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1 Introduction

Let G be a simple algebraic group over an algebraically closed field K of char-
acteristic p > 0, where p is a good prime for G, and let u ∈ G be a unipotent
element. We study the embedding of u in abelian unipotent subgroups and cer-
tain reductive subgroups of G and use this information to obtain information
on CG(u). Of particular interest are Z(CG(u)) and the reductive part of CG(u).

The process of embedding a unipotent element u ∈ G in a connected, abelian,
unipotent group is sometimes called saturation. In previous work [?] saturation
results were achieved when |u| = p, where it was shown that there is a unique 1-
dimensional unipotent group, the “saturation” of u, which contains u and which
is contained in a restricted (sometimes called good) A1 subgroup of G. Here an
A1 subgroup of G is restricted if all weights on the adjoint module of G are at
most 2p− 2. It was shown in [?] that these A1 subgroups provide the basis for
a variant of the Steinberg tensor product theorem, hence the name. It was also
shown in [?] that CG(u) can be factored as a product of the unipotent radical
and the centralizer of a restricted A1 subgroup containing u.

In this paper we extend these results to cover unipotent elements of arbi-
trary order. We describe a certain 1-dimensional torus which normalizes CG(u)
and then decompose Z(CG(u))0 into indecomposable summands, each invariant
under the torus and such that u is contained in one of the summands, say W .
If |u| = pr > p, we show that the saturation of upr−1

, described above, coincides
with the subgroup of elements of order at most p in W .

We next establish the existence of a pair of reductive groups J,R such that
each is the centralizer of the other, u is a semiregular unipotent element of J ,
and R is the reductive part of CG(u). These subgroups provide insight into a
number of issues surrounding unipotent elements. For instance, the reductive
part of CG(u) appears as the centralizer of a reductive group and this is helpful
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in understanding the component group of CG(u). The restriction L(G) ↓ JR is
relatively easy to understand, so that one can further restrict to find the Jordan
blocks of u, fixed points, etc. Also, Z(CG(u))0 ≤ J , so it may be possible to
work within J to study this interesting subgroup of CG(u).

A little background material is necessary before we can state the main re-
sults. In particular we will make use of a certain type of 1-dimensional torus,
which we now define.

Let T0 be a maximal torus of CG(u) and set D = CG(T0)′, the derived group
of a Levi subgroup of G. Then u is a distinguished unipotent element of D in
the sense of Bala-Carter. This means that CD(u)0 is unipotent and lies in a
uniquely determined parabolic subgroup P = QL of D such that u is in the
dense orbit of P on Q and such that dim(L) = dim(Q/Q′).

Let T ≤ Z(L) < D be a 1-dimensional torus such that T acts by weight 2 on
all fundamental roots in Π(D)− Π(L). We will say that T is a u-distinguished
1-dimensional torus if there exists a nilpotent element e ∈ L(G) such that
CG(u) = CG(e) and T acts on 〈e〉 via weight 2. Note that this implies that T
normalizes CG(u) and hence T also normalizes Z(CG(u)).

The existence of nilpotent elements e as above follows from the existence of
G-equivariant correspondences, called Springer maps, between the set of unipo-
tent elements of G and the set of nilpotent elements of L(G).

If T is any 1-dimensional torus, then a closed abelian unipotent group W
will be called T -homocyclic if T acts on W without fixed points, exp(W ) = pa,
and W = W p0

> W p > W p2
> · · · > W pa

= 1 with successive quotients having
dimension 1. Here W pc

denotes the subgroup of W generated by elements wpc

for w ∈ W . An inductive argument then shows that Wpi = W pa−i

for 1 ≤ i ≤ a,
where Wpi denote the group of elements of W whose order divides pi.

The following result extends earlier work of Proud [?].

Theorem 1 Let u ∈ G be unipotent of order pr. There exist a u-distinguished
1-dimensional torus T acting without fixed points on Z(CG(u))0 and a decom-
position Z(CG(u))0 = W1 ⊕ · · · ⊕Ws (direct sum as abstract groups), such that
each Wi is T -homocyclic, exp(Wi) ≥ exp(Wj) for i ≤ j, and u ∈ W1.

With u and T as in Theorem 1, W = W1 = 〈uT 〉 is a T -homocyclic group
containing u. Clearly W is determined once T is given. However we shall see by
example that when |u| > p, different choices of T may yield different homocyclic
groups. Nonetheless, the next result shows that the subgroup of elements of
order at most p in such a group is uniquely determined and coincides with the
saturation of upr−1

.

Theorem 2 Let u ∈ G be unipotent of order pr and let W ≤ Z(CG(u))0 be a
T -homocyclic group containing u, where T is a u-distinguished 1-dimensional
torus. Then W pr−1

= U , where U is the saturation of v = upr−1
.

We now turn to the reductive part of CG(u). For this result we wish to allow
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for reductive groups which are not necessarily connected. So we use the term
reductive to mean a group D for which D0 is a connected reductive group and
the component group is of order prime to p.

Theorem 3 Let u ∈ G be unipotent. There are reductive subgroups J and R of
G such that

i) CG(J) = R and CG(R) = J .
ii) u is a semiregular element of J0.
iii) CG(u) = QR, where Q = Ru(CG(u)).

In order to prove Theorem 3 it will be convenient to work with a certain
reductive subgroup E of J which contains u and satisfies CG(E) = CG(J) = R.
In particular, when |u| = p, then E can be taken as a restricted A1 containing
u. Here R = CG(E) and J can be defined to be CG(R), which we will show is
reductive. If |u| > p and G is of exceptional type, then the definition of E is
more complicated and will be given explicitly in the tables of Lemma 5.4.

With T as in Theorem 1, there is an action of T on CG(u). The next theorem
shows that for suitable choice of T the set of fixed points under this action is
the reductive part of CG(u), recovering a result of Premet.

Theorem 4 If u ∈ G is unipotent, then there is a u-distinguished 1-dimensional
torus T < J , with J as in Theorem 3, such that CG(u) ∩ CG(T ) = CG(J), the
reductive part of CG(u).

The group Z = Z(CG(u))0 is a group of considerable interest. At the mo-
ment, even the dimension of this subgroup remains a mystery. Combining the
above results does provide some information. Theorem 1 establishes a certain
decomposition of Z, while Theorem 3 implies that Z is contained in a particular
reductive subgroup of G, namely J = CG(R). Also, Lemmas 2.2 and 2.4, to
follow, show that uG ∩ Z = Z and uZp ⊂ uG.

The author would like to thank Donna Testerman and Ross Lawther for a
number of helpful comments and to J.P. Serre for a suggestion which led to a
shorter proof of Lemma 3.1

2 Preliminaries

Fix notation as above and take G to be simply connected. Since p is assumed to
be a good prime there is a G-equivariant correspondence, called a Springer map,
between the set of unipotent elements of G and the set of nilpotent elements of
L(G).

When dealing with classical groups we fix a convenient Springer map. For SL
we use the map u → u−1 and for Sp or SO we use the map u → (1−u)/(1+u).
In the latter case the map is self-inverse. In the case of orthogonal groups the

3



classical group is not simply connected, but this map lifts to one for the simply
connected group.

Fix u ∈ G a unipotent element with |u| = pr. Let e denote the nilpotent
element which corresponds to u under the chosen Springer map. We remark that
when working with exceptional groups we may later replace e by a conjugate so
that e ∈ L(W ), with W as in Theorem 2.

We begin with two lemmas that were first established by Proud [?] with
different proofs.

Lemma 2.1 Set Z = Z(CG(u))0. Then
i) Z(CG(u)) = Z(G)× Z.
ii) Z = Ru(Z(CG(u)).

Proof We first show that if s ∈ Z(CG(u)) is semisimple, then s ∈ Z(G).
Let B be a Borel subgroup containing su and U = Ru(B). By assumption,
CU (u) ≤ CU (s). If CU (s) = U , then s ∈ Z(G) as claimed. Supposing this
is not the case let E > CU (s) be minimal among su-invariant subgroups of
U which normalize CU (s). Note that minimality implies [E, u] ≤ CU (s). We
have [[s, u], E] = 1 and [[u, E], s] ≤ [CU (s), s] = 1. Hence, the three subgroups
lemma implies [[E, s], u] = 1, so that [E, s] ≤ CU (u) ≤ CU (s). Then s centralizes
E/[E, s] and [E, s], so that that E ≤ CU (s), a contradiction.

Next observe that Z(CG(u)) = CG(CG(u)), so that by a result of Springer-
Steinberg [SS, III, 3.15], all unipotent elements of Z(CG(u)) are in Z. The
result now follows from the Jordan decomposition and the fact that Z(CG(u))
is abelian.

Lemma 2.2 Set Z = Z(CG(u))0 = Ru(Z(CG(u)).

i) Z = uG ∩ Z.
ii) Z has exponent |u|.
iii) CG(u) ∼G CG(v) if and only if u ∼G v.

Proof Let v ∈ Z. Then CG(v) ≥ CG(u), so that dim(vG) ≤ dim(uG). Now
Z is an irreducible variety and G has only finitely many unipotent classes. It
follows that exactly one such class has dense intersection with Z and we take
v to be a representative of this class. Then u ∈ vG ∩ Z ⊂ vG. But the latter
set is the union of vG together with classes of strictly smaller dimension. It
follows that u ∈ vG, so that uG = vG and uG ∩ Z = Z giving (i). Also, the
subgroup of elements of Z of order strictly less than the exponent of Z is a
closed subvariety, so (ii) follows from (i). Finally, for (iii) we must show that if
CG(u) and CG(v) are conjugate, then so are u and v. For this we may assume
that CG(u) = CG(v). Then (i) implies that both uG ∩ Z and vG ∩ Z are dense
in Z and as mentioned above there is just one class with this property.

At this point we review the Bala-Carter classification of unipotent elements.
Let u ∈ G be a unipotent element and let T0 be a maximal torus of CG(u).
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Then CG(T0) is a Levi subgroup of G and D = CG(T0)′ is a reductive group
with u a distinguished element. This means CD(u) does not contain a nontrivial
torus. There is a corresponding distinguished parabolic subgroup P = QL of D,
with unipotent radical Q and Levi factor L. Here the term distinguished means
that dim(L) = dim(Q/Q′). Further, there is a dense orbit of P on Q, called the
Richardson orbit, and u lies in this dense orbit. There is a similar classification
of nilpotent orbits of G on L(G).

With P as above, fix a system of fundamental roots for D so that P is a
standard parabolic subgroup with respect to this system. Take a 1-dimensional
torus T ≤ L such that for α a fundamental root we assume that T acts on
the root group Uα by weight 0 or 2, according to whether or not α is in the
root system of L. Then T ≤ Z(L) and determines a labelling of the Dynkin
diagram of D by 0’s and 2’s. As mentioned in the introduction, we call T a u-
distinguished torus if it acts on 〈e〉 with weight 2 where e ∈ L(G) is a nilpotent
element such that CG(u) = CG(e).

Let α be a root such that the corresponding root subgroup, Uα, is in the
system of root groups and contained in Q. Then T acts on Uα via the weight 2r,
where r is the level of α, as defined in [?]. Namely, write α =

∑
ciβi +

∑
djγj ,

where βi and γj range over those fundamental roots with T -label 0 and 2,
respectively. Then r =

∑
dj . So if u is a regular element, r is just the height

of α. It is shown in [?] that the descending central series of Q has successive
quotients isomorphic to the direct sum of the root groups of a given level.

The next lemma is essentially (4.5) of [?]. It will be used several times in
what follows, so we include a proof for completeness.

Lemma 2.3 Let P = QL be a distinguished parabolic subgroup of G and let u
and e be in the open dense orbits of P on Q and L(Q), respectively. Then Q
acts transitively on the cosets uQ′ and e + L(Q′), respectively.

Proof Given u, we have

dim(L) + dim(Q) = dim(P ) = dim(uP ) + dim(CP (u)).

As u is assumed to be in the dense orbit of P on Q we also have

dim(uP ) = dim(Q).

Hence, using the fact that P is distinguished we have

(∗) dim(CP (u)) = dim(L) = dim(Q/Q′).

Consider the map on Q given by q → uq. Translating by u−1 we see that

dim(uQ) = dim{u−1uq : q ∈ Q} ≤ dim(Q′).

On the other hand,

(∗∗) dim(Q/Q′) + dim(Q′) = dim(Q) = dim(uQ) + dim(CQ(u)).
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Hence, dim(CP (u)) ≥ dim(CQ(u)) ≥ dim(Q/Q′) and combining this with (∗)
we have dim(CQ(u)) = dim(Q/Q′). Therefore, (∗∗) yields

dim(uQ) = dim(Q′).

Orbits of unipotent groups are closed and Q′ is irreducible, so this implies that
u−1uQ = Q′ and hence uQ′ = uQ, which gives the assertion for u. Essentially
the same argument gives the assertion for e.

Lemma 2.4 Let u ∈ G be a unipotent element and set Z = Ru(Z(CG(u))).
Then u ∈ Z and uZp ⊂ uG.

Proof Let T0 be a maximal torus of CG(u). Lemma 2.1 implies u ∈ Z ≤
CG(T0)′, the semisimple part of a Levi subgroup. Set D = CG(T0)′, so that u
is a distinguished unipotent element of D and we let P be the corresponding
distinguished parabolic subgroup of D. Set Q = Ru(P ). By Corollary 5.2.2 of
[?] CD(u)0 ≤ Q so that u ∈ Z ≤ Q and u is in the Richardson orbit of P on Q.
Then Lemma 2.3 shows that uQ′ is fused under the action of Q. Also Q/Q′ is
of exponent p, so that Zp ≤ Q′ and the result follows.

Lemma 2.5 Let notation be as above with P = QL < D and let Q(i) denote
the ith term of the descending central series of Q.

i) Q(i) is the product of root groups Uα for α a root of level at least i.
ii) Q(i)/Q(i+1) is isomorphic to the direct sum of root groups for roots of level

i and has the structure of a K-vector space with T inducing scalars corresponding
to weight 2i.

iii) Q/Q(p) has exponent p.
iv) exp(Q) = |u|.
v) Let k be minimal with Q(k) = 1. Then pr ≥ k > pr−1, where |u| = pr.

Proof (i) and (ii) follow from results in [?]. Each of the groups Q(i) is
a product of root groups, so Corollary 12.3.1 of [?] shows that Q/Q(p) has
exponent p, giving (iii). Suppose |u| = pr, so that exp(Q) ≥ pr. On the other
hand the P -orbit of u is dense in Q and the set of elements of Q having order at
most pr is closed. So (iv) follows. Finally, (v) follows from Testerman [?].

The next lemma establishes the existence of u-distinguished tori.

Lemma 2.6 Assume u ∈ G is unipotent.
i) If e ∈ L(G) is a nilpotent element satisfying CG(u) = CG(e), then there

is a u-distinguished 1-dimensional torus T acting on 〈e〉 with weight 2.
ii) Any two u-distinguished 1-dimensional tori of G are conjugate by an

element of NG(CG(u)).

Proof (i) We have CG(u) = CG(e) and CG(e) = CG(ce) for all 0 6= c ∈ K,
so we look for a torus acting on 〈e〉. In view of the Bala-Carter classification of
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nilpotent elements we may assume that e is distinguished. Indeed, if T0 is a max-
imal torus of CG(u), then e ∈ CL(G)(T0) = L(CG(T0)), so e is a distinguished
nilpotent element of L(D) where D = CG(T0)′.

There is a distinguished parabolic subgroup P of D such that P = QL, where
Q = Ru(P ), L is a Levi subgroup, and e is in the Richardson orbit of P on L(Q).
There is a 1-dimensional torus T with T ≤ Z(L) and T acting by weight 2 on
fundamental roots not in the base of Σ(L). Let L(Q)i denote the T -weight space
of L(Q) corresponding to weight i. Then L(Q) = L(Q)2 ⊕ L(Q)4 ⊕ · · · , and it
follows from [?] that L(Q′) = L(Q)4 ⊕ L(Q)6 ⊕ · · · .

Each of the weight spaces L(Q)i is L-invariant and L has a dense orbit
on L(Q)2 ∼= L(Q)/L(Q′). Elements of this orbit correspond to images of
distinguished nilpotent elements. Hence there exists v ∈ L(Q)2 such that
e+L(Q′) = v+L(Q′). Then Lemma 2.3 shows that e and v are conjugate under
the action of Q. Hence, adjusting T , if necessary, we may take e ∈ L(Q)2. Then
T normalizes 〈e〉, as required.

(ii) Suppose T, T̄ are u-distinguished 1-dimensional tori. Let e, ē be the
corresponding nilpotent elements. Lemma 2.2 and the existence of a Springer
map imply that e and ē are G-conjugate, so choose g ∈ G such that ēg = e. Then
CG(e) = CG(ē)g = CG(u)g = CG(e)g so that g ∈ NG(CG(e)) = NG(CG(u)).
Now T̄ ≤ CG(T c

0 )′ for some c ∈ CG(u), so adjusting g by an element of CG(u) =
CG(e), we may assume that T̄ g ≤ CG(T0)′ = D.

Now T, T̄ g < ND(〈e〉). On the other hand, u is distinguished in D, so
CD(u)0 = CD(e)0 = V , a unipotent group. Hence ND(〈e〉) = V T = V T̄ g, so a
further conjugation by an element of V establishes the result.

Lemma 2.7 Let u be unipotent in G and assume T is a u-distinguished 1-
dimensional torus. Then the following conditions hold.

i) CZ(T ) = 1, where Z = Z(CG(u))0.
ii) If W = 〈uT 〉 is T -homocyclic, then there is an element e ∈ L(W ) such

that CG(u) = CG(e) and such that T normalizes 〈e〉 and acts by weight 2.
iii) If W = 〈uT 〉 is T -homocyclic, then T acts by weight 2 on W/W p.

Proof By assumption T ≤ N(CG(u)) and there is a maximal torus T0 of
CG(u) such that T ≤ D = CG(T0)′. Moreover, u is a distinguished unipotent
element of D and we let P = QL denote the uniquely determined distinguished
parabolic subgroup of D such that CD(u)0 ≤ Q. Then W ≤ Z ≤ Q.

Since T is u-distinguished, conjugating by an element of Q, if necessary, we
may assume T ≤ Z(L) and T acts by weight 2 on root groups for fundamental
roots in Π(D)−Π(L). As mentioned earlier, the descending central series of Q
satisfies the property that successive quotients are each isomorphic to the direct
product of root groups for roots of a given level at least 1 and these quotients
each have a vector space structure with T inducing scalars. In particular, Q/Q′

is isomorphic to the direct product of root groups of level 1 and T acts by weight
2. In view of these comments CQ(T ) = 1. In particular CZ(T ) = 1, proving (i).

7



Now, uQ′ is in the dense orbit of L on Q/Q′ and Q/Q′ is isomorphic to
the direct product of root groups for those roots of level 1. We can thus view
Q/Q′ as a K-vector space on which T acts by scalars. Also, W ≤ Q and
WQ′/Q′ ∼= W/W p is 1-dimensional and T -invariant. It follows that WQ′/Q′ is
a 1-space and also (iii) holds.

We have L(Q) = L(Q)2 ⊕L(Q)4 ⊕ · · · ⊕L(Q)2k for suitable k, where T acts
by weight j on L(Q)j . Then T stabilizes the intersection of L(W ) with each
of these weight spaces. Moreover, as WQ′/Q′ is a 1-space, we conclude that
L(W )2 is a 1-space, say L(W )2 = 〈e〉.

As Q/Q′ is isomorphic to the direct sum of root groups of level 1, there is a
natural L-isomorphism between Q/Q′, viewed as affine space, and L(Q)/L(Q′).
Under this isomorphism, Uα(c)Q′ corresponds to ceα + L(Q′). It follows that
the 1-space WQ′/Q′ corresponds to L(WQ′)/L(Q′) and hence L(WQ′) con-
tains an element projecting to the dense orbit of L on L(Q)/L(Q′). Now,
L(WQ′) = L(W )2 ⊕ L(Q′), so e projects to an element of the dense orbit of L
on L(Q)/L(Q′).

At this point Lemma 2.3 implies that e is in the dense orbit of P on L(Q),
so u and e have the same parametrization in the Bala-Carter classifications of
unipotent and nilpotent elements, respectively.

Also, since W ≤ Z(CG(u)), we have CG(u) = CG(W ) ≤ CG(L(W )) ≤
CG(e). The Springer map implies that there exists e0 ∈ L(G) such that CG(u) =
CG(e0) and it follows that e0 is in the dense orbit of P on L(Q). So CG(e) ≥
CG(u) = CG(e0) ∼= CG(e). Hence, CG(u) = CG(e), proving (ii).

Lemma 2.8 Let u be a unipotent element of G.
(i) If |u| = p and u ∈ R with R a subsystem subgroup of G, then u ∈ A ≤ R,

where A is a restricted A1 subgroup of G. In particular, the saturation of u is
also contained in R.

(ii) Let T be a u-distinguished 1-dimensional torus. Then there is a subsys-
tem subgroup R of G such that u is a semiregular unipotent element of R, and
T < R is a u-distinguished torus of R.

Proof (i) Here we are assuming |u| = p and u ∈ R, a subsystem subgroup.
Let T1 be a maximal torus of CG(R). Then T1 ≤ CG(u). On the other hand,
by Theorem 1.2 of [?], CG(u) = QCG(A), where Q = Ru(CG(u)) and A is a
restricted A1 subgroup containing u. Conjugating by an element of Q we may
assume T1 < CG(A) and hence A < E = CG(T1)′, the semisimple part of a
Levi subgroup of G. If R = E then there is nothing to prove. Otherwise, R
is a proper subsystem subgroup of E and since p is a good prime for G, there
is a semisimple element s ∈ E such that R ≤ CE(s) < E. Now A is also
a restricted A1 subgroup of E, so as above we can conjugate, if necessary, to
assume A ≤ CE(s)′. Continuing in this way we eventually obtain the assertion.

(ii) This time we must find R. Fix T . Then by definition there is a maximal
torus T0 of CG(u) such that T < CG(T0)′ = D, where D is the semisimple part
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of a Levi subgroup. Also, u ∈ D is a distinguished unipotent element of D. Let
P = QL be the corresponding distinguished parabolic subgroup of D, where
Q = Ru(P ) and L is chosen so that T < L. If u is semiregular in D there is
nothing to prove. Otherwise, there is a noncentral semisimple element s of D
contained in CD(u). Here Ru(CD(u)) has finite index in CD(u) and conjugating
s by an element of this group, if necessary, we can assume T centralizes s.
Therefore, T is contained in the subsystem subgroup F = CD(s) = CD(s)′

which contains u.
Now T determines a labelled diagram of F . Also, T is u-distinguished in D

so the labels are among 0, 2, 4, · · ·. We claim that the only possible labels are
0 and 2. Let F2 be the Levi subgroup of F generated by a suitable maximal
torus together with all root subgroups corresponding to fundamental roots in
the system for which the T -label is 0 or 2 and their negatives. Using the fact
that every positive root in the root system of F is the sum of fundamental roots,
we see that F2 contains all root subgroups of F for which T acts by weight 2.
By definition there is a nilpotent element e ∈ L(G) such that CG(u) = CG(e)
and T acts by weight 2 on 〈e〉. It follows that e ∈ L(F2). So if F2 < F , then F2

is a proper Levi subgroup of F and hence e is centralized by a nontrivial torus
of E, contradicting the fact that CD(e) = CD(u) and u is distinguished. This
proves the claim.

Next, we argue that T is u-distinguished in F . It is clear from a T -weight
consideration that PF = P∩F is a parabolic subgroup of F . Write PF = QF LF ,
the Levi decomposition with QF = Q ∩ F and LF = L ∩ F . We argue that
PF is distinguished. Consider the T -weight space L(QF )2. Then [?] implies
L(QF )2 ∼= L(QF )/L(Q′

F ) and LF acts on this space with a dense orbit. In
particular, dim(LF ) ≥ dim(L(QF ))2. On the other hand, e ∈ L(QF )2 and
we know that CL(e) is finite. Hence dim(LF ) = dim(L(QF ))2, so that PF is
distinguished.

If u is semiregular in F , then we set R = F and the lemma is established.
Otherwise, repeat the above a finite number of steps until we reach this point.

3 Decomposing Z(CG(u))

In this section we establish Theorem 1. Let u ∈ G be unipotent, let T0 be a
maximal torus of CG(u), and set D = CG(T0)′, the semisimple part of a Levi
subgroup. Then D is a reductive group containing Z(CG(u)). Let e ∈ L(G)
correspond to u under a Springer map which is the usual one if G is of classical
type. Lemma 2.6 shows there exists T < D, a u-distinguished 1-dimensional
torus of G with e the associated nilpotent element. We have CG(u) = CG(e),
so that T normalizes CG(u), but T ∩CG(u) is finite (of order at most 2). Note
that CL(G)(T0) = L(CG(T0)) = L(D), so that e ∈ L(D). Finally, we observe
that u is a distinguished unipotent element in D. For this reason we are often
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able to reduce to the case where u is distinguished.

For the next result let D be as above, with u a distinguished unipotent ele-
ment of D. Let P = QL be the corresponding distinguished parabolic subgroup
of D. Then u is in the Richardson orbit of P on Q. Let k be minimal with Q(k) =
1. We take T ≤ Z(L), so that for some system of fundamental roots T acts by
weight 2 on fundamental roots in Π(D) − Π(L). Then T acts by scalars with
weights 2, 4, . . . , 2k − 2 on the vector spaces Q/Q(2), Q(2)/Q(3), . . . , Q(k−1)/1.
Lemma 2.5 shows that if |u| = pr, then pr ≥ k > pr−1.

The above filtration of Q can be refined to a T -invariant filtration of closed
normal subgroups where successive quotients have dimension 1. Now let J ≤ Q
be a T -invariant closed subgroup. Then intersecting J with terms of this filtra-
tion we see that J has a T -invariant filtration where the quotient of successive
terms is a 1-dimensional unipotent group with T acting via a nonzero weight.

Lemma 3.1 Let J be a connected abelian group of exponent p admitting the
action of a 1-dimensional torus T and assume that J has a filtration by closed
normal subgroups such that successive quotients have dimension 1 with T acting
with nonzero weights.

(i) There is a T -invariant decomposition J =
⊕

J(c) where J(c) ∼= Ga with
T acting by weight c.

(ii) If W is a T -invariant subgroup of J , then J = W ⊕ R for some T -
invariant subgroup R.

Proof (i) Let E be the last term in the given filtration, so that E is a 1-
dimensional unipotent group with T acting without fixed points. Inductively,
there is a decomposition J/E = E1/E ⊕ · · · ⊕Ek/E, where each summand is a
closed T -invariant 1-dimensional unipotent group. It will suffice to show that for
1 ≤ j ≤ k, Ej = E⊕Rj , where Rj is T - invariant. For then J = E⊕R1⊕· · ·⊕Rk.

In view of the previous paragraph we may assume J has dimension 2. By
14.2.6 of [?] we have J ∼= K2. So the coordinate ring K[J ] = K[x, y] and T
induces a group of locally finite linear transformations. Now T preserves the
group structure of J so stabilizes the subspace M of group homomorphisms
from J to K. Suppose m ∈ M . Then m(x, y) = m(x, 0)+m(0, y) and from here
we see that m(x, y) = f(x) + g(y), where f(x) =

∑
aix

pi

and g(y) =
∑

bjy
pj

.
There is a decomposition M =

⊕
Mn, where the sum is over integers and

T acts on each Mn via weight n. We can choose r and f ∈ Mr such that E is
not contained in ker(f). Indeed, x and y are both contained in M and at least
one of these restricts nontrivially to E. So we could work with a component of
x or y. Then f : J → K and for c ∈ K∗, we have crf = (T (c))f = f ◦ T (c).
Now restrict to E and get crf(e) = f(T (c)e) for all e ∈ E. We are assuming
that T acts nontrivially on E, so choosing e with f(e) 6= 0, we conclude that
E ∩ ker(f) = 0. Also ker(f) is T -invariant, so J = E ⊕ ker(f), completing the
proof of (i).
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(ii) Here we again proceed inductively. Intersect the terms of the given
filtration of J with W to get a filtration of W and then choose E ≤ W . Then
inductively we can write J/E = W/E ⊕ R/E. Now use (i) to decompose R/E
into a direct sum of 1-dimensional T -invariant unipotent groups. Then apply
the above argument to the preimage of each summand to obtain a T -invariant
complement to W .

Lemma 3.2 Let u ∈ G be unipotent and T a u-distinguished 1-dimensional
torus. There is a decomposition Z(CG(u))0 = W1 ⊕W2 ⊕ · · · ⊕Wt (direct sum
as abstract groups), where each Wi is a T -invariant homocyclic group. More-
over, if W is any T -invariant homocyclic subgroup of Z(CG(u))0 of exponent
equal to that of Z(CG(u))0, then there is a T -invariant subgroup W1 such that
Z(CG(u))0 = W ⊕W1.

Proof Set Z = Z(CG(u))0. If T0 is a maximal torus of CG(u), then Z <
CG(T0) = D and u is a distinguished unipotent element in D. Hence, there is a
T -invariant filtration of Z such that successive quotients have dimension 1 with
T acting via nonzero weights. We now proceed inductively only assuming that
T is a 1-dimensional torus and A is a T -invariant connected abelian unipotent
group with a filtration as described above for Z.

The lemma follows from the previous lemma if exp(A) = p, so assume
exp(A) = pk with k > 1. Write A > Ap > · · · > Apk−1

= V , so that
V is T -invariant and of exponent p. Inductively, there is a decomposition
A/V = A1/V ⊕ · · · ⊕As/V with each summand T -homocyclic.

Reorder if necessary so that exp(A1) = pk and set U = Apk−1

1 , so that
U ≤ V . As A1A

p/Ap has dimension 1, we see that U also has dimension 1
(consider the map a1 → apk−1

1 ).

First assume that U < V . Then Apk−1

1 < Apk−1
, so that A1 < A. Inductively

we can write A1 = B1 ⊕ S, a T -invariant decomposition with B1 homocyclic
of exponent pk. Then A1 = B1V and hence S ∼= A1/B1 is of exponent p.
Using induction again (this time the second assertion) we have A/S = A1/S ⊕
B2/S⊕· · ·⊕Br/S with each summand T -homocyclic. Then A = B1(B2 · · ·Br).
Moreover, B1 ∩ (B2 · · ·Br) ≤ S and B1 ∩ S = 1. Thus, A = B1 ⊕ (B2 · · ·Br), a
direct sum of abstract groups. Use induction to decompose B2 · · ·Br, thereby
completing the proof of the first assertion.

Now assume U = V, so that Apk−1
= Apk−1

1 . Consider the map φ : A → U

sending x → xpk−1
. As dim(U) = 1, it follows that A1 is T -homocyclic. Let

K = ker(φ), so that A = A1K. Then K has codimension 1 in A and A1 ∩K =
Ap

1 has codimension 1 in A1. Now A1 ∩K is T -invariant and homocyclic in K
of maximal exponent, so inductively, K = (A1 ∩K) ⊕ L, for some T -invariant
subgroup L. It follows that A = A1 ⊕ L, a direct product of abstract groups.
Applying induction to L we have established the first assertion.

The second assertion follows along the same lines. Given W , we set U =
W pk−1

and set V = Apk−1
as before. Set A1 = WV . Inductively, there is a
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decomposition A/V = A1/V ⊕ A2/V ⊕ · · · ⊕ As/V . If A1 = A, then U = V
and so A = W is homocyclic. Suppose A1 < A. We can write V = U ⊕ S, with
S invariant under T . If U < V , then A1 = W ⊕ S and we proceed as in the
fourth paragraph with W replacing B1 to get the assertion. And if U = V , then
A1 = W and we proceed as in the fifth paragraph, to complete the proof.

Lemma 3.3 Theorem 1 holds.

Proof As in the proof of the last lemma we can work in CG(T0)′ for T0 a
maximal torus of CG(u) and reduce to the case where u is distinguished in G.
So there is a distinguished parabolic subgroup P = QL, such that u is in the
Richardson orbit of P on Q and CG(u)o ≤ Q (see 5.2.2 of [?]). In particular,
Z = Z(CG(u))0 ≤ Q and Lemma 2.1(i) shows that u ∈ Z.

We have u ∈ Q−Q′, so that ZQ′/Q′ is nontrivial and T -invariant, where T is
a u-distinguished 1-dimensional torus. Also, Q/Q′ has a vector space structure
with T inducing scalars. So ZQ′/Q′ is a subspace of Q/Q′.

The previous lemma yields a decomposition Z = W1 ⊕ · · · ⊕ Ws into T -
homocyclic subgroups (direct sum as abstract groups). Then for 1 ≤ i ≤
s,WiQ

′/Q′ is a subspace of Q/Q′ of dimension at most 1. Reorder the T -
homocyclic summands, W1, . . . ,Ws, if necessary, so that uQ′ ∈ W1 · · ·WhQ′

with h minimal. Minimality of h implies that the subspaces W1Q
′/Q′, . . . ,WhQ′/Q′

are independent. (We note that Lemma 2.9 of [?] shows that CG(u)Q′/Q′ typi-
cally has dimension 1 and so usually h = 1, as well.) Lemma 2.3 shows that uQ′

is fused in Q, so that there is an element g ∈ Q, such that ug ∈ W1 ⊕ · · · ⊕Wh.
Set E = W1 ⊕ · · · ⊕Wh. We have E ∩Q′ = Ep.

Write C = 〈(ug)T 〉. We claim that C is T -homocyclic. It follows from
the above that CQ′/Q′ is a 1-space of W1 · · ·WhQ′/Q′ and hence CEp/Ep has
dimension 1. The previous lemma implies C = C ′⊕V ′ where C ′ is T -homocyclic
of exponent pr and V ′ is T -invariant. We assume V ′ 6= 1, since otherwise there
is nothing to prove. Write C ∩ Ep = (C ′ ∩ Ep) ⊕ R for some T -invariant
closed subgroup R. As CEp/Ep has dimension 1, CEp/Ep = C ′Ep/Ep. Then
C ≤ C ′Ep, so that C = C ′(C ∩ Ep) and we can take V ′ = R. In particular,
V ′ ≤ Ep.

Write ug = cv, where c ∈ C ′ and v ∈ V ′. Then v 6= 1 as otherwise ug ∈ C ′

and C = C ′ which we are assuming false. Assume v ∈ Epk − Epk+1
for some

k ≥ 1 and write v = apk

for some a ∈ E − Ep.
We have C = 〈(ug)T 〉 so there are integers cs and elements ts ∈ T such that∏

s((u
g)csts) = v. However C = C ′ ⊕ V ′ and ug = cv, so

∏
s(c

csts) = 1 and∏
s vcsts = v.
Now E/Ep has a vector space structure with scalar action induced by conju-

gation of elements of T . Hence all 1-spaces are T -isomorphic, in particular those
spanned by cEp and aEp. We have

∏
s(c

csts) = 1 and so
∏

s(a
csts)Ep = 1.

Write
∏

s(a
csts) = ep, for some e ∈ E. Then v =

∏
s vcsts =

∏
s apkcsts =

(
∏

s(a
csts))pk

= epk+1
. But then v ∈ Epk+1

, which is not the case. This contra-
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diction proves the claim.
From the claim we have ug ∈ C, a T -homocyclic group. Setting C = J1,

we can apply the previous lemma to obtain a decomposition A = Z(CG(u))0 =
J1 ⊕ · · · ⊕ Js with each summand a T -homocyclic group. Then ug ∈ J1 ≤
Z = Z(CG(u))0. It follows that CG(u) = CG(ug), so that Z(CG(u))0 =
Z(CG(ug))0 = (Z(CG(u))0)g. That is Z = Zg. Conjugating the above de-
composition of A by g−1 we have u ∈ Jg−1

1 , a T g−1
- homocyclic group. Now

replace T by T g−1
. As g ∈ Q, T g−1

is also u-distinguished and contained in
CG(T0)′, so the assertion follows.

4 Compatibility issues

In this section we prove Theorem 2. Let u ∈ G be a unipotent element of
G of order pr and let v = upr−1

, an element of order p. It was shown in [?]
that v is contained in a unique 1-dimensional unipotent group, say U , which
is contained in a restricted A1 subgroup of G. So U can be legitimately called
“the saturation” of v. In this section we show that U is contained in each T -
homocyclic group, W , containing u, where T is a u-distinguished 1-dimensional
torus.

Lemma 4.1 It suffices to establish Theorem 2 for u a semiregular unipotent
element of G.

Proof Let T be a u-distinguished 1-dimensional torus of G such that W =
〈uT 〉 is T -homocyclic. Lemma 2.8 shows that there is a subsystem subgroup
R containing T such that u is a semiregular unipotent element of R. Then
W = 〈uT 〉 ≤ R, so that W ≤ Z(CR(u)).

Also, Lemma 2.8(i) shows that v < U < A ≤ R, where A is a restricted
A1 subgroup of G. It follows from the definition that A is also a restricted A1

subgroup of R. At this point the unicity of the saturation implies that U is
also the saturation of v within R and so we may work entirely within R. In the
next paragraph we argue that we can pass to simple factors of R, replacing G
by a simple factor and u by its projection to such a factor. Here we note that
v might project trivially to some simple factors of R. Indeed later (see Lemma
5.4) we shall see that for exceptional groups v projects trivially to all but one
simple factor.

Let E be a simple factor of R where the projection of v is nontrivial and let
subscript E denote projection to E. Then uE is a semiregular unipotent element
of E, TE is a uE-distinguished torus, and WE = 〈uTE

E 〉 is a TE-homocyclic
subgroup. If we show that (WE)pr−1

= UE , the saturation of vE , then it will
follow that W pr−1

= U . Indeed, this will show that UE is contained in a
restricted A1 subgroup of E and hence U is contained in a restricted A1 subgroup
of R. But Proposition 4.3 of [?] shows that restricted A1 subgroups of R are also
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restricted in G and it follows that U is the saturation of v. So for purposes of
proving Theorem 2 we may now work entirely with E, completing the proof.

In view of the previous lemma we now assume u is semiregular (hence dis-
tinguished) in G and let P = QL be the corresponding distinguished parabolic
subgroup of G. Then u lies in the dense orbit of P on Q and we may assume
T < Z(L). The labelled diagram associated to u is the same as the labelling
associated with T . Let α be a root such that the corresponding root subgroup,
Uα, is invariant under T and contained in Q. Then T acts on Uα and the cor-
responding weight is 2r, where r is the level of α (see the discussion prior to
Lemma 2.3).

The following lemma is a consequence of results in [?] and will be useful for
the proof of the theorem.

Lemma 4.2 Let D be a reductive group over K, let P be a parabolic subgroup of
D such that Q = Ru(P ) has nilpotence class strictly less than p, and let v ∈ Q.
Then there is at most one 1-dimensional unipotent subgroup, V , of Q such that
v ∈ V = V T , where T ≤ P is a 1-dimensional torus acting by weight 2 on V
and having no weights on L(Q) which are a multiple of 2p.

Proof Assume the hypotheses and that v ∈ V = V T ∼= Ga. By Proposition 5.4
of [?] there are commuting elements e0, e1, . . . , en ∈ L(Q) such that for t ∈ K
we have V (t) = exp(e0t) · exp(e1t

p) · · · exp(entp
n

). Here exp is the uniquely
determined, P -equivariant, isomorphism L(Q) → Q such that the tangent map
is the identity, where we view L(Q) as an algebraic group via the Hausdorff
formula.

Suppose T acts on V via weight r. A computation using the P -equivariance
of exp and the fact that e0, e1, · · · , en commute shows that for 0 ≤ i ≤ n, ei is
a T -weight vector of L(Q) of weight rpi. So by hypothesis ei = 0 for i > 0.
Hence, V (t) = exp(e0t) for all t ∈ K.

Now suppose that v ∈ V ′ = V ′T ′
is another such 1-dimensional group, where

T ′ < P is a 1-dimensional torus satisfying the hypothesis. Applying the above
analysis we obtain V ′(t) = exp(f0t) for some f0 ∈ L(Q). As v ∈ V ∩ V ′, we
have v = exp(e0c) = exp(f0d), for nonzero scalars c, d. However, exp is an
isomorphism, so 〈e0〉 = 〈f0〉 and hence V = V ′.

At this point we separate the discussions of the exceptional and classical
groups. In outline the proofs are similar, but the details differ.

4.1 Exceptional groups

For this subsection assume that G is a simple algebraic group of exceptional
type. As above we assume u ∈ G is a semiregular unipotent element and let T
be a u-distinguished 1-dimensional torus as in the discussion prior to 4.2.

14



Lemma 4.3 Let W ≤ Z(CG(u)) be a T -homocyclic group such that u ∈ W −
W p and T acts by weight 2 on W/W p. Then

(i) If |u| > p, then |u| = p2 and T acts by weight 2p on W p.
(ii) W p < F < D where D is the subsystem subgroup determined by all root

subgroups for roots of level a multiple of p (see the discussion prior to Lemma
2.3) and F is the product of all root subgroups for positive roots in the root
system of D having positive T -weight.

(iii) If W ′ is another T -homocyclic group generated by conjugates of u and
such that T acts by weight 2 on W ′/W ′p, then W and W ′ are T -isomorphic.

Proof (i) Fix u ∈ W ≤ CG(u) < Q, where Q = Ru(P ) and P = QL is
a distinguished parabolic subgroup with T ≤ Z(L). Now T acts on successive
quotients of the descending central series of Q inducing weight 2r on the quotient
Q(r)/Q(r+1).

Assume |u| > p. It then follows from 0.4 of [?] that |u| = p2 and Q has
nilpotence length strictly less than p2. So W p2

= 1 and the p-power map on W
induces a surjective map W/W p → W p.

Write u = U(1) as a product of root elements, where we order so that the
roots have nonincreasing levels. As W is T -invariant, the image of W/W p in
Q/Q′ is a 1-space and since T induces scalars on Q/Q′, the nonzero elements
of this 1-space can be obtained by conjugating U(1)Q′ by elements of T . So
conjugating U(1) by elements of T it follows that we can write elements of
W/W p as images of elements of W of form U(c) = U1(c)U2(c2)U3(c3) · · ·, where
Ui(ci) is a product of root group elements of the form Uα(dαci), where α is a
root of level i and dα ∈ K is a scalar. Also U1(c) 6= 1. Lemma 2.5(iii) implies
that Q/Q(p) has exponent p, so forming U(1)p and conjugating by elements of
T we see that elements of W p have the form U(c)p = Vp(cp)Vr(cr)Vs(cs) · · ·,
where p < r < s < · · · < p2 and again the terms are products of root elements
for roots of the indicated levels. Now U(c)U(d) ≡ U(c + d) (mod W p), so as W
is abelian,

(∗) U(c)pU(d)p = U(c + d)p.

We claim that Vp(cp) 6= 1 for c 6= 0. Consider the sequence Q(p) > Q(p+1) >
Q(p+2) > · · · and choose p ≤ t < p2 minimal such that Vt(ct) 6= 1. Working in
Q(t)/Q(t+1), which is isomorphic to the direct product of root groups of level t,
(∗) yields an equation V̄t(ct)V̄t(dt) = V̄t((c + d)t), where bars denote images in
Q(t)/Q(t+1) of the corresponding elements. Projecting to root groups we obtain
a polynomial identity which is only possible for t = p, establishing the claim.

An inductive argument using (∗) and the commutator relations implies that
r, s, · · · are all multiples of p whenever the corresponding term is nontrivial. This
implies that W p is contained in the product of root subgroups corresponding
to positive roots of level a multiple of p, which gives (ii). Also W p is a 1-
dimensional unipotent group and W p ∼= W pQ(p+1)/Q(p+1) so that T acts by
weight 2p, establishing (i).
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(iii) Suppose W ′ is another T -homocyclic group as described in (iii). Write
W = 〈uT 〉 and W ′ = 〈u′T 〉, where u′ is a conjugate of u. The result is immediate
if |u| = p as both groups are isomorphic to Ga with T acting by weight 2. So
assume that u and u′ both have order p2. Consider the group R = W ⊕ W ′

(external direct sum). This group admits the action of T .
Now consider the subgroup J = 〈(uu′)T 〉 of R. Viewing R/Rp as a 2-

dimensional vector space with T inducing scalars, we see that J projects to a
1-space. In particular, J is a proper T -invariant subgroup of R. At this point
the proof of Lemma 3.1 shows J = K⊕L, where K is T -homocyclic of exponent
p2 and L is T -invariant. Also, as J is proper, L has exponent p, so L ≤ Rp.

Write K = 〈(xy)T 〉 where x ∈ W, y ∈ W ′. If x ∈ W p, then K < W ′Rp

and hence uu′ ∈ J < W ′Rp, which is not the case. Hence, x ∈ W − W p and
similarly y ∈ W ′ −W ′p.

Consider the projection map π : R → W and let πK denote the restriction
to K. We claim that πK is an isomorphism, so that W ∼= K. If we can show
this, then by symmetry W ′ ∼= K, which will give the result.

Now π commutes with the action of T and clearly x is in the image of πK .
It follows that πK is surjective and since ker(πK) is T -invariant, πK is also
injective. To show πK is an isomorphism we must show that ∂πK is an iso-
morphism. It will suffice to show ∂πK is injective. We can regard Rp as a
K-vector space and (i) shows that T acts by scalars corresponding to weight
2p. Also Kp < Rp has dimension 1 and is T -invariant, hence Kp is a sub-
space. As (xy)p ∈ Kp it follows that Kp is not contained in either W p or
W ′p. So the projection map Kp → W p is an isomorphism and hence the image
of ∂πK contains the T weight space of L(W ) corresponding to weight 2p. If
ker(∂πK) 6= 0, then ker∂πK = L(K)2 and so L(K)2 < L(W ′) = ker(∂π). But
then L(KRp)/L(Rp) = (L(K)2 ⊕ L(Rp))/L(Rp) ≤ (L(W ′) + L(Rp))/L(Rp).
So from the isomorphism L(R/Rp) ∼= L(R)/L(Rp) we have L(KRp/Rp) ≤
L(W ′Rp/Rp). However, this is impossible as KRp/Rp is a subspace of R/Rp

not contained in W ′Rp/Rp. Hence ker∂πK = 0, completing the proof.

The next lemma deals with semiregular unipotent classes in exceptional
groups. Let u ∈ G be a semiregular unipotent element with |u| = p2. The
previous result showed that up ∈ D, where D is certain subsystem subgroup of
G such that the T -labels of fundamental roots are 2p or 0. Lemma 4.3(ii) shows
that up ∈ D∗ where D∗ is the product of all direct factors of D except for those
where all labels are 0. In most cases up is a regular unipotent element of D∗, so
up and D∗ correspond to the same Dynkin diagram. The other cases are listed
with an asterisk in the table of the next lemma and the Dynkin diagram of D∗

for these cases is indicated.

Lemma 4.4 Assume G is of exceptional type and u is a semiregular unipotent
element. The type of u and its pth power are listed in the table below. Also
presented is a subsystem subgroup D∗ containing up (see the explanation above).
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u up (p = 5, 7, ...) D∗

G2 A1

F4 A2A
2
1, A

3
1, A1

E6 A2A
2
1, A

3
1, A1

E6(a1) (A3
1)

∗, (A1)
∗ A2A

2
1, A2

E7 A3A2A1, A2A
3
1, A

3
1, A

2
1, A1

E7(a1) (A2
2A1)

∗, (A4
1)

∗, (A1)
∗, A1 A3A2A1, A2A

3
1, A2

E7(a2) (A2A
2
1)

∗, (A3
1)

∗, A1 A3A2A1, A3A1

E8 −, A4A2A1, A
2
2A

2
1, A2A

3
1, A

4
1, A

3
1, A

2
1, A1

E8(a1) −, (A3A2A1)
∗, (A2A

2
1)

∗, (A4
1)

∗, (A2
1)

∗, (A1)
∗, A1 A4A2A1, A3A

2
1, A2A

3
1, A2A1, A2

E8(a2) −, (A2
2A

2
1)

∗, (A4
1)

∗, (A2
1)

∗, (A1)
∗, A1 A4A2A1, A3A

2
1, A

2
2, A2

Proof The unipotent element u has a labelled diagram which defines a dis-
tinguished parabolic subgroup, P = QL. This is just a Borel subgroup of G
except for the cases E6(a1), E7(a1), E7(a2), E8(a1), and E8(a2), where the la-
belled diagram is 222022, 2220222, 2220202, 22202222, 22202022, respectively. In
the regular cases the labelling is given by all 2’s. The type of up is given by
Lawther [?].

Now the previous lemma shows that up ∈ D, the group generated by root
subgroups for which the root has level a multiple of p. Using the labelling,
it is straightforward to find all such positive roots and a corresponding base
for the root system of D. We illustrate the method with an example. As-
sume G = E8, with u a regular element and p = 13. Here we look for roots
of height a multiple of 13. Note that the root of greatest height has height
29, so the only possibilities are roots of height 13 and 26. It is easy to see
that the only root of height 26 is 23465321 and the roots of height 13 are
11233210, 12232111, 12232210, 11232211, 11222221. From here we can see that
D has type A2A

3
1 with base {11233210, 12232111}∪{12232210}∪{11232211}∪

{11222221}. So in this case up and D are of the same type.
Exactly the same process can be used for the other types. In some cases

simple factors of D have all labels 0 and we ignore these factors, letting D∗

be the product of the remaining factors, as above. For later reference in the
following table we present a system of simple roots for the subsystem group D∗

in those cases where D∗ and up do not have the same type. Most of the simple
roots have T -label 2p. However, in each case one or two fundamental roots of
D∗ are also fundamental roots for G (in the fixed system) and these roots have
T -label 0.
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u p Π(D∗)

E6(a1) 5 {111111, α4}, {112210}, {011221}
7 {112221, α4}

E7(a1) 5 {1111110, α4, 0111111}, {1011111, 0112210}, {1122100}
7 {1112211}, {1122111}, {0112221}, {1122210, α4}
11 {1223321, α4}

E7(a2) 5 {1122100, α6, 0112211}, {1111111, α4}, {1112210}
7 {α4, 1122211, α6}, {1223210}

E8(a1) 7 {11122110}, {11221110, 01122111}, {11222100, α4, 11111111, 01122210}
11 {12232211}, {11233211}, {12233210, α4, 11222221}
13 {22343210}, {12343211}, {11233321}, {12233221, α4}
17 {13354321}, {22344321, α4}
19 {23454321, α4}

E8(a2) 7 {11221111}, {01122221, 12232100}, {α4, 11222110, α6, 11122111}
11 {12343211}, {22343210}, {α4, 12233221, α6}
13 {12344321, α4}, {22343221, α6}
17 {23465432, α6}

Lemma 4.5 Theorem 2 holds if G is of exceptional type.

Proof We consider v = up ∈ D∗, where D∗ is as in 4.4. Let J denote the
saturation of v in G. Then 2.8(i) implies J < D∗ and that v ∈ A ≤ D∗, where
A is a restricted A1 subgroup of G. Then v ∈ J < A, as J is contained in all
restricted A1’s of G that contain v (see Theorem 1.3 of [?]). By definition, A is
a restricted A1 subgroup of D∗ and J is the saturation of v in D∗.

We have NA(J) = JT ′ where T ′ is a 1-dimensional torus normalizing J and
hence U . Now T ′ determines a labelling of the Dynkin diagram of D∗. If v is a
regular element of D∗, then the labelling consists of all 2’s. Otherwise, the labels
can be 0, 1, 2. The labels are determined by the weights on L(D∗) and, since all
simple components of D∗ are of type Ar, these can be quickly calculated from
the action of v on the natural module. For later reference we observe that it
follows from these comments and the above two tables, that there do not exist
nonzero weights of T ′ on L(D∗) which are multiples of p.

First assume that v and D∗ are of the same type. Then v is a regular element
of D∗. Let U be the unipotent radical of the Borel subgroup of D∗ containing
v. Note that V = W p ≤ CD∗(v)0 ≤ U . Note also that U ≥ CD∗(v)0 = CD∗(J)0

implies that J < U .
We will apply Lemma 4.2 to show that V = J . From the information pre-

sented in the table of Lemma 4.4 we see that U has nilpotence class strictly less
than p. So it only remains to verify the information on weights. By construction
T induces a torus on D∗ acting by weight 2p on each root element for a funda-
mental root. So the induced action of T on L(D∗) can be factorized through a
Frobenius morphism. That is, there is a 1-dimensional torus T1 < D∗ inducing
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the same group as T but having weight 2 on fundamental root elements. It fol-
lows that all weights of T1 on L(U) are even and strictly less than 2p. Moreover,
4.3(i) implies that T1 has weight 2 on V . Also T ′ has all labels 2 in this case so
the weights of T ′ are the same as those of T1. At this point Lemma 4.2 gives
V = J , as required.

A similar argument will be applied to settle the remaining cases, where v
and D∗ are not of the same type. In these cases Π(D∗) contains at least one
fundamental root (either α4 or α6) which has T -label 0. It will suffice to work
with a simple factor of D∗ (see the last paragraph of the proof of Lemma 4.1).
Let E be a simple factor of D∗ for which the base contains a fundamental root
of G. Note that E is of type Ar for some r.

First assume there is just one such label and it occurs at an end node. From
the previous table we see that E = A2 and we consider the projection π(v) to
E. Lemma 4.3 shows that v lies in the product of root groups affording nonzero
weights, so π(v) lies within the unipotent radical of a T -invariant maximal
parabolic subgroup of E corresponding to an end node. This unipotent radical
is a natural module for a Levi factor of the parabolic and T induces scalars
in this action. Since π(V ) is generated by the T -conjugates of π(v), it follows
that π(V ) is contained in the unipotent radical in question and is a 1-space. It
follows that π(V ) is root subgroup of E. At this point, it is clear that π(V ) is
the saturation of π(v) and we have the result.

There remain seven cases to consider. Consider first E8(a1) with p = 7.
Let E denote the A4 factor which has T0-labelling 2022. Let P denote the
corresponding parabolic subgroup. So P is the stabilizer of a flag 0 < V1 <
V3 < V4 < V5 of the usual module, where Vi denotes an i-space. Now π(v) ∈ E
is a unipotent element of type A3. As above, π(V ) < Q, the unipotent radical
of P . Also π(v) acts on V5 as J4⊕J1, the sum of Jordan blocks of the indicated
sizes. Choose bases {v1, v2, v3, v4}, {v5} for the Jordan blocks, where in the first
case π(v) stabilizes the spaces spanned by each initial set of the given basis. If V1

is not spanned by v1, then π(v) acts on V5/V1 as a single Jordan block. However,
Q acts trivially on V3/V1, so this is impossible. It follows that V1 = 〈v1〉 and
then V3 = 〈v1, v2, v5〉. Similarly, V4 = 〈v1, v2, v3, v5〉. The saturation of π(v)
in E, say JE , preserves the Jordan blocks of π(v), so it follows from the above
that π(J) < Q. Indeed, we can choose a restricted A1 subgroup, say A, with
π(v) ∈ π(J) < A < A3. The maximal torus in NA(π(J)) preserves the Jordan
decomposition so is contained in P .

At this point we can apply Lemma 4.2 as in the earlier cases. It is clear
from the construction that Q has class strictly less than p and we have shown
that π(V ) and π(J) both lie in Q. As before we get a torus T0 associated with
T by factoring through a Frobenius morphism and a torus T ′ from a restricted
A1 containing v. Both have all weights less than p on L(Q), so 4.2 yields the
result. This settles the case of E8(a1) for p = 7. The cases E7(a1) with p = 5,
E7(a2) with p = 5, and E8(a1) with p = 11 are entirely similar.
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We are left with the E8(a2) cases with p = 7, 11 and the E7(a2) case with
p = 7. We provide details for the first of these, which is the most difficult.
Here E = A4 and π(v) has type A2A1. In this case P is a parabolic with T0

labelling 0202, so that P is the stabilizer of a flag of shape 0 < V2 < V4 < V5

and Q = Ru(P ) acts trivially on successive quotients. As before π(v) ∈ Q and
since Q is T -invariant we also have π(V ) ≤ Q. We must show that π(J) ≤ Q.
Now π(v) induces J3⊕J2 on V5 so π(v) acts trivially on a unique 2-space, which
must then be V2. Also, π(v) acts trivially on a unique 2-space of V5/V2, so this
must be V4/V2. Now π(J) < D is the saturation of π(v) so must lie in A2A1

and preserve the relevant flags in each of the natural modules. It follows that
π(J) < Q, as required. This completes the proof of the lemma.

4.2 Classical Groups

Now we consider the case where G is of classical type. There are both compli-
cations and simplifications available here. On the one hand, unipotent elements
can now have arbitrarily large order. On the other hand, considerations can all
be reduced to considerations for groups of type A where matrix computation
provides some insight. It will be convenient to work with the actual classical
groups, so we take G = SL(V ), Sp(V ), or SO(V ), with dim(V ) = n + 1. Recall
that p is a good prime, so this means p 6= 2 in the symplectic and orthogonal
cases.

In view of Lemma 4.1 we assume u is a semiregular unipotent element of G.
Recall that T is a u-distinguished 1-dimensional torus such that W = 〈uT 〉 is
T -homocyclic. Let e be a nilpotent element of L(G) such that CG(u) = CG(e)
and T acts on 〈e〉 with weight 2.

For G 6= SO(V ) with n odd, this means that u is a regular element when
viewed as an element of SL(V ). In the even dimensional orthogonal case we
have u ∈ BkBs, where n + 1 = 2(k + s + 1), k 6= s, and u projects to a regular
element of each factor.

The following remark is in order when G = SO(V ) and dim(V ) is even.
Let u ∈ BkBs as above. Then BkBs = CG(τ) for τ a suitable involutory
automorphism of G. Indeed, τ corresponds to a diagonal involution of shape
(−1)2k+1(1)2s+1 in the orthogonal action. Then τ acts on A = Z(CG(u))0 and
this group can be decomposed A = A+ × A−, where τ centralizes the first
factor and inverts the second. Arguing as in Lemma 2.8 but allowing for graph
automorphisms we see that we may take T < BkBs, so that T acts on each
factor of A and W = 〈uT 〉 is contained in A+ ≤ BkBs.

We now aim to prove Theorem 2. We first note that in view of the above
discussion we can assume that u ∈ G ≤ SL(V ) and that u is a regular unipotent
element of SL(V ). Indeed, this is immediate except for the even dimensional
orthogonal groups and here u ∈ BkBs and we work with each projection sep-
arately. So in this case we replace u and T by their projections to one of the
factors.
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Define an automorphism of G as follows. If G = SL(V ), set δ = 1. Otherwise
δ is taken as an involutory automorphism of SL(V ) such that G = SL(V )δ.

Lemma 4.6 The following conditions hold.
i) CSL(V )(T ) = TSL(V ), a δ-invariant maximal torus of SL(V ).
ii) δ permutes the TSL(V )-root subgroups of SL(V ).

iii) u is contained in a uniquely determined Borel subgroup, say B = Bδ, of
SL(V ).

Proof We have u ∈ G ≤ SL(V ), where dim(V ) = n + 1. Also T acts on V
with weights n, n− 2, . . . ,−(n− 2),−n. So all weight spaces are 1-dimensional
and hence CSL(V )(T ) = TSL(V ), a maximal torus of SL(V ). Also T ≤ SL(V )δ,
so TSL(V ) is δ-invariant, proving (i). It follows that δ permutes the TSL(V )-root
subgroups of SL(V ), since these are the minimal TSL(V )-invariant unipotent
subgroups of SL(V ). This gives (ii). Finally, since u ∈ SL(V ) is a regular
element, it lies in a uniquely determined Borel subgroup, B, of SL(V ) and this
must also be invariant under δ. This establishes (iii) and completes the proof
of the lemma.

Lemma 4.7 Theorem 2 holds if G is of classical type.

Proof Write Π(SL(V )) = {α1, . . . , αn} and, as above, assume u is a regular
unipotent in SL(V ). Let B be the unique Borel subgroup of SL(V ) containing
u. Conjugating by an element of B we may assume

e = eα1 + eα2 + · · ·+ eαn .

Then Z = CSL(V )(u)0 is the (abelian) lower triangular unipotent group where
the entries are constant on each subdiagonal. Then, as indicated at the end of
the proof of Lemma 2.3, we have NG(〈e〉) = ZT . But also 〈e〉 is normalized by
a 1-dimensional torus which is diagonal with weights n, n− 2, . . . ,−(n− 2),−n.
Consequently further conjugation by an element of Z allows us to assume T is
this diagonal torus.

Adjusting u by an element of T , if necessary, we have

u = Uα1(1)Uα2(1) · · ·Uαn(1)y,

where y ∈ Z has all 0’s on the subdiagonal. Then conjugating by T (c) we have

uT (c) = Uα1(c
2)Uα2(c

2) · · ·Uαn
(c2)yT (c).

Matrix calculation shows that

(uT (c))pr−1
= Uδ1(c

2pr−1
)Uδ2(c

2pr−1
) · · ·Uδk

(c2pr−1
)z,

where δ1 = α1 + . . . + αpr−1 , δ2 = α2 + . . . + αpr−1+1, . . . , δk = αk + . . . + αn,
k = n− pr−1 + 1, and z is a product of root elements for roots of height greater
than pr−1.
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Elements of Z have the form 1 + a1m1 + α2m2 + · · ·+ an−1mn−1, where for
each i, ai is a constant and mi is the lower triangular matrix with 0’s except on
the ith subdiagonal where the value is 1. One checks that mi and mj commute
for all i, j and so it follows that

(1+a1m1 +α2m2 + · · ·+an−1mn−1)pr−1
= 1+apr−1

1 mpr−1 +apr−1

2 m2pr−1 + · · · ,

and so Zpr−1
is contained in the product of root subgroups of height a positive

multiple of pr−1.
Hence upr−1 ∈ W pr−1 ≤ Zpr−1 ≤ D = 〈U±δ1 , . . . , U±δk

〉. Write n = spr−1 +
t, with 0 ≤ s < p (as n < pr) and 0 ≤ t < pr−1. We then find that D =
(As)t+1(As−1)pr−1−t−1 and a base for the root system of each factor is given by
certain of the roots δ1, . . . , δk. Also, from the above expression for elements of
Zpr−1

, we conclude that nonidentity elements of this group are regular unipotent
elements of D.

Now T is centralized by δ and D is generated by those root subgroups for
roots of level a multiple of pr−1. It follows that D = Dδ and T induces a group
of inner automorphisms on D. Also, upr−1 ∈ Dδ, a product of classical groups.
Let J denote the saturation of v = upr−1

in Dδ. Then v ∈ J ≤ A, a restricted A1

of Dδ. Now for classical groups, restricted A1’s are just A1’s having restricted
action on the classical module. It follows that A is also restricted in G and hence
J is the saturation of v in G. Write NA(J) = JT ′, for T ′ a 1-dimensional torus.
Now J < D and must lie in the unique Borel subgroup, BD, of D containing
v. Also W pr−1 ≤ CD(v) ≤ BD. Then BD is the unique Borel containing J

and W pr−1
, so BD = BT

D = BT ′

D . Moreover s < p, so the unipotent radical
of BD has class less than p and we apply Lemma 4.2. Indeed, T induces a
1-dimensional torus, TD, of D and after factoring the action of TD through a
Frobenius morphism, as in the proof of 4.5, we conclude that there is a unique 1-
dimensional unipotent group of Ru(BD) containing v and invariant under both
T and T ′. Hence W pr−1

= J , completing the proof.

4.3 Uniqueness issues

In this section we show that the T -homocyclic group produced in in Theorem 1
is not necessarily canonical. Let u ∈ G be unipotent. If |u| = p, then there does
exist a canonical saturation, so assume |u| = pr > p. Let T be a u-distinguished
1-dimensional torus such that W = 〈uT 〉 is a T -homocyclic group.

It follows from Lemma 2.4 that uW p ⊂ uG. So for 1 6= w ∈ W p there
exist an element g ∈ G with uw = ug. Then u ∈ W,W g−1

and W g−1
is a

T g−1
-homocyclic group. Also ug ∈ W ≤ Z, so CG(u) = CG(ug) and hence g ∈

NG(CG(u)). So a necessary condition for W to be unique is that g ∈ NG(W ),
for all such g.

In some cases this condition does hold. However, we present two examples
showing that this is not always the case.
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Let G = SL4(K) with p = 2. Set

u =


1
1 1
0 1 1
1 0 1 1

 ,

a regular unipotent element. A computation shows that C = CG(u) consists of
matrices of form 

1
a 1
b a 1
c b a 1


for a, b, c ∈ K. Now choose T such that T (c) is diagonal of shape (c3, c1, c−1, c−3).
One then checks that W = 〈uT 〉 is T -homocyclic, where W consists of elements
of the form 

1
a 1
b a 1

a3 + ab b a 1


for a, b ∈ K. Also W 2 = C2 is the 1-dimensional unipotent group consisting of
matrices of form 

1
0 1
b 0 1
0 b 0 1


for b ∈ K. Letting U be the group of lower triangular unipotent matrices, we
calculate that NU (W ) = C. On the other hand, fusion of elements of uW p must
be achieved by elements of NU (W ), so W is not canonical in this case.

The following is a somewhat more complicated example with p = 3 and
u ∈ SL6. Let T consist of diagonal matrices of shape (c5, c3, c1, c−1, c−3, c−5)
and let W < SL6 consist of matrices of the form

1
a 1
−a2 a 1
b −a2 a 1

a4 + ab b −a2 a 1
−a2b a4 + ab b −a2 a 1


for a, b ∈ K. Once again calculation shows that NU (W ) = CU (W ).
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5 Theorem 3: the reductive part of CG(u)

In this section we prove Theorem 3. We must produce a reductive subgroup
J containing u satisfying certain properties. We will first produce a connected
reductive subgroup E containing u and argue that R = CG(E) is a complement
in CG(u) to Q = Ru(CG(u)). The isogeny type of G is irrelevant for this purpose
as u is a unipotent element. In the special case where |u| = p, we will take E
as a restricted A1 containing u and then set J = CG(R).

The following result settles the case where G is of classical type.

Lemma 5.1 Theorem 3 holds if G is of classical type.

Proof We first describe a suitable reductive subgroup E. To describe this
subgroup we review some information given on pp.476-477 of [?].

We may assume G = SL(V ), Sp(V ), or SO(V ). If W is a linear, symplectic,
or orthogonal space we will use the notation I(W ) = GL(W ), Sp(W ), or O(W )
to denote the corresponding isometry group of W .

There is a decomposition V =
∑

1≤i≤k Vi, such that u acts on Vi as the sum
of ri Jordan blocks of size i and the summands are orthogonal with respect to
the underlying form. For each i there is a tensor decomposition Vi = Wi ⊗ Zri

and a containment I(Vi) ≥ I(Wi) ◦ I(Zri
) such that u ∈ G ∩

∏
I(Wi). Certain

parity conditions are necessary in the symplectic and orthogonal groups. In the
symplectic case ri is even if i is odd ( Sp(Vi) ≥ SO(Wi) ◦ Sp(Zri

) ), whereas in
the orthogonal case ri is even if i is even ( SO(Vi) ≥ Sp(Wi) ◦ Sp(Zri

) ).
Set E = G∩

∏
I(Wi). In view of the particular Springer correspondence that

we use for classical groups it follows that e ∈ L(E). In view of the above parity
conditions involving i and ri it follows that u projects to a regular unipotent
element in each of the classical groups Wi and that T is chosen so that it projects
to a regular torus of each I(Wi). That is, the projection of T to I(Wi) acts on
Wi with weights i− 1, i− 3, . . . ,−(i− 3),−(i− 1).

Set R = G ∩
∏

I(Zri
). By 3.7 of [?] we have CG(u) = RQ, where Q =

Ru(CG(u)). We claim that CG(E) = R. Now CG(E) ≤ CG(u), so CG(E) =
RQ0 for Q0 = Q∩CG(E). The subspaces Vi are homogeneous components of V
under the action of E, so that CG(E) and hence Q0 acts on each of the spaces
Vi. Then Q0 ↓ Vi ≤ CGL(Vi)(I(Wi)0) = GL(Zri). But R ↓ Vi contains I(Zri)

0

and normalizes Q0 ↓ Vi. It follows that Q0 ↓ Vi = 1 for all i and hence Q0 = 1,
as required. Hence, CG(E) = R, which proves the claim.

At this point we define the subgroup J . We will set J = E except for some
special situations in orthogonal groups. Namely, suppose G = SO(V ) and there
exist exactly two summands Vi and Vj with the property that ri = rj = 1. Here
we set Vi,j = Vi⊕Vj and let J = G∩(I(Vi,j)◦

∏
k 6=i,j I(Wk)). In this exceptional

case, the projection of u to I(Vi ⊕ Vj) is a semiregular unipotent element and
the projection of T is the product of regular tori of I(Vi) and I(Vj).
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We claim that CG(R) = J . First consider the case where J = E. We argue
that CG(R) must stabilize each of the spaces Vi. This is for the most part
immediate from the fact that the spaces Vi are homogeneous components for V
under the action of R. However, there is a subtlety here when G = SO(V ) and
there exist subscripts i with dim(Zri

) = 1. Here I(Zri
) is of order 2, but the

corresponding involution of O(Vi) does not lie in the special orthogonal group.
If there are two or more such subspaces, then for every pair i, j, the product of
the two corresponding involutions is contained in G, and using this we see that
CG(R) must indeed stabilize each Vi, except when there are exactly two such
subspaces, and this is precisely the case we have temporarily excluded. We note
that this is not an issue for G = SL(V ). For if dim(Zri

) = dim(Zrj
) = 1 for i 6=

j, then there are scalars in R with distinct actions on the subspaces Vi and Vj .
So CG(R) leaves invariant each Vi and CG(R) ↓ Vi < CI(Vi)(I(Zri)) = I(Wi).
Hence, J ≤ CG(R) ≤ G ∩

∏
I(Wi) = J , proving the claim in this case.

Now consider the excluded case where there are exactly two subscripts i, j
such that ri = rj = 1. Here R∩I(Vi,j) = 〈τ〉, where τ is the involution inducing
−1 on Vi,j = Vi ⊕ Vj and acting trivially on all Vk for k 6= i, j. So in this case
the homogeneous components of R on V are the subspaces Vi,j , Vk for k 6= i, j
and the above argument shows that CG(R) = J = G∩ (I(Vi,j) ◦

∏
k 6=i,j I(Wk)).

This establishes the claim and the lemma follows.

We now consider exceptional groups where the analysis is more complicated.
The following lemma will be used to establish the existence of a subgroup J with
the required properties.

Lemma 5.2 Let T0 be a maximal torus of CG(u) and let E be a semisimple
subgroup of L = CG(T0) containing u. Assume

i) E is not contained in a proper parabolic subgroup of L′.
ii) R = CG(E) is a complement in CG(u) to Ru(CG(u)).
Then J = CG(R) is a reductive subgroup of G containing E and u is a

semiregular unipotent element of J . Also R = CG(J).

Proof Let J = CG(R) = CG(CG(E)) ≥ E. As T0 ≤ Z(L), we have T0 ≤
CG(E) = R. Setting V = Ru(J) we then have V < J = CG(R) ≤ CG(T0) = L.
However, E normalizes V and by hypothesis, E is not contained in a proper
parabolic subgroup of L′. It follows that V = 1, so that J is reductive.

We next show that u is a semiregular unipotent element of J . To this
end, let s be a semisimple element in CJ(u). Then s ∈ CG(u) ∩ CG(R). But
CG(u) = QR where Q = Ru(CG(u)), so all semisimple elements of CG(u)∩N(R)
are contained in R. But then s ∈ R ≤ CG(J) and so s ∈ Z(J). Finally,
R ≤ CG(J) ≤ CG(E) = R, so R = CG(J), completing the proof of the lemma.

When u has order p, the next lemma shows that E can be taken as a re-
stricted A1 containing u. For unipotent elements of order greater than p, addi-
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tional analysis is required.

Lemma 5.3 Theorem 3 holds if |u| = p.

Proof Assume |u| = p. Then Theorem 1.1 of [?] shows that u is contained in
a restricted A1 subgroup of G, say E. Moreover, Theorem 1.2 of [?] shows that
CG(u) = QCG(E), where Q = Ru(CG(u)) and R = CG(E) is reductive. We can
use Lemma 5.2 to complete the proof of Theorem 3 (setting J = CG(R)) once
we show that E is not contained in a proper parabolic subgroup of L′. Now
Theorem 1.1(iv) of [?] shows that E is L-completely reducible. This means that
if E is contained in a proper parabolic subgroup of L′, then E is contained in a
Levi subgroup of that parabolic. But if this occurs, then E would centralize a
nontrivial torus of L′, whereas T0 is a maximal torus of CG(u) and T0 ≤ Z(L).
Thus, E cannot lie in a proper parabolic of L′ and the proof is complete.

Lemma 5.4 Theorem 3 holds if G is of exceptional type.

Proof In view of the previous lemma we may assume |u| > p. By the Bala-
Carter classification of unipotent elements there is a Levi subgroup L of G, such
that u is a distinguished unipotent element of L′. Indeed, L = CG(T0) where
T0 is a maximal torus of CG(u). From the possibilities for L, the order formula
of Testerman, [?], and the fact that p is a good prime, it is straightforward to
determine the precise possibilities and we will list these later in this proof.

In all cases L′ = L0F , with L0 a simple factor of L′ and F = 1, A1 or A2,
and where the projection of u to L0 has order greater than p. The projection
of E to L0, say E0, will be either a simple group or the product of a simple
group and a restricted A1 subgroup of L0. In the former case write E = E1E2,
where E1 = E0 and E2 is either trivial (if F = 1) or is a restricted A1 of F
containing the projection of u. In the latter case we again write E = E1E2,
but here E0 = E1C ≤ L0, where C has type A1 and we will take E2 to be
a restricted A1 in the group CF . So in all cases, either E = E1 is simple or
E = E1E2, where E1 is simple and E2 has type A1.

The following examples may help clarify the construction. Say L = D5A2 <
E8. If u0 has type D5, then E = E1E2, where E0 = E1 = B4 and E2 = B1 < A2.
On the other hand, suppose u0 has type D5(a1), then E0 = G2B1(< B3B1 <
D5). Here we set E1 = G2 and E2 a diagonal A1 in the group B1B1 < B1A2.

In all cases either E = E1 is simple or E = E1E2. After identifying E,
our main objective is to check that R = CG(E) is a complement in CG(u) to
Q = Ru(CG(u)). From here Lemma 5.2 will complete the proof of Theorem 3.
For this last step we need to know that E is not contained in a proper parabolic
subgroup of L′. It will be clear from the construction that E0 is not contained
in a proper parabolic of L0. And writing L′ = L0F as before, the argument
of the previous lemma shows that the projection of E to F (a restricted A1

containing a distinguished unipotent element) cannot lie in a proper parabolic
subgroup. In view of the above comments, our primary goal is to describe E0

and CG(E).
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The possibilities where |u| > p and the groups E, J , and R are listed in the
following tables and is partly based on information in the tables of [?]. We find
E as above. The computation of R and J will be discussed later. In Table 1 -
Table 5 we reserve the symbol A1 for a group generated by opposite long root
subgroups of G and use Â1 for other connected groups of Lie rank 1.
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Table 1. E8, |u| > p

u p E J R

D5 7 B4 B4 B3

D5A1 7 B4A1 B4A1 A1Â1

D6(a1) 7 B4Â1 B4Â1 A1A1 · 2
E7(a4) 7 B4Â1 D6A1 A1.2
E6(a1) 7 C4 C4 A2 · 2
D5A2 7 B4Â1 B4Â1 T1 · 2
D6 7 B5 B5 B2

E6 7, 11 F4 F4 G2

D7(a2) 7 B4Â1 B4B2 T1 · 2
A7 7 C4 C4 Â1

E6(a1)A1 7 C4A1 C4A1 T1 · 2
E7(a3) 7 B5A1 D6A1 A1 · 2
E8(b6) 7 C4Â1 C4Â1 Sym3

D7(a1) 7 B5Â1 B5Â1 T1 · 2
E6A1 7, 11 F4A1 F4A1 Â1

E7(a2) 7, 11 E7 E7 A1

E8(a6) 7 B4 B4 Sym3

D7 7, 11 B6 B6 Â1

E8(b5) 7, 11 F4Â1 F4Â1 Sym3

E7(a1) 7, 11, 13 E7 E7 A1

E8(a5) 7, 11 B6Â1 D8 Sym2

E8(b4) 7, 11, 13 E7A1 E7A1 Sym2

E7 7, . . . , 17 E7 E7 A1

E8(a4) 7, 11, 13 B7 D8 Sym2

E8(a3) 7, . . . , 17 E7A1 E7A1 Sym2

E8(a2) 7, . . . , 19 E8 E8 1
E8(a1) 7, . . . , 23 E8 E8 1

E8 7, . . . , 29 E8 E8 1
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Table 2. E7, |u| > p

u p E J R

D4 5 G2 G2 C3

D4A1 5 G2A1 B3A1 C2

A5 5 C3 C3 G2

D5(a1) 5 G2Â1 B3Â1 A1T1 · 2
A′

5 5 C3 C3 A1Â1

A5A1 5 C3A1 C3A1 Â1

D5(a1)A1 5 G2Â1 G2Â1 Â1

D6(a2) 5 G2Â1 D6 A1

E6(a3) 5 C3A1 C3A1 Â1 · 2
D5 5, 7 B4 B4 A1Â1

E7(a5) 5 C3Â1 C3Â1 Sym3

A6 5 G2 G2 Â1

D5A1 5, 7 B4A1 B4A1 Â1

D6(a1) 5, 7 B4Â1 D6 A1

E7(a4) 5, 7 B4Â1 D6A1 Sym2

D6 5, 7 B5 D6 A1

E6(a1) 5, 7 C4 C4 T1 · 2
E6 5, 7, 11 F4 F4 A1

E7(a3) 5, 7 B5A1 D6A1 Sym2

E7(a2) 5, 7, 11 E7 E7 1
E7(a1) 5, . . . , 13 E7 E7 1

E7 5, . . . , 17 E7 E7 1

Table 3. E6, |u| > p

u p E J R

D4 5 G2 G2 A2

A5 5 C3 A5 A1

D5(a1) 5 G2Â1 D5T1 T1

E6(a3) 5 C3A1 A5A1 Sym2

D5 5, 7 B4 D5T1 T1

E6(a1) 5, 7 C4 E6 1
E6 5, 7, 11 F4 E6 1
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Table 4. F4, |u| > p

u p E J R

B3 5 G2 G2 Â1

C3 5 C3 C3 A1

F4(a2) 5 C3A1 C3A1 Sym2

F4(a1) 5, 7 B4 B4 Sym2

F4 5, 7, 11 F4 F4 1

Table 5. G2, |u| > p

u p E J R

G2 5 G2 G2 1

Now u ∈ E < L and we set R = CG(E). We compute CG(E1)0 using the
results in [?]. However, in doing so we note that the characteristic restrictions
in [?] are slightly stronger than what is assumed here. In view of the fact that
|u0| > p we see that the only difference occurs when E1 = G2 < E7 with
p = 5, which occurs when E1 is contained in a subsystem group of type D4 or
A6. Using the action of the subsystem group on L(G) it is easy to argue that
CG(E1)0 = C3 or A1, respectively.

In all cases we have CG(E1)0 = R2 a specific reductive group. Indeed, R2

is a product of small classical groups or G2. Write E = E1E2, as before. If
E2 > 1 we compute CR2(E2)0 = CG(E)0. Now E2 is a restricted A1 in R2, so
this centralizer is reductive by Theorem 1.2(ii) of [?]. Moreover, a computation
shows that R0 is as indicated in the tables of [?]. It follows from results of
Mizuno [?], [?], Shoji[?], and Chang [?] that for good primes the reductive part
of the centralizer is as presented in the tables of [?].

We must verify that R/R0 is also correct. We see from [?] and our assump-
tion |u0| > p that the component group CG(u)/CG(u)0 ∈ {1, S2, S3}. Recall
that u ∈ E < L. We have chosen E so that the component group is easy to
obtain. For example, in cases where CG(u)/CG(u)0 = S3, we see that L′ has
an element s of order 3 and E is also centralized by an involution in the Weyl
group of G that acts as a graph automorphism of CG(s). For example, this is
the case when G = E8, u = E8(b5) and u ∈ A1F4 < A2E6 = CG(s). In this way
we see that R/R0 contains a group isomorphic to CG(u)/CG(u)0. On the other
hand we have R < CG(u), so equality must hold.

Now that R has been explicitly determined it is relatively easy to calculate
J = CG(R). At the outset E ≤ J ≤ CG(T0) = L. The information in the
tables is then obtained from a direct check, in some cases using information in
[?] to assist in the analysis. Namely, in some cases the tables in [?] give CG(R)
explicitly. In other cases information on restrictions can be used to determine
dimCL(G)(R). This completes the proof of the lemma.

We complete this section with a result which provides additional information
regarding the groups E,R, J listed in the above tables.

30



Proposition 5.5 Assume G is of exceptional type and |u| > p. Let E,R, J be
as in the tables of Lemma 5.4. Then

i) L(G) ↓ ER is completely reducible.
ii) ER0 and JR0 are restricted subgroups of G (see [?])
iii) CL(G)(E) = L(R).

Proof It follows from the arguments of Lemma 5.4 (using [?]) that either
ER = M is a maximal subgroup of G (e.g. G2C3 = M < E7) or ER is con-
tained in some convenient maximal subgroup M (e.g. B5B2 < D8 = M < E8).
We calculate L(G) ↓ M . This can be achieved using 2.1, 2.3, and 2.4 of [?].
In cases where ER < M , next restrict to ER. This is usually straightfor-
ward using information in Section 2 of [?] or the well-known result that an
irreducible spin module for Dn restricts to BkBn−k−1 as the tensor product of
the corresponding spin modules. Next, verify that all composition factors are
restricted and the corresponding Weyl modules are irreducible. Consequently
L(G) ↓ ER is completely reducible giving (i). Counting fixed points we have
dim(CL(G)(E)) = dim(R), so that (iii) holds. In many cases E = J , giving (ii)
as well. In the remaining cases, calculate L(G) ↓ JR as above to complete the
proof.

6 Theorem 4

Here we establish Theorem 4. We must identify a particular u-distinguished
1-dimensional torus T < J , where J is as in Theorem 3 and show that CG(u)∩
CG(T ) = CG(J). In the proof of Theorem 3 we constructed a certain reductive
subgroup E ≤ J such that u ∈ E and CG(E) = CG(J). Once T has been chosen
the main difficulty is in showing that CG(u) ∩ CG(T ) is reductive.

Write CG(u) = QR, where Q = Ru(CG(u)) and R = CG(E) = CG(J) is
reductive.

Lemma 6.1 Theorem 4 holds if |u| = p.

Proof Here E is a restricted A1 containing u. Let B be the Borel subgroup of
E containing u, let T be a maximal torus of B, and set W = Ru(B). Proposition
6.1 of [?] shows that CG(u) = CG(f) for f a generator of L(W ). It then follows
from the Springer map and Lemma 2.2(iii) that e and f are G-conjugate. So
replacing e by a conjugate, we may assume e ∈ L(W ). Now T acts on L(W ), so
T normalizes CG(L(W )) = CG(e) = CG(u). Also, Proposition 3.2 of [?] implies
T is u-distinguished, so T satisfies Theorem 1 and W is T -homocyclic.

We have CG(u) ∩ CG(T ) = CG(E)Q0, where Q0 is trivial or a connected
subgroup of Q. If Q0 = 1, then there is nothing to prove. So assume Q0 > 1.
Then L(Q0) ≤ CL(G)(u) ∩ CL(G)(T ) = CL(G)(B).

We claim that CL(G)(B) = CL(G)(E) and hence E acts trivially on L(Q0).
Suppose for the moment that we have established the claim. Then for s ∈ E
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semisimple we have L(CQ0(s)) = CL(Q0)(s) = L(Q0), so that s centralizes Q0.
Since E is generated by semisimple elements, we conclude that E centralizes
Q0, a contradiction. So this establishes the theorem. Thus it will suffice to
establish the claim.

Theorem 1(iii) of [?] shows that L(G) ↓ E is a tilting module, with the
possible exception of G = An with p|n + 1. Exclude the latter case for the
moment. Then L(G) ↓ E is a direct sum of tilting modules of the form T (r) for
r ≤ 2p− 2. It will suffice to establish the claim for T (r). Assume that T (r) has
a common fixed point for u and T .

If r < p, then T (r) is a restricted irreducible module with a fixed point
for B. This is only possible if r = 0 and so T (r) < CL(G)(E)). Now suppose
r ≥ p. Write r = p + c and s = p− 2− c. Then T (r) is uniserial of length 3 of
shape V (s)|V (r)|V (s) where V (s) and V (r) denote the irreducible modules of
high weights s and r, respectively. It is shown in Lemma 2.3 of [?] that u has
a 2-dimensional fixed point space on T (r) and the fixed points are also fixed
by W . So this fixed point space is T -invariant and has T weights r, s with the
latter coming from the socle. So we must have s = 0 and again this fixed point
is contained in CL(G)(E).

Finally, assume G is of type An with p|n + 1. Let Ĝ = SLn+1 and let
π : Ĝ → G be the natural surjection. Taking preimages in Ĝ we may assume
G = SLn+1. Now regard G < GLn+1. It is shown in Theorem 1(iii) of [?] that
L(GLn+1) ↓ E is a tilting module and we can repeat the above argument.

Assume from now on that |u| > p. We will require two preliminary lemmas.

Lemma 6.2 Suppose V is a section of L(G) invariant under both T and e.
Assume also that

i) The Jordan decomposition of e on V has the form Js+1⊕Jt+1⊕· · ·⊕Jw+1,
with s ≥ t ≥ · · · ≥ w.

ii) The weights of T on V are {s, s−2, . . . ,−s}, {t, t−2, . . . ,−t}, . . . , {w,w−
2, . . . ,−w}.

Then the Jordan blocks in (i) can be chosen such that each Jordan block,
Jk+1 has a basis of T -weight vectors vk, vk−2, . . . v−k, where vi has T -weight i
and [evi] = vi+2 ([evk] = 0).

Proof Choose a T -weight vector v ∈ V of weight k. Let ād(e) denote the
induced action of e on V . Then ād(e)(v) is a T -weight vector of weight k+2. In
particular, if k = s, then ād(e)(v) = 0. Since the degree of nilpotency of e on V
is s + 1, v can be chosen such that k = −s and I = 〈v, ād(e)(v), . . . , ād(e)s(v)〉
is a T -invariant Jordan block of length s + 1 with weights s, s− 2, . . . ,−s.

Since I is a Jordan block of maximal length, it splits off under the action
of e. Therefore, the hypotheses hold in V/I and we can use induction to de-
compose this quotient (which is isomorphic to a section of L(G)) into a sum
of T -invariant Jordan blocks satisfying the conditions of the lemma. Suppose
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J/I is one of these, generated by images of j + I under ād(e), where j has
T -weight −r. Consider ād(e)r+1(j). If this is 0, then we can write J as the sum
of two T -invariant Jordan blocks, I and 〈j, ād(e)(j), . . . , ād(e)r(j)〉. Otherwise,
ād(e)r+1(j) = i ∈ I is a nonzero T -weight vector of weight r +2. It follows that
r < s and there is a vector l of weight −r in I such that i = ād(e)r+1(l). Now
replacing j by j− l we again obtain a decomposition of J . Doing this for all the
summands of V/I we have the result.

Lemma 6.3 Let V be a section of L(G) invariant under T and e. Assume k > l
and that Jk+1, Jl+1 are T - invariant Jordan blocks for e such that T has weights
k, · · · ,−k and l, · · · ,−l, respectively, on these blocks. Then CJk+1⊗Jl+1(T, e) =
0.

Proof Write J = Jk+1 ⊗ Jl+1. Let J̃l+1 < Jk+1 denote the subspace spanned
by weight vectors for weights l, · · · ,−l. Then a weight consideration shows
that all fixed points of T on J lie within the subspace J̃l+1 ⊗ Jl+1. Suppose
v =

∑
vs ⊗w−s is in the fixed space of e, where the vectors vs, w−s are vectors

of weight s,−s, respectively. Then 0 = [ev] =
∑

([evs] ⊗ w−s) + (vs ⊗ [ew−s]).
Choose s maximal with vs 6= 0. Then [evs] = vs+2 6= 0 ∈ Jk+1 of T -weight s+2.
But then [ev] 6= 0, a contradiction.

Lemma 6.4 Theorem 4 holds if G is of classical type.

Proof We take E as in Lemma 5.1. Then in view of the fixed Springer map
we have e ∈ L(E). Choose T ≤ E a u-distinguished 1-dimensional torus of E
corresponding to e. Then T is also u-distinguished in G. Now CG(u)∩CG(T ) =
CG(E)Q0, where Q0 < Q is either trivial or a connected subgroup of Q. If
Q0 = 1, then there is nothing to prove. So assume Q0 6= 1. As Q0 is a
unipotent group and the projection map from the simply connected cover of G
to G is an isomorphism when restricted to unipotent groups, we may assume
that G is the corresponding isometry group.

We have 0 < L(Q0) ≤ CL(G)(u)∩CL(G)(T ). Now u and e correspond under
the Springer correspondence, so that CG(u) = CG(e). If G is symplectic or
orthogonal, then as p is a good prime, this implies that CL(G)(u) = L(CG(u)) =
L(CG(e)) = CL(G)(e) and so L(Q0) ≤ CL(G)(e) ∩CL(G)(T ). If G is of type An,
then the same conclusion holds since e = u− 1 and L(Q0) consists of matrices.

Assume G = Sp(V ) or SO(V ). Write V =
∑

1≤i≤k Vi, an orthogonal de-
composition as described in the proof of Lemma 5.1. Here u acts on Vi as the
sum of ri Jordan blocks of size i. Also Vi = Wi⊗Zri and there is a containment
I(Vi) ≥ I(Wi) ◦ I(Zri

) such that u ∈ G ∩
∏

I(Wi).
Here L(G) = L(I(V1))⊕· · ·⊕L(I(Vk))⊕

∑
i<j(Vi⊗Vj). Fix i and let ui, ei, Ti

denote the projections of u, e, T to I(Wi), L(I(Wi)), I(Wi), respectively. Then
ui and also ei act on Vi as the sum of Jordan blocks of size i. These blocks can be
chosen so that each is invariant under Ti and Ti has weights i−1, i−3, . . . ,−(i−1)
on the block. Fix i 6= j. Then Lemma 6.3 implies that L(Q0) ∩ (Vi ⊗ Vj) = 0.
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Consider L(I(Vi)) for 1 ≤ i ≤ k. View this as a subspace of L(GL(Vi)) ∼=
Vi ⊗ V ∗

i . Viewed as a module for T and e,Hom(K, Vi ⊗ V ∗
i ) ∼= Hom(Vi, Vi) ∼=

Hom(W ri
i ,W ri

i ) ∼= Hom(Wi,Wi)ri
2 ∼= Kr2

i . We get the same result viewing
Vi as a module for I(Wi). It follows that any common fixed points of e and
T on L(I(Vi)) are also fixed points of I(Wi). A dimension count now gives
CL(GL(Vi))(e) ∩ CL(GL(Vi))(T ) = CL(GL(Vi))(I(Wi)) = L(GL(Zri

)). Intersecting
this with L(I(Vi)) gives L(I(Zri

)). As R = G ∩
∏

I(Zri
), we have L(Q0) ≤

CL(G)(e) ∩ CL(G)(T ) = L(R). But R is reductive and normalizes Q0, so this
forces Q0 = 1.

Finally, assume G = SL(V ). Here we work in GL(V ) where the Lie algebra
is V ⊗ V ∗, and argue as above that common fixed points of e and T are also
fixed by R, completing the proof.

Lemma 6.5 Theorem 4 holds if G is of exceptional type.

Proof By Theorem 3 we have u ∈ J ≤ L ≤ G where L is a Levi subgroup such
that u is a distinguished unipotent element in L. Here L = CG(T0), where T0

is a maximal torus of CG(u). Also, CG(u) = QR, where R = CG(J) = CG(E)
and J = CG(R). Choose e ∈ L(G) such that CG(u) = CG(e).

We first argue that e ∈ L(J). First note that CG(e) > R, so that e ∈
CL(G)(R). So it will suffice to show that CL(G)(R) = L(J). We may choose
T0 ≤ R, so we immediately have CL(G)(R) ≤ CL(G)(T0) = L(CG(T0)) = L(L).
And as L(T0) ∩ CL(G)(R) = 0, we have CL(G)(R) ≤ L(L′). In a few cases
J = L′ and the assertion is obvious. In the other cases a direct check gives the
assertion. Indeed, in most cases it is possible to choose a group of type Sym2

or Sym3 in NR(T0) and note that L(J) is the set of fixed points of this group
on L(L′). Hence, e ∈ L(J).

The tables of Lemma 5.4 give the possibilities for E and J . We next argue
that there is a J-conjugate of E whose Lie algebra contains e. Of course, if
E = J this is obvious. If J is a product of classical groups, then using the spe-
cial Springer correspondence within these classical groups it follows that L(E)
contains nilpotent elements with the same E-centralizer as u. Then Lemma
2.2(iii) implies that e is contained in a J-conjugate of E. The only remaining
cases to settle are where J = E6 with E = F4 or C4. But E6 has precisely
two semiregular classes of nilpotent elements and each class is stabilized by
the graph automorphism. A Frattini argument implies that each semiregular
nilpotent element is centralized by an involution in the coset of a graph auto-
morphism. The assertion follows since there are two classes of involutions in the
coset of a graph automorphsim with corresponding fixed points F4 and C4 and
each of these groups has just one class of semiregular elements. So replacing E
by a suitable conjugate we may assume e ∈ L(E). However, with this change
we may no longer have u ∈ E.

Now CE(e) = CE(uE), for some unipotent element uE of E, so Lemma 2.6
shows that there is a uE-distinguished torus, T , of E such that T acts on 〈e〉
acting by weight 2. Then T normalizes CG(e) = CG(u).
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We claim that T is a u-distinguished torus of G. To verify this we need
only show that T determines the correct labelled diagram of L′. It will be
sufficient to work with the simple factors of L′ and the corresponding projection
of T . For classical factors this is easy from the choice of E and the action on
the natural module. Now consider a factor of L′ of exceptional type. Here
we refer to the tables of Lemma 5.4. If the projection of E to this factor is
surjective, then the assertion is immediate. Consider one of the other cases
(e.g. E7(a4), E6(a1), E6, ...). For this particular assertion the characteristic is
irrelevant - all that matters are the weights of T , which are independent of the
characteristic. Consequently we can use the information in Table A, pp.65-66 of
[?] which gives the corresponding labelled diagram for T . We also make use of
the tables in [?] which list the labelled diagram for each of the relevant unipotent
classes. This yields the assertion in all but one case in E8 where we have chosen
our subgroup E different from the one presented in [?]. This case is E8(b6) and
it is necessary to determine the weights of T on L(G) to verify that they are the
same as those obtained from the corresponding labelled diagram. However, this
is straightforward using the construction of E together with information in [?]
from which we can determine L(G) ↓ E. This proves the claim so that we now
have T < E, with T a u-distinguished 1-dimensional torus of G, and e ∈ L(E)
is the corresponding nilpotent element.

As T ≤ J = CG(R), we have CG(u)∩CG(T ) = RQ0, where Q0 is a connected
subgroup of Q. We must show that Q0 = 1. Now L(Q0) ≤ CL(G)(u)∩CL(G)(T )
and we next claim that CL(G)(u) ∩ CL(G)(T ) = L(R). As L(R) ∩ L(Q0) = 0,
this implies Q0 = 1, as required. So it suffices to establish the claim which will
be accomplished by making some reductions and then converting the assertion
to one involving only e ∈ L(E) and T ≤ E, as above.

Write L(G) = L(L) ⊕ S, with both summands invariant under L. To find
common fixed points of u and T on L(L), first note that L = L′Z(L)0 = L′T0.
Then

CL(L)(u) = L(T0)⊕ CL(L′)(u).

Now p is a good prime for L′ (since it is good for G) and u is distinguished in
L′, so

CL(L′)(u) = L(CL′(u)) ≤ L(Ru(P )).

However, T has only positive weights on L(Ru(P )), so we have

CL(L)(u) ∩ CL(L)(T ) = L(T0).

We now look for common fixed points on S where the goal is to show

CS(u) ∩ CS(T ) ≤ L(R).

Of course this is obvious if u is distinguished in G, for here L = G and S = 0.
So we now assume u is not distinguished.

We have CL(G)(u) = L(CG(u)) = L(CG(e)) = CL(G)(e), so intersecting with
S it will suffice to show

CS(e) ∩ CS(T ) ≤ L(R).
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Since T ≤ E and e ∈ L(E), parts (i) and (iii) of Proposition 5.5 imply that we
need only show

CF (e) ∩ CF (T ) = 0

for each nontrivial E-composition factor F in S. Lemmas 6.2 and 6.3 will be
used to see that such an F has no common fixed points of e and T .

Recall from the construction in 5.4 that either E = E1 is a simple group or
E = E1E2, a product of two simple groups, with E2 a restricted A1. Let F be
a nontrivial composition factor of E on V . Then either F = Fi, an irreducible
representation of Ei or F = F1 ⊗ F2, the tensor product of two nontrivial
representations.

In the following table we list possible choices for E1 and high weights µ1 of
F1. We also indicate the weights of T1 on F1, where T1 is the projection of T to
E1. We use the notation (a); (b); . . . ; (r) to indicate the fact that T1 has weights
a, a− 2, . . . ,−a, b, b− 2, . . . ,−b, . . . , r, r − 2, . . .− r. With one exception, these
weights are obtained from 2.13 of [?]. The exception is where E1 = G2 for the
dominant weight 2λ1. Here the corresponding irreducible module is a summand
of codimension 1 in the symmetric square of the usual 7-dimensional module,
so an easy computation yields the information indicated in the following table.

E1 µ1 T1 weights
B6 λ1 (12)

λ6 (21); (15); (11); (9); (3)
B5 λ1 (10)

λ5 (15); (9); (5)
B4 λ1 (8)

λ4 (10); (4)
G2 λ1 (6)

2λ1 (12); (8); (4)
F4 λ4 (16); (8)
C4 λ1 (7)

λ2 (12); (8); (4)
λ3 (15); (11); (9); (5); (3)

C3 λ1 (5)
λ2 (8); (4)
λ3 (9); (5); (3)

E7 λ7 (27); (17); (9)

Recall that we are looking for common fixed points of T and e on F . We
can immediately rule out two configurations in the above table. Observe that
for the cases (E1, µ1) = (B6, λ6), (C4, λ3) there are no fixed points of Ti on the
given module since all the weights are odd. Moreover, as u is not distinguished,
these cases only occur when E = E1 (the pair (C4, λ3) only occurs when L =
A7 < E8 = G) so that we are not in a tensor product situation. So for these
cases there is nothing to do. Similarly if (E1, µ1) = (E7, λ7), the weights are

36



odd and a tensor product situation can only occur in the case u is distinguished,
which we have already settled.

For the remaining cases we consider the action of ei on Fi where ei is the
projection of e to L(Ei). For e2 this is relatively easy, since E2 is either trivial
or a restricted A1. In fact for the cases considered, all composition factors of
E2 on S are restricted, so the Jordan blocks of e2 are immediate from the high
weights of the composition factors.

Next we describe the Jordan blocks of e1 for the various weights given in
the above table. The Jordan blocks of e1 on F1 are immediate in those cases
where F1 is the classical module for a classical group. Consider the spin module
for B5. Here we view B5 < D6 < E7. The restricted 56-dimensional mod-
ule for E7 restricts to D6 as two copies of the natural module plus a copy of
the spin module. So from the Jordan form of e1 on the orthogonal module
and the 56-dimensional module, we can deduce the action on the spin module.
The Jordan structure on the large module was calculated by Lawther (private
communication) using a variation of his computer program that calculated the
Jordan blocks for the corresponding unipotent element. Similarly for the action
of B4 on the spin module, where we use the embedding B4 < D5 < E6 and
the action on a restricted 27-dimensional module. Lawther also calculated the
Jordan blocks of the regular nilpotent element of F4 on the irreducible module
with high weight λ4.

The remaining C3 and C4 cases can be handled via direct calculation. Start
with the known action on the symplectic module and then consider the wedge
square and wedge cube (only for C3) of this module. Splitting off either a
trivial or natural module, we obtain the necessary information. Finally the case
of G2 on the irreducible module with high weight 2λ1 is settled, as above, by
viewing this as a module of codimension 1 in the symmetric square of the usual
orthogonal module.

The results from the above considerations show that in each case the Jordan
blocks of e1 on F1 are just as in large characteristic or characteristic 0 and are
compatible with the T1-weights on this module, as in the hypothesis of Lemma
6.2.

Now consider the possibilities for F . If F = F1, then the above table together
with Lemma 6.2 show T and e have no common fixed points on F . And if
F = F2, then F is a nontrivial irreducible restricted module for E2, a group of
type A1, so here too there are no common fixed points. In the remaining cases,
F = F1 ⊗ F2, a nontrivial tensor product, and the result follows from Lemmas
6.2 and 6.3. In checking this one verifies, using the information in Tables 1-5
of Lemma 5.4, that F2 has high weight 1 or 2 on F2, except when E1 = B4

or B5, and in the latter cases F2 has high weight at most 3. As an example,
consider the case E = B5B1 < D7 < E8, where F = F1 ⊗ F2, a tensor product
of spin modules of dimension 32 and 2 respectively. By Lemma 6.2 we can write
F1 = J16 ⊕ J10 ⊕ J6 where each summand is invariant under e1 and T1, with
compatible T1-weights. Similarly, F2 = J2. It follows from Lemma 6.3 that T
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and e have no common fixed points on F , establishing the claim and completing
the proof of the lemma.

At this point we have completed the proof of Theorem 4.
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