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Recently several more efficient versions of quantum state tomography have been proposed, with the
purpose of making tomography feasible even for many-qubit states. The number of state parameters
to be estimated is reduced by tentatively introducing certain simplifying assumptions on the form
of the quantum state, and subsequently using the data to rigorously verify these assumptions. The
simplifying assumptions considered so far were (i) the state can be well approximated to be of low
rank, or (ii) the state can be well approximated as a matrix product state. We add one more
method in that same spirit: we allow in principle any model for the state, using any (small) number
of parameters (which can, e.g., be chosen to have a clear physical meaning), and the data are used
to verify the model. The proof that this method is valid cannot be as strict as in above-mentioned
cases, but is based on well-established statistical methods that go under the name of “information
criteria.” We exploit here, in particular, the Akaike Information Criterion (AIC). We illustrate the
method by simulating experiments on (noisy) Dicke states.

I. INTRODUCTION

Quantum state estimation [1–3] remains one of the
hot topics in the field of quantum information process-
ing. The hope to recover each element in the density
matrix, however, is impeded by the exponential growth
of the number of matrix elements with the number of
qubits, and the concomitant exponential growth in time
and memory required to compute and store the den-
sity matrix. The task can become intimidating when 14
qubits are involved [4], and so efforts have been made to
simplify quantum state tomography. One such effort fo-
cused on states that have high purity [5] so that the size
of the state space shrinks significantly (from O(D2) to
O(D) for a system described by a D dimensional Hilbert
space). Given that the measurement record is used to
verify the assumptions made initially, this method avoids
the trap of simplification through imposing a priori as-
sumptions merely by fiat. Another recent effort [6] in
the same spirit considered multi-qubit states that are
well represented by matrix product states [7–9] (which
require a number of parameters growing only polynomi-
ally with the number of qubits). Many states of interest,
such as ground states of certain model Hamiltonians in
condensed-matter physics, are of that form. Crucially,
the particular form of the state can be verified by the
data.

Here we go one step further, and we will allow, tenta-
tively, any parametrized form for the density matrix of
the quantum system to be tested, possibly containing just
a few parameters. In fact, we may have several different
tentative ideas of how our quantum state is best param-
eterized. The questions are then, how the data reveal
which of those descriptions work sufficiently well, and
which description is the best. This idea corresponds to a
well-developed field in statistics: model selection [10–12].
All mathematical descriptions of reality are in fact mod-
els (and a quantum state, pure or mixed, is an excellent

example of a model), and they can be evaluated by judg-
ing their performance relative to that of the true model
(assuming it exists). In order to quantify this relative
performance, we will make use of the Kullback-Leibler di-
vergence (aka mutual information, aka cross entropy, aka
relative entropy) [13], which has the interpretation of the
amount of information lost when a specific model is used
rather than the true model. Based on the minimization
of the Kullback-Leibler divergence over different models,
the Akaike Information Criterion (AIC) [14] was devel-
oped as a ranking system so that models are evaluated
with respect to each other, given measurement data. The
only quantities appearing in the criterion are the maxi-
mum likelihood obtainable with a given model (i.e., the
probability the observed data would occur according to
the model, maximized over all model parameters), and
the number of independent parameters of the model.

The minimization does not require any knowledge of
the true model, only that the testing model is sufficiently
close to the true model. The legitimate application of
AIC should, therefore, in principle be limited to “good”
models, ones that include the true model (in our case, the
exact quantum state that generated the data), at least
to a very good approximation. However this does not
prevent one from resorting to the AIC for model evalua-
tion when there is no such guarantee. In fact, Takeuchi
studied the case where the true model does not belong
to the model set and came up with a more general cri-
terion, named the Takeuchi Information Criterion, TIC
[15]. However the estimation of the term introduced by
Takeuchi to counterbalance the bias of the maximum like-
lihood estimator used in the AIC, requires estimation of
a K × K matrix (K being the number of independent
parameters used by a model) from the data, which, un-
fortunately, is prone to significant error. This reduces
the overall charm and practical use of the TIC. Since in
most cases the AIC is still a good approximation to the
TIC [11], especially in the case of many data, we stick to
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the simpler and more robust criterion here.
Information criteria are designed to produce a rela-

tive (rather than absolute) ranking of models, so that
fixing a reference model is convenient. Throughout this
paper we choose the “full-parameter model” (FPM) as
reference, that is, a model with just enough independent
variables to fully parameterize the measurement on our
quantum system. For tomographically complete mea-
surements (discussed in detail in Sec. III B) the num-
ber of independent variables is given by the number of
free parameters in the density matrix (22D − 1 for a D-
dimensional Hilbert space). For tomographically incom-
plete measurements (see Sec. IIID), the number of in-
dependent variables of FPM is smaller, and equals the
number of independent observables. We will, in fact, not
even need the explicit form of the FPM (which may be
hard to construct for tomographically incomplete mea-
surements), as its maximum possible likelihood can be
easily upper-bounded.

We should note an important distinction between max-
imum likelihood estimation (MLE) [16], a technique often
used in quantum tomography, and the method of infor-
mation criteria and model selection. MLE produces the
state that fits the data best. Now the data inevitably
contains (statistical) noise, and the MLE state predicts,
incorrectly, that same noise to appear in future data.
Information criteria, on the other hand, have been de-
signed to find the model that best predicts future data,
and tries, in particular, to avoid overfitting to the data,
by limiting the number of model parameters. This is how
a model with a few parameters can turn out to be the
best predictive model, even if, obviously, the MLE state
will fit the (past) data better.

We also note that information criteria have been ap-
plied mostly in areas of research outside of physics. This
is simply due to the happy circumstance that in physics
we tend to know what the “true” model underlying our
observations is (or should be), whereas this is much less
the case in other fields. Within physics, information cri-
teria have been applied to astrophysics [17], where one
indeed may not know the “true” model (yet), but also
to the problem of entanglement estimation [18]. In the
latter case (and in quantum information theory in gen-
eral) the problem is not that we do not know what the
underlying model is, but that that model may contain
far too many parameters. Hence the potential usefulness
of information criteria. And as we recently discovered,
the AIC has even been applied to quantum state estima-
tion, not for the purpose of making it more efficient, but
making it more accurate, by avoiding overfitting [19].

II. THE AKAIKE INFORMATION CRITERION
- A SCHEMATIC DERIVATION

Suppose we are interested in measuring certain vari-
ables, summarized as a vector x, and their probability of
occurrence as outcome of our measurement. We denote

f(x) as the probabilistic model that truthfully reflects
reality (assuming for convenience that such a model ex-

ists) and g(x|!θ) as our (approximate) model character-
ized by one or more parameters, summarized as a vec-
tor !θ. The models satisfy the normalization condition∫
dxf(x) =

∫
dxg(x|!θ) = 1 for all !θ. By definition, we

say there is no information lost when f(x) is used to
describe reality. The amount of information lost when
g(x|!θ) is used instead of the true model is defined to be
the Kullback-Leibler divergence [13] between the model

g(x|!θ) and the true model f(x):

I(f, g!θ) =

∫
dxf(x) log(f(x))

−
∫

dxf(x) log(g(x|!θ)). (1)

Eq. (1) can be conveniently rewritten as

I(f, g!θ) = Ex [log(f(x))]− Ex

[
log(g(x|!θ))

]
, (2)

where Ex[·] denotes an estimate with respect to the true
distribution f(x). We see that x is no longer a variable
in the above estimator, as we integrated it out. The only
variable that affects I(f, g!θ) is !θ. Since the first term
in Eq. (1) is irrelevant to the purpose of rank-ordering
different models g (not to mention we cannot evaluate
it when f is not known), we only have to consider the

second term. Suppose there exists !θ0 such that g(x|!θ0) =
f(x) for every x, that is, the true model is included in

the model set. Note that for this to hold, !θ does not
necessarily contain the same number of parameters as
the dimension of the system. To use a simpler notation
without the integration over x we denote the second term
in Eq. (1) (without the minus sign) as

S(!θ0 : !θ) =

∫
dxg(x|!θ0) log(g(x|!θ)), (3)

where we have used g(x|!θ0) to represent the true model
f(x). The advantage of this estimator is that it can
be approximated without knowing the true distribution
f(x). To do that we first consider the situation where !θ is

close to !θ0. This assumption can be justified in the limit
of large N , N being the number of measurement records,
since the model !θ ought to approach !θ0 asymptotically
(assuming, for simplicity, !θ0 is unique). We know that

S(!θ0 : !θ) must have a maximum when !θ = !θ0, and we

may then symbolically expand S(!θ0 : !θ) in the vicinity of
!θ0 by

S(!θ0 : !θ) = S(!θ0 : !θ0)−
1

2
||!θ − !θ0||2!θ0

+O
(
||!θ − !θ0||3/2!θ0

)
, (4)
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where

||!θ − !θ0||2!θ0 =
(
!θ − !θ0

)′
· ∂

2S(!θ0 : !θ)

∂!θ2

∣∣∣∣∣
!θ=!θ0

·
(
!θ − !θ0

)

(5)

denoting a squared length derived from a metric defined
at !θ0. It can be proved that when N is sufficiently large
||!θ − !θ0||2!θ0 can be approximated by the χ2

K distribution,

with K equal to the number of independent parameters
used by the model !θ. From the properties of the χ2

K

distribution, we know the average value of ||!θ − !θ0||2!θ0
will approach K.

The next step is to evaluate the estimator S(!θ0 : !θ0),

where !θ0 is now considered a variable. Suppose we find
the maximum likelihood estimate !θM from the measure-
ment outcomes such that S(!θM : !θM ) is the maximum.

Now !θM should also be close to the true model !θ0, when
N is sufficiently large. Therefore we can similarly expand
S(!θ0 : !θ0) in the vicinity of !θM as

S(!θ0 : !θ0) = S(!θM : !θM )− 1

2
||!θ0 − !θM ||2!θM

+O
(
||!θ − !θ0||3/2!θM

)
, (6)

||.||!θM is a length similarly defined as in Eq. (4) and has

the same statistical attributes as ||!θ − !θ0||2!θ0 since !θ0 is

related to !θM the same way !θ is related to !θ0 and !θM is
very close to !θ0. Its average value, therefore, approaches
again K, according to the χ2

K distribution. Thus we are
able to rewrite Eq. (3) as

S(!θ0 : !θ) ≈ S(!θM : !θM )−K. (7)

We see that now our target estimator S(!θ0 : !θ) is eval-

uated by the MLE solution !θM only (plus the number
of parameters K of the model), with no knowledge of
what the true model f is. The assumption that underlies
this convenience is constituted by two parts: estimating
S(!θ0 : !θ) with its maximum !θ0 and estimating S(!θ0 : !θ0)

from the data by its optimum !θM . The deviations from
their respective maxima are equal and result simply in
the appearance of the constant K.
We now denote #LM = S(!θM : !θM ), which is the max-

imum likelihood obtainable by our model, with respect
to a given set of measurement records. The AIC is then
defined by

AIC = −2#LM + 2K. (8)

Apart from the conventional factor 2, and a constant in-
dependent of the model !θ, AIC is an estimator of the
quantity in Eq. (1) we originally considered, that is, the
Kullback-Leibler divergence between a model that is used
to describe the true model and the true model itself.

Therefore a given model is considered better than an-
other if it has a lower value of AIC.
Finally, in the case that N is not so large yet that

asymptotic relations hold to a very good approximation,
one can include a correction factor to the AIC taking
the deviation from asymptotic values into account. The
corrected AIC gives rise to a slightly different criterion
[20]:

AICc = −2#LM + 2K +
2K(K + 1)

N −K − 1
. (9)

III. RESULTS

A. Dicke states

We will apply the AIC to measurements on a popular
family of entangled states, the Dicke states of four qubits
[21–25]. We simulate two different experiments, one to-
mographically complete experiment, another measuring
an entanglement witness. We include imperfections of
a simple type, and we investigate how model selection,
according to the AIC, would work. We consider cases
where we happen to guess the correct model, as well as
cases where our initial guess is, in fact, incorrect.
We consider the four-qubit Dicke states with one or

two excitations
∣∣∣D1,2

4

〉
(with the state |1〉 representing

an excitation):

∣∣D1
4

〉
=(|0001〉+ |0010〉+ |0100〉+ |1000〉) /2, (10a)

∣∣D2
4

〉
=(|0011〉+ |0101〉+ |0110〉+ |1001〉

+ |1010〉+ |1100〉)
√
6. (10b)

For simplicity, let us suppose that white noise is the only
random noise in the state generation, and that it corre-
sponds to mixing of the ideal state with the maximally
mixed state of the entire space (instead of the subspace
with exactly one or two excitations, which could be a
reasonable choice, too, depending on the actual imple-
mentation of the Dicke states). We thus write the states
under discussion as

ρ1,2(α) = (1− α)
∣∣∣D1,2

4

〉〈
D1,2

4

∣∣∣+ α11/D, (11)

where 11/D is the maximally mixed state for dimension
D = 24, and 0 ≤ α ≤ 1. We will fix the actual state
generating our data to be

ρ1,2actual = ρ1,2(α = 0.2). (12)

This choice is such that the mixed state is entangled (as
measured by our multi-qubit version of the negativity,
see below), even though the entanglement witness whose
measurement we consider later in Sec. IIID, just fails to
detect it.
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For our first model (to be tested by AIC) we wish to
pick a one-parameter model (so, K = 1) that also in-
cludes a wrong guess. A straightforward model choice,
denoted by M1φ, is

M1φ : ρ1,2φ (q) = (1− q)
∣∣∣Ψ1,2

target(φ)
〉

〈
Ψ1,2

target(φ)
∣∣∣+q11/D. (13)

We refer to the pure states appearing here as the target

states
∣∣∣Ψ1,2

target(φ)
〉
, simulating the case where we (possi-

bly incorrectly) think we would be creating a pure state
of that form, if only the white noise were absent (q = 0).
The phase φ is included not as a (variable) parameter of
the model but as an inadvertently mis-specified property.
In this case, it stands for us being wrong about a single
relative phase in one of the qubits in state |1〉. With-
out loss of generality we assume the first qubit in our
representation to carry the wrong phase, and we write

∣∣Ψ1
target(φ)

〉
=
1

2
(|0001〉+ |0010〉+ |0100〉

+ eiφ |1000〉
)
, (14a)

∣∣Ψ2
target(φ)

〉
=

1√
6
[|0011〉+ |0100〉+ |0110〉

+ eiφ (|1001〉+ |1010〉+ |1100〉)
]
. (14b)

Alternatively, if we do consider this a two-parameter
model (changing K = 1 to K = 2), then φ is variable,
and we would optimize over φ. In our case, this optimum
value should always be close to φ = 0.

B. Tomographically complete measurement

We first consider a tomographically complete measure-
ment, in which a so-called SIC-POVM (symmetric in-
formationally complete positive operator values measure
[26]) with 4 outcomes is applied to each qubit individu-
ally. We first test our one-parameter model, and compare
it to the FPM, which contains 255 (= 44−1) parameters,
which is the number of parameters needed to fully de-
scribe a general state of 4 qubits. With definition Eq. (8)
we have

AIC(M1φ) = −2#LM (M1φ) + 2, (15)

since K = 1 for M1φ. For the FPM we have

AIC(FPM) = −2#LM (FPM) + 2× 255, (16)

where #LM (FPM) is the log of the maximum likelihood
obtainable by the FPM. The latter can be bounded from
above by noting that the best possible FPM would gener-
ate probabilities that exactly match the actual observed
frequencies of all measurement outcomes. In the follow-
ing we will always use that upper bound, rather than the
actual maximum likelihood. Even though it is possible to
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FIG. 1: How AIC ranks the one- and two-parameter models
vs. the full-parameter model (FPM):
Plot of the difference between AIC values of our models
and the FPM, i.e., −∆AIC = AIC(FPM) − AIC(M1φ) or
−∆AIC = AIC(FPM) − AIC(M2φ), for various numbers of
SIC-POVM measurements, N , with

∣∣Ψ1
target

〉
as the target

state, as functions of the angle φ. The horizontal line demar-
cates ∆AIC = 0: points above (below) that line correspond
to cases where the model with fewer (more) parameters is
preferred. The figures with

∣∣Ψ2
target

〉
as the target state look

very similar (see FIG. 2 for an example of this similarity).

find the maximum likelihood state in principle (and even
in practice for small enough Hilbert spaces), we are only
concerned with the FPM’s ranking according to the AIC,
which does not require its density matrix representation.
For M1φ to beat the FPM we require

−∆AIC := AIC(FPM)−AIC(M1φ) > 0. (17)

This is a sufficient but not necessary requirement, as we
use the above-mentioned upper bound to the FPM like-
lihood.
We plot the difference ∆AIC between the two rankings

in FIG. 1(a) for various values of the number of measure-
ments, and for various values of the phase φ. We observe
the following: The simple model is, correctly, judged bet-
ter than the FPM when the phase φ is sufficiently small.
The more measurements one performs, the smaller φ has
to be for AIC to still declare the model superior to the
FPM (i.e., for the points to stay above the solid line, at
∆AIC = 0).
Although the correction to the AIC mentioned in
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FIG. 2: Comparing single- and double-excitation Dicke states:
The difference between AICs of M1φ and the FPM, i.e.,
−∆AIC = AIC(FPM) − AIC(M1φ) for both target states,
when N = 10000, as functions of φ. The horizontal line de-
marcates ∆AIC = 0.

Eq. (9) is not very small for the FPM for N = 1000, ap-
plying that correction still does not shift the second and
third point below zero: that is, N = 1000 measurements
is still not sufficiently large for the AICc to recognize that
φ = π/4 and φ = π/2 are incorrect guesses. One can ar-
gue about what the cause of this is: it could be that N is
just too small for the derivation of the AIC (or even the
AICc) to be correct. Or it could be that the AIC ranking
is unreliable because the assumption that the true model
is included in the model, is violated. Or it could be that,
even with a perfectly valid criterion (perhaps the TIC),
the statistical noise present in the data would still be too
large.

If we consider the phase φ as a second (variable) pa-
rameter (thus creating a two-parameter model), then we
can give FIG. 1 a different interpretation: we would pick
φ = 0 as the best choice, and we would increase K by 1.
The latter correction is small on the scale of the plots,
and so we find the two-parameter model to be superior to
the one-parameter model for any nonzero plotted value
of φ, and to the FPM. This is a good illustration of the
following rather obvious fact: even if one has the impres-
sion that a particular property of one’s quantum source
is (or ought to be) known, it still might pay off to repre-
sent that property explicitly as a variable parameter (at
the small cost of increasing K by 1), and let the data
determine its best value.

C. Cross modeling

Suppose one picked a one-parameter model with a
wrong (nonzero) value of φ, and the AIC has declared
the model to be worse than the FPM. How can one im-
prove the model in a systematic way when one lacks a
good idea of which parameters to add to the model (we
assume we already incorporated all parameters deemed
important a priori). Apart from taking more and dif-
ferent measurements, one could use a hint from the ex-

isting data. One method making use of the data is to
apply “cross modeling,” where half the data is used to
construct a modification to the model, and the remain-
ing half is used for model validation, again by evaluating
AIC on just that part of the data. So suppose N mea-
surements generate a data sequence F = {f1, f2, ..., fN}.
One takes, e.g., the first N/2 data points, {f1, ..., fN/2},
as the training set, and acquires the MLE state ρMLE,
or a numerically feasible approximation thereof, with re-
spect to the training set. We then create a model with
two parameters like so:

M2φ : ρφ(ε, q) = (1− ε) [(1− q)ρMLE

+q
∣∣∣Ψ1,2

target(φ)
〉〈

Ψ1,2
target(φ)

∣∣∣
]
+ ε11/D. (18)

For practical reasons ρMLE does not need to be strictly
the MLE state, in particular when the dimension of the
full parameter space is large. One would only require it to
explain {f1, ..., fN/2} well enough to make sure that part
of the data is properly incorporated in the model. Thus,
one could, for example, use one of the numerical shortcuts
described in [27]. The rest of the data {fN/2+1, ..., fN}
is used to evaluate M2φ against the FPM.
We note the resemblance of this procedure with the

method of “cross-validation” [28]. In cross-validation one
tries to find out how well a given predictive model per-
forms by partitioning the data set into training set and
validation set (exactly the same idea as given above).
One uses multiple different partitions, and the results are
averaged and optimized over those partitions. It can be
shown [29] that under certain conditions cross-validation
and the AIC are asymptotically equivalent in model se-
lection. This virtually exempts one from having to check
multiple partitions of the data set, by applying the AIC
to the whole data set.
It is worth emphasizing that what we do here is dif-

ferent in two ways. First, our model is not fixed but
modified, based on information obtained from one half
of the data. Second, we partition the data set only once,
and the reason is, that it would be cheating to calculate
the (approximate) MLE state of the full set of data (or,
similarly, check many partitions and average), and then
consider the resulting MLE state a parameter-free model.
FIG. 1(b) shows results for M2φ and SIC-POVM mea-

surements. When the number of measurements is N =
1000, all M2φ models are considered better than the
FPM, regardless of the phase error φ assumed for the
target state. The reason is that around φ = π/2 the
approximate MLE state obtained from the first half of
the data is able to “predict” the measurement outcomes
(including their large amount of noise!) on the second
half better than the 1-parameter model with the wrong
phase.
On the other hand, when N = 10000 the AIC rec-

ognizes only the simple models with small phase errors
(φ = 0,π/8,π/4) as better than the FPM. So, neither
the approximate MLE state, nor the 1-parameter model
with wrong phase are performing well. This indicates
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FIG. 3: How the AIC ranks our one-parameter model vs. the
FPM for an entanglement witness measurement: The differ-
ence between AICs of M1φ with

∣∣Ψ2
target(φ)

〉
and the FPM,
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FIG. 4: Does the witness WJxy detect entanglement if there
is a phase error?: Witness performance 〈WJxy 〉 for different
states (defined as in Eq. (20)) as a function of φ. A negative
expectation value detects entanglement.

how many measurements are needed to predict a single
phase to a given precision.

D. Witness measurement

For states that are close to symmetric Dicke states∣∣∣DN/2
N

〉
, their entanglement can be verified by using mea-

surements that require only two different local settings,
e.g., spins (or polarizations) either all in the x-direction
or all in the y-direction. In particular, when N = 4, an
efficient witness is WJxy = 7/2+

√
3−J2

x−J2
y [30], where

Jx,y =
∑

j σ
(j)
x,y/2, with σ(j)

x,y the Pauli matrices for the j-
th subsystem. This witness detects (by having a negative
expectation value) Dicke states with a white noise back-
ground, i.e., ρ(α) = (1−α)

∣∣D2
4

〉 〈
D2

4

∣∣+α11/D whenever
0 ≤ α < 0.1920.

So we suppose we perform N/2 measurements on all
of the four spins in the x-direction simultaneously, and
another N/2 similar measurements in the y-direction.
Instead of calculating the witness WJxy and ending up

with one single value determining entanglement, we make
use of the full record of all individual outcomes in or-
der to evaluate (and then maximize) likelihoods. For
example, for the measurement of all four spins in the
x-direction simultaneously, we can count the number
of times they are projected onto the |x+ x+ x+ x+〉
state, the |x+ x+ x+ x−〉 state, etc. In both x- or y-
directions, the number of independent observables (i.e.,
the number of independent joint expectation values) is
15, which can be seen as follows: Any density matrix of
M qubits can be expressed in terms of the expectation
values of 4M tensor products of the 3 Pauli operators and
the identity 11, but the expectation value of the product of
M identities equals 1 for any density matrix, thus leading
to 4M − 1 independent parameters encoded in a general
density matrix. From having measured just σx on all M
qubits, we can evaluate all expectation values of all op-
erators that are tensor products of σx and the identity.
There are 2M such products, and subtracting the triv-
ial expectation value for 11⊗M leaves 2M −1 independent
expectation values.

This means it only takes 2× 15 = 30 independent pa-
rameters to form the FPM, and we have K = 30. Simi-
lar to the tomographically complete case, we do not need
the concrete form of the whole 255-30 dimensional man-
ifold of MLE states, nor do we need to explicitly pa-
rameterize the 30-parameter FPM states, as we can sim-
ply upper bound the maximum likelihood for this model,
LM (FPM), by noting the best one could possibly do is
reproduce exactly the observed frequencies of all possible
measurement outcomes.

E. Estimating entanglement

Our state ρactual = ρ(α = 0.2) is just not detected
by the witness WJxy, but still contains a considerable
amount of entanglement. We choose to quantify this en-
tanglement by means of three entanglement monotones
(of which only two are independent), simply constructed
from all bipartite negativities. If the four parties are de-
noted A, B, C andD, the generalized negativities [31–33]
are defined as

N1 =(NAB−CDNAC−BDNAD−BC)
1/3 , (19a)

N2 =(NA−BCDNB−CDANC−DABND−ABC)
1/4 , (19b)

N0 =
(
N 3

1N 4
2

)1/7
, (19c)

where NAB−CD denotes the negativity with respect to
partition AB against CD, etc. The main advantage
of the generalized negativities is that they are all ef-
ficiently computable directly from the density matrix.
We have for our state N1 = 0.6293, N2 = 0.3875, and
N0 = 0.4770.

Similarly to the tomographically complete case, we
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FIG. 5: How one quantifies entanglement from a witness
measurement: The posterior probability distributions of N0

for different numbers of witness measurements from model
M1(q) with target state

∣∣∣Ψ2(1)
target

〉
, where φ = 0,π/6,π/3.

N0(ρactual) = 0.4770. The prior distribution is assumed to
be uniform on [0,1] for both ε and q. The distributions of N1

and N2 are similar (up to a simple shift).

first consider the following one-parameter model:

M1φ : ρφ(q) = (1− q)
∣∣Ψ2

target(φ)
〉

〈
Ψ2

target(φ)
∣∣+ q11/D, (20)

where
∣∣Ψ2

target(φ)
〉
is defined in Eg. (14a). The AICs for

M1φ and FPM are

AIC(M1φ) =− 2#LM (M1φ) + 2, (21)

AIC(FPM) =− 2#LM (FPM) + 2× 30. (22)

FIG. 3 shows that, as before, the marks above the hor-
izontal solid line correspond to models deemed better
than FPM. Compared to the case of full tomography
(FIG. 1(a)), here the value of AIC(M1φ) is larger than
AIC(FPM) by a much smaller amount, even when the
phase term is correct (φ = 0). The absolute value of the
difference is not relevant, though, and what counts is its
sign. The obvious reason for the smaller difference is that
the number of independent parameters for the FPM has
dropped from 255 to 30. In addition, the FPM in this
case does not refer to a specific 30-parameter model. On
the contrary, since the number of degrees of freedom of
the quantum system is still 255, there is a whole subspace

of states, spanning a number of degrees of freedom equal
to 225 (=255-30), all satisfying the maximum likelihood
condition.
The witness measurement is very sensitive to the phase

error, even when the number of measurements is still
small. When N = 1000, the estimation of φ is within
an error of π/6, as the second point plotted is already
below the line ∆AIC = 0. Compared to FIG. 1(a), this
precision is only reached when N = 10000.
An interesting comparison can be made between AIC

and the entanglement-detecting nature of witness WJxy .
FIG. 4 shows the performance of 〈WJxy 〉 for the pure
state

∣∣Ψ2
target(φ)

〉
(ρφ(q = 0), solid curve) and the mixed

with 20% of identity mixed in (ρφ(q = 0.2), dot-dashed
curve). Even when the state is pure, 〈WJxy 〉 will not be
able to witness any entanglement if the phase error is
larger than π/3, just about when AIC declares such a
model deficient. Entanglement in the mixed ρφ(q = 0.2)
of course is never witnessed. This means 〈WJxy 〉 is only
an effective witness in the vicinity of

∣∣D2
4

〉
, with limited

tolerance of either white noise or phase noise in even just
one of the four qubits. (Of course, one would detect the
entanglement in the pure state by appropriately rotating
the axes in the spin measurement on the first qubit over
an angle φ.)
To test whether a few-parameter model correctly quan-

tifies entanglement if that model is preferred over the
FPM by AIC, we estimate a (posterior, Bayesian) prob-
ability distribution over the generalized negativities (de-
fined above). We see that the first three curves in
FIG. 5(a) and the first two curves in FIG. 5(b), which
correspond to the data points above the horizontal line in
FIG. 3, all give consistent estimates of N0, compared to
the actual value of N0 for the true state (and the same
holds for N1,2 (not shown)). Conversely, the estimate
cannot be trusted when AIC deems the simple model in-
ferior to the FPM (of course, it may still happen to be a
correct estimate, but one could not be sure). This gives
additional evidence for the success of AIC.

F. Cross modeling for a witness measurement

We now construct a two-parameter model M2φ simi-
lar in spirit to that discussed for tomographically com-
plete measurements: half the data [on which half the
time (σx)⊗4 is measured, and half the time (σy)⊗4] are
used to generate a better model, which is then tested on
the other half of the data (also containing both types of
measurements equally). We write

ρ(ε, q) =(1− ε) [(1− q)ρobservation

+q
∣∣Ψ2

target(φ)
〉 〈

Ψ2
target(φ)

∣∣]+ ε11/D. (23)

To find a ρobservation—there are many equivalent ones for
predicting the outcomes of the witness measurements—
we recall that a generic four-qubit state can be expressed
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FIG. 6: What fraction of the model Eq. (23) describes phys-
ical states?: The lower left part separated by the curves is
where ρ(ε, q) of Eq. (23) is unphysical (and so is not actually
included in the model), for different number of measurements
N .
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FIG. 7: How the AIC ranks our two-parameter model vs. the
FPM, for a witness measurement: The difference between
AICs of M2φ and the FPM, i.e., −∆AIC = AIC(FPM) −
AIC(M2φ), for different numbers of witness measurements as

a function φ. The target state is
∣∣∣Ψ2(1)

target

〉
. The horizontal

line demarcates ∆AIC = 0.

as

ρ =
∑

jklm

cjklmσj ⊗ σk ⊗ σl ⊗ σm, (24)

where j, k, l,m = 1, 2, 3, 4 where σ1,2,3 denote the Pauli
matrices σx,y,z and σ4 = 11. The witness measures the
coefficients cjklm where j, k, l,m can be combinations of
only 1 and 4 or combinations of only 2 and 4 (e.g., c1441
or c4222). We label the cjklm’s that can be recovered from
witness measurement as cwjklm (w as in witness). We do
not include in cwjklm the coefficient c4444, which always
equals 1/16, so that it does not depend on measurement
outcomes. We define

ρobservation =
∑

jklm

cwjklmσj ⊗ σk ⊗ σl ⊗ σm + 11/16. (25)

Note that ρobservation can be considered as a trace-
one pseudostate, since it is not necessarily positive semi-

definite. But the most attractive property of ρobservation
is that it preserves the measurement outcomes. It is in
fact the unique pseudostate that reproduces the exact
frequencies of all measurement outcomes and that has
vanishing expectation values for all other unperformed
collective Pauli measurements. As a component of ρ(ε, q),
we allow ρobservation to be unphysical, but we only keep
those ρ(ε, q) that are positive semi-definite. We checked
numerically for what values of ε and q the states end up
being physical, and how this depends on the number of
measurements performed. Physical states are located in
the upper right part of the square in FIG. 6. That is,
only if ε and/or q are sufficiently large, so that a suffi-
ciently large amount of

∣∣Ψ2
target

〉
and/or 11/16 has been

mixed in, does ρ(ε, q) become physical. Depending on
the number of measurements, the area of the upper right
part is about 69%-77% of the whole square. The physi-
cal/unphysical boundary shifts closer to the origin as the
number of measurements increases.

We test the two-parameter model (the physical part
of it), and show the results in FIG. 7. We find that
for N = 100 the AIC ranks ρ2φ(ε, q) better than the
FPM, even when the guess about φ is very imprecise: 100
witness measurements are, unsurprisingly, not enough for
a correct reconstruction of the state. When N = 1000,
AIC only prefers the models with a value for φ within π/6
of the correct value. And when N = 10000, the accepted
values of φ are even closer to the true value.

The corresponding posterior distributions of negativi-
ties N2 are plotted in FIG. 8 for the three better guesses,
φ = 0,π/6,π/3. When N = 100 all three give decent
predictions of N2 (and indeed, AIC ranks those models
highly). For N = 1000 and N = 10000, we would only
trust the estimates arising from the lower two values of φ,
or just the correct value of φ, respectively. This trust is
rewarded in FIG. 7(b) and FIG. 7(c), as those estimates
are indeed correct, within the error bars. In addition,
the untrusted estimate for φ = π/6 for N = 10000 still
happens to be correct, too.

G. Comparing one- and two-parameter models
directly

Finally, the AIC can compare the one- and two-
parameter models M1φ and M2φ directly. For that pur-
pose one needs to use the same validation set of data,
which implies that the two-parameter model needs ad-
ditional data to generate ρobservation. Here we display
results for just 50 witness measurements, and an addi-
tional set of 50 measurements for M2φ. FIG. 9 shows
that even such a small number of additional data is use-
ful if the angle φ is wrong, and, similarly, it shows that
the same small number suffices to detect a wrong single-
qubit phase when it is larger than π/3.
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FIG. 8: Quantifying entanglement from a witness measurement: The posterior distributions for N2, for different numbers of
measurements, using model M2φ with ρobservation and target state

∣∣Ψ2
target

〉
, where φ = 0,π/6,π/3. N2(ρactual) = 0.3875. The

same prior is used as in FIG. 5. Whenever the AIC declares a model superior to the FPM, the estimated entanglement agrees,
within error bars, with the actual value, but may be wrong otherwise.
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FIG. 9: Comparing one- and two-parameter models directly:
The difference between AICs of M2φ and M1φ for 20 different
sets of witness measurements (N = 50) as functions of φ.
The target state is

∣∣Ψ2
target

〉
. The horizontal line demarcates

∆AIC = 0. The dotted-dashed line is the average of all 20
points at each different φ.

IV. CONCLUSIONS

We applied information criteria, and the Akaike Infor-
mation Criterion (AIC) developed in Ref. [14] in partic-
ular, to quantum state estimation. We showed it to be
a powerful method, provided one has a reasonably good
idea of what state one’s quantum source actually gener-
ates.
For each given model, which may include several pa-

rameters describing error and noise, as well as some
parameters—call them the ideal-state parameters— de-
scribing the state one would like to generate in the ideal
(noiseless and error-free) case, the AIC determines a
ranking from the observed data. One can construct mul-
tiple models, for instance, models where some ideal-state

parameters and some noise parameters are fixed (possibly
determined by previous experiments in the same setup),
with others still considered variable. Crucially, the AIC
also easily ranks the full-parameter model (FPM), which
uses in principle all exponentially many parameters in
the full density matrix, and which is, therefore, the model
one would use in full-blown quantum state tomography.
This ranking of the FPM can be accomplished with-
out actually having to find the maximum-likelihood state
(or its likelihood)—which quickly would run into insur-
mountable problems for many-qubit systems—by using
a straightforward upper bound.
This way, observed data is used to justify a posteri-

ori the use of the few-parameter models—namely, if the
AIC ranks that model above the FPM—and thus our
method is in the same spirit as several other recent pro-
posals [5, 6] to simplify quantum tomography, by tenta-
tively introducing certain assumptions on the quantum
state generated, after which data is used to certify those
assumptions (and if the certification fails, one at least
knows the initial assumptions were incorrect).
We illustrated the method on (noisy and mis-specified)

four-qubit members of the family of Dicke states, and
demonstrated its effectiveness and efficiency. For in-
stance, we showed that one can detect mis-specified ideal-
state parameters and determine noise and error parame-
ters. We also showed by example the successful applica-
tion of the method to a specific and useful subtask, that
of quantifying multi-qubit entanglement.
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[22] H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-

al-kar, M. Chwalla, T. Körber, U. D. Rapol, M. Reibe,
P. O. Schmidt, et al., Nature 438, 643 (2005).

[23] N. Kiesel, C. Schmidt, G. Tòth, E. Solano, and H. We-
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