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We analyze theoretically the propagation of surface plasmon polaritons
about a metallic corner with a finite bend radius, using a one-dimensional
model analogous to the scattering from a finite-depth potential well. We
obtain expressions for the energy reflection and transmission coefficients in
the short wavelength limit, as well as an upper bound for the transmittance.
In certain cases we find that propagation on non-planar interfaces may result
in lower losses than on flat surfaces, contrary to expectation. In addition,
we also find that the maximum transmittance depends non-monotonously on
the bend radius, allowing increased transmission with decreasing radius.

Structured materials which allow nanoscale control of light are necessary for achieving
compact integrated photonic devices. While the size of standard optical components and
beams is typically set by the diffraction limit, low dimensional excitations such as surface-
plasmon polaritons may be confined to dimensions much smaller than the wavelength of
light. Surface-plasmon polaritons (SPPs), coupled modes of plasmons and photons, are
excited when visible electromagnetic (EM) radiation couples into surface guided modes
at metal-dielectric interfaces [I, 2]. When propagating along flat interfaces, these are
essentially two-dimensional (2D) waves, with an EM field intensity which peaks at the
interface and decays exponentially into the two adjoining media.

Recently, SPP waveguiding and bending in nano-patterned metallic films were studied
[3]. Alternately, it was shown that EM energy may be efficiently transported by near field
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coupling in plasmon waveguides comprised of ordered arrays of metal nanoparticles [].
Optical elements such as linear waveguides [5], mirrors, beamsplitters and interferometers
[6] were recently demonstrated.

Interestingly, while significant progress has been made in understanding SPP propaga-
tion in nano-structures, certain fundamental issues pertaining to their guiding on smooth
metallic films remain unknown. In particular, quantifying guiding and energy losses in
SPPs propagating around bends in metal-dielectric interfaces is of great importance, as
it should set a limit on feature size in certain plasmonic-circuit devices. Previously, the
problems of refraction [7] and reflection of SPPs [8] at interfaces have been addressed in
this context. In this Letter we present a study of the efficiency of SPP propagation at a
curved metal-dielectric interface in the short wavelength limit.
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Figure 1: Cross-sectional (a) and top view (b) of the SPP intensity; (b) also shows a
drawing of the geometry, for a bend angle 8 = 90°. The X axis in (a) extends
along the boundary between regions I and II, illustrating the single-mode ap-
proximation developed in the text: the field profiles in regions I (solid line) and
IT (dashed), calculated for ®R/c =800, are well matched. In (b), the intensity
is overlayed in grayscale, showing the overlap with the metal (refractive index
&) and the outer dielectric (index &). Arrows indicate incident and reflected
fields in region I, and transmitted field in region III.

The geometry we study is that of propagation about a rounded edge, as shown in
Fig. 1. A metallic corner characterized by a dielectric constant & and Re[g] < O has a
bend angle 0 and a finite bend radius R. The corner is confined to the region of space
shown, with the center of curvature at the origin. The rest of space is occupied by a
dielectric with &. The system is infinite in extent along the negative X and y axes, and
also along the entire z axis. SPPs are incident from the direction of the negative y axis,
denoted as Region I, and propagate through the bend (Region II) in the direction of the
negative x-axis (Region III). In the more general case when 0° < 8 < 180, we define the
x and Yy axes to be parallel to the input and output guiding surfaces. We calculate the
energy-reflection and transmission coefficients, as well as bend-induced radiation losses.



For lossy metals absorption losses are also evaluated.

Our approach exploits known expressions for the SPP fields in each region and matches
them at the two ends of the bend. The procedure differs from related numerical tech-
niques [9] in that we consider the SPP itself as the incident wave, with the goal of
manipulating it as a well-defined quasi-particle in a non-trivial geometry. Favorable
conditions for this will be seen to emerge in the short-wavelength limit, and we use this
to arrive at analytic expressions.

The solutions for SPP propagation on an infinite flat surface and on cylindrical surfaces
are known analytically [2]. On a flat interface, SPPs at frequency ® are two dimensional
waves, decaying exponentially into the two adjoining media, with decay constants ¥ =
—wéei\/—1/(&+€)/C in the metal and Y% = wes/—1/(& + &)/C in the dielectric. In
the limit Re[$]R>> 1 the interference of SPPs in Regions I and III is negligible, allowing
us to use the infinite flat surface 2D solution in these regions.

We construct the solution in Region II using the known solutions for SPPs propagating
around the perimeter of an infinitely long cylindrical metal rod of radius R [2]. Here,
the magnetic field is given by
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where ki = @,/ /C and Jp is the Bessel function. The set {n} is determined by the metal
boundary matching equation,
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where ko = ®+/€o/C, Hrgl) is the Hankel function of the first kind, and the prime denotes
differentiation with respect to the argument. Assuming @ real, one finds nto be complex,
as a consequence of radiation loss and absorption in the bend. Since the wave depends
on ¢ as exp=ing] = exp[£(iRe[n] —Im[n])¢], only solutions with Im[n] > O are physical
for damped propagation.

Solving exactly for the transmission and reflection coefficients requires matching an
infinite number of solutions at the boundaries along the X-axis (between Regions I and
IT) and the y-axis (between Regions II and III). However, it is possible to render this
problem tractable by a few simple approximations. Noting that the incident SPP car-
ries momentum proportional to K= w+/€0& /(& + &)/C, in the short wavelength limit
owR/c> 1 its angular momentum with respect to the origin is approximately equal to
Re[k|R. In Region II the solution has angular momentum proportional to the various
n-values. Conservation of angular momentum dictates that the incident SPP couple
predominantly to that cylindrical mode with n closest in value to KR Therefore it is
necessary to consider only a single term of the expansion. Formally, this is shown by
examining the set {n} and noting that it contains an element m which minimizes the
mismatch between the field profiles perpendicular to the surface. The role of angular
momentum conservation in this matching problem is analogous to that of tangential



momentum conservation in refraction at a dielectric interface. We call the clockwise and
counterclockwise modes corresponding to m the fundamental modes. In the short wave-

length limit of a fundamental mode N=m=s kR and the decay rate is y/mM?/R2 —k? ~ .
Thus, Jn(kir) ~ expyr] near the interface, identical to the fields in the metal in Regions

I and III. Similarly, in the dielectric Hr(nl)(kor) ~ exp—7fr] [10].

The modes n # m have decay rates not as close to Re[y] as that of the fundamental
mode’s. For this reason, it is possible to assume that in the short wavelength limit
the incident SPPs couple predominantly to the fundamental modes and ignore other
mode coupling. In order to satisfy the standard Maxwell boundary conditions it is
therefore necessary to match only a small number of solutions at a single point on each
axis, at a distance R from the origin. The boundary conditions are thus also satisfied
approximately over the entire extent of the axes. As can be seen from Fig. 1, the mode
mismatch at the boundaries may be very slight. The problem has now essentially become
one dimensional (1D), analogous to scattering from a 1D finite potential well [11]. Since
the allowed m-values are always complex, bound-state solutions in the well do not exist.

Applying the appropriate boundary conditions to the fields at the two boundaries
results in the familiar expression for the transmittance
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When the losses in the metal are accounted for, Im[m| increases with R, such that when
Im[m]6 > 1 the transmittance becomes
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The reflectance R may be obtained in a similar manner. In the limit ®R/c — o these
expressions become exact.

For lossless metals, the bend-induced radiation losses are simply given by A=1—-T—R.
Accounting for absorption in the metal we find that A now includes both radiation and
absorption losses. We extract the radiation losses by integrating the Poynting vector S
for unit incident flux in Region II at r — co:

0-+¢o
P= S-frd¢. (4)
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Since the radiation carries angular momentum with respect to the origin, the energy
radiated into the far-field from the surface at ¢ = O propagates at an angle ¢o with
respect to the X axis, setting the lower integration limit in (4). In the short-wavelength
limit only the amplitude of the forward-propagating mode is significant, therefore the
radiation losses are well approximated by integrating only this mode. To obtain @g we use
a stationary phase approximation. The position-dependent phase is ® = kor + Re[m]|¢,
and the vector normal to a surface of constant phase is v(r) = O® = kof + Re[m]/r¢.
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Figure 2: The upper bound for the transmittance, Ty, plotted for a silver-air interface
with 8 = 90°, as a function of bend radius R for wavelengths of A = 500nm
(dashed-dotted), A = 600nm (dashed) and A = 7000m (solid). Inset: Ty in
grayscale as a function of R and A.

The change in angle as the wave propagates a radial distance &r is 8¢ = Re[m]/(Kor?)8r
giving do — 2 Relm]/ (kor2)dr = Re[m/ (koR).

We have carried out calculations for typical values of silver (& = —15+10.5) in air
(€0 =1) when @wR/c=800and the bend angle is 90°. Ignoring the losses in the metal we
find T=0.997, R=1.19x 10 8 and P ~ 0.003 When the losses are included the results
change drastically to T =0.0516 R = 1.18x 106 and P ~ 0.00282 indicating that most
of the energy is lost to absorption in the metal. Comparing the latter overall absorption
and radiation losses to the energy absorbed when SPPs propagate the equivalent arc
distance on a flat surface, we find that propagation on a non-planar interface may result
in lower losses. We explain this counterintuitive result using an analogous picture of
semi-classical motion under an effective potential in a central potential field. In the
short wavelength and large angular momentum limit the SPP fields propagating on the
curved interface sample less of the metal volume than that available when propagating
on a flat interface, hence the reduced absorption.

We evaluate the accuracy of our result by examining the coupling efficiency A of a
single mode on a flat interface to a fundamental mode m. We define this by
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where 1 = O(1). We find that the condition A < 1 constitutes a stricter criterion for



the validity of our approximation. When the latter holds, the incident SPP couples
predominantly to the fundamental modes, making the approach described above self-
consistent. For example, when 11 =3, § = —15, and & =1, A = 0.002 for ®R/c = 800,
rendering our result applicable. On the other hand, for @R/c = 100 we obtain A = 0.3,
signifying that the expression is not reliable because the coupling to modes n other than
the fundamental can no longer be neglected. In this regime a more physical quantity is
the upper bound for the transmittance, given by

Ty =exp(—2lm[m]6). (6)

To understand why this is an upper bound, recall that in the wavelength range of interest,
where the metal is not very lossy, Im[n] > Im[m|. Since the wave depends on n as
exp+ing], modes with large Im[n] decay rapidly. Thus, the transmission in the presence
of coupling to non-fundamental modes does not exceed Ty, and the latter is a true upper
bound. Fig. 2 is a plot of Ty. A peak is clearly visible, moving to higher values of
R as the wavelength increases. To the right of the peak, at large radii of curvature
absorption losses in the metal dominate, and the maximum transmittance decreases
with increasing radius. To the left of the peak radiation due to the high curvature is
the dominant loss mechanism, leading to a rapid drop in Ty. At very high curvature
(R<10um) there is a change in trend, and Ty starts to increase with decreasing R (see
Inset.) When calculating the radiation loss per arclength, we find that for this range
of radii it increases slower than elsewhere, allowing T, to increase even as R attains
very small values. This anomalous behavior can be observed for all wavelengths, and is
independent of the dispersion in the metal.

In summary, we have analyzed the scattering of SPPs at a curved metal-dielectric
interface in the short wavelength limit. Utilizing an analogy to a quantum mechanical
1D finite square well we obtained the energy transmission and reflection coefficients.
Interestingly, propagation on a curved interface may result in lower losses than at a flat
metallic surface, due to the unique field distributions which arise in our system. An
expression for an upper bound on the transmittance was also obtained, showing that at
high curvature radiation is the main loss mechanism, while at low curvature material
losses dominate. An unexpected behavior where the maximum transmittance increases
with curvature was also observed. We explain this as an interplay between various loss
rates in the system. These results shed new light on the mesoscopic behavior of SPPs,
and should play an important role in the design and optimization of SPP devices. Future
work will address SPP propagation in waveguides, splitters and interferometers.
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