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Ray and wave chaos in asymmetric resonant optical cavities
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Optical resonators are essential components of lasers and other wavelength-sensitive optical devices.
A resonator is characterized by a set of modes, each with a resonant frequency ω and resonance
width δω = 1/τ , where τ is the lifetime of a photon in the mode. In a cylindrical or spherical
dielectric resonator, extremely long-lived resonances [1] are due to ‘whispering gallery’ modes in
which light circulates around the perimeter trapped by total internal reflection. These resonators
emit light isotropically. Recently, a new category of asymmetric resonant cavities (ARCs) has been
proposed in which substantial shape deformation leads to partially chaotic ray dynamics. This has
been predicted [2–4] to give rise to a universal, frequency-independent broadening of the whispering-
gallery resonances, and highly anisotropic emission. Here we present solutions of the wave equation
for ARCs which confirm many aspects of the earlier ray-optics model, but also reveal interesting
frequency-dependent effects characteristic of quantum chaos. For small deformations the lifetime is
controlled by evanescent leakage, the optical analogue of quantum tunneling [5]. We find that the
lifetime is much shortened by a process known as ‘chaos-assisted tunneling’ [6,7]. In contrast, for large
deformations (∼10%) some resonances are found to have longer lifetimes than predicted by the ray
chaos model due to “dynamical localization” [8].

The prediction of universal behavior of the whispering
gallery resonances is derived from the limit of ray optics
in which the wavelength of the light, λ, is much shorter
than the radius of curvature of the ARC. Here for simplic-
ity we will focus on the effectively two-dimensional case
of a deformed cylindrical resonator as in Fig. 1 (top); the
case of deformed spheres (e.g. liquid droplets) in the ray
limit has been discussed elsewhere [3]. When the cylinder
is undeformed (circular), the angle of incidence χ is con-
served at each collision and escape occurs isotropically
by the exponentially slow process of evanescent leakage.
When the cylinder is sufficiently deformed a new decay
process, refractive escape, becomes possible [2,4] in which
a ray initially in a whispering gallery trajectory diffuses
chaotically in phase space until it reaches the critical an-
gle, χc = sin−1(1/n), (where n is the refractive index of
the dielectric) and is refracted out of the resonator. This
is illustrated schematically in Fig. 1 (bottom). Since no
refractive escape is allowed for χ > χc, the ray dynam-
ics is equivalent to the non-linear dynamics of a point
mass undergoing specular reflection from the walls of a
two-dimensional “billiard” [9]. For smooth convex de-
formations from a circle this dynamics becomes increas-
ingly chaotic with increasing deformation according to
the KAM (Kolmogorov-Arnold-Moser) scenario [4,10,11].
One stage in this evolution is shown in the Poincaré sur-

face of section (Fig. 2a). Initially, small regions of chaotic
behavior appear near unstable periodic orbits which al-

FIG. 1 Top, deformation of a dielectric cylinder of radiusR to make
an asymmetric resonant cavity (ARC). All results below are for a
quadrupolar deformation of the cross-section, so that the radius as
a function of angle r(φ) = r0(1 + ε cos 2φ)(where ε < 0.2 measures
the size of the deformation and r0(ε) is chosen to maintain a fixed
area). Bottom, regular and chaotic ray trajectories in the plane
perpendicular to the cylinder axis for a whispering gallery orbit for
ε = 0, ε = 0.1; the chaotic trajectory eventually escapes refractively
when the sine of the angle of incidence, sinχ < 1/n.
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FIG. 2 a, Partial Poincaré surface of section showing phase space ray dynamics for several trajectories for ε = 0.072. The sinχ and the
angular position φ are recorded at each collision. The green and red horizontal lines represent the critical lines sinχ = 1/n for refractive
escape for n = 2, 1.54. “Islands” indicate trajectories oscillating around stable periodic orbits. Unbroken KAM curves appear above
sinχ ≈ 0.8; no whispering gallery orbit can cross such a curve. Trajectories below sinχ ≈ 0.8 lying outside of islands are all chaotic, but
when they are followed for 100-200 reflections (as above) they remain near the the adiabatic KAM curves predicted by Eq. (1) (yellow);
except when islands intersect the relevant curve (see the discusssion of peak-splitting in Fig. 4 legend). b, Shift in resonance frequency
with deformation from exact numerical solution of the wave equation for the ARC resonances (solid lines) and from eikonal approximation
for the bound states (symbols, adjusted to agree at ε = 0). Units of frequency are kR = 2πR/λ where λ is the wavelength outside
the dielectric. For ε = 0, the resonances are at kR ≈ 12.1,27.5,44.6 (blue,green, red). Inset schematic shows the generic redshift and
broadening of these resonances with deformations. The redshift is easily understood: the approximate condition for a whispering gallery
resonance is that an integer number of wavelengths fit around the perimeter (see Fig. 4a). As the ARC is deformed for fixed area the
perimeter increases requiring the wavelength to increase.

ternate with stable orbits and their associated islands,
but any chaotic trajectory is confined to a small sep-
aratrix region near the islands by KAM curves (which
correspond to families of regular quasi-periodic orbits).
As the deformation increases these KAM curves break
up, allowing refractive escape of whispering gallery or-
bits. Because ray optics describes the limit λ → 0, the
escape rate due to this process is independent of λ and
should be the same for all resonances corresponding to
the same set of whispering gallery orbits.

To compare the previous model derived from ray optics
[2,4] to solutions of the wave equation we have to over-
come a fundamental problem. In regular (integrable) sys-
tems a set of trajectories on a KAM curve corresponds to
a set of quantized solutions of the wave equation; these
solutions are obtained by finding the KAM curves for
which the conserved actions are appropriately quantized
[12]. For general chaotic systems there exists no such cor-
respondence [12]. For ARC resonances we propose here a
method for establishing an approximate correspondence.
It is known for 2D convex billiards that the regular or-
bits which follow KAM curves and generate caustics in
the real-space ray motion are well-described by an adia-
batic approximation [13]. The (adiabatic) KAM curves
representing whispering gallery trajectories in the surface
of section of Fig. 2a are given by:

sinχ(φ) =
√

1− (1− S2)κ(φ)2/3. (1)

where 0 < S < 1 parameterizes the adiabatic curve and
κ(φ) is the curvature of the ARC boundary at an az-
imuthal angle φ. Although for the deformations of in-
terest the relevant adiabatic curves are “broken” and the
long-time behavior of a chaotic whispering gallery orbit
departs strongly from Eq. (1), we find that for interme-
diate times (∼ 100− 500 collisions) the orbit still follows
closely the nearest adiabatic curve.

Thus we propose that the frequency of the reso-
nance will be well-described by the standard semiclassical
(eikonal) quantization of the integrable dynamics defined
by the adiabatic approximation, even though the reso-
nance lifetime is crucially dependent on the slow chaotic
diffusion away from this curve. With this assumption,
the resonance frequency can be calculated as a function
of deformation by a variant of the eikonal technique of
ref. 14; good agreement with exact numerical solutions
is found (Fig. 2b). The mode indices (quantized actions)
are fixed to their values at zero deformation and the cal-
culation yields both the resonance frequency and the adi-
abatic curve (value of S) corresponding to a given reso-
nance. This adiabatic curve then defines the initial con-
ditions for our ray calculations of the lifetime of a given
resonance.

Using the ray model for the resonance lifetime, we
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calculate the mean escape time of an ensemble of rays
launched with uniform density on the appropriate adi-
abatic curve. At each collision a ray is allowed to es-
cape with a transmission probability (see Fig. 3 legend)
which takes into account both the direct tunneling which
is present without deformation, and the Fresnel scatter-
ing once sinχ < 1/n. In Fig. 3 the ray prediction for the
lifetime is compared to exact wave solutions for three res-
onances associated with the same initial adiabatic curves
but very different wavelengths. Note that above the crit-
ical deformation for refractive escape the widths of all
the resonances agree up to factors of order unity and
also agree well with the ray model. This confirms the
universality of the broadening arising from chaotic diffu-
sion.
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FIG. 3 Logarithm of inverse resonance lifetimes (in units of R/c)
vs. deformation for the same resonances as in Fig. 2b (same color
coding), determined numerically. All three resonances correspond
to an initial adiabatic curve with sinχ0 ≈ 0.8. Dashed blue line
is the result for this adiabatic curve from the ray-optics model for
the kR = 12.1 resonance. The escape probability for collisions at
sinχ is determined by the semiclassical relation sinχ = m/nkR
and the known resonance lifetimes of the cylinder for angular mo-
mentum m (J.U. Nöckel et al., in preparation). Dashed black lines
delimit the cross-over region from evanescent to refractive escape
when the last intervening KAM curve breaks; as expected all three
resonances have approximately the same lifetime above this de-
formation. The discrepancy at small ε (see arrow) is indicative
of chaos-assisted tunneling. Inset: Expanded scale showing the
resonance with kR ≈ 12.1 and its agreement with the ray-optics
approximation (dashed blue) at high deformations. Also shown
(brown) is a resonance with sinχ0 ≈ 0.9, kR ≈ 33.2, which has a
substantially longer lifetime than predicted by the ray-optics model
(dashed brown). The difference marked by the arrow indicates the
dynamical localization of photons.

However, Fig. 3 indicates two significant effects which
do depend on wavelength and are beyond the ray model.
First, we note that for small deformations, where only
tunneling escape is possible, the exact resonance width
actually increases much faster than predicted by the ray
model. We believe that this is due to chaos-assisted
tunneling [6,7], since the direct (angular-momentum-

conserving) tunneling is taken into account by the ray
model. All evanescent (tunneling) processes are forbid-
den within ray optics, however the probability of such a
process decreases exponentially with the tunneling dis-
tance. Consider the whispering gallery orbit traversing
the surface of section of Fig. 2a at sinχ ≈ 0.9. This orbit
lies on an unbroken adiabatic curve and hence will never
escape according to ray optics. However a wavepacket
following this orbit has a chance to tunnel through this
dynamical barrier to the edge of the chaotic region at
sinχ = 0.8 . From this region, chaotic diffusion will take
the wave-packet without any further tunneling down to
the critical angle for refractive escape. Due to the short-
ness of the tunneling step, this new escape path, which
is introduced by the presence of chaos in a classically in-
accessible region of phase space, strongly enhances the
evanescent leakage of these resonances.

Second, we find that for resonances with the longest
lifetimes the ray model predicts too short a lifetime at
large deformations. At large deformations refractive ray
escape is allowed, so the longer lifetime of the wave solu-
tion indicates that this classically-allowed escape is being
suppressed. Precisely such an effect, known as dynamical
localization, has been studied extensively in the theory
of quantum chaos. Unlike a particle (or ray), a wave
is able to explore simultaneously multiple paths while
undergoing chaotic diffusion. Typically after a charac-
teristic time these multiple paths destructively interfere
suppressing further diffusion. Such an effect has been
observed indirectly through the suppression of electron
ionization in atomic hydrogen in an intense microwave
electric field [8].

Finally, we briefly analyse the onset of directional emis-
sion shown in Fig. 4, and discussed in more detail else-
where [15]. As shown in Fig. 2a, the dynamics of whis-
pering gallery orbits consists of a rapid motion along
adiabatic curves and a slow chaotic diffusion transverse
to them. Hence the whispering gallery orbits of inter-
est, which begin far from the critical line sinχ = 1/n,
will diffuse slowly until the adiabatic curve is reached
which is tangent to the critical line and then will escape
rapidly near the points of tangency (Fig. 2a). These
points correspond to the points of maximum curvature
of the ARC according to Eq. (1). Rays escaping near
the critical angle are emitted roughly tangent to the sur-
face predicting strong emission maxima in the far-field in
directions tangent to the points of maximum curvature
(Fig. 4a). This model predicts that all ARC whisper-
ing gallery resonances will have approximately the same
directional emission pattern for a given index of refrac-
tion (Fig. 4b). This universality persists even when the
adiabatic approximation breaks down, as is the case in
Fig. 4c where the index of refraction is such that there
are islands in the surface of section at the minima of the
relevant adiabatic curve. Then the chaotic trajectories
circulate around the outside of the islands (Fig. 2a). In
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FIG. 4 a False color representation of the electric field intensity in the TM mode for the kR = 45.15 resonance at ε = 0.11 determined from
the exact numerical solution. Intensity is higher for redder colors, and vanishes in the dark blue regions. One clearly sees the high intensity
regions in the near-field just outside the surface at the highest curvature points φ = 0, π, and the high emission intensity lines (green)
emanating from these points in the tangent directions. b Far-field plots of the intensity of three resonances with kR = 12.1, sinχ ≈ 0.8
(black); kR = 27.9, sinχ ≈ 0.9 (red); kR = 45.4, sinχ ≈ 0.75 (green). Index of refraction is n = 2 (offset for clarity). Blue histogram
is the prediction of the ray-optics model. Note two peaks at φ = ±π/2, corresponding to the tangent directions to the points of highest
curvature. c Far-field plots for three resonances with kR = 57.8,sinχ ≈ 0.8 (black); kR = 48.4, sinχ ≈ 0.91 (red); kR = 45.7,sinχ ≈ 0.91
(green); compared to the ray-optics model (blue histogram) for n = 1.54. Note that each peak is split and the intensity is negligible in
the direction tangent to the points of highest curvature. This arises from the presence of stable islands eclipsing the points of highest
curvature for n = 1.54 as shown in Fig. 2a.

this case the peaks split and maximum emission does not
occur at the points of highest curvature. All these ray-
optics predictions are seen to be in agreement with the
wave solutions.

These compact dielectric resonators with controllable
Q and highly directional emission may well be useful for
applications to microlasers and fibre-optic communica-
tions.
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