic field, for example a source-free field. We can think of it as the field that

subsists after a source located far away has stopped to emit. After the emission stopped, the

classical field evolution is governed by Maxwell’s equation in the following form (cgs-units):

~∇ · ~E = 0 ~∇× ~E = −1

c

∂ ~B

∂t

~∇ · ~B = 0 ~∇× ~B =
1

c

∂ ~E

∂t
(1)

2.2 Discretizing fields – Random fields

Most practical light sources, such as incandescent lamps or light emitting diodes LEDs

(though not lasers), emit a nondeterministic, chaotic field, i.e. a field whose spatio-temporal

evolution can only be described in statistical terms. In communication engineering terms

such a field is referred to as a noise field. We like to point out that we can understand impor-

tant features of those fields in classical terms. It is thus not necessary to enter the quantum

world in order to encounter nondeterministic fields. In order to keep the mathematics simple,

it is convenient to deal with a field occupying a discrete, instead of a continuous number of

degrees of freedom.

The trick usually used to achieve discretization consists in confining the field into a finite

volume V . At the end, the limit V → ∞ can be carried out, if necessary. Confinement

to a finite volume V allows us to represent the spatial component of the field as a series

(superposition) of a discrete number of functions. As (1) is a system of linear equations
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of the fields ~E and ~B we can always represent a solution as a linear superposition of field

functions. Of course it is convenient to choose a complete and orthonormal set of functions

{ϕi(~r)}, that also fulfill eventually given boundary conditions. These functions are called

(spatial) modes. Thus a mode of the classical electromagnetic field is characterized by the

following properties:

• {ϕi(~r)} orthonormal:

∫
V

ϕ∗m(~r)ϕn(~r)dV = δmn (2)

• {ϕi(~r)} complete:

Ex(~r, t) =
∑

i

Ciϕi(~r)e
−iωit +

∑
i

C∗
i ϕ

∗
i (~r)e

iωit (3)

Ex(~r, t) = E(+)
x + E(−)

x (4)

• {ϕi(~r)} satisfies the spatial boundary conditions given by the shape of volume V .

Obviously E
(−)
x =

(
E

(+)
x

)∗
(with ∗ we denote complex conjugation). The sets {Ci}x,y,z are

discrete, and they now represent the complete information about the field. In a deterministic

field the individual {Ci}x,y,z are fixed complex numbers. For a nondeterministic field, how-

ever, the {Ci}x,y,z represent random variables. Thus for a stationary field they are defined

in terms of probability functions:

p ( {Ci} ) = p (C1, C2, C3, . . . ) (5)

If we consider a function F that depends on the random field, say E, or E(+), then we can

only express F in statistical terms, that means we can only assign expectation values:

〈F (E(+)) 〉 =

∫
V

p ( {Ck} ) F [E(+)({Ck})]
∏

k

d2Ck (6)

In contrast to a thermodynamic situation in which the expectation values are sharply peaked,

an experimental realization of F in optics can significantly differ from the expectation value

〈F 〉.
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2.3 The classical Hamiltonian of the source-free field

For a source-free field the classical Hamiltonian H can be interpreted as the total energy of

the field. As we have constrained the field to the Volume V , the total energy is given by [4]:

H =
1

2

∫
V

[ε0
~E2(~r, t) +

1

µ0

~B2(~r, t)] dV . (7)

In the following we will show that the Hamiltonian (7) can be represented as a sum of terms

that are analogous to a harmonic oscillator (the thoughtful reader anticipates the reason...).

For that purpose we express the fields ~E and ~B in terms of their potential.

2.3.1 The potential of the free field

We recall that Maxwell’s equations of a source free field are gauge invariant. In the case we

discuss here we choose the Coulomb gauge, and as a result we obtain a purely transverse

field potential ~A:

~∇ · ~A = 0 . (8)

The electric and magnetic fields are related to the potential according to:

~E(~r, t) = − ∂

∂t
~A(~r, t) , ~B(~r, t) = ~∇ × ~A(~r, t) . (9)

Inserting this into (1) we obtain the wave equation

~∇2 ~A − 1

c2
∂2

∂t2
~A = ~0 . (10)

2.3.2 Discretization procedure for the potential ~A

We follow the thread outlined in section 2.2, and to keep things simple, we consider a cube

shaped volume V with an edge length of L. With this conditions the discretization of ~A

acquires the form of a Fourier series (plane wave expansion):

~A(~r, t) =
1

√
ε0 L3/2

∑
~k

~A~k(t) exp(i~k · ~r) , (11)

where the wave vector ~k has the components

k1 = 2πn1/L , n1 = 0, ±1, ±2, . . .

k2 = 2πn2/L , n2 = 0, ±1, ±2, . . . (12)

k3 = 2πn3/L , n3 = 0, ±1, ±2, . . . ,
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and
∑

~k extends over the modes indexed by n1, n2, n3. The chosen normalizing factor will

soon prove to be useful. Evaluation of the gauge relation (8) results in

i
√
ε0 L3/2

∑
~k

~k · ~A~k(t) exp(i~k · ~r) = 0 (13)

for all ~r. This is only possible when

~k · ~A~k(t) = 0 , (14)

thus ~k⊥ ~A~k (i.e. transversal field). As the potential ~A(~r, t) assumes real values, the coefficients

~A~k observe

~A−~k(t) = ~A∗
~k
(t) . (15)

In addition, wave equation (10) must be satisfied, resulting in(
∂2

∂t2
+ ω2

~k

)
~A~k(t) = 0 , (16)

with ω~k = ck. The general solution of this ordinary differential equation is represented as

~A~k(t) = ~c~k e−iω~k
t + ~c ∗−~k

eiω~k
t . (17)

As (14) fixes the transversal character of each plane wave mode, only two components (the

polarization components) of the vector ~A~k(t) are at free disposition. In order to simplify the

notation let us agree to let index ~k point to n1, n2, n3 (see (12)), as well as to the polarization

components ~ξ1, ~ξ2. To remember this, we will from now on refer to the corresponding index

as kξ
. With this notation we can write for the potential

~A(~r, t) =
1

√
ε0L3/2

∑
kξ

[ckξ
e−iωkξ

t + c∗−kξ
eiωkξ

t]ei~k·~r , (18)

and with

ukξ
(t) = ckξ

e−iωkξ
t (19)

we get

~A(~r, t) =
1

√
ε0L3/2

∑
kξ

[ukξ
(t)ei~k·~r + u∗kξ

(t)e−i~k·~r]. (20)

By inserting (20) in (9), we can express the electric and magnetic field as a sum of mode

functions

~E(~r, t) =
i

√
ε0L3/2

∑
kξ

ωkξ
[ukξ

(t)ei~k·~r − c.c.] (21)

~B(~r, t) =
i

√
ε0L3/2

∑
kξ

[ukξ
(t)(~k × ~ξ)ei~k·~r − c.c.] (22)
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where with ~ξ we represent the polarization unit-vector. We note that the total information

on the (classical) field is now contained in the functions ukξ
(t) (19).

Note: To avoid confusion, we have to point to a minor inconsistency in the notation: As is

typical for expressions of the magnetic field, the vector product in (22) reshuffles spatial and

polarization indices so that the correct expression in fact consists of two sums containing the

polarization vector. The resulting expression looks bulky, and requires some consideration.

For this tutorial we prefer to emphasize the basic mathematical structure. So we choose this

visually intuitive representation although the indices are not correctly rendered. To obtain

the correct result one may work out the procedure in the component notation of (20) and

(9).

2.3.3 The mode density

Let us return for a moment to the volume L3 we considered for deriving the mode ex-

pansion (11), which was a cube with edges oriented along the coordinate axes (x1, x2, x3).

According to (11) we can expand the field in this cube in a 3-dimensional set of run-

ning modes {k1}, {k2}, {k3} [cf. (12)]. Along the x1-axis we have the modes labeled by

k1 = 2πn1/L; (n1 = ±1,±2, . . . ); because we consider only running modes (travelling

waves), we omit n1 = 0. In the interval between k1 and k1 + dk1 we find dn1 modes, where

dn1 = dk1 L/2π. The analogous applies for the other directions. According to Fig. 3 we can

specify the number of modes in the interval between |~k| and |~k+ ~dk| simply by counting the

dots in the volume of the corresponding spherical shell, which amounts to 4πk2 dk · 2 (factor

2 because there are two independent polarization states associated with each ~k). Considering

the scaling of the axes in Fig. 3 we can use this to express the number of modes in Volume

V = L3 as

Number of modes in V = 2 · 4πk2dk

(
L

2π

)3

. (23)

The mode density ρ(k)dk, that is the number of modes in interval | ~dk| per Volume V = L3,

is then given by

ρ(k)dk =
# of modes in V

V
=
k2 dk

π2
. (24)

With k = ω
c

we obtain

ρ(ω)dω =
ω2

c3π2
dω . (25)

This is known as the free space mode density. Note that ρ(ω) represents the volume normal-

ized density of modes, i.e. the units of ρ(ω) are number of modes / (frequency × volume).
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Figure 3: Mode distribution in ~k-space scaled by multiplication with L
2π

. Each dot corre-

sponds to a wavevector ~k which represents two independent, orthogonally polarized

waves.

Let us now consider a linear function ζ of the field, which thus can be represented as a

sum over the field modes ~k as

ζ =
∑

k1,k2,k3

ζ(~k) . (26)

For a large cube, L→∞, the sum over the discrete set of modes has to be transformed into

an integral, which has to sum over a measure that is a density

1

L3

∑
k1,k2,k3

ζ(~k) −→ 1

(2π)3

∫
d3k ζ(~k) . (27)

Switching to spherical coordinates d3k = k2dk sin θ dθ dφ, where φ denotes the azimuthal

and θ the polar angle of ~k, and transforming this equation to frequency space ω we obtain

observing k = ω/c

1

L3

∑
k1,k2,k3

ζ(~k) −→ 1

(2π)3

∫
dω

ω2

c3

∫ π

0

dθ sin θ

∫ 2π

0

dφ ζ(~k) (28)

In this representation we take into account that ζ can depend on the polarization, which

can be expressed as ζ = ζ(φ, θ, k). Also, ζ allows us to introduce ~k-space structure func-

tions into the mode counting sum, so that the mode density can be calculated for arbitrary

boundary conditions. Note that the procedure relies on certain properties of the field, one of

which is (7). This equation expresses energy conservation, thus the above calculated mode
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density refers to undamped modes. The situation with microlasers, where sources of the

field are present and the modes are damped, is more intricate and is discussed in section 6.

2.3.4 The classical Hamiltonian of the source free field

Let us insert the electric field (21) and the magnetic field (22) into the energy (7) (note that∫
L3 ei(~k−~k′)·~rd3r = L3 δ~k~k′), then we obtain the Hamiltonian

H = 2
∑
kξ

ω2 |ukξ
(t)|2 . (29)

The energy appears here as the sum of the energy of each mode. This is intuitive, and at this

point we could stop satisfied with the result. However, there is one thing that experience

revealed: As elegant it might be, expression (29) does not lend itself to an idea that opens

a viable way for the quantization of the electromagnetic field.

Although at this time it looks utterly artificial, but the following substitution proved to

be a wonderfully prolific device:

qkξ
(t) = [ukξ

(t) + u∗kξ
(t)] (30)

pkξ
(t) = −iωkξ

[ukξ
(t)− u∗kξ

(t)] (31)

At this time this expressions can be regarded as the definition for the functions q and p that,

as can be shown, satisfy the relations q̇kξ
= pkξ

and ṗkξ
= −ω2qkξ

. Thus the functions q

and p evolve in analogy to the canonical position and momentum variables of the harmonic

oscillator: In fact, inserting (30) and (31) in (29), we obtain the expression

H =
1

2

∑
kξ

[p2
kξ

(t) + ω2
kξ
q2
kξ

(t)] , (32)

which has the same form as the Hamiltonian of a series of independent (not coupled) har-

monic oscillators.

What do we have achieved so far?

1. By restricting the fields to a finite Volume V , the potential of the electromagnetic field

was decomposed in a discrete, although infinite, series of spatial modes.

2. Each spatial mode was associated with a harmonic oscillator.

3. That this is a sound result can be seen by verifying the canonical equations of motion,

which indeed show that ∂H/∂pkξ
= q̇kξ

and ∂H/∂qkξ
= −ṗkξ

.
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To be complete we write the fields expressed in terms of q and p :

~A(~r, t) = 1

2
√

ε0L
3
2

∑
kξ

{[
qkξ

(t) + i
ωkξ

pkξ
(t)
]
ei~k·~r+ c.c.

}
(33)

~E(~r, t) = i

2
√

ε0L
3
2

∑
kξ

{[
ωkξ

qkξ
(t) +ipkξ

(t)
]
ei~k·~r− c.c.

}
(34)

~B(~r, t) = 1

2
√

ε0L
3
2

∑
kξ

{[
qkξ

(t) + i
ωkξ

pkξ
(t)
]
(~k × ~ξei~k·~r)− c.c.

}
(35)

Note: As in (22) the same inconsistency arises here with (35). See the note on p. 13.

Thinking about quantization of the electromagnetic field? Well, quantizing a harmonic

oscillator - we know how to do this, don’t we?

2.4 Canonical quantization of the electromagnetic field

We assume that the reader is familiar with the postulates of quantum mechanics in general,

and with the quantum mechanics of the harmonic oscillator in particular (see for example

[5]). In anticipation of the following procedures, we have already put together the main

constituents we need to apply the correspondence principle [5, p. 337ff] for quantizing the

field. As first step we associate with each of the classical dynamic variables a Hilbert-space

operator. At this time we choose operators in the Heisenberg picture. In this way the

correspondence to the classical formulas is more obvious. As always in quantum mechanics

we also have to carefully consider commutation of the operators.

According to the correspondence principle intent [6, 7], we associate the following operators

with the classical canonical variables (30) and (31):

qkξ
(t) −→ qkξ

(t) and (36)

pkξ
(t) −→ pkξ

(t) . (37)

The operators q and p of the same mode represent noncompatible operators. We use that

the commutator of a canonically conjugated pair of operators amounts to i~. On the other

hand, equation (32) indicates that the modes (oscillators) are uncoupled. Therefore the

associated Hilbert-space operators of different modes will commute. Thus we obtain the

following commutation relations:

[qkξ
(t), pk′ξ

(t)] = i~ δ3
kξk

′
ξ

(38)

[qkξ
(t), qk′ξ

(t)] = 0 (39)

[pkξ
(t), pk′ξ

(t)] = 0 , (40)
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and accordingly, the following uncertainty relation:

∆qkξ
∆pk′ξ ≥ 1

2
|〈[qkξ

, pk′ξ
]〉| (41)

≥ ~
2
δ3
kξk

′
ξ

. (42)

The state of a quantum mechanical system – here the electromagnetic field – is character-

ized by a state vector, say the ket |ψ〉. The measurement of the observable O will produce

a value coinciding with an eigenvalue of the Hilbert space operator O associated with the

observable O. However, only when the state of the field |ψ〉 happens to be an eigenstate of

the operator O, we can precisely predict the outcome of the measurement of O. If the state

of the system does not coincide with an eigenstate of O, then it is only possible to predict

the probability to obtain a certain eigenvalue. Thus the outcome of the measurement of O

is predicted by the probability distribution given through the scalar product 〈ψ|O|ψ〉.
At this point the profit we gained by reinterpreting the classical Hamiltonian (29) in the

form of (32) becomes apparent. By identifying the classical observables in (32) with the

operators (37) and (37), we obtain a Hamiltonian operator that exhibits required quantum

properties. Thus

H =
1

2

∑
kξ

[p2
kξ

(t) + ω2
kξ

q2
kξ

(t)] . (43)

Note that with the transposition of the classical problem into Hilbert space, the variable

space was transposed as well: The new dynamic variables now are the operators qkξ
(t),

pkξ
(t), as well as the field operators ~A(~r, t), ~E(~r, t), ~B(~r, t), etc.. The classical variables ~r and

t are now relegated to play the role of mere parameters.

In the following we try to find out why the analogous transposition of the classical Hamil-

tonian (29) fails to produce a Hamiltonian operator that is consistent with the quantum

mechanical postulates. We will start to seek the quantum mechanical equivalent of mode

functions ukξ
(t) appearing in (30) and (31). Obviously these must be operators.

2.5 Creation and annihilation operators

The operators that play the analogous role to the functions ukξ
(t) in (30) and (31) are called

annihilation operator a†kξ
(t) and creation operator akξ

(t)1. They can be expressed in terms

1Although they play an analogous role, they do not correspond to the classical mode functions in the sense

of the correspondence principle, as we will soon discover.
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of the Hermitian operators qkξ
(t) and pkξ

(t) as the following pair (the normalization will be

justified later):

akξ
(t) = 1√

2~ωkξ

[ωkξ
qkξ

(t) + ipkξ
(t)] (44)

a†kξ
(t) = 1√

2~ωkξ

[ωkξ
qkξ

(t)− ipkξ
(t)] . (45)

The comparison with (30) and (31) also shows that these operators exhibit the the time

dependence

akξ
(t) = akξ

(0)e−iωkξ
t (46)

a†kξ
(t) = a†kξ

(0)eiωkξ
t . (47)

Similarly as the classically equivalent functions in (30) and (31) are complex conjugates,

the annihilation and creation operators are Hermitian adjoints, which is expressed by the

symbol †. Since a†kξ
(t) 6= akξ

(t), they are not themselves Hermitian but Hermitian adjoints,

and thus can not qualify as physical observables. Like qkξ
(t) and pkξ

(t) they are not com-

patible (do not commute). From (38) and (40) we obtain the commutation relations

[akξ
(t), a†k′ξ

(t)] = δ3
kξk

′
ξ

, (48)

[akξ
(t), ak′ξ

(t)] = 0 , (49)

[a†kξ
(t), a†k′ξ

(t)] = 0 . (50)

However the dynamic variables qkξ
(t) and pkξ

(t) are Hermitian, and can consequently be

associated with observables

qkξ
(t) =

√
~

2ωkξ

[akξ
(t) + a†kξ

(t)] , (51)

pkξ
(t) = i

√
~ωkξ

2
[a†kξ

(t)− akξ
(t)] . (52)

After comparison of these two equations with (30) and (31), we are confident that akξ
(t)

and a†kξ
(t) play an analogous role as the classical mode functions ukξ

(t) and u∗kξ
(t). Therefore,

it is the set of operators {akξ
(t)} that in the quantum analogy carries the total information

about the field. As the information of each quantized field mode is now expressed in terms of

an operator, instead of simple c-numbers, we must expect a correspondingly richer structure

of the quantized field – richness in the sense that in the quantum description, non classical

field configurations arise that do not have a classical equivalent.
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We can now express the Hamiltonian operator in terms of annihilation and creation oper-

ators. We insert (51) and (52) into (43) and obtain

H =
1

2

∑
kξ

~ωkξ
[akξ

(t)a†kξ
(t) + a†kξ

(t)akξ
(t)] (53)

In this equation the annihilation and the creation operators appear in a symmetric way. From

its visual appearance (53) can be considered to closely resemble the classical Hamiltonian

(29). An the other side we have to consider that annihilation and creation operators do not

commute, and the apparent symmetry may only be a typographical one. There is no doubt

that the Hamiltonian operator per se is Hermitian and thus represents an observable, the

energy of the field. The energy of an optical field is usually measured by absorbing the light in

a photo detector, say for example a photo diode. As will become obvious below [c.f. (58)-(60)]

for the description of absorption processes it is practical to have the Hamiltonian operator in

a form in which the annihilation operators stand to the right of the creation operators. This

normal ordering form is achieved by successive application of the commutation relations

(48)-(50). As a result we obtain

H =
∑
kξ

~ωkξ
[a†kξ

(t)akξ
(t) + 1

2
] . (54)

Obviously the operator product a†kξ
(t)akξ

(t) is Hermitian, and represents the number operator

Nkξ

Nkξ
= a†kξ

(t)akξ
(t) . (55)

As its name indicates, Nkξ
counts the number of photons in each mode kξ. Note that because

of (46) and (47) the number operator Nkξ
is constant in time – a mandatory property for

a conserved quantity of the field, like H (54). The eigenvalues of the Hamiltonian operator

(54) are ~ωkξ
× (nkξ

+ 1
2
), with nkξ

= 0, 1, 2, 3, . . . ,∞. It is evident that nkξ
represents the

photon occupation number of mode kξ. In (54) the contribution of 1
2
~ωkξ

to each mode

represents the vacuum fluctuations of the field. Clearly, this term is not present in the

classical Hamiltonian (29).

At this point we should have discussed the eigenfunctions of the annihilation and creation

operators. We postpone the discussion to the following section. in which we introduce

the coherent states, and were we are able to better illustrate the special meaning of those

eigenstates.

Summarizing we can now reconstruct the reasons why the direct application of the corre-

spondence principle to the classical Hamiltonian expression (29) fails, but works on (32):
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• The correspondence principle refers to physical observables. On the other side, from

the perspective of classical physics, the concept of observables is not well defined, and

therefore it is not possible to anticipate that the operators a and a† associated with the

classical mode functions ukξ
(t) and u∗kξ

(t) are not Hermitian and thus do not represent

observables.

• In the representations of the classical Hamiltonian the mode functions ukξ
(t) and u∗kξ

(t)

enter in a symmetric way. The normal ordering procedure of the operators a and a† in

the Hamiltonian operator shows, however, that the equivalent operators do not con-

tribute equally to the Hamiltonian. In (54) the factor 1
2
~ωkξ

representing the vacuum

fluctuations is a result of this asymmetry. Since vacuum fluctuations do not exist in

the classical picture, the term could not be anticipated.

2.6 States of the optical field

In classical physics the information of the electrodynamic field is contained in the electric

and magnetic fields, or their associated potential functions. In the quantum description,

however, the information is contained in a state vector (wave function). In the following we

discuss two important states of the field, the Fock states (or number states, states of fixed

photon number), and the coherent states (harmonically oscillating fields).

A practical way to represent a state vector is in terms of a series of eigenstates of a suitable

operator, and this is what we are going to do as next.

2.6.1 The Fock states (number states) |nkξ
〉

The Fock states are defined as states with a fixed photon number. Thus they can be rep-

resented as eigenstates of the number operator (55). Considering the mode kξ, we have the

following eigenvalue equation

Nkξ
|nkξ

〉 = a†kξ
(t)akξ

(t)|nkξ
〉 = nkξ

|nkξ
〉 , (56)

in which nkξ
represents the number of photons in mode kξ. The Fock states are stationary

because of (46) and (47). In fact, we can see that a ground state |0〉 (vacuum state) is

associated to each mode by

akξ
|0〉 = 0 . (57)
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The following relations motivate the names of the annihilation operator a and creation op-

erator a† :

akξ
|nkξ

〉 =
√
nkξ

|nkξ
− 1〉 (58)

a†kξ
|nkξ

〉 =
√
nkξ

+ 1 |nkξ
+ 1〉 (59)

a†kξ
akξ
|nkξ

〉 = nkξ
|nkξ

〉 (60)

We can construct an arbitrary Fock state |nkξ
〉 by an nkξ

-fold application of the creation

operator to the ground state,

|nkξ
〉 = 1√

nkξ
!
(a†kξ

)nkξ |0〉 . (61)

The Fock states are orthogonal, and with the factor introduced in (44) and (45) they are

normalized,

〈nkξ
|mkξ

〉 = δnm , (62)

and complete
∞∑

nkξ

|nkξ
〉〈nkξ

| = 1 . (63)

They therefore form a complete system of base vectors. The Fock state base is often used

to describe fields with few photons of high energy, for example γ-radiation. Optical fields

of visible radiation, like fields emitted by a laser, are more suitably described by coherent

states.

2.6.2 Coherent states |α〉

The coherent state represents the quantum mechanical analogue of a classical, harmonically

oscillating field. To reduce clutter in the following discussion we will pick out one spatial

mode of the field: |α〉kξ
→ |α〉. In the following we adhere to Glauber’s “classical” pre-

sentation [8]. The coherent state |α〉 of a mode is defined as eigenstate of the annihilation

operator a:

a|α〉 = α|α〉 (64)

with the complex eigenvalue α (remember, a is not Hermitian)

α = |α| eiφ (65)

a being not Hermitian, it is not surprising that the associated eigenstates, the coherent

states |α〉, are not orthogonal. Thus they can not provide a universally suitable base system.
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Although coherent states can therefore not be used to expand an arbitrary electromagnetic

field in the conventional way (see below), they represent an important class of fields, namely

harmonically oscillating fields, like radio frequency fields, or fields emitted by well stabilized

lasers, and for this reason are interesting to characterize.

Fock states as eigenstates of the number operator have an intuitive meaning, and therefore

we will seek a representation of the coherent states as a superposition of Fock states. As the

coherent state is the quantum analogue of a harmonically oscillating field, we shall determine

the corresponding electric field operator E as well.

Formally we find the expansion of the coherent state in the Fock base with the usual trick

of inserting the unit operator (63):

|α〉 =
∑
|n〉

|n〉〈n|α〉 (66)

The scalar product 〈n|α〉 therefore represents the expansion coefficients. Their evaluation is

performed with (64), and after we multiply from left with 〈n| we obtain

〈n|a|α〉 = α〈n|α〉 (67)

Inserting the Hermite adjoint of (59) gives

√
n+ 1〈n+ 1|α〉 = α〈n|α〉 . (68)

The expansion coefficients are then obtained by the analogous application of the recursion

(61) as

〈n|α〉 =
αn

√
n!
〈0|α〉 . (69)

After inserting this into (66), we obtain the representation

|α〉 = 〈0|α〉
∑

n

αn

√
n!
|n〉 , (70)

which now is to be normalized. Normalization delivers the value of 〈0|α〉:

1 = 〈α|α〉 = |〈0|α〉|2
∑

n

|α|2n

n!
= |〈0|α〉|2 e|α|

2

, thus (71)

〈0|α〉 = e−
1
2
|α|2 . (72)
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As a result we obtain the coherent states in the Fock base expansion as

|α〉 = e−
1
2
|α|2
∑

n

αn

√
n!
|n〉 (73)

〈α| = e−
1
2
|α|2
∑

n

(α∗)n

√
n!

〈n| (74)

At this point we are able to calculate the expectation value for finding the considered mode

in a state |α〉 with n photons:

p(α, n) = |〈n|α〉|2 =
|α|2n

n!
e−|α|

2

, (75)

where |α|2 denotes the average photon number n̄ of the mode,

n̄ = |α|2 = 〈α|a†a|α〉 . (76)

The expression (75) represents a Poisson distribution with mean value n̄ = |α|2 and variance

(∆n)2 = |α|2 = n̄.

Equations (73)–(75) show that the the coherent state |α〉 associated with the eigenvalue

α = 0 coincides with Fock state |0〉, i.e. a state with vanishing photon number expectation,

thus called vacuum state.

We derived the coherent states as eigenvectors of a nonhermitian operator. According to

the postulates of quantum mechanics we can therefore not expect that they span a base of

the Hilbert space. In fact, their scalar product does not define an orthogonal relation

〈α|β〉 =
∑

n

(α∗)nβn

n!
e−

1
2
|α|2e−

1
2
|β|2 = e[α∗β− 1

2
(|α|2+|β|2)] . (77)

(Note: Although the coherent states are not orthogonal this does not automatically imply

that it is impossible to expand an arbitrary state in a series of coherent states [8].) The

absolute value of the scalar product is

|〈α|β〉|2 = e−|α−β|2 . (78)

Loosly speaking, the coherent states |α〉 and |β〉 become increasingly more orthogonal the

more they are apart. This is due to the overlap of the state vectors, which is given by the

zero point fluctuations. In fact, the coherent states can also be represented as a displaced

vacuum state. Intuitively this corresponds to a classical field amplitude with added zero

point fluctuations. In operator notation:

|α〉 = D(α)|0〉 , (79)

where the displacement operator D(α) is represented as [8]:

D(α) = exp (αa† − α∗a) . (80)
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2.6.3 The operator of the electric field E

According to the correspondence principle we construct the electric field operator E corre-

sponding to (34) by replacing the classical canonical variables q and p with the operators

(51) and (52). For the mode we consider this leads to

E(t) = 1√
ε0L3

[p(0) cos(~k · ~r − ωt)− ωq(0) sin(~k · ~r − ωt)] , (81)

and when we insert (44) and (45)

E(t) = i
√

~ω
2ε0L3 [a(t)ei~k·~r − a†(t)e−i~k·~r] , (82)

where in the literature the factor

Ep =

√
~ω

2ε0L3
(83)

is often called electric field per photon. Expression (81) particularly illustrates the following

points:

• The field consists of two components oscillating in quadrature.

• The operators q(t = 0) and p(t = 0) associated with the quadratures are Hermitian

and constant in time.

• However, q(t = 0) and p(t = 0) are not compatible. That means the quadratures are

not simultaneously measurable quantities, a result that from a classical point of view

can not be anticipated.

• The quantum properties of the field, including its fluctuations, are determined at one

time, for example t = 0, and do not change at later times (provided the field is not

further manipulated).

• As the two field quadrature operators are not compatible, we should not be surprised

that it is not possible to construct a Hermitian operator for the phase of the field.

2.6.4 The uncertainties of the coherent state

Remember that the coherent states are defined as eigenstates of the annihilation operator

and not of the quadrature operators q and p. Therefore, the expectation value of latter

observables can not be exactly defined, but will exhibit an amount of uncertainty. In addition,

we have seen that the quadrature operators are incompatible, thus, they obey the uncertainty
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relation (42). Let us now determine the uncertainty product ∆q∆p for a coherent state.

(Note that (∆A)2 = 〈(A− 〈A〉1)2〉 = 〈A2〉 − 〈A〉2.)
We calculate the expectation value of the observables q and p for a coherent state |α〉 by

inserting (51) and (52). Referring to (64), we obtain

〈q〉coh.st. = 〈α|q(0)|α〉 =
√

~/2ω [α+ α∗] (84)

〈p〉coh.st. = 〈α|p(0)|α〉 = i
√

~ω/2 [−α+ α∗] , (85)

After application of the commutation relations (38)-(40) and (51) we find for the operator

q2

q2 = ~
2ω

[a2 + a†
2
+ aa† + a†a] (86)

= ~
2ω

[a2 + a†
2
+ 2a†a + 1] , and (87)

〈q2〉coh.st. = 〈α|q2|α〉 = ~
2ω

[α2 + α∗2 + 2α∗α+ 1] . (88)

The width of ∆q for a coherent state |α〉 is then given by

(∆q)2
coh.st. = 〈q2〉 − 〈q〉2 =

~
2ω

. (89)

Analogously we obtain for the conjugated observable p

(∆p)2
coh.st. = 〈p2〉 − 〈p〉2 =

~ω
2

, (90)

and for their product

(∆q)coh.st.(∆p)coh.st. =
~
2

. (91)

This results shows that this uncertainty product assumes the minimum value allowed by

Heisenberg’s famous relation; cf. (42). Thus, the coherent state is a minimum uncertainty

state, and can be considered to be as close to the equivalent classical state as quantum

mechanics permits.

To conclude this section we use (84) and (85) to visualize the nature of the coherent state.

For that purpose we write the expectation values of the quadratures in their time dependent

form. In (81) we can see that already the operators exhibit a purely scalar time dependence

(c-number). Thus

〈q(t)〉coh.st. = 〈α|q(t)|α〉 =
√

2~/ω |α| cosωt (92)

〈p(t)〉coh.st. = 〈α|p(t)|α〉 = −
√

2~ω |α| sinωt . (93)
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Figure 4: Quadrature representation of a coherent state |α〉 according to equations (95)–

(98). Note that the quadrature operators are not compatible, and therefore, can not

be simultaneously determined. Thus, the uncertainty circle in this picture should

not be interpreted as the contour of a classical joint probability distribution of

observables X and Y , but as Wigner distribution function.

The expectation values for the quadrature observables q and p of the coherent state thus

evolve in the way of a classical, harmonic field. With operators normalized to the photon

energy we get

X = q

√
ω

2~
, Y = −p

√
1

2~ω
, (94)

and for the expectation values respectively

〈X〉coh.st. = |α| cosωt (95)

〈Y〉coh.st. = |α| sinωt (96)

(∆X)coh.st. = 1
2

(97)

(∆Y )coh.st. = 1
2

(98)

We picture these equations in Fig. 4 (the quadratures are represented in units of the

photon energy ~ω). The uncertainty is equal to the vacuum fluctuation energy 1
2
~ω of the

considered field mode, and the amplitude |α| is characterized by the average photon number.

In summary, Fig. 4 illustrates that the coherent state can be interpreted as a classical,

harmonic field (amplitude |α|) with added vacuum fluctuations (uncertainty circle).

We said that the coherent state represents the quantum mechanical analogue of a classical,

harmonically oscillating field. Most people connect this with images of same sort of antenna
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and radio frequency fields. In fact, we are used to modern electronic devices which process

radio frequency cycle times of up to some tens of ps (10−10 s). For optical frequencies, how-

ever, electrons would have to respond on the 10−15 s-scale. Circuits with such fast responses

are not available yet. The standard way to receive optical signals is therefore not with an

antenna, but with a photo detector, such as a photodiode or a photomultiplier. In a photo

detector an incident photon liberates an electron. The generated photoelectrons may then

be processed with available electronic devices. For the ideal detector (photon to electron

conversion efficiency, or quantum efficiency, η = 1) we can thus regard the electron current

at the detector output as an exact image of the photon current at the input.

In practice we are thus faced with the following question: how does the field state translates

into practically observable features of the photo current? This question can only be answered

in statistical terms. If we assume that the optical field consists of one mode in a coherent

state, then (75) contains the answer. The probability to find the detector output releasing

n electrons is therefore given by the same Poisson distribution

p(n) =
n̄2n

n!
e−n̄2

, (99)

The Poisson distribution characterizes a point process (here the process of outputting pho-

tons, or electrons respectively), that means that the quanta are emitted independently and

therefore only exhibit delta function like correlations. Loosely speaking, the Poisson distri-

bution is the distribution with the “most random” properties – most random also in the

sense that the underlying process can be realized in the greatest number of different ways.

It is interesting to realize that the state that reveals the most random distribution if we

detect its quanta, reveals a perfectly determined oscillatory evolution in case we choose to

detect its electric field. Anyway, from the properties of the photo electron distribution (99)

and the underlying Poisson (or point) process we can deduce the statistical measures we

are interested in, like photo electron current average over an interval τ (which is n̄τ), its

standard deviation (which is
√
n̄τ), or its spectrum (which for a point process is the Fourier

transform of delta function).

Let us now consider a field, which was emitted by a single mode laser, say 1 mW at 500 nm

wavelength. Because the laser is well stabilized this field corresponds to a coherent state.

According to above discussion the number of emitted photons per second n̄/τ corresponding

to 1 mW amounts to 2.5 · 1015 photons per second, and the standard deviation (RMS shot

noise) of the current is 5 ·107 photons per second. (After photo detection the photons appear

as electrons.) In this quantum detection picture, what makes us saying that the coherent

state represents the quantum mechanical analogue of a classical, harmonically oscillating
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field? The quantum mechanical aspect of the coherent state is its noise, here 5 · 107 s−1.

The classical aspect of the coherent state becomes visible if we imagine adding or removing

one photon to the coherent state. In principle we disturb the quantum state by such a

manipulation. But already for coherent states with few photons n̄, this perturbation is

smaller than the RMS shot noise level. In above example the perturbation is in the order

of 10−15 of the average current, which fluctuates naturally by a factor of 10−6. Clearly

such a perturbation is very hard, if ever, to detect. The classical property of the coherent

state therefore is its insensitivity for disturbances on the level of a few quanta. This quasi

classical behavior of the coherent state forms the basis on which the semiclassical approach

for describing the interaction of atoms or molecules (quantum objects) with the optical field

(classical object) is built. For that purpose we keep only the terms that are significant for

a field with a large number of photons (limit ~ → 0. That is, we cut off the factor 1
2

in the

Hamiltonian (54), resulting in the semiclassical Hamiltonian

H =
∑
kξ

~ωkξ
· a†kξ

(t)akξ
(t) . (100)

Another interesting property is the following: A coherent state can be generated by a

point process. If we attenuate the field with another point process, the result is still a

coherent state, although one with a reduced n̄. Most practical attenuators, like grey glass,

or semi transparent mirrors, are such attenuators. This is certainly a property we are used

to expect for a classical, harmonically oscillating field, but which is not automatically true

for an arbitrary realization of a quantum state.

Where do we stand now? When we started this discussion we assumed a source free field.

As we have stated at the beginning, we have to imagine this as the field that subsists after a

source located far away has stopped to emit. This assumption allowed us to learn about some

essential features of the basic quantum properties of the electromagnetic field. For example,

(81) illustrates that if the source were harmonic, the state of the radiated field consists of a

coherent state, and the spectrum an observer records shows a single sharp line at frequency

ω. From a practical point of view such fields are not very useful. Who ever wants to wait

until some charges in a distant galaxy stopped to wiggle so that we can receive their coherent

field in our laboratory to start the important spectroscopic investigation we plan to? No,

we need fields we can turn on and off in the way we need them. That means, we need the

sources in our hands, in our laboratory. The sources we are particularly interested in are

molecular sieve microcrystals that contain fluorescent dye molecules, and under favorable

conditions these molecular-sieve-dye compounds can emit laser radiation.
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So let us proceed the discussion with the simplest source of an optical field, a single,

flourescent molecule. This is not an unrealistic situation. It is the very simplicity of this

arrangement that makes a single molecule an important device for exploring the spectroscopic

properties of various chemical and biological environments [9, 10].
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Figure 5: Energy levels of a quantum system with two energy states
∣∣lo〉 and

∣∣up
〉

separated

by the energy ~ω0. The energy of the states
∣∣lo〉 and

∣∣up
〉

is evaluated relative to

the reference energy E0.

3 Fluorescence in free space

With fluorescence we designate the spontaneous emission of photons by atoms or molecules.

The photon is emitted into a mode of the electromagnetic field, so augmenting its photon

number. Simultaneously the atom or molecule transits from an electronic state of energy E2

to one of lower energy E1. The frequency of the emitted photon then is ω = (E2−E1)/~. The

presence of Planck’s constant ~ in the description of this process indicates that it is a quantum

mechanical process. However, real atoms, even more real molecules, are complicated systems,

which even in their most simple realization, namely hydrogen, exhibit a non-trivial structure

of states. We therefore are forced to simplify the reality. For the purpose of this discussion

we will restrict ourselves to the simplest model of an atom or molecule, the two-level atom

or molecule [11]. In the following we use the term “system” to spare using bulky “atom or

molecule”.

3.1 Two-level system and its variables

As mentioned above we consider a quantum system with two energy states
∣∣lo〉 and

∣∣up
〉

separated by the energy ~ω0 as shown in Fig. 5. According to the postulates of quantum

mechanics the states
∣∣lo〉 and

∣∣up
〉

are then eigenstates of the (non-interacting) Hamiltonian
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HA with eigenvalues E0 ± 1
2
~ω0:

HA

∣∣lo〉 = (E0 + 1
2
~ω0)

∣∣lo〉
HA

∣∣up
〉

= (E0 − 1
2
~ω0)

∣∣up
〉

.
(101)

The states
∣∣lo〉 and

∣∣up
〉

form an orthonormal and complete set:

〈λ|λ′〉 = δλλ′ , λ, λ′ = 1 (lo), 2 (up) (102)

2∑
λ=1

|λ〉〈λ| = 1 . (103)

In the last section in which we discussed the quantized field, we introduced the non-Hermitian

operators a and a†, which lowered, respectively raised the excitation of the field mode by

one quantum (photon) ~ω. Similarly we now introduce the atomic operators b and b† which

lower and raise the energy of the atom (molecule) by ~ω0. Unlike the field, the energy of the

two-level system is restricted, i.e. has a lower bound E1 = E0 − 1
2
~ω0 and an upper bound

E2 = E0 + 1
2
~ω0. Therefore, the effect of b on state

∣∣lo〉. as well as of b† on
∣∣up
〉

must vanish:

b
∣∣up
〉

=
∣∣lo〉 b†

∣∣up
〉

= 0

b
∣∣lo〉 = 0 b†

∣∣lo〉 =
∣∣up
〉

. (104)

Repeated application has the following effects

bb†
∣∣up
〉

= 0 b†b
∣∣up
〉

=
∣∣up
〉

bb†
∣∣lo〉 =

∣∣lo〉 b†b
∣∣lo〉 = 0 . (105)

We can see that bb† and b†b have the effect of number operators with eigenvalues 0, 1 for the

lower and upper states respectively, whereas the repeated application of the same operator

always vanishes:

b2 = 0 = b†2 . (106)

Those properties can be summarized in the following anti-commutation rules :

{b, b} = {b†, b†} = 0 ,

{b, b†} = 1 ,
(107)

where for the anti-commutator of A and B we used the notation {A,B} .
= AB + BA. These

anti-commutator relations are characteristic for fermions, and are analogous to the commu-

tator relations (48)–(50) of a single mode of the electromagnetic field (photon field), which

is a boson field.
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3.1.1 Analogy to spin-1
2

system

All quantum systems characterized by only two possible states are mathematically equivalent.

The prototype of such a system is the spin-1
2

particle in a magnetic field. We thus can borrow

from this formalism [12, 13]. Be aware that unfortunately many technical terms keep their

original names, although here they refer to a completely different physical system.

To describe physical observables of the two-level system at hand, we need Hermitian

operators. Borrowing from the mentioned theory we define the following set of three traceless

Pauli spin operators2

R0 = 1
2
· 1

R1 = 1
2
(b† + b)

R2 =
1

2i
(b† − b)

R3 = 1
2
(b†b− bb†) .

(108)

In the original case of a spin-1
2

particle in a magnetic field these four operators describe the

dynamics of the spin-system. In the case of the two-level system discussed here, however,

they are not related to any spin. But because they form a linearly independent, complete set

of Hermitian observables, they can fully cover the dynamics in the two-dimensional Hilbert

space of two-level atoms or molecules. Therefore, any system operator O can be represented

as a series of Pauli spin operators

O =
3∑

α=0

gαRα , (109)

where the coefficients gα are determined by O. The operators (108) satisfy the following

commutation and anti-commutation rules3

[Rl,Rm] = iεlmnRn

{Rl,Rm} = 1
2
δlm , (l,m, n = 1, 2, 3) ,

(110)

as well as the relations

R2
α = 1

4
, (α = 0, 1, 2, 3)

3∑
α=0

R2
α = 1 .

(111)

2Often the following spin operators are defined that are not traceless: σ+ = b†, σ− = b, σz = R3.
3εlmn is the fully antisymmetric Kronecker symbol whose only nonvanishing values are ε123 = ε231 = ε312 =

−ε132 = −ε321 = −ε213 = 1 [14, p. 209].
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In short the following relations will be useful

[b,R1] = −R3

[b,R2] = iR3 (112)

[b,R3] = b .

We now construct the representation of the operators in terms of the two states
∣∣lo〉 and∣∣up

〉
of the two-level system. The procedure consists in multiplying the operator with the

unit operator (103) from the left side and from the right side, and observing relations (104)

and (105). At the end we obtain

b =
∣∣lo〉〈up

∣∣
b† =

∣∣up
〉〈

lo
∣∣

bb† =
∣∣lo〉〈lo∣∣

b†b =
∣∣up
〉〈

up
∣∣ ,

(113)

and similarly

R3

∣∣up
〉

= 1
2

∣∣up
〉

R3

∣∣lo〉 = −1
2

∣∣lo〉 . (114)

Inspecting (114) we see that the states
∣∣lo〉 and

∣∣up
〉

are eigenstates of the Hermitian operator

R3 that can thus be regarded to measure the amount of inversion in the 2-level system.

3.1.2 System energy and dipole moments

The energy of the two-level system is represented by the Hamiltonian HA (101) which by

above procedure can be written as

HA = E0 + 1
2
~ω0 (

∣∣up
〉〈

up
∣∣− ∣∣lo〉〈lo∣∣) , (115)

and after using (113) and (108) we obtain

HA = E0 + ~ω0R3 . (116)

If, like in our figure (cf. Fig. 5) the lower state is the system ground state, then E0 = 1
2
~ω0,

and HA = ~ω0(R3 + 1
2
) = ~ω0b

†b.
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In the following we will elucidate the physical significance of the other Hermitian variables

R1 and R2. Those operators are closely related to the dipole moment µ. For atoms, ions or

molecules the dipole moment can be defined as

µ =
∑

i

eri , (117)

where ri is the position operator for the i-th charge e in the system. To express the dipole

operator in terms of b, b†-operators we apply the unit operator trick

µ = (
∣∣up
〉〈

up
∣∣+ ∣∣lo〉〈lo∣∣)µ(

∣∣up
〉〈

up
∣∣+ ∣∣lo〉〈lo∣∣)

= ~µ22b
†b + ~µ11bb† + ~µ12b + ~µ21b

† . (118)

The coefficients ~µij stand for the matrix elements 〈i|µ|j〉 (i, j = 1 (lo), 2 (up)). We therefore

note that ~µ11 and ~µ22 represent expectation values for the dipole moment in the lower

and upper system state, respectively. However, we know that the dipole moment has an

odd parity, and therefore those coefficients must vanish. Because the dipole moment is a

Hermitian operator we thus obtain

µ = ~µ12b + ~µ ∗
12b

† . (119)

If the system transition from the upper state
∣∣up
〉

to the lower state
∣∣lo〉 is characterized

by ∆m = 0 in the real system, then ~µ12 is a real valued vector. On the other hand, for a

∆m = ±1-transition (e.g. induced by polarized light), ~µ12 is a complex valued vector.

Example: Hydrogen atom; let us assume the following correspondence for a

∆m = 0 transition:

two-level system hydrogen atom∣∣lo〉 −→ |n = 1, l = 0,m = 0〉 (s state)∣∣up
〉

−→ |n = 2, l = 1,m = 0〉 (p state)

If we take the z-axis as the quantization axis and evaluate the specified hydrogen

wave functions, we find [11]:

~µ12 =
〈
lo
∣∣µ∣∣up

〉
=

128
√

2

243
ea0~ez , (120)

where a0 is the Bohr radius and ~ex, ~ey, ~ez are unit vectors in direction of the axes.

We can see here that ~µ12 has the properties of a 3-dimensional Euclidean vector.

With (119) and (108) we obtain

µ = ~µ12(b + b†) = 2~µ12R1 . (121)
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However, if the transition involves ∆m = 1, as in the correspondence

two-level system hydrogen atom∣∣lo〉 −→ |n = 1, l = 0,m = 0〉 (s state)∣∣up
〉

−→ |n = 2, l = 1,m = 1〉 (p state) ,

then ~µ12 is complex:

~µ12 =
〈
lo
∣∣µ∣∣up

〉
=

128

243
ea0(~ex + i~ey) . (122)

In the case of a complex ~µ12 we can always rewrite (119) in the following form

µ = ~µ12(R1 − iR2) + ~µ ∗
12(R1 + iR2)

= 2Re(~µ12)R1 + 2Im(~µ12)R2 . (123)

In this example we have illustrated how the operators R1,R2 are related to the

dipole moment operator µ.

As next we will derive an expression for the rate of change of the dipole moment operator

µ. (In above example of the hydrogen atom the rate of change of µ would correspond to

the electron velocity v multiplied by e.) In general, the rate of change of an observable is

determined by Heisenberg’s equation of motion, which in this case reads as

dµ

dt
=

1

i~
[µ,HA] , (124)

and which with (116), (119), and the commutation relations (110) or (112) results in

dµ

dt
=

1

i~
[(~µ12b + ~µ ∗

12b
†) , (~ω0R3 + E0)]

= −iω0(~µ12b− ~µ ∗
12b

†) . (125)

The operators b and b† are transformed into the interaction picture according to the usual

rule

b(t) = exp

[
i

~
HA(t− t0)

]
b(t0) exp

[
− i

~
HA(t− t0)

]
, t ≥ t0 . (126)

Inserting (116), and observing the operator expansion theorem, as well as commutation rules

(112), we find

b(t) = b(t0) e−iω0(t−t0)

b†(t) = b†(t0) eiω0(t−t0) ,
(127)
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and for the dipole operator in the interaction picture

µ(t) = 2Re(~µ12)R1(t) + 2Im(~µ12)R2(t)

= ~µ12b(t0) e−iω0(t−t0) + ~µ ∗
12b

†(t0) eiω0(t−t0) .
(128)

3.1.3 Bloch-representation of the state

We have seen [c.f. (102) and (103)] that the states
∣∣lo〉 and

∣∣up
〉

form an orthogonal and

complete set within the two level model. Hence, any pure state of the two-level system can

be represented as the linear combination

|ψ〉 = c1
∣∣lo〉+ c2

∣∣up
〉
, (129)

with

|c1|2 + |c2|2 = 1 . (130)

When the system state is not pure and has to be specified in statistical terms, it is represented

by the atomic (or molecular) density operator ρ(A):

ρ(A) = ρ11

∣∣lo〉〈lo∣∣+ ρ22

∣∣up
〉
〈2|+ ρ12

∣∣lo〉〈up
∣∣+ ρ21

∣∣up
〉〈

lo
∣∣ , (131)

where the coefficients ρij stand for the ensemble average

ρij = 〈ci cj〉 , i, j = 1.2 , (132)

which represents a two-dimensional, Hermitian, covariance matrix. Bloch [13] presented a

simple, intuitive, geometrical interpretation of the state in terms of a real three-dimensional

vector ~r with components r1, r2, r3. In the Schrödinger picture they are given by

r1 = 2 Re(ρ12)

r2 = 2 Im(ρ12)

r3 = ρ22 − ρ11 ,

where often a forth component is added:

r0 = ρ22 + ρ11 = 1 .

(133)

The correspondence between the Bloch vector and the density matrix is a consequence of the

properties of the respective symmetry groups, namely the correspondence between the real

orthogonal group O3 and the special unitary group SU2. Note, that also the Stokes vector

that is often used to represent the polarization state of light (see e.g. [15]) has O3 symmetry.
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Figure 6: Bloch-vector representation of the state of a two-level quantum system. Pure

states are characterized by vectors of unit length. “Fully excited” refers to system

occupying pure state
∣∣up
〉
, whereas “fully unexcited” to

∣∣lo〉.
In the three-dimensional Bloch-vector representation sketched in Fig. 6 pure states are

characterized by their unit length. For example the pure state
∣∣lo〉 corresponds to the down

pointing vector ~r = (0, 0,−1), whereas
∣∣up
〉

to the up pointing vector ~r = (0, 0, 1). Pure

intermediate states point in various directions, in particular, states with an equal mixture

of upper and lower states (ρ22 = ρ11) lie in the horizontal x, y-plane.

As mentioned, a pure state is represented by Bloch vectors of unit length, while for mixed

or impure states the length is less than unity:

r = r2
1 + r2

2 + r2
3 = 4 |ρ12|2 + (ρ22 − ρ11)

2

r = 1− 4(ρ22ρ11 − |ρ12|2) . (134)

From the Schwarz inequality follows

ρ22ρ11 − |ρ12|2 = 〈|c2|2〉〈|c1|2〉 − |〈c1c∗2〉|2 ≥ 0 , (135)

where equality is realized when the ensemble contracts to a single realization, thus a pure

state. Therefore

r2
1 + r2

2 + r2
3 ≤ 1 , (136)

with equality only for a pure state. On the other side the Bloch vector vanishes when the

ensemble consists of an equally weighted mixture of upper and lower states with random

phases.
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With (109) we mentioned that the spin operators Rα form a complete set, so allowing

to represent any observables in the two-dimensional Hilbert space of the two-level system.

Thus in this base the density operator ρ(A) has the expansion

ρ(A) =
3∑

α=0

gαRα , (137)

where the coefficients gα are time dependent, whereas the operators Rα are time-independent.

Evaluating 〈i|ρ(A)|j〉, (i, j = lo, up) with (133) we can identify the coefficients as gα = rα,

and therefore

ρ(A) =
3∑

α=0

rαRα . (138)

This result shows that the Bloch-vector components can be interpreted as weights in the

Schrödinger-picture expansion of the density operator in the spin operator base.

The symmetry of the Bloch-vector representation (cf. Fig. 6) suggests a representation of

~r in polar coordinates (r, θ, φ) rather than Cartesian coordinates (r1, r2, r3). From (134) and

(133) we deduce

ρ11 = 1
2
(1− r3) = 1

2
(1− r cos θ)

ρ22 = 1
2
(1 + r3) = 1

2
(1 + r cos θ) (139)

ρ12 = 1
2
(r1 + ir2) = 1

2
r sin θ eiφ ,

resulting in

cos θ =
ρ22 − ρ11

r
, and

tanφ =
Im(ρ12)

Re(ρ12)
.

(140)

3.1.4 Spin operator expectation values

In (138) we have illustrated the relation between the spin operators Rα and the Bloch-vectors

components rα. In the following we calculate the expectation values of the spin operators

for the system in an arbitrary quantum state which is characterized by the density operator

ρ(A):

〈Rα〉 = Tr
[
ρ(A)Rα

]
, (α = 0, . . . , 3) . (141)

Inserting (138) for the density operator in the Schrödinger picture we obtain

〈Rα〉 =
3∑

β=0

Tr
(
rβRβRα

)
. (142)
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The product of two different operators R gives either R1, R2, or R3, which all have vanishing

trace. The sum therefore only gets a contribution from term α = β. Since the trace of a

two-dimensional unit vector is 2, we find with (111)

〈Rα〉 = Tr
(

1
4
rα1
)

= 1
2
rα , α = 0, . . . , 3 . (143)

The components of the Bloch vector can thus also be interpreted in terms of the expectation

values of the spin operators.

We can now calculate the expectation of the energy (116) as

〈HA〉 = E0 + 1
2
~ω0r3 . (144)

In the same way the expectation value of the dipole moment (123) is given by

〈µ〉 = Re(~µ12)r1 + Im(~µ12)r2 . (145)

From this equations we can see that the z-component of the Bloch vector is associated with

the energy of the two-level system, whereas the x- and y-components are related to its dipole

moment. For a two-level system without a permanent dipole moment the expectation value

of the operator µ must vanish in the lower, as well as in the upper state. In those states the

operator µ is not well defined and its value fluctuates. From (119) or (123) we can see that

µ2 = |~µ12|21 . (146)

As a consequence, the variance of the dipole moment in the lower state
∣∣lo〉 and in the upper

state
∣∣up
〉

is given by 〈
lo
∣∣(∆µ)2

∣∣lo〉 = |~µ12|2 =
〈
up
∣∣(∆µ)2

∣∣up
〉
, (147)

and is maximum in those states. Therefore, even if the expectation value of the dipole

moment of a two-level system vanishes in the ground and upper state, the system can interact

with an electromagnetic field through the nonvanishing fluctuations of µ. In the following

we will now discuss these interactions.

3.2 Interaction of a two-level system with a classical electromagnetic

field

Let us assume that the classical electromagnetic field is described by its electric field ~E,

and that the two-level system is located at a fixed point in space and its dipole moment is
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characterized by the operator µ. Also, the typical wavelength of the field is much larger than

the length of the dipoles. The interaction energy HI is then given by the usual expression

for the potential energy of a dipole in an electric field. With (123) we can write

HI = −µ(t) · ~E = −2[Re(~µ12)R1 + Im(~µ12)R2] · ~E (148)

The interaction of a charge with an electromagnetic field of moderate power4 can also be

described by the interaction energy

HI =
e

m
p(t) · ~A(~r0, t) . (149)

For the canonical momentum operator p we can set mµ̇/e. and with (125) we obtain

HI = −µ̇(t) · ~A(t) = iω0[~µ12b(t)− ~µ∗12b
†(t)] · ~A(t) . (150)

We have given two interaction Hamiltonians, (148) and (150). Depending on the problem at

hand one can choose the more appropriate one, although in most cases they lead to similar

results. The total energy of the system in the field consists of the sum

H = HA + HI , (151)

where HA is diagonal in the states
∣∣lo〉 and

∣∣up
〉
, whereas HI is off-diagonal.

In the Schrödinger picture the time dependence of the density operator is given by the

equation
dρ(t)

dt
=

1

i~
[(HA + HI) , ρ(A)(t)] . (152)

3.2.1 Bloch equations

As next we consider (152) in matrix element notation. After inserting the unity operator

(102) between H and ρ(A)(t) in the commutator relation on the rhs of (152), we obtain the

following Schrödinger picture equations

ρ̇11 =
1

i~
[
〈
lo
∣∣HI(t)

∣∣up
〉
ρ21 − c.c.]

ρ̇22 = − 1

i~
[
〈
lo
∣∣HI(t)

∣∣up
〉
ρ21 − c.c.]

ρ̇12 =
1

i~
[−~ω0ρ12 + 〈1|HI(t)

∣∣up
〉
(ρ22 − ρ11)]

ρ̇21 =
1

i~
[~ω0ρ21 + 〈2|HI(t)

∣∣lo〉(ρ11 − ρ22)] .

(153)

4field power below the regime where multiphoton interactions dominate, so that terms in A2 and higher

can be neglected
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Using (133) we can express (153) in terms of the Bloch vector and the result is often referred

to as Bloch equations [13]:

ṙ1 =
2

~
Im(
〈
lo
∣∣HI

∣∣up
〉
) r3 − ω0r2

ṙ2 = −2

~
Re(〈1|HI

∣∣up
〉
) r3 + ω0r1

ṙ3 = −2

~
Im(〈1|HI

∣∣up
〉
) r1 +

2

~
Im(〈1|HI

∣∣up
〉
) r2

(154)

We can see that r3 is constant, when there is no external field. Multiplying the first equation

with r1 the second with r2 and the third with r3, we find

d

dt
(r2

1 + r2
2 + r2

3) = 0 . (155)

Thus, in the presence of a classical field the length of the Bloch vector remains constant.

That means a pure state stays pure, and a mixed state remains mixed. The structure of

(154) led Feynman et al. [16] to propose an interesting geometric interpretation. For that

they introduce a vector ~Q with following components

Q1 =
2

~
Re(
〈
lo
∣∣HI

∣∣up
〉
)

Q2 =
2

~
Im(
〈
lo
∣∣HI

∣∣up
〉
)

Q3 = ω0 .

(156)

With this vector the Bloch equations (154) are equivalent to

d

dt
~r = ~Q× ~r . (157)

In analogy to the mechanics of rigid bodies this equation shows that the Bloch vector ~r

precesses around the vector ~Q with a frequency that is given by the magnitude of ~Q. When

~Q itself varies with time, the precession motion may become complicated. We may evaluate

the matrix element (
〈
lo
∣∣HI

∣∣up
〉
) using (148) or (150). For example, with (148) we obtain〈

lo
∣∣HI

∣∣up
〉

= −~µ12
~E(t) . (158)

Let us assume an electric field with frequency ω1 that is nearly resonant with the two-level

system, so that |ω1 − ω0| � ω0. Then we can write

~E(t) = ~ε E(t)eiω1t + c.c.

= 2|E(t)| {Re(~ε) cos[ω1t− φ(t)] + Im(~ε) sin[ω1t− φ(t)]} , (159)
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where E(t) = |E(t)|eiφ(t) is a slowly varying, complex amplitude, and ~ε is a unit polarization

vector. With this we obtain〈
lo
∣∣HI

∣∣up
〉

= −|E(t)| ~µ12 · [~ε e−i[ω1t−φ(t)] + c.c.] . (160)

This matrix element can now be substituted in the Bloch equations (154).

3.2.2 The rotating wave approximation

As an example to illustrate the rotating wave approximation, let us compare now transitions

with ∆m = 1 and ∆m = 0. In the case ∆m = 1 the vector ~µ12 has the form

~µ12 =
~ex + i~ey√

2
|~µ12| , (~ex, ~ey are unit vectors) . (161)

In addition, assume an external field that is circularly polarized and propagating in the

z-direction, thus

~ε =
~ex + i~ey√

2
. (162)

Then we obtain for the scalar products

~µ12 · ~ε = 0 , and ~µ12 · ~ε∗ = |~µ12| . (163)

The Bloch equations (154) then become

ṙ1 = −Ω(t)r3 sin[ω1t− φ(t)]− ω0r2

ṙ2 = Ω(t)r3 cos[ω1t− φ(t)] + ω0r1

ṙ3 = −Ω(t)r1 sin[ω1t− φ(t)]− Ω(t)r2 cos[ω1t− φ(t)] ,

(164)

where we have introduced the parameter

Ω(t) =
2

~
~µ12 · ~ε∗ |E(t)| , (165)

which is known as the vacuum Rabi frequency. The Rabi frequency in this context is a

measure for the coupling strength of the two-level system with the external field. For the

components of the ~Q-vector (156) we obtain

Q1 = −Ω(t) cos[ω1t− φ(t)]

Q2 = −Ω(t) sin[ω1t− φ(t)]

Q3 = ω0 .

(166)
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On the other hand, for a ∆m = 0 transition ~µ12 is a real vector, and if the incident light

is linearly polarized, then ~ε is also real. In this case the Bloch equations (154) read as

ṙ1 = −ω0r2

ṙ2 = 2Ω(t)r3 cos[ω1t− φ(t)] + ω0r1

ṙ3 = −2Ω(t)r2 cos[ω1t− φ(t)] ,

(167)

and following (157) we obtain for the corresponding ~Q-vector

Q1 = −2Ω(t) cos[ω1t− φ(t)]

Q2 = 0

Q3 = ω0 .

(168)

Looking at the two cases of the field interaction, the first with a ∆m = 1-system, the second

with a ∆m = 0-system, (164) and (166) seem to be rather different from (167) and (168).

However, Allen and Eberley [11, sect. 2.4] have shown that they only differ by some anti-

resonant terms. Comparing the expressions for ~Q we can see that (168) can be decomposed

into a sum of two vectors, of which the first vector is (166), and the second, auxiliary vector

consists of components (−Ω(t) cos[ω1t−φ(t)], +Ω(t) sin[ω1t−φ(t)], 0). This auxiliary vector

rotates around the z-axis with frequency ω1 − φ̇(t), whereas the Bloch vector ~r rotates in

the opposite direction with frequency ω0. Their relative rotation frequency thus amounts to

ω0 + ω1 − φ̇(t). Thus, when integrating the equations of motion over a characteristic time

interval, say ∆t > 1/ω0, the contributions of the fast precessing auxiliary vector ~Q are small.

To a good approximation we can therefore neglect the auxiliary vector ~Q. If we drop the

auxiliary ~Q, then the ∆m = 0 interaction with linearly polarized light is described by the

same set of equations as the ∆m = 1 interaction with circularly polarized light. This is

known as the rotating wave approximation.

3.2.3 Bloch equations in a rotating frame

Let us go back to (164). This set of equations describes a rotation around the z-axis at an

optical frequency. We will now introduce a rotating reference frame, in which the motion of

the Bloch vector ~r is slower. At first sight, Eq. (164) seems to justify the atomic (or system)

frequency ω0 as a suitable choice. But after we consider that the atomic frequency in a

spectroscopic sample varies from atom to atom, we realize that the frequency of the applied

field ω1 is better suited if we want to refer the time evolution of all the differing atoms to

43



the same reference frame. The transformation from the stationary frame ~r = (r1.r2, r3) to

the rotating frame ~r ′ = (r′1.r
′
2, r

′
3) is given by

~r ′ = Θ~r , (169)

where Θ is the 3× 3 orthonormal rotation matrix

Θ =


cosω1t sinω1t 0

− sinω1t cosω1t 0

0 0 1

 (170)

Let us now transform Bloch equations (164) to the rotating (primed) frame. For that we

rewrite (164) in matrix form as

~̇r = C~r , (171)

where C is the 3× 3 coefficient matrix. Inserting (169) we obtain

d~r ′

dt
= Θ̇ ~r + Θ ~̇r

= Θ̇Θ−1Θ ~r + ΘCΘ−1Θ ~r (172)

= (Θ̇Θ−1 + ΘCΘ−1) ~r ′

After we insert the elements of C from (164) and (170) we get the Bloch equations in the

rotating frame

ṙ′1 = (ω1 − ω0)r
′
2 + Ω sinφ r′3

ṙ′2 = (ω0 − ω1)r
′
1 + Ω cosφ r′3

ṙ′3 = −Ω sinφ r′3 − Ω cosφ r′2 ,

(173)

which with ~Q = (−Ω cosφ , Ω sinφ , ω0 − ω1) can be expressed as

d~r ′

dt
= ~Q ′ × ~r ′ (174)

We can see that the Bloch vector ~r ′ precesses around ~Q ′ with the frequency depending on

|Ω2 + (ω1 − ω0)
2|1/2 and the orientation of ~Q ′. If the initial direction of the Bloch vector

~r ′ is approximately parallel to ~Q ′, then ~r ′ precesses around ~Q ′ on a cone with small angle,

and this cone tends to follow slow variations of the direction of ~Q ′. This is called adiabatic

following, and can be used to prepare the quantum states of atoms.

44



3.2.4 The Rabi solution

In the following we discuss the interaction with a sinusoidal exciting field (well stabilized

laser), so that in (159) the complex amplitude E is constant and the phase φ can be made

zero by a proper choice of the time origin. Historically the solution of the interaction of a

two-level system with such a field was given by Rabi [12] when he studied a spin 1
2

system

in a magnetic field. For our discussion here, let us assume that at t = 0 the system starts in

the lower state
∣∣lo〉, then r3(0) = −1 and r1(0) = r2(0) = 0, and the Bloch equations in the

rotating frame are given by

r′1(t) =
(ω0 − ω1)Ω

Ω2 + (ω0 − ω1)2
{1− cos[Ω2 + (ω0 − ω1)

2]1/2 t}

r′2(t) =
−Ω

[Ω2 + (ω0 − ω1)2]1/2
sin[Ω2 + (ω0 − ω1)

2]1/2 t

r′3(t) = −(ω0 − ω1)
2 + Ω2 cos[Ω2 + (ω0 − ω1)

2]1/2 t

Ω2 + (ω0 − ω1)2
.

(175)

These equations characterize an intricate motion. In (133) we have seen that the r3 com-

ponent of the Bloch vector is related to the population inversion of the two-level system.

Eq. (175) reveals an oscillation of population characterized by r′3(t) around (ω0−ω1)
2/[Ω2 +

(ω0−ω1)
2] with frequency [Ω2 +(ω0−ω1)

2]1/2 and amplitude Ω2/Ω2 +(ω0−ω1)
2. This phe-

nomenon is known as Rabi oscillation or optical nutation, and can be observed in systems,

which are well isolated from disturbances, like in a low pressure gas [17, 18], that means in

systems, in which damping time constants are longer than the time scale of system motion.

3.3 Interaction of a two-level system with a quantum field

According to the postulates of quantum mechanics, a two-level system initially in its excited

state
∣∣up
〉

will stay there for all times in the absence of an interaction. Experience shows,

however, that normally the system will return to its ground state
∣∣lo〉 after a certain time.

In the last sections we discussed how the interaction with a classical field can change the

occupation of states. On the other hand, spontaneous emission is a quantum mechanical

process, and its description requires the quantization of both, the atoms and the field. A

result of this theory is that the rate of spontaneous emission is proportional to the mode

density of the surrounding environment.

To illustrate this theory we start with the interaction of a two-level system with a single

mode of the electromagnetic field. The total Hamiltonian thus consists of a component

describing the two-level system HA, the component of the electromagnetic field HF , and the
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interaction Hamiltonian HI

Htot = HA + HF + HI , (176)

where the two-level system Hamiltonian HA is given by (115), and where for the purpose

of this short overview we insert the field Hamiltonian HF in its semiclassical form (100)

restricted to one mode kξ. The interaction is described by a Hamiltonian analogous to

(148), in which the field is expressed as Hilbert space operator

HI = −µ · E . (177)

Thus, the quantum properties of the field enter at two places, first through HF (100), and

second through HI . In HF

HF = ~ωkξ
· a†kξ

(t)akξ
(t) (178)

the field is represented as the product of annihilation and creation operators. Even though

in this semiclassical Hamiltonian the zero point energy term 1
2
~ωkξ

of the fully quantum

field Hamiltonian (54) is missing, a part of the quantum reality is still represented in the

noncommutativity of a†kξ
and akξ

; cf. (48). On the other hand, in (177) the quantum aspect

is introduced by the electric field, which appears as the Hilbert space operator (82)

E = i~ε
√

~ω
2ε0L3 [akξ

ei~k·~r − a†kξ
e−i~k·~r] . (179)

In this notation E describes a travelling wave mode5, and ~ε is the polarization vector. In the

rotating wave approximation the interaction Hamiltonian (177) can be written as [cf. (113)]

HI =
~Ω

2
(a†kξ

∣∣lo〉〈up
∣∣+ h.c.)

=
~Ω

2
(a†kξ

b + h.c.) ,

(180)

where the coupling coefficient Ω represents the vacuum Rabi frequency (165), which in

general depends on the location ~r of the two-level system. The total Hamiltonian thus is

given by

Htot = E0 + ~ω0R3 + ~ωkξ
· a†kξ

akξ
+

~Ω

2
(a†kξ

b + h.c.) . (181)

In (180) we have represented the interaction Hamiltonian in a form which permits an

intuitive interpretation: the two-level system can

5Depending on the geometry of the problem, a standing wave mode can be more suitable [19]. The

corresponding operator is then given by: E = ~ε
√

~ω
ε0L3 sin~k~r (a + a†)
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• absorb a photon from the field and make a transition from state
∣∣lo〉 to

∣∣up
〉
, or

• emit a photon to the field and make a transition from
∣∣up
〉

to
∣∣lo〉.

A state
∣∣Ψ〉 of the combined quantum system consisting of the two-level system in state

∣∣λ〉
and the field say in a number state

∣∣n〉 can be represented symbolically as
∣∣Ψ〉 =

∣∣λ, n〉.
Within the framework of the model described by (181) a state

∣∣Ψ〉 =
∣∣up, n

〉
can only couple

with state
∣∣Ψ′〉 =

∣∣lo, n+ 1
〉
. Consequently, we are allowd to consider the interaction for

each manifold of levels
∣∣up, n

〉
,
∣∣lo, n+ 1

〉
independently. Obviously, in each manifold the

number of excitations amounts to n + 1 and is conserved. Technically, this means that for

each manifold the problem is reduced to solving a two-level problem. The full dynamics is

then obtained by summing over the dynamics within the appropriate manifold.

To illustrate the basic concept of spontaneous emission, let us assume that the two-level

system is initially in its excited state
∣∣up
〉

and interacts with only one field mode which is

in the vacuum state
∣∣0〉, ∣∣Ψ(t = 0)

〉
=
∣∣up, 0

〉
. (182)

As stated above, the two-level-field system remains in the one-quantum excitation manifold

for all time (given the validity of (181)), and its state at time t is given by a superposition

of
∣∣up, 0

〉
and

∣∣lo, 1〉. At resonance ω0 = ω
K
, the state is described by

∣∣Ψ(t)
〉

= cos

(
Ωt

2

) ∣∣up, 0
〉
− i sin

(
Ωt

2

) ∣∣lo, 1〉 . (183)

The probability to find the two-level system in its ground state
∣∣lo〉 after time t is

Plo = |
〈
lo, 1

∣∣Ψ(t)〉|2 = sin2

(
Ωt

2

)
. (184)

This result shows, that the initially unoccupied ground state
∣∣lo〉 spontaneously becomes

occupied, even though the field initially was in a vacuum state. This is due to the effects of

the quantum nature of the field, which we pointed out at the beginning of this section 3.3.

Note, however, that if the two-level system is initially in its ground state
∣∣lo〉 and the field

in vacuum state
∣∣0〉, then the two-level system will remain there for all times.

On the other hand, above result for Plo exhibits an oscillatory behavior at Rabi frequency

Ω, which is in contrast to experience where the decay is irreversible. In the simple model

described by (181) the two-level system interacts with only one field mode, which also is un-

damped. Therefore the two-level system can reabsorb the photon from the field, so returning

to its initial state. Later on we will discuss how recent experimental progress has allowed
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to observe this oscillatory regime. But for the moment, we will discuss how spontaneous

emission becomes irreversible, when the photon is emitted into a multimode vacuum field.

3.4 The Fermi golden rule

A realistic model of a two-level system in free space involves the interaction with a multimode

field. Instead of (181) we therefore consider a Hamiltonian of the following form

Htot = E0 + ~ω0R3 +
∑
kξ

~ωkξ
· a†kξ

akξ
+
∑
kξ

~Ωkξ

2
(a†kξ

b + h.c.) , (185)

where the last term describing the interaction is the multimode interaction Hamiltonian HI ;

cf. the single mode Hamiltonian (180).

Similar as above in the single mode case we assume that all the modes of the field are

initially in their vacuum state and that the two-level system is in its excited state, so that

we can write ∣∣Ψ(t = 0)
〉

=
∣∣up, {0}

〉
, (186)

where
∣∣{0}〉 labels the multimode vacuum, and for each mode kξ we have akξ

∣∣{0}〉 = 0. The

state of the combined system can then formally be described by the superposition of states∣∣Ψ(t)
〉

= a(t) e−iω0t
∣∣up, 0

〉
+
∑
kξ

bkξ
(t) e−iωkξ

t
∣∣up, 1kξ

〉
, (187)

where the coefficients at t = 0 are set to fulfill the initial conditions, thus a(t = 0) =

1, bkξ
(t = 0) = 0. For convenience we have extracted the fast time dependence, and we have

reset the origin of the two-level system energy so that ~ωlo = 0 and ~ωup = ~ω0. The field

state
∣∣1kξ

〉
can be represented by ∣∣1kξ

〉
= a†kξ

∣∣0〉 . (188)

The equations of motion for the coefficients a(t) and b(t) are readily obtained as

da(t)

dt
= − i

2

∑
kξ

Ωkξ
e−i(ωkξ

−ω0)tbkξ
(t) (189)

dbkξ
(t)

dt
= − i

2
Ω∗

kξ
ei(ωkξ

−ω0)ta(t) (190)

If we restrict ourselves to times t close enough to t = 0 so that the initial coefficients do not

change significantly, we can approximate a(t) in (190) by its initial value a(t = 0) = 1 (this
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approximation is often named first order perturbation theory). With this we can readily

integrate (190) and we obtain

|bkξ
(t)|2 =

|Ωkξ
|2

4
×

sin2
[

1
2
(ωkξ

− ω0)t
]

1
4
(ωkξ

− ω0)2
. (191)

The probability to find the two-level system in its excited state after time t is then given by

Pup = 1−
∑
kξ

|bkξ
(t)|2 , (192)

where the sum collects the contributions of every mode which the two-level system can

couple with. Here we can see for the first time, how the structure of the mode space affects

the spontaneous emission: As the sum only gets positive contributions it clearly increases

when the number of participating modes increases, so reducing the probability Pup. Since

the frequency bandwidth over which the dipole moment couples with the field is limited, so

actually the number of modes per frequency interval is the significant parameter governing

the size of the sum. And this parameter depends on the geometry of the space in which the

fluorescent system can radiate into. This is the observation on which attempts to modify

the spontaneous emission rate will hook on. We will come back to this in a moment.

When the two-level system radiates into a space which is densely populated with modes,

such as free space for example, then it couples to a whole continuum of modes over which

we have to extend the summation. Mathematically this means replacing the sum in (192)

over the modes kξ by an integral. We discussed this problem in part 2.3, where we obtained

the transformation rule (28). If we equate ζ in (28) with (191) where we insert (165) for

the vacuum Rabi frequency with (83) as electric field, we can work out the integrals and we

obtain

Pup = 1− 1

6ε0π2~c3

∫
kξ

dωkξ
ω3

kξ
|µ12|2

sin2
[

1
2
(ωkξ

− ω0)t
]

[1
2
(ωkξ

− ω0)]2
. (193)

Now, as time t moves on, the term with sin2
[

1
2
(ωkξ

− ω0)t
]
/[1

2
(ωkξ

− ω0)]
2 will be signifi-

cantly over zero only for modes with frequency ωkξ
≈ ω0. This term therefore secures energy

conservation in the interaction; in fact mathematically

lim
t→∞

sin2
[

1
2
(ωkξ

− ω0)t
]

[1
2
(ωkξ

− ω0)]2
= 2πt δ(ωkξ

− ω0) . (194)

Inserting this we find for the decay rate of the excited state in a free space vacuum environ-

ment (which is also known as the Einstein A-coefficient)

γfs =
dPup

dt
= −ω

3
0

c3
|~µ12|2

3πε0~
= −|k0|3

|~µ12|2

3πε0~
. (195)
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This is an example of a special case of Fermi’s golden rule, which predicts that for times

large enough that energy conservation holds, but short enough that first-order perturbation

theory applies, the excited upper state irreversibly decays according to (195). In summary,

when all the approximations described above are considered the Fermi golden rule for a

general transition can be expressed as

Fermi golden rule: γ =
2π

~2

∑
f

|
〈
f
∣∣HI

∣∣i〉|2 δ(ωi − ωf ) , (196)

where γ characterizes the decay rate from the initial state
∣∣i〉 to the final state

∣∣f〉.
Let us go back to the initial first-order perturbation theory assumptions, in which we

agreed to restrict ourselves to short times t so that for the coefficients a and b we can write

a(t = 0) = 1, bkξ
(t = 0) = 0. Of course, when this holds, then the upper state is still nearly

fully excited, and Pup ≈ 1. Thus we still stay within the limits of our initial assumptions

when we write
dPup

dt
≈ −γfs Pup , (197)

which of course corresponds to an exponential decay with decay rate γfs.

In the next paragraph we will show that this is true even for longer times than we have

considered here.

3.5 The Weisskopf-Wigner theory

An other approach to solve the dynamical equations for the coefficients a and b (189), (190)

was introduced by Weisskopf and Wigner [20]. They start by formally integrating (190), and

inserting this result in (189), which will produce

da(t)

dt
= −

∑
kξ

|Ωkξ
|2

4

∫ t

0

dt′e−i(ωkξ
−ω0)(t−t′)a(t′) . (198)

As above and for the same reason we replace the sum over the modes by an integral, which

results to

da(t)

dt
= − 1

6ε0π2~c3

∫
kξ

dωkξ
ω3

kξ
|µ12|2

∫ t

0

dt′e−i(ωkξ
−ω0)(t−t′)a(t′) . (199)

The construction of the dependent superposition of states (187) was such that compared

with all other time dependent functions the variation in a and b is slow, and therefore we

assume that the variation of a(t) in (199) is much slower than in the exponential as well, and
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can thus be pulled out of the time integration. At the end we may check, if this assumption

is consistent with the result. Because of

lim
t→∞

∫ t

0

dt′e−i(ωkξ
−ω0)(t−t′) = π δ(ωkξ

− ω0)− P
[

i

ωkξ
− ω0

]
, (200)

for larger times we have a similar situation as in (194), where here now the exponential

assures energy conservation. Neglecting the frequency shift due to the principal value term

(which is analogous to the Lamb shift) we find

da(t)

dt
= −γfs

2
a(t) , (201)

or

dPup

dt
= −γfs Pup , (202)

which is the same as we guessed in (197).

3.6 Reservoir theory and master equation

In the last two paragraphs we have seen how the irreversibility of spontaneous emission

emerged when the source was coupled with a quantized field, more exactly, its vacuum

modes. Notwithstanding, the Hamiltonians are perfectly energy conserving, so the apparent

nonreversible dynamics of the system comes somewhat surprising and its physical reason is

rather obscure. With the reservoir theory approach we will discuss as next, we will be able to

gain a more intuitive understanding of the physical processes which lead to the nonreversible

decay of the excited level of a two-level system [21, p. 374ff]. In reservoir theory we shift

the perspective from the particular two-level system coupled with the field to a more general

situation, which is a small system coupled to a large system. We characterize the small

system by its Hamiltonian Hs, the large system by Hr, and their coupling by the interaction

Hamiltonian V. Thus: H = Hs + Hr + V. For our particular case the small system can be

identified with the two-level system and the large system with the continuum of modes of

the field. In addition we assume that the large system always stays in thermal equilibrium

at some temperature T . This means it acts as a thermal reservoir. A thermal reservoir is

usually described by an equilibrium (i.e. time independent) density operator of the form

ρr =
1

Z
exp (−Hr/kBT ) , (203)

where with kB we denote Boltzman’s constant, and the partition function Z is given by the

trace over the reservoir Trr

Z = Trr

[
exp (−Hr/kBT )

]
. (204)
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Now, we are interested in the dynamics of the small system only. In that case we can find

the dynamics in the evolution of the reduced density operator ρs

ρs = Trr

(
ρsr

)
, (205)

where ρsr is the density operator associated with the full system, i.e. small system and

reservoir. Thus the reduced density operator ρs is the trace over the reservoir of the total

density operator. If we know the reduced density operator at any time t we can calculate the

expectation value of any system operator. The equation of motion for ρsr is called a master

equation, and this is what we will derive in the following. In order to focus directly to the

relevant dynamic time scale of the system, we switch to the interaction picture, where all

the free evolution is eliminated. The interaction between the small system and the reservoir

is described by the Schrödinger picture interaction Hamiltonian V, for which the interaction

picture representation VI(t− t0) is obtained by the unitary transformation

VI(t− t0) = exp [iH0(t− t0)/~] V exp [−iH0(t− t0)/~] , (206)

and where we have set H0 = Hs +Hr. Similarly we can relate the full system density operator

in the interaction picture Psr to the Schrödinger picture density operator ρsr by the unitary

transformation

ρsr(t) = exp [−iH0(t− t0)/~] Psr exp [iH0(t− t0)/~] . (207)

Observing the Schrödinger picture rule ρ̇ = − i
~ [H,ρ] we obtain the following time derivative

∂ρsr

∂t
=

i

~
exp [−iH0(t− t0)/~]

{
[H0,Psr(t)] +

∂Psr

∂t

}
exp [iH0(t− t0)/~] , (208)

in which the motion of the density operator in the Schrödinger picture is related to its motion

in the interaction picture. From this we obtain the interaction picture equation of motion

∂Psr

∂t
= − i

~
[VI(t− t0),Psr(t)] . (209)

We may assume that at t = t0 the small system and the reservoir do not exhibit any corre-

lations. We can therefore approximately solve this equation to second order in perturbation

theory, and obtain

Psr(t) = Psr(t0)−
i

~

∫ t

t0

dt′ [VI(t− t0),Psr(t0)]−

− 1

~2

∫ t

t0

dt′
∫ t′

t0

dt′′ [VI(t
′ − t0), [VI(t

′′ − t0),Psr(t0)]] + . . . .

(210)
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We trace out the reservoir and obtain the reduced density operator in the interaction picture

ρ(t) = Trr

[
Psr(t)

]
for which we can write

ρ(t) = exp [iHs(t− t0)/~] ρs exp [−iHs(t− t0)/~] (211)

When the time interval τ = t− t0 is long compared to the relaxation time (memory time)

of the reservoir τc, but short compared to times in which the small system variables show

significant changes (for example γ−1
fs in spontaneous emission), we can define a coarse-grained

equation of motion (time derivative) by

ρ̇(t) ≈ ρ(t)− ρ(t− τ)

τ
. (212)

Applying this to (210) we obtain after some algebra

ρ̇(t) =− i

~τ

∫ τ

0

dτ ′ Tr
{
VI(τ

′)Psr(t)
}
−

− 1

~2τ

∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′Tr
{
VI(τ

′)VI(τ
′′)Psr(t)− VI(τ

′)Psr(t)VI(τ
′′)
}

+ adj. .

(213)

It can be shown that with the properties of the reservoir given here the first term on the

rhs of (213) vanishes, and that the second term is composed of a sum of two-time corre-

lation functions of reservoir operators only [21, p. 380]. In fact, with the dipole coupling

Hamiltonian (185) and taking into account the transform (206) we have

VI(t) = ~ b†F(t) + adj. , (214)

where the operator

F(t) =
∑

k

Ωk

2
ak ei(ω0−ωk)t (215)

acts only in the reservoir Hilbert space. As is better visible from their Fourier transformed

form, such operators are usually associated with noise sources and are thus called noise

operators. The trace over the reservoir involves first order correlation functions of the forms

〈F(t′)F(t′′)〉 , 〈F†(t′)F†(t′′)〉 , 〈F(t′)F†(t′′)〉 , 〈F†(t′)F(t′′)〉 . For example,

〈F(t′)F†(t′′)〉r =
∑
k,k′

Ωk

2

Ω∗
k′

2
〈aka

†
k′〉r eiω0(t′−t′′)ei(ωkt′−ωk′ t

′′) , (216)

where 〈. . . 〉r denotes the average over the reservoir. As we have

〈aka
†
k′〉r = (n̄k + 1) δkk′ , (217)
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where n̄k denotes the average number of thermal photons in mode k (n̄k = 0 at zero tem-

perature), the correlation function (216) reduces to

〈F(t′)F†(t′′)〉r =
∑

k

|Ωk|2

4
(n̄k + 1) ei(ω0−ωk)(t′−t′′) . (218)

For the other correlation functions appearing in (213) analogous expressions can be obtained.

As we assumed a reservoir in thermal equilibrium, thus with stationary statistical properties,

the reservoir correlations depend only on the time difference ∆t = t′ − t′′, and we obtain for

an example term appearing in (213)∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′ 〈F(τ ′)F†(τ ′′)〉r =

∫ τ

0

dτ ′
∫ τ ′

0

d∆t
∑

k

|Ωk|2

4
(n̄k + 1) ei(ω0−ωk)∆t . (219)

The time dependence of (219) is governed by the first order correlations existing in the

reservoir, for which (218) is an example. Given the reservoir properties introduced in the

discussion of (212) (reservoir correlation time much shorter than characteristic small system

time constants) we can extend the upper integration limit τ ′ in (219) to infinity, and we

obtain∫ τ

0

dτ ′
∫ τ ′

0

dτ ′′ 〈F(τ ′)F†(τ ′′)〉r =

∫ τ

0

dτ ′
∫ ∞

0

d∆t
∑

k

|Ωk|2

4
(n̄k + 1) ei(ω0−ωk)∆t

=
τ

6ε0π2~c3

∫
dωk ω

3
k |µ12|2(n̄k + 1)

∫ ∞

0

dt ei(ω0−ωk)t , (220)

where we have replaced the sum over the modes by an integral in the same way as we

discussed in paragraph 3.4 and 3.5. Obviously this equation has a similar structure as

(199). After some algebra, as inserting the delta function representation (200) and ignoring

the associated principal part frequency shifts, combining the different contributions of (210),

and explicitly focusing on the two-level system as the small system, we obtain the interaction

picture master equation

ρ̇A = −γfs

2
(n̄+ 1) [b†bρA(t)− bρA(t)b†]−

−γfs

2
n̄ [ρA(t)bb† − b†ρA(t)b] + adj. .

(221)

In contrast to (199) of the Weisskopf-Wigner theory, (220) gives us some insight into the

processes leading to the decay of the excited state. Together with (221), (220) relates the

decay with properties of the reservoir expressed as first order correlation functions. The

approximation of these correlation functions with delta functions is known as the Markov

approximation. The decay appears thus as a result of the delta function like memory time
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of the reservoir which instantaneously looses track of the interaction with the two level

system. So the way of the excitation back to the two level system is forgotten, so to speak.

Combining the Markov approximation with second-order perturbation theory to derive the

master equation is usually labeled Born-Markov approximation.

The master equation (221) describes the decay of a two-level system which is coupled to

an electromagnetic field characterized as a reservoir at temperature T . In this equation n̄

represents the number of thermal quanta of the reservoir at the two-level transition energy

~ω0. For a reservoir at zero temperature, the population Pup of the excited state of the

two-level system is given by

Pup(t) = Tr
[ ∣∣up

〉〈
up
∣∣ρA(t)

]
= Tr

[
(R3 +

1

2
) ρA(t)

]
, (222)

and exhibits the equation of motion

dPup(t)

dt
= Tr

[ ∣∣up
〉〈

up
∣∣ ρ̇A(t)

]
= −γfsPup(t) , (223)

which is the Weisskopf-Wigner result (202).

Let us look again at the master equation of the two-level system (221). In the Schrödinger

picture and at temperature T = 0 this equation has the form

ρ̇A(t) = − i

~
[HA,ρA]− γfs

2
[b†bρA(t) + ρA(t)b†b− 2bρA(t)b†] , (224)

where HA denotes the two-level system Hamiltonian (115). If we formally define a non-

Hermitian effective Hamiltonian Heff as

Heff = HA − i~
γfs

2
b†b , (225)

then introducing this in (224) leads to

ρ̇A(t) = − i

~
[HeffρA(t)− ρA(t)H†

eff ] + γfsbρA(t)b† . (226)

Going back to (187) we define the nonnormalized excited two-level system state as∣∣φup(t)
〉

= a(t)
∣∣up
〉
. (227)

With this the master equation (224) can be replaced by the following effective Schrödinger

equation

i~
d

dt

∣∣φup(t)
〉

= Heff

∣∣φup(t)
〉
. (228)

Obviously such an equation is technically easier to deal with than the corresponding master

equation, because here state vectors take over the role of density operators. Recently sim-

ilar effective Schrödinger equations were introduced to develop Monte Carlo wave function

simulation techniques [22, 23].
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3.6.1 Harmonic oscillator coupled to a reservoir

In section 2.4 we have shown, that one mode of the electromagnetic field is mathemati-

cally equivalent to a harmonic oscillator to which in the semiclassical approximation we can

associate the Hamiltonian HF = ~ωk a†kak (cf. (100)), where the wavenumber k labels the

particular mode. The advantage of reservoir theory is that the particular structure of the

reservoir does not affect the result, as long as the reservoir stays in thermal equilibrium at

all times, and that perturbations of its state decorrelate immediately in a Markovian sense.

We can therefore imagine the reservoir as a large collection of harmonic oscillators which are

in thermal equilibrium at temperature T . For this situation, namely the harmonic oscillator

associated with the field mode, which is coupled to a reservoir of harmonic oscillators, we

can work out the calculations in analogy to section 3.6, and we obtain the following master

equation

ρ̇F =
i

~
[HF ,ρF ]− κ

2
(n̄+ 1)

[
a†aρF (t)− aρF (t)a†

]
− κ

2
n̄
[
ρF (t)aa† − a†ρF (t)a

]
+ adj. ,

(229)

where n̄ represents the number of thermal excitations of the harmonic oscillator at frequency

ωk. This equation shows that the decay of the mean number of quanta 〈a†a〉 of the harmonic

oscillator occurs with the rate κ at zero temperature, whereas the expectation value of the

annihilation operator a (which is proportional to the positive frequency part of the electric

field mode) decays with a rate of κ/2.
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4 Spontaneous emission in an optical resonator

Up to now we have shown that spontaneous emission is a consequence of the coupling of the

atomic or molecular system to its surrounding electromagnetic field which in the last section

we assumed to be the “universe” composed of a continuum of plane wave modes. Thus,

spontaneous emission is not a generic property of the atom or molecule, but depends on the

mode structure of the surrounding environment. Purcell [24] found out that the spontaneous

emission rate can be enhanced by placing an atom into a resonator in which a mode is tuned

to the atomic transition frequency, and Kleppner [25] described the opposite case, inhibition

of spontaneous emission. Spontaneous emission needs not be irreversible. Irreversibility

is a consequence of the coupling with a Markovian Reservoir, i.e. a reservoir with a very

short memory. For vacuum modes which can not be approximated in this way, spontaneous

emission can exhibit considerable different properties, as in the case of long memory times,

where the excitation can be periodically exchanged between the atom or molecule and the

field [26, 27].

In the microstructures discussed in section 7 the atoms or molecules are coupled to one, or a

few, resonator modes. However, in section 6 we show that in wavelength size microresonators

it is inevitable that the resonator modes couple with the continuum of modes of the external

world as well. This, if the resonator cavity is not completely closed around the atom (or

molecule), it can couple to the continuum of vacuum modes. In an optical resonator we

therefore have to consider at least tree coupling coefficients: (1) The Rabi frequency Ω (165)

which characterizes the atom (or molecule) coupling with the resonator modes, (2) the decay

rate κ of the resonator mode, and (3) the rate γr of spontaneous emission into the vacuum

modes to which the system couples with. In wavelength scale resonators γr differs from the

spontaneous emission rate into free space γfs because of the reduced mode density in the

resonator. If the system couples with more than one field mode or when more than two

levels are involved, then we have to consider the associated coefficients as well.

To illustrate this concept we consider a linear resonator build with two ideal mirrors spaced

by the distance L (Fabry-Pérot interferometer). The space between the mirrors defines the

resonator. If we neglect diffraction losses at the mirrors, the modes of the electromagnetic

field in this resonator of volume V consist of a discrete set of standing waves with frequency

ωn = ckn = cπn/L, where n is an integer. In section 6 we will show that also transversal

modes exist, which we neglect in this example. If the cavity is small enough the mode

frequencies are well separated, so that only one of them couples with the transition of the

two level system. We label this mode frequency with ωr and with ω0 we denote the frequency
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Figure 7: Fabry-Pérot resonator with a standing wave mode of frequency ωr which is excited

by the two-level system with dipole moment ~µ12. The coupling of the two-level

system to the resonator mode ωr is characterized by the coefficient Ω(x) which

depends on the position of ~µ12 with respect to the standing wave field distribution.

The coupling coefficient γ′ describes the spontaneous emission rate into exterior

vacuum modes (because of the mirrors, the solid angle which determines the cou-

pling to exterior modes differs from the free space case), and κ describes the decay

rate of the field mode due to diffraction losses, mirror absorption and transmission.

of the two-level transition (nearly resonant mode). In reality the mirrors are not perfect and

the field is diffracted, so that the mode is damped. We characterize the damping by the

damping rate κ. Damping of the field mode is tantamount to widening the mode frequency

to a width proportional to κ. In analogy to the free space mode density (25) we can associate

an effective mode density ρr with the damped mode situation in which the two-level system

now radiates into. If we assume that the mode width is less than the separation of the mode

frequency, the effective mode density can be approximated by a Lorentzian as

ρr(ω) =
κ

2πV
· 1(

κ
2

)2
+ (ωr − ω)2

. (230)

Usually a resonator is characterized by its quality factor Q [28, p. 430] which is proportional

to the number of resonator round trips of a photon, and which is related to the damping

rate κ by

Q =
ωr

κ
. (231)

We can calculate the spontaneous emission rate in the resonator in a similar way as before

in sections 3.4, 3.5, or 3.6, except that we have to replace the free space mode density (25)
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by (230) which represents the resonator geometry. For a resonator tuned near the atomic

transition ω0 we obtain

in resonance: γr ≈ γfs ×Q
λ3

0

V
. (232)

It is interesting to observe what happens, when the resonator is tuned out of the resonance.

Note that the radiating dipole is still in the resonator, and not in free space, only the

oscillating dipole has no mode to radiate into. It can be shown that for coupling to the

off-resonance mode the decay rate can be approximated by

off-resonance: γr ≈ γfs ×Q−1 λ
3
0

V
. (233)

Although the situation is not utterly realistic, these equations illustrate the effect of enhanced

or inhibited spontaneous emission. The equations are very crude approximations in which

we have neglected a number of things, for example that the two-level system interacts with

free modes associated with the open sides of the resonator volume. In the following we will

fix some of the approximations.

4.1 Master equation of a two-level system in a resonator

As above we assume a two-level system in a resonator which exhibits sufficiently small di-

mensions so that the mode frequency separation c/2L is large compared to the characteristic

coupling parameters of the two-level system Ω, 1
κ
, 1

γr
. In this way the two level system

interacts only with one resonator mode. Let us also assume that this resonator mode is

tuned to near resonance with the two-level transition: ωr ≈ ω0. In analogy to section 3.6

we now identify the small system with the two-level system combined with the resonator

mode it couples to. Corresponding to this definition of the small system we define the small

system Hamiltonian Hs as

Hs = HA + HF + HI , (234)

which corresponds to Htot of (176). The suitable mode set for describing the field in a

resonator are the standing waves modes. For standing waves the coupling constant Ω becomes

a function of the position x inside the resonator, Ω(x) = Ω cos(kx) (cf. Fig. 7), where k = ωr/c

and

Ω = 2

√
~ωr

ε0V
(~µ12 · ~ε) , (235)

with ~ε denoting a unit vector in the direction of the electric field polarization; cf. (165) and

footnote on p. 46. Transforming into a reference frame which rotates with the resonator
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mode frequency ωr the Hamiltonian becomes

Hs = −~δR3 + HI , (236)

with

HI =
~Ω(x)

2

(
a†b + b†a

)
, (237)

and where δ = ωr − ω0 denotes the detuning.

As we have mentioned before, and illustrated in Fig. 7, the small system two-level-system-

cavity-mode is subject to two dissipative processes. The first one consists in the coupling

with a cone of free space modes through the open sides of the resonator structure. The second

dissipative process is the loss of the standing wave resonator mode through the mirrors to

the exterior world, which is characterized by the mode decay rate κ. Those two mechanisms

are statistically independent and can therefore be combined by a simple addition, which

in a reservoir theoretical approach looks as follows: The small system consisting of the

two-level system and the single resonator mode is coupled to two thermal reservoirs that

represent the cone of electromagnetic modes at the open resonator sides, and the mirror

losses. The thermal reservoirs are both modeled as a continuum set of harmonic oscillators.

In accordance with the Born-Markov approximation the coupling of the small system to the

two reservoirs is described by a master equation in which the dissipative (non-Hermitian)

part consists of the sum of (221) and (229), where we now have to take into account that

the two-level system only interacts with free space modes contained in a cone defined by the

openings in the resonator walls. As a consequence we replace the free space spontaneous

emission rate γfs in (221) by the smaller rate γ′. We then can derive the small system master

equation, which is similar to (226), and which at zero temperature looks like

ρ̇s(t) = − i

~
[
Heffρs − ρsH

†
eff

]
+ κaρsa

† + γ′bρsb
† . (238)

where

Heff = Hs + Hloss , (239)

and

Hloss = −i~
γ′

2
b†b− i~

κ

2
a†a . (240)

As in section 3.3 [cf. (182)] we assume that initially at t = 0 the state of the system is

characterized by an excited two-level system and an empty resonator mode∣∣Ψ(0)
〉

=
∣∣up, 0

〉
. (241)
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As next we have to identify the possible states the system can occupy. The energy conserving

part of the small system evolution consists in the exchange of quanta between the two-level

system and the resonator mode. As we found out in section 3.3, the total number of quanta

in the energy conserving process is constant – in this case here the total number is one

quantum, or excitation respectively. On the other hand, the dissipative processes – that

are the coupling-to-the-reservoir processes – are characterized by the irreversible loss of

the small system excitation. In summary we therefore distinguish three relevant states: two

states corresponding to full excitation (one quantum states),
∣∣up, 0

〉
and

∣∣lo, 1〉, and the state

corresponding to the total loss of excitation
∣∣lo, 0〉 (zero quantum state). The evolution of

the total quantum system takes place in the fully excited state subspace and in the zero

quantum state subspace. In analogy to the way we derived (227) and (228) we can define

the following unnormalized single excitation state∣∣Ψ(t)
〉

= cup(t)e
δt
2

∣∣up, 0
〉

+ clo(t)e
δt
2

∣∣lo, 1〉 (242)

where δ = ωr−ω0 denotes the detuning. From (238) we can derive the effective Schrödinger

equation describing the system evolution

i~
d

dt

∣∣Ψ(t)
〉

= Heff

∣∣Ψ(t)
〉
, (243)

where Heff is given by (239). Inserting (242) we obtain the equations of motion for the

coefficients cup(t) and clo(t)

dcup(t)

dt
= −γ

′

2
cup(t)− i

Ω

2
clo(t) (244)

dclo(t)

dt
= −(iδ + κ/2)clo(t)− i

Ω

2
cup(t) , (245)

which obviously is a system of coupled first order differential equations.

In the following we will discuss two important limit cases: the bad cavity limit or weak

coupling regime where κ, γ′ > Ω, and the good cavity limit or strong coupling regime, where

κ, γ′ < Ω.

4.2 Bad cavity limit (weak coupling)

In the last section we have derived the evolution of the system, which was described in (243)

with (244) and (245). Eq. (245) can be formally integrated:

clo(t) = −i
Ω

2

∫ t

0

dt′ cup(t
′)e−(iδ+κ/2)(t−t′) . (246)
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For partially open resonators the weak coupling regime is characterized by κ, γ′ > Ω. In-

specting (244) we can see that cup(t) is slowly changing if Ω/2 and γ′ are smaller than

|δ|+ |κ|/2, which corresponds to weak coupling. In this case we can thus pull cup(t) in front

of the integral, which for t� 1/κ gives

clo(t) =
−i Ω

2(iδ + κ/2)
cup(t) . (247)

Substituting this in (244) we obtain

dcup(t)

dt
= −

[
γ′

2
+

Ω2

4
· κ/2− iδ

δ2 + κ2/4

]
cup(t) . (248)

Obviously this differential equation is solved by an exponential ansatz, and the occupation

probability Pup for the excited level decays as

Pup = |cup(t)|2 ∝ e−γt , (249)

with

γ = γ′ + γ0 , (250)

and

γ0 =
Ω2

2κ
· 1

1 + 2(2δ/κ)2
, (251)

where again δ = ωr − ω0 denotes the detuning. The decay rate γ is thus composed of a

sum of terms of which the first can be attributed to the contribution of the vacuum field,

and the second to a resonator contribution. In the limit where the resonator is completely

open (free space) κ → ∞, and as a result γ′ → γ. Thus the decay rate γ reduces to the

Weisskopf-Wigner coefficient γfs.

4.2.1 Enhanced spontaneous emission

Let us imagine a completely closed resonator that surrounds the two-level system. Then the

loss mechanism which in Fig. 7 is characterized by the coefficient γ′ is absent, thus γ′ = 0.

Let us also assume resonance between the two-level system and the field mode, so that the

detuning δ = 0, and still assume weak coupling κ > Ω. Then the decay coefficient γ0 becomes

maximal, γ0 = Ω2/2κ. With (195), (231), (235), and λ0 = 2πc/ω0 we obtain

γmax =
3Q

4π2
· λ

3
0

V
· γfs . (252)

We can see that γmax has the same wavelength dependence as the approximate result (232).

By taking into account the coupling of the dipole moment with the field polarization (235)
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we now also obtained the correct geometrical dependence. We can see that for resonators of

good quality Q with sizes approaching V ≈ λ3 a substantial enhancement of the free space

spontaneous emission rate γfs is expected.

4.2.2 Inhibited spontaneous emission

Let us consider the same two-level system in the same resonator which, however, now is

tuned far off the two-level system resonance ω0 so that the detuning can be set to |δ| = ω0.

For a good resonator with Q� 1 (251) then becomes

γinh ≈ γmax ·
1

4Q
=

3

16π2Q
· λ

3
0

V
· γfs . (253)

The spontaneous emission of a two-level system in a one-mode-resonator with a large quality

factor Q can therefore be nearly completely suppressed by detuning.

We now have derived three different rates, (195), (252), and (253), by which an excited two-

level system can decay. One might ask, how the two-level system decides which one to choose

[29, 30]. Obviously the choice depends on the electromagnetic boundary conditions defining

the mode structure which surrounds the two-level system, and the question therefore is, how

does the two-level system explore its mode environment. To answer this question we have to

consider the very initial processes of the decay, which thus involve time scales short compared

to the inverse decay rate. Unfortunately this is a range, which is not consistent with some

approximations we have made in our previous discussion, especially it is not consistent with

the assumptions for using the coarse grained derivative (212). Thus, to answer this question

we need a more precise theory. Nevertheless, let us try a qualitative argument: Let us assume

the two-level system spontaneously starts to emit, radiating a wave packet into the mode.

If the emission occurs into a free space mode, nothing comes back. However, if the emission

occurs into a high-Q resonator mode, then the emitted packet is reflected at the resonator

boundary and returns to the emitting dipole, i.e. the two-level system, where it is picked

up by the dipole. Coded in its phase, the reflected packet carries the information about the

geometry of the mode, as well as the state of the emitting two-level system at earlier times.

Thus, the question now is, so to speak, what the phase is of the reflection arriving at the

generator driving the dipole. If the reflection is received with a phase opposite to the actual

emitting phase, then further emission is inhibited, whereas in-phase reception enhances the

emission. We can see that a valid theory for the early emission stages must involve the phases

of the quantum systems involved. On the other side the phase is not a Hermitian observable,

therefore we must accept that the early stages of the emission are hard to divulge.
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4.3 Good cavity limit (strong coupling)

Strong coupling of the two-level system with the resonator mode is observed when the photon

which is emitted by the two-level system into the resonator mode lives long enough so that

it can be reabsorbed by the two-level system. In this case we have to consider the exact

solution of the system of coupled differential equations (244)–(245). The general solution of

a system of two linear, first order differential equations is given by the exponential ansatz

cup(t) = cup1 eα1t + cup2 eα2t , (254)

where the constants cup1, cup2 are chosen to fit the initial conditions, for example cup(t =

0) = 1, and the exponential are given by

α1,2 = −1

2

(
γ′

2
+
κ

2
+ iδ

)
± 1

2

[(
γ′

2
+
κ

2
+ iδ

)2

− Ω2

] 1
2

. (255)

For strong coupling we have Ω/2 � γ′, κ, δ, and then the exponents reduce to

α1,2 = −1

2

(
γ′

2
+
κ

2
+ iδ

)
± i

Ω

2
. (256)

In this expression the imaginary part is larger than the real part, so that the time evolution

of the upper level probability Pup is characterized by oscillations at the vacuum Rabi fre-

quency Ω, which are slowly damped. The emission spectrum of course is no longer a simple

Lorentzian, but a doublet of Lorentzian lines, each with a width of (γ′ + κ)/4, split by the

vacuum Rabi frequency Ω [31].

4.3.1 Dressed states

We can generalize the situation if we merge the small system consisting of the two-level

system and the resonator mode into a single quantum system. As we have done before,

we associate the Hamiltonian (176) to this system.6 As we have discussed before, this

Hamiltonian H conserves the total number of small system excitations, more explicit, H only

couples state
∣∣up, n

〉
with

∣∣lo, n+ 1
〉
. Thus in a system characterized by H transitions only

occur inside the (n + 1)-quanta manifold {
∣∣up, n

〉
,
∣∣lo, n+ 1

〉
}. It is therefore possible to

decompose H into the sum

H =
∑

n

Hn (257)

6In the literature the Hamiltonian (176) is often referred to as Jaynes-Cummings Hamiltonian [32].
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Figure 8: Eigenenergy of two manifolds of dressed states (dots) and the corresponding bare

states (lines) as a function of the two-level system transition frequency ω0. The

anticrossings occur at resonance ω0 = ωr.

where Hn only acts in the (n + 1)-quanta subspace. In this subspace the states
∣∣up, n

〉
and∣∣lo, n+ 1

〉
form a basis in which Hn can be represented by a 2× 2 matrix. The eigenvalues

of Hn are obtained by diagonalization as

E2n = ~
(
n+ 1

2

)
ωr − ~Ω′

n

E1n = ~
(
n+ 1

2

)
ωr + ~Ω′

n

(258)

where with Ω′
n we denote the n-photon Rabi frequency

Ω′
n =

√
δ2 + Ω2(n+ 1)

=
√

(ωr − ω0)2 + Ω2(n+ 1) ,
(259)

and where the eigenstates are given as∣∣2n〉 = − sin θn

∣∣up, n
〉

+ cos θn

∣∣lo, n+ 1
〉∣∣1n〉 = cos θn

∣∣up, n
〉

+ sin θn

∣∣lo, n+ 1
〉
,

(260)

in which

tan 2θn =
Ω
√
n+ 1

δ
. (261)

The states (260) are called the dressed states of the two-level system, which refers to the pic-

ture of a two-level state dressed by the strongly coupled resonator mode. In this terminology

the states
∣∣up, n

〉
and

∣∣lo, n+ 1
〉

are called bare states. Note that the zero-quantum manifold

has a single eigenstate
∣∣up, 0

〉
with eigenvalue E0 = 0. The dressed state energy spectrum
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Figure 9: Spectrum of the spontaneous emission doublet in the one-quantum manifold.

given by (258) and (259), and the corresponding bare state eigenenergies are shown in Fig. 8

as a function of the resonator detuning. The energy of the bare states
∣∣up, n

〉
and

∣∣lo, n+ 1
〉

cross at resonance. However, for the dressed state eigenenergy this degeneracy is removed

by the the interaction of the two-level system with the field, causing dressed states of the

same manifold to repel each other, an effect that is often called anticrossing.

Spontaneous emission of the two-level system occurs in the one-quantum manifold, where

two transitions are allowed,
∣∣1, 0〉 → ∣∣lo, 0〉 and

∣∣2, 0〉 → ∣∣lo, 0〉, corresponding to the fre-

quencies −δ/2 + Ω′
0 and −δ/2 − Ω′

0. At resonance δ = 0 the separation becomes equal to

the vacuum Rabi frequency Ω; cf. Fig. 9.
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5 Stimulated emission in an optical resonator and

thresholdless lasing

In section 4.2 we discussed the modification of the two-level system decay when a surrounding

resonator reduces the density of field states. Equation (251) was derived for a two-level

system that interacts either with an empty, or with a one photon, damped resonator mode.

As a consequence, three system states had to be considered:
∣∣up, 0

〉
,
∣∣lo, 1〉, and

∣∣lo, 0〉. In

(251) we distinguished two contributions, the first is attributed to the mode density, and the

second, which was characterized by the vacuum Rabi frequency Ω, to the field. Stimulated

emission occurs when the excited two-level system interacts with a mode which contains

several photons. In analogy to section 4.1, and observing the approximations for the Fermi

golden rule, cf.(196), we can derive the following result for the decay rate of a two-level

system in a damped resonator, interacting with an n-photon field

γst =
Ω ′ 2

n

2κ
· 1

1 + 2(2δ/κ)2
, (262)

where with Ω ′
n we denote the n-photon Rabi frequency Ω ′

n =
√
δ2 + Ω2(n+ 1); cf. (259).

We can see that for a resonator tuned to resonance (δ = 0) the stimulated emission decay

rate scales with the number of photons n interacting with the two-level system. Equation

(262) can be written as

γst = γ0 (n+ 1) , (263)

where γ0 stands for the spontaneous emission rate which is modified by the resonator,

cf. (251). For fluorescent dyes we can assume that the lower laser state is rapidly de-

populated, and that nonradiative processes, inversion saturation and collective spontaneous

emission are absent. With this assumptions the number of photons in the resonator mode

can be expressed as

ṅ = γ0(n+ 1)N − κn , (264)

where N denotes the inversion N = Nup−Nlo, that is the difference between the population

of the upper laser level Nup and the lower laser level Nlo. The rate by which the inversion N

is changed depends on the rate with which the upper level is populated, that is the pumprate

W , and by the rate of depopulation given by the photon emission rate, thus

Ṅ = W − γ0(n+ 1)N (265)
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The steady state solution of the system of differential equations (264) and (265) has the

simple form

n =
W

κ
(266)

and

N =
Wκ

γ0(W + κ)
. (267)

From (266) we can see that the light output n increases for any pump rate W in a linear way,

thus the laser operates without threshold. This is a phenomenon called thresholdless lasing

or lasing without inversion. This is the consequence of the exclusive coupling of the laser

active two-level systems to one single resonator mode. On the other hand, the inversion

N approaches the limit of Nt = κ/γ0 when the pump rate W increases. This limit can

be interpreted as the inversion at which the photon emission changes its character from

spontaneous emission to stimulated emission. This is the transition which traditionally is

associated with the onset of lasing. Note that this phenomenon occurs when a collection

of two-level systems interacts with a single field mode, which is thus different from the

interaction of only one two-level system with a single mode, i.e. a one atom laser [33].

In summary, the conditions for inversionless lasing as expressed in (266) and (267) are

that the collection of two-level systems interacts only with a (damped κ) single mode field.

In particular there are no open resonator side walls through which the two-level system

can couple to the mode continuum (characterized by γ′); cf. Fig. 7. Of course there is a

continuous transition in the threshold behavior from the open resonator case shown in Fig. 7

to the closed resonator discussed here [34] and thresholdless lasing was observed in a dye

solution placed a plane-plane resonator in which the mirrors were spaced by half an emission

wavelength [35]. In section 7 we will discuss threshold reduction in dye loaded molecular

sieve microlasers.
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6 The mode structure of microresonators

6.1 The concept of dielectric constant, dielectric interfaces

Maxwell’s equations are the foundations on which both classical and quantum optics are

built. The possibility of creating a double-slit diffraction pattern with a single photon -

a famous manifestation of the wave-particle dualism - is a result of the fact that photons

occupy the modes of the classical electromagnetic field, cf. the definition of the bosonic

operators in terms of normal modes in section 2. These modes can be discrete in frequency,

as they are in lossless closed resonators, or have a continuous spectrum as is the case in

scattering experiments such as the diffraction example [36]; there, the whole information

about the diffraction process is encoded in the modes themselves because they must satisfy

the boundary conditions on the diffraction slits.

Boundary conditions are a way of introducing rapid spatial variations of a medium into the

macroscopic Maxwell equations without having to give up the concept of a dielectric constant

or permittivity, by which the microscopic properties of the medium are taken into account

in a very efficient mean-field manner [37]. Even when details of the quantum-mechanical

light-matter interaction are of interest, such a mean-field approach is a good starting point

in order to define an appropriate modal basis set in which to expand the relevant matrix

elements. This applies to dielectrics of infinite extent without losses [38] or with losses

[39], but especially when fluorescent or laser emission in the presence of a microcavity are

concerned.

The dielectric “constant” is moreover a function of field strength, if the polarizability –

which describes the microscopic matter-field interaction – depends nonlinearly on electric

field. When such nonlinearity occurs in combination with boundary conditions, the relative

importance of the two depends on the size scales and field strengths involved. At low pump

levels, phenomena such as vortex formation which has long been known in nonlinear media

[44], can cross over to linear vortices [45], an example of which are the whispering-gallery

modes which will be discussed in section 6.3. In small cavities, boundary effects become

dominant, and nonlinear effects can be understood as interactions between modes of the

linear cavity [45].

As we discussed above (cf. section 4), a well known microcavity effect is due to Purcell [24]

who argued based on Fermi’s Golden Rule that the Einstein A coefficient for spontaneous

emission can be enhanced in a microcavity due to its highly peaked density of modes. For

this perturbative approach to the quantum electrodynamic problem of spontaneous emission,

69



the modes into which photons are emitted are determined completely by Maxwell’s equations

with the boundary conditions defining the cavity. In the strong-coupling regime, this ceases

to be correct when the radiant matter and light field are mixed in comparable proportion in

the eigenstates of the total system, as can occur, e.g. in cavity polaritons in a quantum well

microstructure [40], or for the Rabi oscillations of an atom in close proximity to a dielectric

microsphere [41]. Nevertheless, the first step in all these cases is to determine the modes of

the electromagnetic field for the resonator goemetry at hand.

The conclusion from these preliminary remarks is that especially in microcavities, an un-

derstanding of the effects of the resonator geometry on the field distribution, neglecting

nonlinearities of the medium, is of central importance. Even in the conceptually simple

problem that remains, we shall see how the well-understood fundamental equations of elec-

trodynamics lead to solutions that are at present only partially understood, in the sense of

predicting their dependence on system parameters, or even giving conditions for the existence

of certain solutions – an important example again being the whispering-gallery modes.

6.2 Fields at dielectric interfaces

6.2.1 Matching conditions

We assume that all fields have the stationary time dependence e−iωt. Then Maxwell’s equa-

tions become

~∇× ~E = −1

c

∂ ~H

∂t
= ik ~H (268)

~∇× ~H =
1

c

∂ ~D

∂t
= −ikn2 ~E , (269)

where the wave number is given by

k = ω/c. (270)

Since we want to illustrate the effects of boundaries, let us make the further simplification

of considering the refractive index n to be piecewise constant, but not necessarily real.

Combining these equations, we obtain the wave equations

~∇× ~∇× ~E = (nk)2 ~E , (271)

~∇× ~∇× ~H = (nk)2 ~H . (272)

Since charge density can only appear at the surface of the dielectric, we have ~∇ · ~E = 0 in

each domain of constant n. In these regions, (271) therefore becomes

−∇2 ~E = (nk)2 ~E . (273)
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The conditions to be satisfied at a dielectric interface are deduced from the requirement that

no current flow is possible along the interface [42], implying that the tangential components

of ~E and ~H must be continuous. At vertices or edges, however, the tangent is undefined.

In this case we must invoke the additional requirement that the energy contained in any

volume element of the fields should not diverge near such singularities of the surface [42].

These conditions do not constitute true boundary conditions in the traditional sense, but

are instead matching conditions. The field on one side of the interface is determined by the

field on the other side, and only if we already know the latter, can the former be obtained by

solving a boundary-value problem. For some simple problems, it is in fact easy to eliminate

the field on one side of the interface, if one knows its form a priory. The simplest example

is a plane wave in air, impinging with wavevector ~k on a planar interface with a lossless

dielectric of refractive index n. The knowledge that the transmitted wave in the medium

is again a plane wave allows us to straightforwardly obtain Snell’s law of refraction and

Fresnel’s formulas for the reflectivity. The latter depend on polarization, which in this case

can be chosen either perpendicular to (TE) or in the plane of incidence (TM). With this

we then can obtain decoupled scalar wave equations. The essential difference between TE

and TM polarizations is that the latter exhibits the Brewster angle χB at which perfect

transmission occurs. Independently of polarization, Snell’s law relates the incident angle χ0

(which we measure with respect to the surface normal), to the transmitted angle χ of the

plane wave in the medium by

sinχ =
sinχ0

n
. (274)

Note that for large n, transmitted waves in the dielectric are allowed to propagate only in

a progressively narrower interval around the perpendicular direction χ ≈ 0. Conversely, the

critical angle χc = arcsin(1/n) therefore defines the “escape cone” for plane waves inside

the material. Total internal reflection prevents all waves with χ > χc from escaping to the

optically thinner medium, i.e. the condition for confinement is

sinχ >
1

n
. (275)

6.2.2 Impedance boundary conditions

The fact that high index contrast leads to a narrow escape cone is at the heart of a large

body of literature summarized in Ref. [42]. The aim is to replace the continuity requirements

for the fields at a dielectric interface by approximate boundary conditions called (normal)

impedance conditions. There, an approximate knowledge of the field on the high-index side
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allows one to eliminate it from the problem. Yet, the method becomes unreliable at low

refractive-index contrast and at non-planar interfaces; in particular, the Brewster effect is

not correctly reproduced unless additional corrections are introduced which, however, do

not permit a simple physical interpretation, because they involve derivatives of the fields

that are of higher order than the original continuity conditions for the fields themselves. We

shall therefore make no use of impedance boundary conditions, except to point out that they

reduce to the familiar Dirichlet boundary conditions (vanishing fields on the surface) if the

index contrast becomes infinite, as would be the case in an ideal metal.

6.3 Scattering resonances versus cavity modes in the dielectric cylinder

One way to probe the interaction of dielectric bodies with light is by elastic scattering.

Atmospheric phenomena such as the rainbow, the halo, or the glory arise from light scattering

[43], and in fact atmospheric science relies on scattering experiments as diagnostic tools.

When scattering experiments are carried out with high spectral resolution, a ripple structure

is observed in scattering cross sections, which cannot be understood in a purely ray-optics

framework. These ripples are resonances which occur when the incident light couples to long-

lived cavity modes. In order to illustrate the relationship between resonances and modes,

we consider here the example of a dielectric rod with a circular cross section.

Dielectric cylinders are of great practical interest because they are the archetypical model

for an optical fiber. In the context of this review, the approximate cylindrical symmetry

of the molecular sieve microcrystals makes it desirable to establish some fundamentals of

cylindrical systems. The modes of an optical fiber can be divided into two classes: guiding

modes and “leaky” modes. As is well known, guided modes are responsible for the ability of

silica fibers to carry long-distance communication signals, corresponding in the ray picture

to zigzagging trajectories traversing the fiber core in an almost planar motion – the plane of

propagation coincides with the cylinder axis. The confinement mechanism in the ray picture

is total internal reflection at the interface to a lower-index medium, either the cladding of

the fiber or – as we will assume for simplicity – the abrupt interface with air. However, over

short distances a significant power transport can take place through the leaky modes as well,

which must be taken into account in any comprehensive treatment of optical waveguides [49].

It is also known [49] that one has to distinguish between tunneling leaky modes which are

confined by frustrated total internal reflection, and refracting leaky modes whose attenuation

is even larger because they correspond to rays that violate the condition for total internal

reflection. Leaky modes correspond to rays spiraling down the fiber in a helical trajectory,
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and are therefore also called “spiral modes” [50].

Of these three types of modes – guided, tunneling, and refracting – for propagation along

a fiber, only the leaky ones remain if the radiation is incident with propagation vector per-

pendicular to the fiber axis. This is the situation we shall focus on, because the applications

we have in mind are not intended for power transport but for power storage, i.e. resonators.

The corresponding ray trajectories are then confined to a plane in which they perform a cir-

culating motion. An example where this mode structure has in fact been observed directly is

a laterally structured cylindrical VCSEL [51] where such a mode supports lasing action at an

unexpectedly low pump power. Because the circulating mode structure is analogous to the

acoustic “whispering-gallery” phenomenon in which sound waves cling to the curved walls

of certain buildings, modes with a ring-shaped intensity distribution are commonly termed

“whispering-gallery (WG) modes”.

The range of material parameters relevant to the design of dielectric resonator structures is

increasing continuously, as novel materials enter device applications. For glasses, refractive

indices between n ≈ 1.4 and 2 are available (glass for application in fiber amplifiers has

n ≈ 1.8). Semiconductor materials extend this interval to even larger indices, while organic

compounds border on the lower end of the index range. The fundamental wave equations

for elastic light scattering in the case of no propagation along the axis of the dielectric

cylinder are much simpler than for arbitrary oblique incidence, and consequently treatments

of plane wave scattering from dielectric cylinders at normal incidence can be found in many

textbooks [46, 47, 48]. Because of the ever increasing range of applications, we review them

here, emphasizing, however, what in the literature is usually missing, namely the aspect of

the relation between resonances and cavity modes. One important piece of notation that

we introduce here is conspicuously absent from the classic texts: the formulation of the

light scattering problem in terms of S-matrix theory, as it is used in quantum mechanical

scattering. Investigations of leaky cavities may well profit from a more unified scattering-

theoretical terminology.

6.3.1 Metastable well in the effective potential

To understand the origin of long-lived whispering gallery mode resonances we examine

Maxwell’s equations for an infinite dielectric cylinder. Following an argument used by John-

son [53] for the dielectric sphere, we can rewrite (273) in a form similar to the Schrödinger

equation of quantum mechanics,

−∇2 ~E + k2(1− n2) ~E = k2 ~E . (276)
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This shows that dielectric regions (n > 1) correspond to an attractive potential well in the

quantum analogy, except that here the potential is itself multiplied by the eigenvalue k2.

The reason why extremely long-lived resonances are created when the scatterer has rota-

tional symmetry is that after separation of variables in cylindrical or spherical coordinates,

(276) gives rise to a radial equation with a repulsive potential term due to the angular mo-

mentum barrier, as well as the attractive term just noted. For the case of a dielectric cylinder

studied here the resulting equation reads

−
[
d2

dr2
+

1

r

d

dr

]
~E(r) + Veff(r) ~E(r) = k2 ~E(r) , (277)

where the effective potential is

Veff(r) = k2
(
1− n2

)
+
m2

r2
+ k2

z . (278)

The additional centrifugal potential term has appeared as a consequence of conservation of

the z-component of angular momentum, and the offset k2
z results from the conservation of

the z-component of linear momentum. As inidcated above, we focus on planar propagation

perpendicular to the z-axis of the cylinder, so that kz = 0, and the incident wave has its

k-vector in the x− y plane. The problem then becomes effectively two-dimensional and we

will use the two-dimensional polar coordinates r =
√
x2 + y2, φ.

The radial “potential” which results from the sum of the attractive well due to the dielectric

and the repulsive angular momentum barrier is shown in Fig. 10, cf. also Ref. [54]. At

Figure 10: Effective potential picture for whispering gallery resonances of the cylinder;

kmin = m/(nR) and kmax = m/R.

nonzero angular momentum one sees that a metastable well is formed within the dielectric.
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The electric field inside is separated from the propagating field outside by a tunnel barrier,

and one may expect solutions of the wave equation in which the intensity inside the well is

exponentially larger than outside the well. In order to complete the formal analogy to the

one-dimensional Schrödinger equation we make a substitution of variables to eliminate the

first derivative term in the radial equation (277). This can be achieved by introducing a new

coordinate ξ := ln(kr); the resulting equation is[
d2

dξ2
+ q2(ξ)

]
~E(r) = ~0 , (279)

where q(ξ) = (n2 exp(2ξ) − m2)1/2, and q(ξ) is the effective wave vector of the rescaled

problem. In order that there are any resonant solutions, kR must be sufficiently large so

that q is real for some value of r within the dielectric. The largest value of the argument of

the square root within the dielectric occurs when r = R, so we deduce the condition

kmin =
m

nR
. (280)

On the other hand, if infinitesimally outside the dielectric where n = 1, q is real, then there

is no region of exponential decay, and no sharp resonances exist. The maximum value of k

such that q is imaginary just outside the dielectric is given by

kmax =
m

R
. (281)

Consequently, we expect narrow resonances of angular momentum m, broadened only by

tunnelling decay (evanescent leakage), for wave vectors satisfying

m

nR
< k <

m

R
(282)

or equivalently
1

n
<

m

nkR
< 1 . (283)

We will label these metastable well states by a discrete index ν which corresponds to the

number of radial nodes. If the refractive index is changed, the barrier top in Fig. 10 remains

the same, but the well grows deeper so that the lowest allowed k will give rise to a narrower

resonance. Later we will show that essentially all of the metastable states satisfying (282)

are discrete in the sense that their spacing in k is larger than their decay width through

the barrier. In this way they will give rise to isolated resonances in the scattering functions

which are well set apart from the background.

It is worth quoting here the main features of the numerically observed resonances in plane-

wave scattering off a dielectric cylinder at normal incidence, as given in Ref. [48] (but using

our notation):
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. . . their widths decrease as m [angular momentum] increases for a given ν [radial

node number], and their widths increase as ν increases for a given m. Also,

as the index of refraction [n] is increased, the positions of the resonances shift

to lower kR, and their widths become narrower. Resonances having relatively

narrow widths occur in the range x to nx.

All of the above phenomena can already be understood qualitatively by inspecting the effec-

tive potential picture.

The inequality (283) can be brought into a very suggestive form which can be justified by

considering the short-wavelength limit in the WKB approximation [54]:

sinχ :=
m

nkR
, (284)

then (283) leads to
1

n
< sinχ < 1 . (285)

The right inequality is trivial, but the left relation is precisely the condition for total internal

reflection which must be satisfied by the angle of incidence χ on the high-index side at an

interface to air, cf. (275). At this point we have provided no reason why χ, as defined

here, should be the classical angle of incidence. Let us try a non-rigorous argument: If we

interpret the ray trajectories as classical particles with momentum ~(nk) inside the resonator,

and angular momentum L = ~m, then the classical relation between angular and linear

momentum would imply ~L = ~r × ~p ; L = R (~nk) sinχ ; m = Rnk sinχ, where sinχ

arises from the vector product of linear momentum and radius vector r, which in turn has

magnitude R at every reflection from the boundary. At such a reflection, χ is then just the

angle of incidence.

The introduction of ~ into the present optical context is somewhat arbitrary. The question

is, does the optical field in the cavity truly acquire angular momentum. We know that

photons, as massless fundamental particles, carry a unit spin angular momentum, but no

orbital angular momentum in the physical sense. Therefore, when we refer to m as an

angular momentum quantum number, we invoke a formal analogy that arises between the

mathematical structure of bound photonic states and bound quantum systems: There are,

in our case, two degrees of freedom which are associated with a finite region of space, giving

rise to a discrete frequency spectrum. The modes are then labeled by as many discrete

indices, or “quantum” numbers as there are confined degrees of freedom. For a rotationally

symmetric problem, the indices, or quantum numbers, are simply the number of radial and

azimuthal nodes of the wave function. The azimuthal quantum number is what we call m.
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Its relation to the angle of incidence is rigorously derivable from the eikonal (or WKB) limit

[54].

There is an additional complication to this argument if the cavity is not closed. Due to

the openness of the system, it is then not clear how to define the photons in a resonant

mode. However, the cavity can approach the closed limit as n→∞. Before we discuss this

problem, we will elucidate the concept of modes in the leaky cavity setting, where discrete

resonances appear but have a finite width in k. We will return to this issue under the heading

of quasibound states in section 6.4.

For this moment let us nevertheless dwell on (285), which we can use to interpret some

results. For example, it indicates that states at the bottom of the well correspond to a ray

motion tangential to the boundary, whereas states at the top correspond to rays colliding

with the boundary at exactly the critical angle. As next we turn to a more detailed discussion

of the actual wave solutions for the dielectric cylinder where the incident wave propagation

is normal to the axis.

6.3.2 Matching conditions for TM polarization

Our general considerations so far have not addressed the boundary conditions at the interface

between dielectric and vacuum (or air) – conditions which also depend on the polarization

of ~E. The arguments given above for the existence of narrow resonances are, however,

independent of the boundary conditions, because we rely only on the fact that a tunnel

barrier is formed where the field decays. Thus there should exist resonances corresponding

to two different polarization states. Henceforth we will focus on the transverse magnetic

polarization for which the boundary conditions lead to the simplest matching conditions for

the electric field inside and outside the dielectric. For this polarization state we assume an

incident plane wave of the form ~E = E(x, y)~ez, where the unit vector ~ez points parallel to the

cylinder axis (and hence the magnetic field is transverse to the cylinder axis). From now on

we will focus on the scalar function E(x, y) = E(r, φ) which is the amplitude of the electric

field in z-direction. Since a pure dielectric is an insulator, there is no current flowing on

its surface in response to the incident field and ~H is continuous everywhere (neglecting any

variation in the magnetic permeability). From (268), we derive the azimuthal component of

the magnetic field, which in polar coordinates has the form

Hφ =
i

k
[∇× E~ez]φ = − i

k

∂E

∂r
. (286)

Therefore the radial derivative of E(r, φ) is continuous at the dielectric surface. Since the

tangential component of E is always continuous at such an interface, we arrive at the simple
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matching conditions that both E and ∂E/∂r are continuous at the cylinder surface. TE

polarization ( ~H along ~ez) does not result in these familiar requirements [46, 47], however

one can still obtain a scalar wave equation, which can be treated with a generalization of

the methods used below. Most conveniently, one writes the wave equation for the magnetic

field H, which is again continuous, but exhibits a jump of magnitude n2 in the normal

derivative at the interface. The effective potential picture with purely tunneling escape for

the whispering gallery modes remains unchanged by this, since our arguments above did

not involve polarization. Note that for TE polarization the electric field is in the plane of

incidence. Transmission out of the dielectric becomes unity at the Brewster angle which

neglecting the finite curvature of the interface is given by

sinχB =
1√

1 + n2
. (287)

The whispering gallery mode criterion sinχ > 1/n is clearly not modified by this effect since

sinχB < 1/n.

An important point is that the same matching conditions remain valid even when the cross

section of the cylinder is non-circular, because for TM polarization ~E remains tangential

to the surface. As long as we consider only convex surfaces, the continuity of ∂E/∂r in

polar coordinates implies the continuity of the normal derivative of E. These boundary

conditions are identical to those for quantum scattering from a potential well. Hence, we

are allowed to use the terms familiar from quantum theory, such as tunneling, as we did

in the previous sections. However, as was already noted with (276), it should be kept in

mind that the analogy is incomplete, because the dispersion relation in quantum mechanics

is ω = ~ k2/(2m) and not ω = n c k as in optics. The results presented here can therefore

not be obtained by simply copying known quantum mechanical calculations. An important

difference between the quantum and optical wave equations can be read off (278), where

the effective potential well is seen to become progressively deeper with increasing k. As a

consequence, above barrier reflection remains significant even for large k, whereas it would

become negligible in an attractive circular quantum well at high energies. This effect is just

the well known classical Fresnel reflection at a dielectric interface, which independently of the

wavelength has the value R = (1−n)2/(1+n)2 at normal incidence, i.e. sinχ = m/(nkR) →
0.
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6.3.3 Resonances in elastic scattering

The wave equation for TM (or TE) polarization as defined above is of the scalar form

∇2ψ + n2k2 ψ = 0 , (288)

where ψ denotes the electric field for the TM case, and the refractive index n is a constant

different from 1 inside the dielectric. The wavenumber k is not position dependent because it

enters the problem simply through the definition ω = c k for the harmonic time dependence.

All the scattering functions for the elastic scattering of light (i.e. scattering at the fixed

frequency ω) by a dielectric cylinder can be calculated if we know the scattering states

Em(r) =

Am Jm(nkr) (r < R)

H
(2)
m (kr) + SmH

(1)
m (kr) (r > R),

(289)

for all m (Jm and Hm denote the Bessel and Hankel functions, respectively). These are

solutions to the radial equation(277), assuming that the refractive index is unity outside the

cylinder and n(r) = 1 + (n− 1)Θ(R− r) inside. The amplitudes Am, Sm are determined by

the matching conditions for E and its radial derivative E ′,

Am Jm(nkR) = H(2)
m (kR) + SmH

(1)
m (kR)

Am nJ
′
m(nkR) = H(2)′

m (kR) + SmH
(1)′
m (kR) , (290)

where, the primes denote differentiation. e.g. J ′(x) = dJ/dx. This can be solved for the

scattering amplitude Sm as a function of the size parameter x ≡ kR. In terms of quantum

mechanical scattering theory, Sm is a diagonal element of the scattering or S-matrix which for

the rotationally invariant scatterer is diagonal in the basis of angular momentum states m.

Using these solutions, one can for example calculate the scattering properties for an incident

plane wave. A plane wave can be decomposed into a combination of Bessel functions [52] as

e−ikx =
∞∑

m=−∞

(−i)meimφJm(kr). (291)

This then determines the coefficients with which the partial waves (289) are superimposed

to get the full solution. The conventional representation of this solution is [48]

E(r, φ) =


∞∑

m=−∞
eimφ (−i)mdm Jm(nkr) (r < R)

∞∑
m=−∞

eimφ (−i)m
[
Jm(kr)− bmH

(1)
m (kr)

]
(r > R)

(292)
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Using Jm = 1
2
(H

(1)
m +H

(2)
m ) in the incoming wave, this becomes for r > R

E(r, φ) =
1

2

∞∑
m=−∞

eimφ (−i)m
[
H(2)

m (kr) + (1− 2 bm)H(1)
m (kr)

]
, (293)

so that we can extract the relationship between S- and the b-coefficients,

Sm = 1− 2 bm . (294)

Hence the bm are analogous to the quantum mechanical transition matrix T , defined by

S = 1 − 2πiT . The S-matrix satisfies an additional condition as a consequence of flux

conservation, namely [14]

S†S = 1. (295)

This unitarity relation also holds for deformed resonators, where S is not diagonal. It

provides an independent equation with which to check the accuracy of the wavefunction

matching. For the circular cylinder, unitarity just implies that all Sm have modulus one.

For numerical calcultions borrowing this formalism from quantum-mechanics is therefore an

added advantage.

If a plane wave is incident on the cylinder, the scattered intensity has the angular depen-

dence [46, 47]

I(φ) ∝

∣∣∣∣∣
∞∑

m=−∞

bm eimφ

∣∣∣∣∣
2

, (296)

where φ is the angle with the beam. From the matching conditions (290), one finds that the

expansion coefficients can be written in the form

bm =
1

1 + i βm

, (297)

βm =
n Jm−1(nx) Ym(x)− Jm(nx) Ym−1(x)

n Jm−1(nx) Jm(x)− Jm(nx) Jm−1(x)
, (298)

where we have used the abbreviation

x ≡ kR , (299)

and the function Ym(x) is the Bessel function of the second kind. This provides an explicit

formula for the scattering intensity I(φ), an example of which is plotted in Fig. 11. As is

seen in the figure, the scattered intensity shows rapid resonant variations. The resonances

are not simply Lorentzian peaks, but are of the Fano shape [56] with varying values of

the Fano asymmetry parameter. This asymmetric shape is due to interference between
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the nonresonant scattered waves and the resonant scattering. As long as the resonance is

sufficiently isolated the resonance widths can be extracted by fitting a Lorentzian to the Fano

function. It can immediately be observed that the resonances have widely varying widths

corresponding to how close they are to the top of the barrier in the effective potential well.

Figure 11: Irradiance I which is scattered off a circular cylinder with refractive index n = 2

at φ = 50◦ with respect to the direction of the incoming wave which is assumed

to be plane and TM polarized.

The decomposition (297) is analogous to the case of a scattering sphere [53], and in the

same way one observes that intensity maxima occur near the value of k at which one of the

bm has a maximum (if there is no interference with other nonresonant waves then it will be

at exactly that value of k). This in turn occurs when βm = 0. Thus, we set (298) to zero and

obtain an implicit equation for the resonance positions x = kR in each angular momentum

channel m:

n Jm−1(nx) Ym(x) = Jm(nx) Ym−1(x). (300)

It should be noted that the denominator of (297) is nonzero only for the regime of below bar-

rier resonances, x <. Otherwise, additional resonances arise whenever βm becomes infinite,

i.e. when

n Jm−1(nx) Jm(x) = Jm(nx) Jm−1(x). (301)

Above-barrier resonances thus occur if either (300) or (301) is satisfied. Yet, these resonances

will typically be so broad that they do not give rise to isolated peaks in the scattering

functions.
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6.3.4 Quasibound states at complex wavenumber

Having obtained the condition for when a resonance is excited in elastic scattering, we now

turn to a complementary approach in which no incident wave is present. Resonances can

also be excited without any incoming wave at that frequency, e.g. if the light is generated

inside, such as in a laser. Also the specific lineshape of a resonance in elastic scattering

depends on the nature of the incident wave and is not a property of the scatterer alone. It is

thus useful and important to consider an alternative definition of the resonant state which

is independent of the manner of its excitation. We will first introduce the concept of the

quasibound state. We will discuss this concept using the example of the dielectric cylinder

we have have considered above, and then turn to the more general significance of such states.

Solutions of the wave equation with no incoming wave are termed quasibound states (or

in the recent literature on resonances of dielectric spheres, quasinormal modes [57], hinting

at the fact that they are not an orthonormal set in the usual sense). Due to the unitarity

of the S-matrix for real k, there can be no such solutions for real values of k. Instead

quasibound states are directly connected with the complex poles of the S-matrix (or in our

simple case the matrix element Sm), the real part of k giving the resonance frequency, and

the imaginary part giving the resonance width. This is because the condition for having a

solution to the matching equations with no incoming wave is just the condition for a pole of

the S-matrix [58]: If in (289) we give the incoming wave (H
(2)
m an arbitrary amplitude Ai,

then the outgoing wave will have amplitude

Ao = SmAi . (302)

If we now set Ai → 0, there can be a finite outgoing radiation if at the same time Sm has a

divergence, requiring us to tune k to the complex value where Sm has a pole.

Thus the complex wavenumber of the quasi-bound state is determined by

Ẽm(r) =

Am Jm(nkr) (r < R)

S̃mH
(1)
m (kr) (r > R) ,

(303)

and the accompanying condition for continuity of the derivatives. These matching conditions

for Ẽ can be satisfied only for a discrete set of complex k at which there exists a nontrivial

solution to the homogenous part of the linear system (290). The latter occurs only at the

zeroes of the determinant

D =

∣∣∣∣∣ Jm(nkR) −H(1)
m (kR)

nJ ′m(nkR) −H(1)′
m (kR)

∣∣∣∣∣ , (304)
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which leads to

nJ ′m(nkR)H(1)
m (kR) = Jm(nkR)H(1)′

m (kR) . (305)

Using the recursion relations for the Bessel functions to eliminate the derivatives, we obtain

the resonance condition

n
[
Jm−1(nkR)− m

nkR
Jm(nkR)

]
H(1)

m (kR) (306)

= Jm(nkR)
[
H

(1)
m−1(kR)− m

kR
H(1)

m (kR)
]

⇒ nJm−1(nkR)H(1)
m (kR) = Jm(nkR)H

(1)
m−1(kR) . (307)

This can be solved numerically to find the real and imaginary parts of kR at which a

metastable state occurs. Equation (307) is a complex equation for a complex variable. If we

restrict kR to be real, then the real and imaginary parts of the equation are precisely (300)

and (301) which we obtained for the scattering resonances. This shows the direct relationship

between the quasibound states and the scattering resonances: For real kR, (307) cannot be

exactly fulfilled, but the closest one can get to satisfying it with real kR is given by the

scattering resonance conditions.

The exact results obtained numerically for the real parts of the quasibound state wavevec-

tors are summarized in Fig. 12. For each m, there exists an infinite sequence of discrete

points in this grid, corresponding to an increasing number of radial nodes in the effective

potential well. The quasibound states are hence labeled by angular momentum and radial

quantum numbers (which we call m and ν), as in the closed circle. We have drawn in Fig.

12 a line of slope m/kR = 1 corresponding to the condition sinχ = 1
n
; resonances to the

right of that line are true whispering gallery modes and we expect their widths to be much

less than the resonance spacing, with the narrowest resonances corresonding to the points

with the largest distance from this line.

Note that the spacing in k of resonances for a given value of m is roughly constant above

the line m/kR = 1, whereas the spacing of resonances below the line increases and hence is

not independent of kR for a given m. The latter are the whispering gallery mode resonances

of primary interest to us.

The uniform spacing of the above barrier resonances can be demonstrated by using the

large argument expansions of the Bessel functions in (307). This is justified at large enough

size parameter nkR� m, noting that nkR > m always holds. One obtains

n cos

(
nkR− π

2
m− 3π

4

)
H(1)

m (kR)

= cos
(
nkR− π

2
m− π

4

)
H

(1)
m−1(kR). (308)
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Figure 12: Resonance positions in the circle of refractive index n = 2 with TM polarization

for the lowest 44 angular momentum numbers m. Each dot corresponds to one

resonance, and the solid line kR = m represents the dividing line between broad

and narrow resonances, with narrow widths expected below it. The horizontal

dashed lines enclose a kR interval in which we count a total of 9 resonances below

the critical line. Compare this observation with the scattered intensity in Fig. 11.

The three narrowest resonances there correspond to the three lowest kR points

at m = 17, 18, 19. The closer the points are to the critical line, the broader the

resonances get.
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Noting that cos(α− π/2) = sinα, this simplifies to

tan
(
nkR− π

2
m− π

4

)
=

1

n

H
(1)
m (kR)

H
(1)
m−1(kR)

. (309)

An important limiting case is n→∞, for which the large argument expansion always applies

if m and kR are fixed. Then the righthand side becomes negligible, so that the resonance

position is given by

kR =
π

n

[
m

2
+ ν +

1

4

]
, (310)

where the nonnegative integer ν is the radial quantum number. This is just the limit of a

closed system with Neumann boundary conditions, J ′m(kR) = 0, in the limit nkR� m, and

it clearly leads to a purely real kR, i.e. to truly bound states.

On the other hand large n is not always necessary to get an approximate result: one

obtains the same expression for the resonance position independently of n, provided the

quotient of the Hankel functions is purely imaginary. This is precisely the case for above-

barrier resonances, where kR > m, and hence we can use the large argument expansion for

the Hankel functions, too. The righthand side in (309) then becomes equal to −i/n, and one

can solve exactly for

nkR =
π

2
m+

π

4
+
i

2

[
ln

1− 1/n

1 + 1/n
− i2πν

]
. (311)

Thus the real and imaginary parts of kR = x + iy can be given analytically in the limit

kR > m:

x =
π

n

[
m

2
+ ν +

1

4

]
(312)

y =
1

2n
ln

1− 1/n

1 + 1/n
. (313)

Since the righthand side in (309) has no real part when kR � m, it does not affect the

condition for the real part of kR. The approximations made here are thus valid either for

large n or for above barrier resonances.

Of greatest interest to us, however, are the long-lived resonances with kR <. For this case,

the ratio of Hankel functions will acquire an m- and k-dependent real and imaginary part,

which will emerge in both resonance positions and widths. Approximate explicit expressions

for resonance widths and positions can be obtained, but are not generally valid for the entire

range of interesting parameters n, kR, m [55] – therefore, we can for now be content with the

simple limiting cases considered here. They are already of practical use because a numerical
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solution of the implicit equation (307) for the real and imaginary part of k at given m and n

is made more efficient by using the approximate resonance positions from (312) as an initial

guess in finding the roots of (307).

6.4 Quasibound states in lasing and fluorescence

The previous considerations have brought us to the quasibound state concept via the reso-

nances in elastic light scattering. Even if we allow the cross section of our dielectric cylinder

to be deformed, TE and TM polarization can still be decoupled (see the remarks in sec-

tion 6.3.2), provided we continue to restrict ourselves to propagation normal to the cylinder

axis. After we clarified the role a complex wavenumber k can play in the original wave

equation, we deduce a rather general statement about quasibound states. To arrive at the

time-independent wave equation (273), we assumed a monochromatic time variation e−ickt,

with k = ω/c according to (270). With the quasibound state boundary condition (no incom-

ing wave), this same wave equation admits solutions only at discrete complex k = ω/c−i γ/c,

where we have split the frequency into its real and imaginay part. Returning to the ansatz for

the time dependence, this implies that the quasibound state decays in time as exp[−iω t−γ t].
This decay is of course a consequence that the system is open and radiates energy away to

infinity. Consequently, the corresponding “radiation boundary condition” is composed only

of outgoing waves which are present far away from the cavity. This is the type of boundary

condition that occurs in many emission problems, in particular in lasing. To see how these

“leaky modes”, which we found in the treatment of the passive cavity, arise in lasing, we

have to take a new point of view: Consider a scalar wave equation of the form

∇2ψ + ñ2k2 ψ = 0, (314)

as it arises for each of the coupled polarization directions in the cylinder. This is similar to

(273) where we made the ansatz of a steady-state time dependence with real k. If we do

indeed require k to be real, then in order to find a solution satisfying the radiation condition,

we permit the refractive index to be complex inside the resonator, which we denote by

ñ = n− in′, where n is the real part. The imaginary part allows to introduce an amplifying

medium. Consider the simple example of a plane wave exp[iñkx] which will clearly grow

with x in the direction of propagation. This is the “energy source”, but note that the

detailed mechanism of this energy production, for example the pumping mechanism, is not

defined in this way. Nevertheless, outside the cavity, we again assume air with ñ = 1 with

matching conditions that are appropriate for the given polarization. Finally, let us assume
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TM polarization as before in the scattering problem. The solutions for the exterior and

interior field are ψext and ψint.

Let us now recast (314) as

∇2ψ + n2k̃2 ψ = 0 , (315)

where n is the real part of ñ as defined above, and k̃ = k−i k n′/n is the complex wavenumber

inside the cavity, which reduces to k̃ = k outside. This recast equation is almost of the form

of (288), except that k has different values inside and outside the cavity. If instead, we also

had k̃ = k− i k n′/n outside, the solutions of (315) were exactly the quasibound states of the

passive resonator (i.e. solutions of the Helmholtz equation at complex k) if the deacy rate

was defined as as

γ = ck n′/n. (316)

We now may argue that adding or dropping the imaginary part of k̃ outside the resonator

makes only a small difference if γ is small: In fact, as can be checked (cf. [55]) by inspecting

the large-argument asymptotics of the Hankel function H(2), the field of a quasibound state

at distances larger than ≈ c/(2γ) from the cavity grows exponentially due to retardation, but

within this physical range ψext vanishes as γ → 0. Therefore one can write ψext(r) ≈ γζ(r).

If we expand ψint(γ) and ζ(γ) in a Taylor series in γ, then to linear order the γ-dependence

of ζ, but not that of ψint, can be dropped in the full solution. Therefore, the stationary state

of the active medium described by (314)) or (315), as well as the metastable decaying state

obtained by replacing the real valued outside wavenumber k by k − i k n′/n are identical to

first order in γ within an area of order γ−2.

In conclusion, we have seen that long-lived quasibound states appear not only as resonances

in elastic light scattering but also as stationary states in emission problems at low pump rate

(characterized by γ = ck n′/n). When asking for the intrinsic properties of such long-lived

states, it is often a good starting point to consider first the limiting case of no losses, i.e.

the closed cavity. In the next section, we discuss the familiar concept of Gaussian beams as

freely propagating waves, and how they can be used to describe resonator modes. Although

since the work of Fox and Lee [62] this is the standard approach to describe laser resonators

[28], this approach has some severe limitations for microresonators.

6.5 Paraxial approximation and the parabolic equation

In free space, the spectrum of electromagnetic waves is not only continuous but highly de-

generate, as can be seen, for example, by choosing plane-wave solutions of the Helmholtz
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equation and noting that at each frequency an infinite number of propagation directions can

be chosen. There exists a class of approximate free space solutions of the Helmholtz equation,

the Gaussian beams. Gaussian beams are obtained by introducing the slowly-varying enve-

lope approximation in the wave equation. This is a special case of a frequently encountered

approximation which is labelled with different names, for example adiabatic approximation,

paraxial approximation, or Born-Oppenheimer approximation. In the theory of partial dif-

ferential equations one also finds the name “parabolic-equation” method, because the main

step is to neglect the second derivative of a slowly-varying “envelope” function, which re-

sults in an equation of the type of the time-dependent Schrödinger equation for the latter.

In optics, this approximation leads to the Fresnel propagator describing diffraction in the

limit of small angles with the optical axis.

6.5.1 Gaussian beams and the short-wavelength limit

Gaussian beams play a prominent role in traditional laser optics, because they arise naturally

as solutions in parallel-mirror resonator structures, and they also represent diffraction-limited

propagation. However, they are not in general acceptable functions to describe the modes

of a microcavity. In contrast to free space, it is not even clear a priori how to define the

equivalent of the paraxial condition in a general microresonator structure, such as for example

a circular disk. To clarify this point, we will discuss the paraxial approximation as next.

Behind the paraxial approximation is the picture of a “light beam” propagating in z-

direction. Let us assume that the beam is described by the envelope function

ψ(x, y, z) ≡ u(x, y; z) eikz (317)

which we insert into the Helmholtz equation

∇2ψ + k2ψ = 0 . (318)

As aresult we obtain

uxx + uyy + uzz + 2i kuz = 0 . (319)

With this step we have formally reduced the wavenumber exponent by one, without loss of

information.

In the paraxial approximation we take (319), but neglect the second order derivative

uzz ≡ ∂2u/∂z2. In what situation is this appropriate? The name “paraxial” comes from

a comparison between length scales over which wave solution extends along z and in the

transverse directions, respectively. Let L be the relevant length in the z direction. Now let
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us introduce rescaled coordinates which measure the transverse space in dimensionless form

as [59]

x′ = x
√
k/L, y′ = y

√
k/L, , (320)

while for the longitudinal dimension we set

z′ = z/L . (321)

With this (319) appears as

k

L
(ux′x′ + uy′y′) +

1

L2
uz′z′ + 2ik

1

L
uz′ = 0 . (322)

With multiplication by L/k we obtain

ux′x′ + uy′y′ +
1

kL
uz′z′ + 2iuz′ = 0 . (323)

Thus, the second order z′ derivative can be neglected, if 1/kL� 1. In cases in which this is

fulfilled the paraxial approximation is appropriate.

As 1/kL = λ/2πL� 1 implies λ� L, the paraxial approximation corresponds in fact to

a short-wavelength approximation. The approximation consists in the assumption that the

envelope u is slowly-varying compared to the wave fronts along z. The resulting equation in

the original coordinates reads as

−
(
∂2

∂x2
+

∂2

∂y2

)
u = 2ik

∂u

∂z
. (324)

This equation is mathematically of a fundamentally different type than the Helmholtz equa-

tion: whereas the former is an elliptic partial differential equation, the latter is parabolic.

The difference is that solutions of an elliptic equation are determined by solving a boundary-

value problem, while solutions of (324) are specified by initial conditions along a line z = z0,

for example. If we try to impose boundary conditions on (324) by specifying the values of

u on a closed surface in x, y, z (e.g. a microresonator), there will in general be no solution

for any k, whereas the original eigenvalue problem (318) always exhibits solutions satisfying

the boundary conditions for a discrete set of k-values. This well-known consequence of the

theory of characteristcs [61] by which second-order partial differential equations are classi-

fied explains why paraxial approximations in general do not allow to find all the modes of a

resonator.

Let us put it in other words: Equation (324) is formally analogous to the time-dependent

Schrödinger equation in which we substitute z ↔ t and k ↔ m/~. We know that this
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equation uniquely determines the time evolution of any initial wave packet prepared at time

t = t0. This corresponds to specifying the solution of (324) at some z = z0. Clearly, if in

addition to the initial condition we also want to impose an arbitrary “final distribution” of

u at some other time t = t1, then, in general, a contradiction will arise to the unique time

evolution. Only for special choices of initial distributions can the final condition be met.

Boundary conditions on a closed surface in the “spacetime” spanned by x, y, z are therefore

not generally consistent with (324). Now, based on this parabolic equation how can we find

the modes of a closed resonator?

6.6 Gaussian beams in free space

There are various schemes by which this can be accomplished for some subset of modes, and

the vast majority of conventional resonator calculations in optics are based on such methods

[28]. In order to discuss these approaches and their limitations for microcavities, we first

recall how the propagation along z (or the “time evolution”) can be expressed in terms of

the retarded Green function G:

u(x′, y′; z′) =

∫
G(x′, y′, z′; x, y, z0)u(x, y; z0) dx dy . (325)

The Green function of the free particle time dependent Schrödinger equation, also called its

propagator [60], is well known from quantum mechanics [14] as well as from the theory of

thermal conduction [61] (where it appears with an imaginary time scale):

G(~r ′, t′; ~r, t) =

[
k

2π i (t′ − t)

]d/2

eik(~r ′−~r)2/2(t′−t) (k ≡ m/~). (326)

Here, d = 1, 2, 3 is the number of spatial dimensions. This result reminds us of an-

other important feature of the parabolic equation: The above function describes how a

wavepacket localized at a single point ~r at time t spreads with time. Such pulse spread-

ing is completely absent in the time dependent Green function of Maxwell’s wave equation,

(∇2 − ∂2/∂(ct)2)u = 0, where the time dependence is simply given by the effect of retarda-

tion, G ∝ δ(t′ − t−
√
x2 + y2 + z2/c) (in three dimensions).

The discussion in quantum mechanics textbooks usually applies to three space dimensions

(d = 3). However, we require the analogous objects for the case of two spatial dimensions

(d = 2) – in the paraxial approximation, z takes the role of a time parameter and hence

leaves only x and y as spatial coordinates. The reduced dimensionality introduces different

prefactors in Green’s function but leaves the basic implications of the paraxial approximation
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(including pulse spreading) unchanged. With d = 2, (325) describes the transverse profile of

a paraxial beam, as it propagates along the z axis. The equation is identical to the Fresnel

wave propagation formula [63] for the field ψ, if we use the definition of u in (317).

The Green function in 325, alias the Fresnel propagation kernel, defines an integral equa-

tion for the transverse mode functions u(x, y), which is a frequent starting point for deter-

mining resonator modes in the paraxial approximation. Before we turn to the problem of

resonator modes, it is useful to consider first the eigenfunctions of (325) in free space which

are called Gaussian beams. The derivation of the fundamental Gaussian beam profile fol-

lows the analogy between (324) and the time dependent Shrödinger equation. An important

solution is the minumum-uncertainty wavepacket,

u(x, z) =
1

(2π)1/4

1√
σ + i z

2kσ

exp

[
− x2

4σ2 + 2iz/k

]
, (327)

where σ is the width of the wavepacket in x direction at “time” z = 0. An analogous form

can be found for the other transverse direction, y, and the full wave function requires taking

the product of both profiles. This separability is a consequence of the fact that we have

imposed no boundary conditions on the free-space propagation. We can therefore restrict

ourselves without loss of generality to wave functions that depend only on one transverse

coordinate (x) for now.

Note that (327) is a special minimum uncertainty wavepacket with zero average x-momentum.

By the uncertainty relation, σ is related to to the spread in wavenumber kx through

σ∆kx = 1/2 . (328)

The wavepacket therefore has a nonzero width ∆kx in Fourier space, which will lead to

divergence as a function of “time” z. By decomposing prefactor and exponent into their real

and imaginary parts, it is straightforward to show that (327) describes a standard Gaussian

beam [64], if we reinstate the definition ψ = u exp(ikz) and interpret 2σ as the minumum

spot size at z = 0. The divergence, or angular beam spread, is given by

θ = arctan

(
1

k σ

)
. (329)

It must be emphasized that the Gaussian beam is not an exact solution of the free-space

Helmholtz equation (318), but becomes exact only in the paraxial limit. The beam spreading

is, however, not an artefact of this parabolic equation method. It correctly describes the

conjugate relation between spot size and transverse wavenumber which is a consequence of

diffraction.
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6.7 Gauss-Hermite beams

The spot size 2σ is a parameter at our disposal, by which we can determine the relative

uncertainties in position and momentum according to (328). This freedom is important when

one attempts to construct approximate resonator modes by properly adjusting Gaussian

beams, as we will see below. Further generalizations of the fundamental Gaussian beam are

possible in free space, by allowing the transverse amplitude to vary. An important special

case are the Gauss-Hermite beams which are constructed as follows. If we set z = 0 in (327),

then the resulting instantaneous Gaussian

u0(x) =
1

(2π)1/4

1√
σ
e−x2/4σ2

(330)

can be formally interpreted as the ground state wavefunction of a one dimensional harmonic

oscillator,

− ~2

2m

d2un

dx2
+

1

2
mω2 un = En un, (331)

in which formally identify the oscillator length with the beam spot size,

` =

√
~
mω

≡
√

2σ . (332)

Higher order eigenfunctions can be generated by acting on u0 with the formal creation

operator7

a† ≡ 1√
2
(Q̂− i P̂ ), (333)

where we defined the operators

Q̂ ≡ x

`
=

x√
2σ

, (334)

P̂ ≡ `

i

d

dx
=

√
2σ

i

d

dx
. (335)

The solutions are products of Hermite polynomials and the Gaussian u0. From this construc-

tion at z = 0, however, it is not directly obvious how the beam shape changes as it propagates

along z. To see this we will define a generalized creation operator c† which properly describes

the spreading (divergence) of the beam, and which, when applied to the z-dependent u(x, z)

of (327), generates functions which are solutions of the parabolic equation (324).

7Note that the operators we define now are motivated solely the mathematical structure of the problem.

They do not represent quantum mechanically relevant entities like position or momentum, nor are they

physically related to the operators of section 2.
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For propagation in the x − z plane to which we restricted our attention, the transverse

beam coordinate is x, whereas z is the propagation direction playing the role of a time

variable. Let us define the following dimensionless quantities

p ≡ 1

2kσ
, (336)

q(kz) ≡ p kz − 2 ip (kσ)2 ,

where k and σ are the parameters from (327) for which we thus obtain

u(kx, kz) =
1

(2π)1/4

√
−ik

q(kz)
exp

[
ip

(kx)2

2 q(kz)

]
. (337)

We can now define a generalized form of the creation operator (333) as

c† ≡ p∗k x+ i q∗
∂

∂(kx)
, (338)

c ≡ p k x− i q
∂

∂(kx)
, (339)

which in the limit z = 0 reduces to (333) because then q = −ikσ. One can verify that (338)

and (339) lead to the correct commutation relation [c, c†] = 1, as a direct consequence of the

fact that the quantities defined in (336) satisfy the relation

q∗p− q p∗ = i (340)

for all z. We included complex conjugation of p even though it is real, in order to highlight the

similarity to the quantum commutation relation between conjugate operators – and indeed,

p can be interpreted formally as the conjugate momentum of the complex trajectory q(kz)

because it satisfies the equation of motion p = dq/d(kz) with dimensionless time kz.

For c† generating Gauss-Hermite beams, this operator must exhibit two additional qualities

which we check in the following.

• First, we verify by direct application of (339) that c annihilates the fundamental beam

u(x, z) given in (327).

• Second, we verify that (c†)m u(x, z) withm = 1, 2 . . . is again a solution of the free-space

parabolic equation (324).

This latter property requires that c† commutes with the differential operator

L ≡ ∂2

∂(kx)2
+ 2i

∂

∂(kz)
(341)
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which in fact corresponds to (324) written in operator form. Thus, in operator notation the

parabolic equation simply reads as

Lu = 0, (342)

where we still assume that the y dependence can be separated off. Using the definitions in

Eqs. (338) and (336), we obtain

c† L− L c† = 2

(
d q∗

d(kz)

∂

∂(kx)
− p∗

∂

∂(kx)

)
, (343)

where the righthand side vanishes because of the equation of motion d q∗/d(kz) = p∗. This

result means that if u is a solution with Lu = 0, then c†u is also a solution, because

L(c†u) = c†(Lu) = 0. (344)

Thus, we have shown that the set of Gauss-Hermite beams are solutions of the free space

wave equation in paraxial approximation.

6.8 Resonator modes in the parabolic equation approximation

The construction of resonator modes using the results obtained so far requires us first to iden-

tify what is meant by the z axis along which the beams propagate, if the system is bounded

by some surface. For simplicity, we first assume that this boundary is perfectly reflecting,

which corresponds to Dirichlet boundary conditions. We can approach this situation from

two logically distinct directions.

Traditionally it is assumed that the mirrors are shaped such that they precisely match

the wavefronts of a Gaussian beam for some value of spot size σ and wavenumber k. On

the other logical side one can start with a desired field configuration for which the shape

of suitable mirrors is sought. The goal is to find modes with a predefined form which is

optimally adapted to a given practical problem. In contrast to the traditional approach this

procedure has the form of an inverse boundary-value problem. It has been addressed in Ref.

[65], and plays a role whenever beams have to be matched to a given situation.

The molecular sieve crystals on which this review focuses, as well as all other self-assembled

realizations of dielectric microresonators such as aerosol or polymer droplets, pose instead

a well defined boundary value problem with little or no freedom of adjusting the cavity

shape. This forces us to take a different route if we wish to extend the results of the previous

subsections.

The application of the parabolic equation method in the diffraction theory of resonators

is presented in great detail in Ref. [59], where, however, the salient features are at times
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obscured by the mathematical apparatus that is necessary to treat wave propagation in

three dimensions with inhomogenous refractive index. In the folloeing we do not take such

complications into account, but approach the solution of the Helmholtz equation (318) with

only x and z as variables, and Dirichlet boundary conditions on the cavity wall which in view

of the situation with microresonators, we assume to be a two dimensional closed surface. The

idea of this approach is that since the Gaussian beam is an approximate short wavelength

solution near some z axis, we can piece together a resonator mode by using Gaussian beams

which follow a closed ray trajectory in the cavity. An example for such a closed orbit is

shown in Fig. 13. It is a nontrivial example where a ray based mode analysis of the present

type leads to accurate results [67]. Each straight segment of the trajectory between two

Figure 13: (a) A stable periodic orbit in an oval cavity. The path can be parametrized by

the arc length s, i.e. the longitudinal distance along the ray from the (arbitrary)

starting point A. reflections occur at lengths sk. The stability of this bow tie

shaped pattern is apparent in (b) where a ray is launched with initial position

and direction slightly off the periodic path: the trajectory is nevertheless confined

to the vicinity of the bow tie, performing an oscillation transverse to the trajectory

in (a). The transverse deviation in position can be measured by a coordinate q

as shown in (c), and likewise p denotes a deviation in momentum (or direction)

of the initial ray. The outcome of the reflection for such a perturbed ray is shown

dashed. Deviations are exaggerated for clarity.

successive reflections defines a z axis for which the analysis of the previous subsections can

be carried out. Assuming a solution of the form 337 in each segment, we determine p

and q in a generalization of (336) such that two requirements are satisfied: The boundary

conditions must be met to the accuracy of the paraxial approximation, and the full solution
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must be single valued (i.e. reproduce itself) after a complete round trip around the ray

orbit (constructive interference condition). We retain the form given in (336), with one

modification. Without modification, the minimum width of the Gaussian beam is located

always at z = 0. We can shift this location by allowing p to be complex, and still maintaining

the relation q∗p − p q∗ = i underlying the construction of the Gauss-Hermite modes. Thus

we define

p ≡ A1 ,

q(kz) ≡ A1 kz + A0 ,
(345)

where A0,1 are complex but restricted to Re(A0A1) = 0.

To follow the wave around the closed trajectory, we introduce a new longitudinal coordinate

s which measures the distance along the whole ray loop from some arbitrary starting point,

say point A in Fig. 13. Then the individual reflections occur after the lengths sk, k = 1, . . . N ,

where N is the number of bounces. Furthermore, let L be the length of the close path. In

order for the wave function to be single-valued, the parameter q governing the spreading in

the transverse wave function must be periodic as a function of s with period L, for example

q(s+ L) = q(s) (346)

for all s in the interval of straight propagation we consider.

6.9 Monodromy matrix

From the boundary condition of vanishing wavefunction at the point of reflection, we get

additional relationships for p and q. Firstly, the phase of the Gaussian beams before and

after reflection must exhibit a jump by π. Moreover, considering a reflection at the point

s = sk, one finds that the vector (q, p) before and after reflection (at s = sk − ∆s′ and

s = sk + ∆s, respectively) must obey the equation(
q(sk + ∆s)

p(sk + ∆s)

)
= M (k)(∆s,∆s′)

(
q(sk −∆s′)

p(sk −∆s′)

)
, (347)

where, M (k)(∆s,∆s′) is a 2 × 2 matrix which depends on the distances ∆s,∆s′ from the

reflection point. It is called the monodromy matrix of the given reflection k. Its explicit form

can be stated in terms of the local radius of curvature R = R(k) of the reflecting surface and

the angle of incidence χ = χ(k) with respect to the local normal [66] as,

M (k)(∆s,∆s′) =

(
2∆s

2 cos χ
− 1 (∆s) (∆s′)

α cos χ

2
R cos χ

2∆s′

R cos χ
− 1

)
, (348)
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where

α =

(
2

R
− cosχ

∆s′
− cosχ

∆s

)−1

. (349)

The linear matrix equation (347) holds only within the paraxial approximation, which for

the reflections means that the transverse spreading at the reflection points shall be small, as

measured by the real part of the exponent of (337), which is

1

2
(kx)2Im

p

q
=

1

4
(kx)2|q|−2, (350)

where we used q∗p− q p∗ = i. A small extent in x relies therefore on |q|/k being small. Away

from the beam waist |q| grows with z, and the growth is smaller when k is large. Hence, the

required limit is again that of large k. For details of the calculations, the reader is referred

to Ref. [59].

6.10 Round trip stability of periodic orbits

As is expected from a short-wavelength aproximation, the monodromy matrix itself has a ray

interpretation. Equation (347) is precisely the transformation that determines how a small

deviation from the periodic ray path changes the outcome of the reflection. As noted earlier,

q and p behave like conjugate variables, and here this fact emerges again. If we interpret

formally q as a cartesian coordinate transverse to the ray direction along which s varies, and

p as the conjugate transverse momentum, then the true periodic orbit would be described

by q = p = 0 and s = 0 . . . L. Nonvanishing p and q at some point s = sk − ∆s′ denote

transverse deviations from the periodic orbit. This leads to straight line trajectories hitting

the surface slightly off the locations where the exactly periodic orbit has its reflections. The

outcome of the reflection of this displaced ray is then a ray deviating from the periodic

path by q(sk + ∆s) in position and p(sk + ∆s) in momentum. To show that these classical

quantities are related by (347) in the linear way of a Taylor expansion for small deviations

requires straightforward but tedious trigonometry [59, 66].

The connection between the two requirements of (346) and (347) becomes apparent, if

we extend the monodromy matrix from a single reflection to include all N reflections of a

full round trip, and ask for the cumulated deviation of the ray, as a function of the initial

displacement in position q and direction (momentum) p. As a result we can see that in a

linear approximation we simply can replace M (k)(∆s,∆s′) in (347) with the product M(s) of

theN individual monodromy matrices. Assume that we start a ray at longitudinal coordinate

s in the first leg of the ray path, s1 ≤ s < s2, with deviation q and p from the periodic orbit

[cf. Fig. 13(a)]. We are then interested in the deviation incurred along one round trip s+L.
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The distance from s to the first reflection is ∆s′ = s1 − s, and the distance between the

first and second reflection accordingly is ∆s = s2 − s1. If we denote the length between

reflections at sk and sk+1 by lk, then the round-trip deviation is obtained from(
q(s+ L)

p(s+ L)

)
= M(s)

(
q(s)

p(s)

)
, (351)

where for the product M(s) of the N individual monodromy matrices is given by

M(s) = M (N)(s− sN , lN−1)×M (N−1)(lN−1, lN−2)

× . . .×M (2)(l2, l1)×M (1)(l1, s1 − s) .
(352)

The periodicity condition (346) requires that the vector ~d = (q(s), p(s)) is an eigenvector

of matrix M(s). Up to now we retained the dependence on the starting coordinate s.

However, the investigation of the eigenvalue problem becomes simpler when we eliminate

this dependence. This is possible because we know how any given trajectory depends on s:

Rays in the cavity follow straight lines, so that q is a linear function of s, whereas p is in

fact a constant. (This can be compared to the similar assumption we made in (345) with kz

instead of s as the longitudinal coordinate). For the vector ~d we can therefore write(
q

p

)
=

(
1 s

0 1

)(
A0

A1

)
= Π(s)

(
A0

A1

)
, (353)

where the matrix Π(s) =
(

1 s
0 1

)
appearing here obviously has unit determinant, independently

of s. Thus we can rewrite the periodicity condition (351) as(
A0

A1

)
= Π−1(s+ L)M(s)Π(s)

(
A0

A1

)
, (354)

which is an eigenvalue equation. We know that the coefficient vector
(

A0
A1

)
here is by con-

struction s-independent, and as a consequence, the s dependence of the matrix product

E = Π−1(s+ L)M(s)Π(s) must cancel out. The matrix E is the monodromy matrix of one

whole periodic orbit, because it characterizes the propagation of small deviations along one

round trip irrespective of where exactly we started. Recall, however, that we set the starting

point s on a specific branch of the periodic orbit. Clearly, the same arguments would apply

with s starting in any other branch, but then the resulting matrix equation will in general

be different.
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6.11 Eigenvalues of the monodromy matrix

Since E is a 2×2 matrix, its eigenvalues and eigenvectors are easily classified, especially since

E can also be shown to have unit determinant [59]. This follows from det(Π) = 1 together

with classical area preservation (Liouville’s theorem) for the ray dynamics; the latter implies

that also det(M(s)) = 1. As detE = 1 the two eigenvalues λ1,2 satisfy

λ1λ2 = 1 and λ1 + λ2 = Tr(E) ≡ t (355)

so that determinant and trace of E fix its eigenvalues via the quadratic equation

λ1,2 =
1

2
t± 1

2

√
t2 − 4. (356)

Three cases can be distinguished depending on the value of t:

t > 2: The eigenvalues are real and have different magnitude.

t = 2: Both eigenvalues are degenerate, λ1 = λ2 = 1.

t < 2: The eigenvalues are complex and both have unit magnitude,

λ1,2 =
1

2
t± i

2

√
4− t2 = e±iφ . (357)

In this case the eigenvectors ~h1,2 are also complex conjugates of each other.

The periodic ray orbit under consideration is called linearly stable if and only if case t < 2

holds. If this is satisfied in one branch of the path, one can show that it also holds in all

others.

The difference between these cases can be appreciated if one writes a general vector ~d =

(q, p) as a linear combination of the eigenvectors,

~d = a~h1 + b~h2 (358)

and asks for its evolution under repeated application of the round trip mapping E. For a

ν-fold round trip we obtain

Eν ~d = aEν~h1 + bEν~h2 = a λν
1
~h1 + b λν

2
~h2 = a eiνφ~h1 + b e−iνφ~h2. (359)

If ~d is a real vector – as it should be if it describes real ray trajectories – then Eν ~d is also real

because E is a real matrix, describing only the trigonometry of the successive reflections and

the straight line ray motion in between (cf. the definitions of Π and M(s)). Therefore, we
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know that in the last equation there can be no imaginary part, and thus nothing is changed

by taking the real part. If ~h1 = (A0, A1), then we have

Eν ~d =

(
Re[(a+ b∗)A0] cos νφ− Im[(a+ b∗)A0] sin νφ

Re[(a+ b∗)A1] cos νφ− Im[(a+ b∗)A1] sin νφ

)
. (360)

Remember that φ is a fixed eigenphase, characteristic of the given branch of the periodic

orbit. If we assume for the moment that ν is not an integer but instead varies continuously,

then the above equation describes an ellipse in the plane spanned by q and p. For integer

ν, the trajectory simply visits discrete points on this elliptical curve every time it completes

a loop. This means that the small initial deviation ~d from the periodic ray orbit leads to a

trajectory which stays close to this original periodic path for all times. The perturbed ray

only performs a small oscillation in transverse position and momentum around this original

path.

In case t > 2, the curve described by Eν ~d is also a conic section, but in this case a

hyperbola instead of an ellipse. To see this, we go back to (360) but with real eigenvalues of

the form λ1 = 1/λ2, cf. (355). Since for real eigenvalues the eigenvectors of the real matrix

E can also be chosen real, we obtain with ξ ≡ λν

Eν ~d = ξ a~h1 +
1

ξ
b~h2 , (361)

which describes a hyperbola if ξ is formally allowed to vary continuously. This construction

tells us that the perturbed ray deviates more and more from the periodic path with increasing

ν. Hence a periodic orbit whose monodromy matrix has trace t > 2 is unstable, and for

t < 2 it is stable.

The question of stability is crucial for the applicability of the paraxial approximation in

constructing resonator modes. Only if a ray orbit is stable can the paraxial approximation be

justified over the whole round trip. In this case one can say that the mirror configuration as

seen by the closed ray trajectory and determined by the radii of curvature R at the successive

reflection points acts in a focussing way. Recall that the spreading of the Gaussian beam in

each ray segment is given by (350). This will be unchanged upon a round-trip if q acquires

only a phase, not a change in absolute value. If we determine q according to (353) with

~h = (A0, A1) being an eigenvector of the monodromy matrix E, then q(s) indeed changes

only by the eigenvalue eiφ when after a round trip we return to the starting point s. This is

a mere phase change provided that the orbit is stable. For unstable orbits, the eigenvalues

are real and different from unity, making it impossible to recover a beam with the original

spread after one period of the orbit.
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6.12 Resonator eigenfrequencies in the parabolic approximation

The use of the parabolic (Gaussian beam) approximation requires that we identify the stable

periodic ray orbits of the resonator at hand. This can in general be a difficult task in

itself, because their number and location can depend rather sensitively on the shape of the

boundary. Furthermore, it must be kept in mind that there may also be modes which are

not in any way associated with stable ray orbits at all.

Assuming that we have found a set of stable orbits, we can then use the Gaussian beam

solutions to construct the corresponding eigenfrequencies (within the parabolic approxima-

tion). This is done by recalling that the longitudinal coordinate s along the orbit plays the

role of a time-like variable due to the approximation made in (324). In order for the modal

wave function to be single-valued upon a round-trip, the dependence on s has to be periodic.

The imposition of periodic boundary conditions introduces a longitudinal “quantum number”

m counting the nodes along the ray path. The equations determining the wave solutions are

themselves periodic in s, and hence the problem is analogous to that of a periodically driven

time dependent system to which Floquet’s theorem applies [59], or equivalently to Bloch’s

theorem governing the band structure of spatially periodic solids. The central observation

there is that the wavefunction acquires only a phase factor when a translation amounting to

the periodicity interval is carried out. This is precisely the content of (357) which however

holds only when a stable orbit is present.

Allowing for transverse excitations according to the harmonic oscillator ladder as described

by the generalized operators (338), an additional transverse mode number n labels the num-

ber of nodes in the two-dimensional Gauss-Hermite beam perpendicular to the propagation

axis. The resulting quantized wavenumber is found to be [59]

k L = 2 π

(
m+

N

4

)
+

(
n+

1

2

)
φ. (362)

where L is the round-trip path length of the stable orbit. N is the number of reflections the

ray undergoes, and this number enters here to take into account the phase shifts associated

with reflection. The phase φ multiplying the transverse excitation state is the eigenphase

of the monodromy matrix as defined in (357). A simple application of this formula would

consist in determining the longitudinal mode spacing. The intuitively expected result is that

an integer number of wavelengths must fit around the ray path.
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6.13 Polygonal resonators

6.13.1 Marginally stable orbits

The stability considerations of section 6.11 provide a conceptual background helping us to

understand why pathological effects can occur when the resonator is bounded by a polygon

with straight sides. The example most relevant here are the hexagonal facets of a molecular

sieve crystal we will present in section 7. In case of the hexagon, the boundary allows neither

stable nor unstable orbits. We have precisely the marginal case t = 2, where the round-trip

monodromy matrix exhibits Tr(E) = 2, so that both of its eigenvalues are unity. The sides

of the cavity are then neither focussing nor defocussing, and the rays deviating slightly from

a closed ray path do not describe an elliptical transverse envelope as they would for a stable

ray. One obtains this result by evaluating the monodromy matrix for a plane interface. The

resonator modes for a straight sided cavity are thus not well approximated by Gaussian

beams, as can also be seen from the simple example of a rectangular cavity, for which the

solutions of the scalar wave equation are (for propagation in the xy plane)

ψ(x, y) ∝ sin kx(x− x0) sin ky(y − y0) (363)

with suitably chosen discrete wavenumbers kx,y and offsets x0, y0.

This simple example bears no resemblance to Gaussian modes but can be solved exactly

because the problem is separable in cartesian coordinates. However, not all polygonal res-

onator geometries permit a separation of variables. This applies in particular to hexagonal

resonators – the geometry exhibited by the facets of the molecular sieves microcrystals with

which microlasers were realized; cf. 7. For a polygon with precisely 120◦ angles between

adjacent sides, any ray lauched at some angle to the surface will go through only a finite

number of different orientations[69], just as in the more familiar rectangular resonator where

there are at most two non-parallel orientations for any ray path. In the hexagon, a ray en-

counters the interface with at most three different angles of incidence. Despite this apparent

simplicity, there exists no orthogonal coordinate system in which the wave equation for the

hexagonal cavity can be solved by separation of variables. This property is not surprising,

since there is only a finite number of suitable coordinate systems available, and on the other

hand there are infinitely many shapes one can think of.

6.13.2 Triangular and hexagonal resonators

Even when separability is lacking, the resonator problem may sometimes be solvable by

an appropriate ansatz. An example for this is a resonator composed of three straight sides
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forming an equilateral triangle on which the fields are assumed to vanish (Dirichlet boundary

conditions). The wave solutions in cartesian coordinates are given by [68]

ψm,n(x, y) = sin

(
2π

3
(2m− n)x

)
sin

(
2π√

3
n y

)
−

sin

(
2π

3
(2n−m)x

)
sin

(
2π√

3
my

)
+

sin

(
−2π

3
(m+ n)x

)
sin

(
2π√

3
(m− n) y

)
.

(364)

This solution is slightly more complicated than the one for the rectangular resonator of (363).

In (364) there is a degenerate set of solutions ψ̃m,n of different symmetry type which are

obtained by replacing sin with cos in the x-dependent factors. We get identical wavefunctions

if we exchange the quantum numbers m and n, replace n by m − n, or replace m, n by

−m, −n (simultaneous sign change); the solutions differ only in sign so that they do not

represent different eigenfunctions. There are, however, true degeneracies as well. They are

characterized by combinations of m and n giving the same wavenumber

km,n =
4π

3

√
m2 + n2 −mn . (365)

Since any linear combination of eigenfunctions with the same k is also an eigenfunction,

there is a considerable ambiguity in the spatial distribution of the wave function whenever

there are degeneracies. For example, for any given m, n we can form the superposition

Ψm,n = ψm,n + i ψ̃m,n . (366)

Shown in Fig. 14 are the three functions ψm,n, ψ̃m,n and Ψm,n for the particular case m =

14, n = 21.

The wavefunction shown in Fig. 14 (c) has nodal lines along the edges of a set of smaller tri-

angles inscribed into the original one. The self similarity exhibited by this solution bears an

intriguing resemblance to the intensity patterns recently reported in unstable laser resontors

with a mirror in the shape of an equilateral triangle [70]. Although further investigations

of this emerging field of open, unstable resonators are needed, it seems possible that the

transverse mode structure observed in the above laser experiment is given by a two dimen-

sional wave equation with solutions similar to the ones shown in Fig. 14. The particular

linear combinations appearing in any given experimental realization can be a result of the

measurement setup or perturbations that lift the degeneracies. In particular, complex-valued

superpositions as given by (366) become relevant in open resonators such as those in Ref.

103



Figure 14: In the equilateral triangle with Dirichlet boundary conditions, degenerate wave

functions (a) and (b) with m = 14, n = 21 are superimposed according to (366) to

obtain a completely different spatial intensity pattern (c). Plotted is the absolute

square of the wave function in a grayscale representation with black as the highest

intensity.

[70]. Whereas for a closed resonator with Dirichlet boundary conditions one can always

choose the solutions to be real without losing any modes, this is not generally possible in

open systems, when travelling waves are assumed to describe the field outside the resonator.

The subdivision into smaller triangles in Fig. 14(c) suggests that modes of other polygonal

resonators can be constructed in an analogous way if the boundary can be decomposed into

eqal equilateral triangles. This is the case in particular for the hexagon, which is composed

of six equilateral triangles. A hexagon mode can hence be pieced together from six copies of

any given solution of the triangle problem. However, solutions obtained in this way do not

represent all the possible modes of the larger hexagon resonator. This is because the triangle

solutions necessarily satisfy Dirichlet boundary conditions on all the sides – also on those

which form the diagonals in the hexagon composition. Clearly, we can expect that there

should also be solutions with even parity under reflection at such a diagonal. These would

then have vanishing derivative on the respective diagonals, i.e., satisfy Neumann boundary

conditions. Unfortunately, there is no exact ansatz such as (364) for these different symmetry

classes of the hexagon.

The hexagon with Dirichlet boundary conditions on its faces therefore is an example of

how not only separation of variables breaks down, but also the more general concept of

integrability fails. The latter essentially means that one can find as many (globally valid)

“good quantum numbers” as there are confined degrees of freedom; we managed to do this in
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the equilateral triangle but cannot label the solutions of the hexagon using only these same

numbers. Integrability carries over to the classical ray dynamics in the form of constants

of the motion. Nonintegrability is known to be one of the central characteristics exhibited

by wave equations whose classical (short wavelength) limit exhibits chaos [60]. When the

ray dynamics is chaotic, this does not imply that the rays move in a stochasitc way. They

are still governed by the deterministic laws of total internal reflection and refraction, and in

particular infinitely many periodic orbits can be found. However, if for the extreme case of

a fully chaotic system we calculate the monodromy matrices for these periodic orbits, they

all turn out to yield TrE > 2 and hence describe unstable (hyperbolic) orbits.

Hexagonal resonators are therefore an example of a “pathological” intermediate class of

microresonators for which the ray dynamics is not chaotic, but not integrable as well. These

systems have been termed pseudo-integrable [68]. It is interesting to observe that the modes

with which the pathological nature of the problem manifests itself are precisely those which

are not required by symmetry to vanish on the diagonals of the hexagon. Or with other

words, parity with respect to the diagonal does not in itself predetermine the value of the

wave function at the corners of the hexagon. Thus, the corners are the root of pseudointegra-

bilty in these polygons with Dirichlet boundary conditions, because they give rise to corner

diffraction. Corners are singularities at which the tangent direction changes discontinuously.

Diffraction arises here because the length scale over which the tangent direction changes (the

radius of curvature) is ideally zero, and hence certainly much smaller than the wavelength

[71]. The angle subtended by the corners determines whether or not a pseudointegrable

cavity is created. In the rectangular cavity, as well as in the equilateral triangle, the effects

of diffraction at the corners cancel each other out.

An interesting wavelength effect was reported in Ref. [72]. Sharp corners of a polygonal

billiard are smoothed over the distance of one wavelength. This means that the system

becomes indistinguishable from a slightly “streamlined” billiard that would be obtained by

rounding the corners in such a way as to obtain an everywhere smooth boundary. This

leads to an apparent contradiction: classically chaotic billiards with a continuously varying

tangent (“smooth” walls) can be infinitesimally well approximated by polygonal domains

that are themselves never chaotic, but at most pseudointegrable. From a stability analysis

of the periodic orbits in either the original chaotic system or the inscribed polygonal approx-

imant, one finds that the former exhibits unstable periodic orbits, whereas the latter displays

only marginally stable periodic paths. Although one should thus expect the resulting mode

structure to be qualitatively different, the spectral structure in a fixed frequency interval can
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become indistinguishable for the two cases. In section 7.2 we will discuss numerical solutions

of the Helmholtz equation, and how this smoothing on a wavelength scale manifests itself in

specific realisations of molecular sieve microresonators.

Because we are interested in dielectric materials forming open resonators, we shall not

go into further detail concerning the intriguing problem of semiclassically quantizing pseu-

dointegrable cavities, but instead we discuss briefly the relevance of corners in the presence

of leaky boundary conditions. The breakdown of the short wavelength approximation near

corners will also manifest itself in the emission from hexagonal dielectric cavities. The con-

cept of pseudointegrability loses its significance in the case of an open resonator, because

dielectric interfaces can destroy integrability as easily as sharp corners do. An example is

the rectangular cavity made up of a homogenous dielectric surrounded by air. The dielectric

constant can be written as ε(x, y) = 1 + εmΘ(|a−x|) Θ(|b− y|) where εm is the permittivity

of the medium. Due to the term 1, the Helmholtz equation cannot be reduced to two one-

dimensional problems for the x and y coordinate separately, as was the case in (363). In the

limiting case of large permittivity the offending 1 can be dropped, which restores separabil-

ity, because this corresponds precisely to the case of a closed resonator. As was observed in

Ref. [73], the boundary conditions of a polygonal resonator (determined in this case by the

spacial distribution of the refractive index) can be of greater significance than diffraction for

essential (in that study statistical) properties of the spectrum. It is thus not clear at present

if dielectric resonators are suitable to search for signatures of pseudointegrability as it was

defined for closed resonators.
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7 Actual realizations of microlasers based on molecular

sieve-dye compounds

After the discussion in previous sections we can now venture to give a definition of what a

microlaser is. A microlaser is a structure in which only a few (in the limit one) mode of the

light field interacts with a collection of atoms or molecules, so that spontaneous emission

processes are enhanced or inhibited, or in which lasing occurs without a visible threshold.

It is in principle possible to observe these cavity effects in large (103 . . . 104 λ) resonators

with small mode volume (confocal resonators). But because of the small frequency spacing

(free spectral range) of the longitudinal resonator modes, cavity effects in large resonators

can only occur when the linewidth of the atomic transition is smaller than the free spectral

range of the cavity – a condition which can only be met by very dilute atomic systems such

as an atom beam, but not by atoms or molecules in a condensed state. As the condensed

state linewidth of atoms or molecules is in the order of 1 nm to 100 nm, cavity effects will

only be observable with resonators exhibiting a correspondigly large mode frequency spacing,

that means resonator sizes of a one half to few wavelengths. In the past, wavelength size

resonators were realized with semiconductors as microdisks [74, 75] or VCSELs (Vertical

Cavity Surface Emitting Lasers) [76]–[80], and with organic dyes in planar resonators as

Langmuir-Blodgett [81] or liquid films [35], or embedded in polymer spheres [82]–[84]. This

work was discussed recently in several reviews [85]-[89] so that here we will concentrate on

microlasers based on organic dye molecules embedded in molecular sieve microcrystals [3].

Before we turn to the proper optical and laser properties, we will shortly discuss the synthesis

of the compounds.

7.1 Molecular sieve crystals as host material for microlasers

As is reviewed in the previous chapter Nanoporous compound materials for optical appli-

cations – Material design and properties, molecular sieve materials are characterized by a

crystallographically defined framework of regularly arranged pores. In Table 1 we list some

sieves with wide channel pores, in which optically effective organic molecules can be in-

serted. Among the listed materials especially the aluminophosphate AlPO4-5 (molecular

mass 1463.4 g/mol) can be synthesized with good optical transparency and low internal

scattering losses. In addition, the AlPO4-5 channel pores exhibit a diameter of 0.73 nm,

fit to accommodate a variety of laser active organic dye molecules. The structure is shown

in Fig. 15. AlPO4-5–crystals are crystallized from aqueous or alcoholic solutions under hy-
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Table 1: Lattice constants and free pore diameter φ of molecular sieves with linear channels

[90].

a/nm b/nm c/nm φ/nm

hexagonal

mazzite 1.84 0.76 0.74

AlPO4-5 1.34 0.84 0.73

zeolite L 1.84 0.75 0.71

gmelinite 1.38 1 0.7

offretite 1.33 0.76 0.68

CoAPO-50 1.28 0.9 0.61

cancrinite 1.28 0.51 0.59

orthorhombic

AlPO4-11 1.35 1.85 0.84 0.63×0.39

mordenite 1.81 2.05 0.75 0.70×0.65

drothermal conditions, with the addition of an organic structurizing agent, called template.

The template is a necessary device in the synthesis of molecular sieves to direct the chem-

ical reactions towards the desired crystal structure. For the synthesis of the AlPO4-5 laser

crystals tri-n-propylamine was used as template. The preferred pH range for the synthesis is

mildly acidic to mildly basic, while the source of phosphor is mostly orthophosphoric acid,

and the sources of aluminum are pseudoboehmite or alkoxides [91]. It was shown that sin-

gle crystals with nearly perfect morphology can be grown using hydrofluoric acid [92], and

with a specially prepared and aged aluminum hydroxide gel crystal sizes around 1 mm in

c-axis direction were obtained [93]. In addition, microwave heating proved to increase the

crystallization rates by more than one order of magnitude [92, 94].

Pure AlPO4-5 crystals are optically transparent from below 400 nm to above 800 nm and

exhibit a refractive index of n(500 nm) = 1.466. After removing the template (usually by

heating) they show practically no birefringent properties. X-ray diffraction revealed patterns

which are consistent with space group P 6
m

cc as well as P6cc. The latter group, however,

corresponds to a polar structure: In fact, the 4 in the formula AlPO4-5 is the result of the

strict alternation of Al and P in the tetrahedral nodes of the framework, which prevents

108



Figure 15: Structure of the hexagonal AlPO4-5 molecular sieve. The corners of the polygons

are occupied alternately with aluminum and phosphorus, while the polygon sides

represent oxygen. The hexagonal c-axis is oriented along the channel pores.

the corner-sharing oxygen tetrahedra to occur with odd numbers, and which leads to an

alternating stacking of Al and P in the direction of the channels (c-axis); cf. Fig. 15. This

alternance is assumed to cause the crystallographic polar nature [95] of the framework [96].

The macroscopic polar nature of AlPO4-5 single crystals was proven recently in scanning

pyroelectric microscopy investigations [97], and it was observed that AlPO4-5 crystals are

usually twinned. The murky stripes inside the pyridine 2-loaded crystals shown in Fig. 18

and their slightly bowed side faces could well be a result of this kind of twinning. At this

moment it is not clear, however, to what extent twinning should affect the properties relevant

for luminescence and lasing discussed here.

Up to now laser action was obtained in two different compounds, namely in AlPO4-

5 loaded with 1-ethyl-4-(4-(p-dimethylaminophenyl)-1,3-butadienyl)-pyridinium perchlorate

(pyridine 2 [98]), and with a modified rhodamine B dye. In the following we will discuss the

two materials in more detail.
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Figure 16: Structure formula of the dye 1-ethyl-4-(4-(p-dimethylaminophenyl)-1,3-

butadienyl)-pyridinium perchlorate (pyridine 2 [98]); molecular mass 378.9 g/mol.

Figure 17: Morphology of typical pyridine 2/AlPO4-5 crystals; left: without lasing proper-

ties, right: with lasing properties.

7.1.1 AlPO4-5/pyridine 2 compound

These AlPO4-5–dye compounds were synthesized [99] following a procedure in which the dye

1-ethyl-4-(4-(p-dimethylaminophenyl)-1,3-butadienyl)-pyridinium perchlorate (trade name

pyridine 2 [98]), cf. Fig. 16, is added to the template or to the aluminum hydroxide sus-

pension [100, 101, 102]. After 1 h of hydrothermal synthesis dark red crystals with a length

of up to 100 µm are obtained. As the linear dye molecules fit snugly into the 0.73 nm wide

channel pores of the nanoporous AlPO4-5 host, they become aligned along the crystal c-axis.

As a result the compound exhibits strong dichroism, and the emitted fluorescence light is

polarized parallel to the c-axis. This is documented in Fig. 18. It is also observed that

with the inclusion of pyridine 2 the entire compound acquires pyroelectric properties and

an optical second order susceptibility [3]. Even though the size of the dye molecules is well
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Figure 18: Transmission micrographs of the dichroism in dye-loaded AlPO4-5 crystals; the

rod-shaped crystals contain ca. 0.1 wt-% or 1 pyridine 2 molecule per 260 unit

cells, while the barrel-shaped ones (shown in the inset) enclose rhodamine BE50

(ca. 0.5 wt-% or 1 molecule per 75 unit cells). Only the polarization component

parallel to the optical transition moment of the molecules is absorbed. In the

rod-shaped crystal the pyridine 2 dyes are completely aligned, whereas with the

rhodamine BE50 dye in the barrel-shaped crystals we observe only a weak depen-

dence of the color upon the incident polarization. Left: incident light horizontally

polarized; Right: incident light vertically polarized.

compatible with the channel diameter, the dye content visibly affects the crystal morphol-

ogy. Regular hexagonal crystals with a rodlike form, as e.g. the ones shown in Fig. 17(left),

or Fig. 18, are obtained when the dye content is low, around 0.1 wt% or 1 molecule per

260 unit cells. At higher concentrations the dye accumulates in the middle of the crystal,

and the disturbances grow: at a dye content of ' 0.2 wt%, crystals with a characteristic

fascicular shape resulted; cf. Fig 17(right). Given the small size of the crystals the dye con-

tent was determined by chemically dissolving them. With this method, however, it is not

possible to accurately determine the spatial distribution of the dye. Therefore the content

was also evaluated qualitatively by comparing the depth of the color. It is only with these

fascicled pyridine 2-loaded crystals where laser emission was observed. Apparently, in the

undisturbed rod-shaped crystals the low concentration of dye does not spoil the growth, but

it is not sufficient to provide the necessary optical gain for compensating all losses either.
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Figure 19: Structure formula of the new dye rhodamine BE50 (ethanaminium, N -[6-

(diethylamino)-9-[2-(N,N -dimethyl-3-amino-1-propoxycarbonyl)phenyl]-3H-

xanthen-3-ylidene]-N -ethyl-chloride) molecular mass 564 g/mol [103].

7.1.2 AlPO4-5/rhodamine BE50 compound

The second molecular sieve dye compound which exhibited lasing properties was obtained

by including a modified rhodamine B dye in an AlPO4-5 crystal. The size of rhodamine

molecules exceeds the dimensions of the channel pores in AlPO4-5 crystals. As a result the

rhodamine B is normally not accepted inside crystal pores but adheres at the exterior. The

group of Schulz-Ekloff and Wöhrle started an attempt to accomplish rhodamine inclusion in

AlPO4-5 crystals, even so the pores are too small. Their idea is to modify the dye molecule

in a way that makes the dye molecule electrically resemble a template molecule. Their

new derivative rhodamine BE50 (ethanaminium, N -[6-(diethylamino)-9-[2-(N,N -dimethyl-

3-amino-1-propoxycarbonyl)phenyl]-3H-xanthen-3-ylidene]-N -ethyl-chloride; cf. Fig. 19) was

synthesized by esterification of rhodamine B (Rh B) with 3-dimethylamino-1-propanol [103].

It was shown that the concentration of rhodamine BE50 (Rh BE50) achievable by crystalliza-

tion inclusion in AlPO4-5 exceeds the possible Rh B concentration by a factor of 3–4. This

was attributed to the different molecule structures, i.e., to the zwitterionic nature of Rh B

on one hand, and to the additional positive charge of a protonated aliphatic amino group of

Rh BE50 on the other hand [103]. The latter molecules with the localized positive charge

are more compatible with the AlPO4-5 framework than the delocalized charge of Rh B. As

a consequence they observe that at a given dye concentration Rh BE50 inclusion leads to a

better crystal morphology than Rh B inclusion [104].

The gel for the synthesis of the AlPO4 crystals is prepared according to recipes [95, 105]

which are modified for the purpose of crystallization inclusion of dyes [106]. To a suspension

of 61.6 mmol Al2O3 as aluminum source [107] and 75 g deionized water, 61.6 mmol P2O5 [108]

in 11.3 g deionized water is added under mechanical stirring. After 5 min a uniform gel formed
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Figure 20: Morphology of typical rhodamine BE50/AlPO4-5 crystals with lasing properties;

dye content ca. 0.5 wt-% or 1 dye molecule per 75 unit cells.

and then 92.4 mmol tripropylamine [109] is added slowly. Subsequently, the appropriate

amount (0.1–10 mmol) of Rh BE50 dye powder is mixed with the gel. The synthesis of the

Rh BE50/AlPO4-5 crystals is performed by microwave heating [110], which proved to be

superior in respect of avoiding damage of sensitive dyes like coumarines [111] as well as of

reducing the time of synthesis [103]. Unlike the pyridine 2 molecules, which with a diameter

of 0.6 nm fit into the 0.73 nm wide pores of the AlPO4-5 host, the Rh BE50 molecules

with dimension of 0.91 × 1.36 nm2 are accommodated in defect sites, or mesopores, of the

host crystal. Remarkably, up to concentrations of 1 molecule per 75 unit cells this remains

without any visible negative consequences for the crystal morphology, as is documented in

Fig. 20.

In Fig. 18 the dichroic properties of the compound are illustrated. In comparison with

the pyridine-2/AlPO4-5 compound, the dichroism of the Rh BE50 compound is reduced and

the fluorescence emission is only partially polarized. This is an indication that the electrical

anisotropy of the host structure does not fully carry through the mesopores, resulting in a

weak dye alignment in the statistical average.

7.2 Microresonator structure

As is visible in Fig. 18 – and as the polarization of the emitted fluorescence of the compounds

indicates – the absorption, as well as the emission dipole moment of the included dyes are

oriented preferentially along the crystal c-axis (in the pyridine 2/AlPO4-5 compound the

orientation is complete). As dipole emission along the dipole axis is not possible, the emis-
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sion parallel to a plane perpendicular to the prevailing dipole orientation (i.e. the hexagonal

axis) is enhanced. Here a bundle of emission directions meets the condition for total internal

reflection (TIR) at the hexagonal side faces inside the crystal. In a whispering-gallery-mode-

like way the corresponding emission can circulate sufficiently often to accumulate the gain

required to overcome the lasing threshold; cf. Fig. 2 in which this intuitive model is illus-

trated for a particular ray bundle of high symmetry. However in section 6 we have shown

that for resonators with a sizes in the order of a few wavelengths the naive ray picture does

not correctly represent the field modes. E.g. the ray picture insinuates a mode concentration

in the center of the faces but field-free corners. This, however, is not consistent with the ex-

perimental evidence, which clearly shows that the emission occurs at the corners; cf. Fig. 26.

As we already pointed out in section 6.13, the main feature that distinguishes the hexagonal

resonator from other common whispering-gallery type cavities such as microdroplets [112]

or semiconductor disk lasers [67, 113], is that the latter do not exhibit sharp corners and

flat sides. There we described that portions of the boundary in convex resonators act as

focussing or defocussing elements, whereas the straight sides of a hexagon are neither one

nor the other. As a result we have shown that ray paths in the hexagon display a degree of

complexity that cannot be classified as chaotic and was called pseudointegrable.

The closed ray path underlying Fig. 2 is only one member of an infinite family of periodic

orbits of the hexagon billiard that all have the same length, L = 3×WoF . Long-lived cavity

modes exist only if the corresponding rays satisfy the condition of TIR at the interface,

sinχ > 1/n, where χ is the angle of incidence with respect to the surface normal. In a

naive ray approach one would furthermore obtain the spectrum of modes by requiring an

integer number of half wavelengths to fit into L, leading to constructive interference on a

round-trip. As we shall see shortly, this estimate is justified, even though a proper treatment

of the ray-wave connection has to take into account that any given mode is in fact made up

of a whole family of different ray paths. The ultimate breakdown of the ray model, however,

occurs when a ray orbit hits the corners where the classical laws of refraction and reflection

are no longer defined. To characterize the size of the samples, we can specify either the

radius R of the hexagon at the corner points or – more conveniently – the width over flats

(WoF) characterized by R = WoF/
√

3.

7.2.1 Wave picture: spectral properties

Because the hexagonal faces are neither focussing nor defocussing, there is no obvious way of

determining the weight that should be given to individual members of a ray family in order
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Figure 21: Calculated scattering intensity spectra of a hexagonal cylinder for plane-wave

incidence at 15◦ to a side face and detection at 60◦ from incidence. (a) corresponds

to a spectral interval λ ≈ 653 . . . 816 nm for width over flats (WoF) 4.5µm;

(b) covers the interval λ ≈ 605 . . . 680 nm for WoF 7.5µm. Vertical lines are

guides to the eye, indicating narrow resonances. The spacing between resonances

is ∆(kR) ≈ 0.84 in (a) and ∆(kR) ≈ 0.83 in (b), in good agreement with the

characteristic mode spacing ∆(kR)c ≈ 0.83 of a closed hexagonal orbit. Expected

resonances not clearly seen in the above spectra are marked by dashed lines; they

appear at other detection angles.

to predict the spatial structure of the resulting mode. Full solutions of Maxwell’s equations

have therefore been carried out for the TM polarized modes of a dielectric hexagonal prism,

using methods previously applied in [67, 113] and discussed in section 6. In anticipation of

the experimental spectra discussed in section 7.3, we focus on three different sample sizes

characterized by a WoF of 4.5µm, 7.5µm, and 22µm. The aim is to understand the observed

laser line spacings and the emission directionality.

To document that orbits of different families determine the characteristic mode spacing

of the cavity, Fig. 21 shows scattering spectra for different sample sizes in the vicinity of

the experimental wavelengths. Intensity is plotted versus dimensionless wavenumber kR,

where k = 2π/λ. This is the natural scale for comparison with semiclassical predictions

because modes differing by one node along a closed path should then be equally spaced,

with a characteristic separation ∆(kR)c = 2π R/(nL) = 2π/(3
√

3n) = 0.825 independent of

the sample size. The expected wavelength spacing of the modes (free spectral range FSR)

is ∆λ = λ2×∆(kR)c/(2πR) ≈ 23 nm in (a) and ∆λ ≈ 11 nm in (b). For WoF = 22µm, we

obtain ∆λ ≈ 4.9 nm. Figure 21 indeed shows a series of resonant features with approximately

the predicted wavevector spacing.

Each of the peaks marked in Fig. 21(b) is in fact a multiplet which is not resolved, because
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Figure 22: Calculated scattering intensity spectra for slightly rounded hexagonal cavities

(shapes depicted as insets). The incoming plane wave is at an angle of 15◦ to

a facet in (a) and 30◦ in (b); detection occurs at 60◦ from incidence. Spacings

between modes of the same color agree well with ∆(kR)c ≈ 0.83, cf. Fig. 21. All

resonances in (a) appear as doublets. At kR ≈ 42.5 the doublet structure is seen

most clearly. In (b), stronger deviation from hexagonal shape leads to further

lifting of degeneracies. Dashed lines mark expected resonances not seen at this

observation angle.

the splittings of the individual modes comprising the multiplet are smaller than their passive

linewidths. There is evidence for this because several of the peaks are very asymmetric, and

in particular exhibit a steep slope on one side. For an isolated resonance, the most general

lineshape that could arise is the Fano function (of which the Lorentzian is a special case),

which however does not yield satisfactory fits here.

To further expose the multiplet structure, we modeled deviations from the ideal hexagonal

shape which could lead to narrower individual linewidths and increase the multiplet splitting.

Shape perturbations were chosen that preserve the D6h point group symmetry and hence

remove only “accidental” quasi-degeneracies. The actual perturbation that is present in the

samples of Figs. 24 and 25 eluded experimental characterization, so that a model calculation

can reproduce only generic features which are insensitive to the precise type of perturbation.

One such feature is the average mode spacing after degeneracies have been lifted sufficiently.

Figure 22(a) shows the spectrum of a rounded hexagon where the radius of curvature at

the corners is ρ ≈ 0.9λ (assuming λ ≈ 610 nm for definiteness). No qualitative difference to

Fig. 21(b) is seen, except that the resonant features have become somewhat narrower, thus

enabling us to identify two distinct series of modes with caracteristic spacing ∆(kR)c. This

indicates that departures from sharp corners are not resolved in the wave equation when

their scale is smaller than λ. A qualitatively different spectrum is observed in Fig. 22(b)
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where ρ ≈ 3.7λ. Here, the perturbation reveals three well-separated, interpenetrating combs

of modes, again with period ∆(kR)c. There are 21 distinct resonances in the wavelength

interval of Fig. 22(b), which translates to an average mode spacing of ∆λ ≈ 3.6 nm for a

WoF = 7.5 µm resonator, well in agreement with the experiment; cf. Fig. 25.

In order to verify that no further modes will be revealed by other choices of deformation,

an independent estimate of the average density of modes can be made based on semiclassical

considerations [114]:〈
dN

d(kR)

〉
=

n2 k R

4

×

[
1− 2

π

(
arcsin

1

n
+

1

n

√
1− 1

n2

)]
(367)

Here, dN is the number of modes in the interval d(kR). The result is 〈 dN
d(kR)

〉 ≈ 4.6, and

hence we expect ≈ 22 modes in the interval of Fig. 22(b), again in good agreement with the

actual count.

7.2.2 Wave picture: intensity profile

There is one class of quasi-degeneracies that is not removed by any of the perturbations in

Fig. 22. Their physical origin is time reversal symmetry for the ray motion inside the cavity.

Any of the periodic orbits can be traversed either clockwise or counterclockwise, and the

same holds for more general ray paths. The different propagation directions can be linearly

combined in various ways to obtain nearly-degenerate standing-wave patterns that differ only

in their parity with respect to some of the crystal’s reflection axes. A minute splitting does

exist because the nonintegrability of the ray motion implies that the propagation direction

itself is not a “good quantum number”, i.e. reversals of the sense of rotation are unlikely but

not impossible in the wave equation. This is analogous to quantum tunneling and hence leads

only to exponentially small splittings that can be neglected on the scale of the individual

resonance linewidths [115]. These multiplets have been counted as one resonance in (367).

Following this reasoning, in Fig. 23 the traveling-wave patterns belonging to one of the

resonances in Fig. 21(a) and (b), respectively, is plotted. High intensity ridges inside the

resonator form a whispering-gallery-like pattern that decays from the interface into the cavity

center. The number of ridges in the radial direction (perpendicular to a side face) provides

an approximate analogue of a transverse mode order, however upon closer examination one

sees that the number of ridges and nodal lines is not uniquely defined, in particular along

a diameter joining opposite corners. The modes can therefore not be properly labeled by
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Figure 23: False-color representation of the cross-sectional intensity in the ideal hexagon for

a mode with (a) kR = 22.89 [cf. Fig. 21 (a)] and (b) kR = 42.78 [cf. Fig. 21 (b)].

The resonance width is δ(kR) = 0.10 in (a) and δ(kR) = 0.04 in (b).

“good quantum numbers” characterizing the number of radial and azimuthal nodes – this is

a direct consequence of the nonintegrability of the problem. The most significant difference

to the whispering-gallery modes of a circular cavity is clearly the anisotropic emission. High

intensity is seen to emanate predominantly from the corners and is directed almost parallel

to an adjacent crystal facet. The overall emission pattern is very similar in both modes

despite the large difference in size (or kR) between the two hexagons.

7.3 Laser properties

The dye loaded molecular sieve microcrystals presented in section 7.1.1 and 7.1.2 were excited

with 10 ns pulses from the 532 nm second harmonic of a Nd:YAG-laser, and the emitted

luminescence was collected with a 42◦ aperture lens relaying the microlaser emission to a

spectrometer and an imaging system consisting of a cooled low noise CCD-camera.

7.3.1 Pyridine 2 AlPO4-5 compound

In Fig. 24 the emission and lasing spectra of three pyridine 2-loaded compounds with different

dye content are compared. Fig. 24a represents the class of regularly shaped samples with a

low dye content around 0.1 wt% [cf. also Fig. 17(left)]. In this class the fluorescence emission
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Figure 24: Emission and lasing spectra of different pyridine 2-loaded compounds with from

a to c increasing amounts of included dye. The dye concentration was estimated

empirically based on the sample color depth. The width over flats of sample b

is 4 µm. The free spectral range (FSR) of this resonator is so large (ca. 25 nm)

that only one emission mode acquires the available gain, resulting in single line

emission. On the other hand, sample c is ca. 5 times larger. In this case the

FSR is around 5 nm so that laser emission can occur on a multitude of modes

simultaneously.

maximum was observed between 645 nm to 665 nm, where the shift to longer wavelength

correlates with the increase of dye content that was assessed by the saturation of the red

color. In none of these rod-shaped crystals laser emission was observed.

However, narrow laser emission peaks were observed in fascicled samples with a detected

linewidth of ca. 0.3 nm which was limited by the spectrometer resolution. Here the emission

maxima were observed at wavelenghts up to 695 nm, and again, increasing dye concentration

correlated with increasing redshift (cf. Figs. 24b and c). As already mentioned, together

with the increasing dye content the crystal morphology becomes more and more disturbed.

The observation of a disturbed morphology and the red-shift of the emission spectrum are

consistent with the hypothesis of a host-guest interaction which increases with dye content.

In fact both, the pyridine 2 molecules, as well as the AlPO4-5 framework, carry a static

dipole moment [95, 96]. As a consequence, the increased buildup of electrostatic energy in

the crystal lattice has to be compensated by an increasing amount of stacking faults. On the

other side, the mechanism of the redshift is not unequivocally identified, yet, but is probably

related to the one discussed in [116, 117].
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Figure 25: Lasing spectrum of a rhodamine BE50-loaded AlPO4-5 microcrystal with a con-

centration around 75 unit cells per dye molecule and size of 7.5 µm width over

flats.

7.3.2 Rhodamine BE50 AlPO4-5 compound

Also with these samples the same correlation between the emission wavelength and dye

concentration was observed; cf. also [103]. In contrast to the pyridine 2-loaded samples,

the fluorescence emission was not completely polarized. The observed polarization contrast

cp =
I‖−I⊥
I‖+I⊥

was around 10%, indicating that in the average the Rh BE50 molecules are only

weakly aligned with respect to the host crystal. Laser emission was observed in samples

with a dye concentration around 75 unit cells per dye molecule, corresponding to 0.5 wt%;

cf. Fig. 25.

7.3.3 Laser properties of molecular sieve dye compounds

Independent of the type of loading, in most microcrystals with WoF ' 8 µm lasing was

observed to occur on several sharp lines with instrument resolution limited width (a typical

example is shown in Fig. 25). In general the laser emission lines are not equally spaced.

In fact, the free spectral range (FSR) of 11 nm corresponding to the resonator size of

WoF = 8 µm is far above the line spacing of 3.2, 4.3 and 3.4 nm shown in Fig. 25. This

is in agreement with the theoretical model of paragraph 7.2.1, in which the average lasing

mode spacing (after lifting the quasi-degeneracies in the ideal hexagon) was estimated to

be ∆λ = 3.6 nm. Also in agreement with the theoretical discussion are the regions where
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the laser light leaves the hexagonal resonators. Figure 26(left) shows the laser emission as

bright spots. Clearly the emission is concentrated along the crystal edges. The complex

emission distribution is compatible with the simultaneously recorded spectrum (cf. Fig. 25)

which reveals emission on four modes.

While the average line spacing of 3.6 nm observed in the sample of Fig. 25 is not compatible

with the free spectral range of ∆λ = 12 nm of the corresponding resonator, the 4.2 nm spacing

of the 3 dominant peaks in the sample shown in Fig. 24c is in accord with the FSR resulting

from the 22-µm-WoF hexagonal resonator. On the other hand, the theoretical model for

the 22µm-WoF hexagonal resonator (cf. Eq. (367)) yields an average mode spacing of ∆λ ≈
0.5 nm which is close to the spectrometer resolution. This high spectral density explains the

large background in the lasing spectrum of Fig. 24: It is likely that not all the individual

lasing modes in this sample are resolved, and hence part of the shoulder on which the three

peaks of curve c sit is probably shaped by a series of closely spaced lasing modes.

On the other hand, samples with smaller resonator (WoF ' 4 µm), as e.g. the one shown

in Fig. 24b, emitted one single laser line. Thus the emission is unadulterated by hole burning

induced multimode beating and interference, and this results in the simple emission pattern

shown in Fig 26(right), where two ca. 1 µm-spots (≈ microscope resolution limit) mark the

region of laser emission, which, again, is located at the crystal edges. Remarkably, compared

to larger samples, the ratio of the line peak to the underlying fluorescence shoulder of these

small lasers is an order of magnitude higher (cf. Figs. 24 and 27).

7.3.4 Laser threshold

Figure 27 illustrates the differential efficiency behavior of a typical microlaser with WoF <

10µm and one with WoF > 10µm. Lasing threshold for the latter size samples was around

0.5 MW/cm2, regardless of the type of dye loading. On the other side, crystals of smaller

size (WoF = 4 µm) from the same synthesis batch revealed a considerably smaller threshold

(0.12 MW/cm2) and a factor of > 7 larger differential gain. We assume that this is a

consequence of the quantum size effects which we described in section 5.

It is informative to compare the threshold of molecular sieve microlasers with vertical

cavity surface emitting lasers (VCSELs). For that we convert the pump irradiance I (incident

optical power per unit area) into a flux of photons φ (number of pump photons per second

incident on the mode cross section A)

φ =
I A

h ν
=
I A λp

h c
. (368)
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Figure 26: Patterns of the laser emission show that the emission originates from regions

along side edges. Left: rhodamine BE50/AlPO4-5 compound; width over flats

7.5 µm. An electron micrograph of the sample is shown in Fig. 20 with horizontal

c-axis. Here the c-axis orientation is nearly vertical. The corresponding emission

spectrum is shown in Fig. 25. Right: pyridine 2/AlPO4-5 compound; width over

flats 4.5 µm. The corresponding sample and emission spectrum is represented in

Fig. 24 b.

If η denotes the efficiency with which an incident pump photon actually contributes to an

excitation, then φ× η corresponds to the number of quantum processes per second required

to reach a given level of inversion. Multiplication of this number with the charge of an

electron qe = 1.6×10−19As gives the electric current which corresponds to the pump current

flowing in a comparable electric device, such as a VCSEL. According to (368) the threshold

power density of 0.12 MW/cm2 incident on the surface of the molecular sieve laser shown in

Fig. 24b of 1× 4 µm (cf. Fig. 26b) corresponds to a flux of 1.4× 1016 s−1 532-nm-photons.

If we take into account that the pump field was not polarized, but the dye molecules are

aligned, then only 50% of the pump photons could contribute to the inversion. In addition

the absorption length for 532 nm radiation is longer than the crystal size so that only a

fraction of the incident pump is absorbed by the dye molecules. If we assume that 50% of the

pump are absorbed, then the effects of polarization and absorbtion length together result in a

quantum efficiency of η = 0.25. With this quantum efficiency we obtain a comparable electric

threshold current of 560 µA, which compares well with the threshold current of VCSELs of

comparable size. Thus, in terms of elementary (quantum) pump processes needed to reach

lasing threshold the molecular sieve lasers are as good as actual VCSELs.
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Figure 27: Lasing threshold and differential efficiency of typical AlPO4-5/dye compounds.

Shown is the peak of the laser emission spectrum normalized by the fluorescence

shoulder as a function of the pump power density for the sample shown in Figs. 24b

and 25.

7.4 Photostability

Photostability is usually a critical issue with organic dyes. Corresponding investigations

were carried out with pyridine 2, as well as rhodamine BE50 loaded samples, revealing some

unexpected results.

7.4.1 Photostability of pyridine 2 compounds

The photostability of pyridine 2 compounds was studied with samples exhibiting an undis-

turbed morphology, similar to the one shown in Fig. 18. The samples were irradiated with

10 Hz trains of 10 ns pulses of the 532 nm second harmonic of a Nd:YAG-laser and a power

density of 5 MW/cm2. Figure 28 illustrates the wane of fluorescence activity of a pyri-

dine 2-loaded AlPO4-5 sample under such bleaching irradiation. After a bleaching period of

140 seconds the exposure was interrupted for 18 minutes. Then the bleaching procedure was

resumed. The figure shows that the fluorescence recovers during the intermission.

The physical origin of this unexpected fluorescence recovery is not clear yet. If we assume

that bleaching consists in breaking bonds of the dye molecules, then we have to consider bond

energies in the eV-range. Even if we assume that the dye debris stay encaged in their pores,

spontaneous or thermally activated self healing of broken eV-bonds seems not very probable.

Considering the stereometrically restricted possibilities inside the molecular sieve framework
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Figure 28: Fluorescence activity of a pyridine 2-loaded AlPO4-5 sample under bleaching laser

irradiation. Left: Micrograph of the sample crystal. Center: Fluorescence

activity as a function of time: After a first bleach period of 140 seconds the bleach

beam is interrupted for 18 minutes. During this intermission the fluorescence

recovers to start the second bleach period with 3× stronger emission. Right:

The bleaching laser is incident from the left and concentrated in the center of

the crystal. Shown is the fluorescence distribution at the end of the first bleach

period of 140 s. Clearly visible is the bleached hole in the center, where the bleach

beam was concentrated.

together with diffusion distances of several µm, and the observed recovery time in the range

of minutes, we believe that diffusion of new, intact dye molecules into the irradiated crystal

volume is more plausible than self healing.

As bleaching reduces the concentration of dye, a blueshift of the fluorescence is expected

with increasing photobleaching [95, 96]. However, the 656-nm-fluorescence emission maxi-

mum of this sample is already at the shortest observed wavelength (cf. Fig. 24), correspond-

ing to a low dye concentration, and consequently, to weak dipole interactions. Thus, the

blueshift under these circumstances must be rather small. This explains that a blueshift was

not observed with these pyridine 2-loaded samples.

7.4.2 Photostability of rhodamine BE50 compounds

The rhodamine BE50-loaded samples under investigation contained dye at a concentration

of around one Rh BE50 molecule per 75 unit cells, and therefore bleaching caused a de-

tectable 4 nm shift of the fluorescence towards the blue. The 532 nm bleach irradiance was

0.5 MW/cm2 with this samples. In contrast to the pyridine 2 samples these crystals exhib-

ited laser emission. Observing the laser emission spectrum while bleaching the samples, a
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Figure 29: Effect of photobleaching on the laser emission intensity: short wavelength line b

grows with progressive bleaching, while longer wavelength lines a and c decrease.

further consequence of the blueshift was revealed: Blueshift of the fluorescence reduces the

overlap of the fluorescence band with the absorption spectrum, and as a result, laser modes

at lower wavelengths will suffer less losses with increasing bleaching. This is documented

in Fig. 29, where the intensity of mode b with the shortest oscillating wavelength increases,

while longer-wavelength-modes a and c decrease during the bleach procedure. At the same

time a 0.2 nm blueshift of the oscillation wavelength was detected. We attribute this to a

weak decrease of the refractive index of the resonator material due to the smaller polariz-

ability of the dye debris. In contrast to the pyridine 2 samples, however, recovery of the

fluorescence was not detected. As we mentioned in section 7.1.2 the Rh 50BE molecules are

considerably larger than pyridine 2 molecules, and are encaged in mesopores. As a result

their mobility in the molecular sieve framework is severly hampered. So, diffusion of in-

tact molecules into the bleached volume occurs – if ever – on timescales considerably larger

than minutes. This is probably the reason why fluorescence recovery was not observed in

rhodamine BE50 compounds.
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8 Conclusion

This chapter was centered on microscopic lasers realized with nanoporous materials, es-

pecially molecular sieve dye compounds. We discussed the effects of a microresonator on

spontaneous and stimulated emission properties, and we showed that wavelength scale laser

resonators may exhibit lasing without threshold. Such effects are not just thoughtful ob-

servations, but were investigated in real devices as well, and we reviewed observations of

threshold reduction in molecular sieve lasers.

The microresonators of the molecular sieve lasers which were presented up to now exhibit a

hexagonal resonator geometry. Hexagonal microresonators in which the light field is confined

by total internal reflection at the dielectric boundary define a new class of pseudointegrable

optical structure of which we reviewed the properties in some detail.

As mentioned, molecular sieve microlasers can be fabricated in large amounts with the

same large scale processes which are used to produce the molecular sieve crystallites in the

petrochemical industry. Although applications of such laser powders have not been reported

yet, many practical uses can be envisaged, such as for example in efficient fluorescent, or

even lasing paint pigments or lasing pixels.
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[102] G. Ihlein, F. Schüth, O. Krauß, U. Vietze, F. Laeri, Adv. Mater., 10, 1117 (1998)
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[114] J. U. Nöckel and A. D. Stone, unpublished

[115] M. J. Davis, J. E. Heller, J. Chem. Phys., 75, 246 (1981)

[116] T. Förster, Z. Naturforsch. A, 4, 321 (1949)

133



[117] T. Förster, Fluoreszenz Organischer Verbindungen (Vandenhoeck & Ruprecht, Göttin-
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