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A ray-optics model is developed to describe the spoiling of the high-Q (whispering gallery) modes
of ring-shaped cavities as they are deformed from perfect circularity. A sharp threshold is found
for the onset of Q-spoiling as predicted by the KAM theorem of non-linear dynamics. Beyond the
critical deformation, bc, Q ∼ (b − bc)

−α, α ≈ 2.4 − 2.6. The escaping light emerges in certain
specific directions which may be predicted.
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Ring cavity resonators in which high Q-modes are cre-
ated by total internal reflection of electromagnetic waves
circulating around the perimeter are commonly used as
components in lasers and sensitive detectors. These high
Q modes are referred to as whispering gallery modes
or morphology-dependent resonances (MDR’s) and have
been studied in optical fibers [1], liquid droplets [2], glass
spheres [3] and in microdisk lasers [4]. An ideal resonator
of this type consists of an axially or spherically symmetric
dielectric with higher index of refraction than the sur-
rounding medium. In such a geometry the “potential”
which confines the light to the rim of the cavity arises
from a combination of the effective potential due to an-
gular momentum conservation and the index of refraction
discontinuity at the interface [5]. The finiteness of Q in an
ideal loss-less cavity arises only due to evanescent leakage
(“tunneling”) through the barrier created by the effec-
tive potential. Q ≥ 108 is achieved in microspheres and
droplets [2,3]; however in microdisk lasers the measured
Q is much lower (∼ 103) perhaps due to surface roughness
[4]. It is interesting to consider the effect of deformations
from rotational symmetry on these high Q resonators for
several reasons. First, in the context of MDR’s, shape
distortions are often induced by inertial forces, trapping
electric fields or laser-induced electrostriction. Second,
there is relatively little understanding of the robustness
of these modes to shape imperfections, particularly when
the deformations are large ( > 1% ) and leave no residual
symmetry. Third, ideal ring cavities emit light isotrop-
ically and there is practical interest in studying pertur-
bations which might couple the light out of these modes
in a preferred direction.

In this letter we present results from a model which
combines ray optics with concepts from non-linear classi-
cal mechanics to describe the Q-factor and directional ra-
diation from a highly deformed circular cavity. We show
that due to the KAM theorem of classical mechanics [6]
the Q factor will remain high up to a critical deforma-
tion and then decrease rapidly. In addition, beyond this
critical deformation the light emission becomes highly di-
rectional.

We consider a deformable cavity with a uniform real
index of refraction n which is greater than the index of

the surrounding medium. For simplicity we treat the 2D
scalar wave equation; we expect (due to the generality
of the KAM theorem) that our qualitative conclusions
apply to the 3D cases of interest (although the effects of
Arnold diffusion in 3D needs further consideration [6]).
The walls of the cavity are assumed to describe a smooth
curve C in the plane which we parameterize by its arc
length s and characterize by its local radius of curvature
ρ(s). The curves we will consider are everywhere convex,
i.e. ρ(s) > 0 for all s, and are assumed to satisfy ρ(s) > λ
for all s (where λ is the wavelength of light in the cav-
ity). With these conditions ray-optics applies everywhere
within the cavity, and Snell’s law determines the critical
angle for escape, θc. When the cavity is deformed the
angle of incidence of a light ray on the cavity walls varies
with time and for a large starting angle (characteristic
of whispering gallery modes) escape may still occur. We
define the Q determined by escaping rays as QR = ωτ
where τ is the escape time and ω is the frequency of the
light. The model neglects evanescent escape so QR = ∞
for a circular cavity. The ray optics of the model is equiv-
alent to the hamiltonian dynamics of a point mass mov-
ing freely between specular reflections from the boundary
[7], unless the angle of incidence θ ≤ θc, in which case
the particle escapes.

We now introduce a specific model deformable circu-
lar cavity (due to Robnik [8] and generalized by Berry
and Robnik [9]). The cavity is described by a conformal
transformation of the unit disk

w(z) =
z + bz2 + cz3

√
1 + 2b2 + 3c2

, (1)

where b,and c are real parameters. The boundary of the
cavity is given by letting z = eiφ, 0 ≤ φ ≤ 2π; b and c
must be chosen such that |w′(z)| > 0 for |z| ≤ 1. When b
is small and c = 0, the distortions described by this map
are primarily quadrupolar. The deviation from circularity
enters at order b2, c2, and typical values required for Q-
spoiling are b, c ≈ 0.1 corresponding to roughly 1% radial
distortion.

As is typical in non-linear dynamics, the motion of
a particle/ray in the cavity is described by phase-space
coordinates and can be most easily studied through the
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Poincaré surface of section (SOS) [6,10]. The SOS is a
two-dimensional cut through 4D phase-space; the parti-
cle motion is represented by plotting the coordinates at
each return to the surface. The natural (area-preserving)
coordinates for the SOS here [10] are the arc-length at
the nth bounce, sn, and sin θn, where θ is the angle of
incidence on the boundary. For small distortions the arc-
length s may be replaced by the angular coordinate φn.
(φn+1, sinθn+1) can be obtained from (φn, sin θn) by the
solution of a cubic equation derived from simple geomet-
ric considerations. This defines the bounce map of the
2D cavity. Figure 1 shows the SOS of the cavity and the
real-space motion of the ray for c = 0 and three different
values of b.

FIG. 1. Surfaces of section for three values of the deforma-
tion parameter, (a) b = 0, (b) b = 0.11, (c) b = 0.15. The
real space trajectories shown to the right correspond to a ray
started with sin θ = 0.7, near the four-bounce periodic orbit.
The starting value of φ in the lower two plots was chosen in the
stochastic region between the four-island chain. The vertical
arrow in (b) indicates the direction in which the elongation
of the disk occurs when b > 0.

Figure 1(a) shows the SOS for a circle (b = 0). Here,
sin θ is proportional to the angular momentum and hence
is constant at each return to the SOS; thus typical phase
space points trace out straight lines. The real-space tra-
jectory is confined to an annulus by a circular caustic. Pe-

riodic orbits do not give a caustic but rather trace out an
N-sided polygon, and appear as N discrete points on the
SOS. The SOS for b = 0.11 shown in Fig. 1(b) is typical
of systems undergoing a KAM transition to chaos. Sta-
ble islands have formed around the periodic orbits, and a
stochastic layer indicating chaotic motion has formed in
between the islands. However there still remain unbroken
curves crossing the SOS. The KAM theorem implies that
such curves (known as KAM tori) will exist over some
finite range of the deformation parameter b [6], and will
partition the phase-space into regions bounded by two
such tori. Thus a particle (ray) with an initial value of
sin θ ≥ sin θc can never escape as long as one such unbro-
ken torus intervenes between sin θ and sin θc. We infer
that QR remains infinite for all b until the last intervening
torus(LIT) is broken at a critical deformation bc. Hence
high-Q resonances should persist despite significant de-
formations of the cavity. The real-space trajectory shows
that the ray remains confined to an annular region. How-
ever, now the rotational symmetry of the motion is ex-
plicitly broken and dense ray-tracing occurs near a four-
bounce periodic orbit with a fixed orientation. This is
interesting because previous work suggests that the un-
derlying wave equation will have solutions with high field
intensity [11] concentrated in these regions.

Fig. 1(c) shows the SOS for a high enough deforma-
tion (b = 0.15 > bc) such that the LIT is broken and
an initially trapped ray can now escape by phase-space
diffusion to the critical angle, leading to a finite value of
QR. Note that the ray bounces many times before es-
caping, so that QR can remain fairly large even beyond
the threshold bc at which Q-spoiling begins. Also as the
diffusion in sin θ is rather slow, escape typically occurs
near the critical angle, implying that outside the cavity
the ray is emitted almost tangentially as shown in Fig.
1c.

To calculate Q above the threshold we need to spec-
ify initial conditions on the phase-space distribution and
compute the escape time. The appropriate initial condi-
tions depend on the experimental system of interest but
in all cases a certain set of modes will be most relevant.
In the 2d case there are two mode indices, the radial
index p and the azimuthal (or angular momentum) in-
dex m, which be related to a particular value of sin θ by
semiclassical quantization. The known result is [8]

cot θ + θ = π[
p + 3/4

m
+

1
2
]. (2)

If the important modes (p, m) are specified then Eq. (2)
yields a minimum and maximum value of sin θ corre-
sponding to these modes. We then start a uniform den-
sity of phase space points in motion between these two
values and compute the length of each escaping trajec-
tory as a function of the deformation b. If the frequency
of the light, the size of the cavity, and the index of refrac-
tion inside and outside the cavity is given, then the mean
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inverse length can be converted into an escape rate, 1/τ ,
such that Q = ωτ (if we wished to calculate the mean
time we would have to avoid starting points within stable
islands which would remain trapped indefinitely).

Representative results are given in Fig. 2. Note the
sharp threshold for Q-spoiling bc as expected from our
previous discussion. Beyond bc, Q decreases as (b−bc)−α,
where numerically we find α ≈ 2.4 − 2.6. Numerical in-
vestigations indicate that this power law is insensitive
to initial conditions or to the details of the deformation
(e.g. setting b = 0 and varying c gives similar values of
α). This non-trivial power law dependence of Q on the
deformation parameter is very significant; such a result
could never arise from perturbation theory. It is a signa-
ture of the well-known fact that phase-space diffusion in
the KAM region is anomalous [6,12]. If such a power-law
is measured experimentally it would constitute an unam-
biguous verification of the physics underlying our model
for the Q-spoiling.

FIG. 2. Q−1 vs. deformation b obtained from average
escape rate (see text). The unperturbed circle has radius
R, k is the vacuum wavenumber and n the refractive index
of the dielectric. Escaping rays are started in a strip with
0.66 ≤ sin θ ≤ 0.71. Least-squares fit to the data gives
a power law nkR/Q = 23.7 (b − bc)

α with bc = 0.124 and
α = 2.5. Inset: Polar plot of the escape probability vs. angle
in the far-field for b = 0.15 showing strong directionality of
emission.

Finally, our model allows us to evaluate the direction-
ality of the emitted light once Q-spoiling occurs simply
by evaluating the escape rate as a function of the angle φ.
Figure 1 suggests that the escape occurs non-uniformly;
the phase-space structure funnels the escaping flux to
certain angular intervals. A typical ray escapes near θc

so it emerges along the tangent to the point of escape
[see Fig. 1(c)]. The emitted intensity should be propor-
tional to the escape rate in a given angular interval. The
anisotropy of the escape rate then leads to the highly di-
rectional emission shown in the polar plot in Fig. 2 (in-
set). We note that the calculational technique used here
should generalize to other types of deformations and to

3D without becoming computationally intractable; hence
it may provide a practical method for predicting and con-
trolling directional emission.

Several possible realizations of deformable ring cavities
can be imagined using e.g. levitated droplets, microdisk
lasers or optical fibers. The optimal experimental sys-
tem would be deformable by means of a continuously
tunable control parameter. An interesting application of
this theory would be possible in a system which could be
deformed so rapidly that Q could be spoiled during the
lifetime of a given resonance. In such a case the defor-
mation would operate as a Q-switch for dumping out the
stored light. To achieve high sensitivity to small defor-
mations the starting point should be a cavity deformed
at or beyond the threshold bc; then relatively small fur-
ther deformations would lead to large changes in Q. It
is possible that local modulation of the index of refrac-
tion within the cavity could simulate deformation of the
cavity and have a similar effect.
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