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Abstract. Weinvestigate the separation of the total angular momentum J of the
electromagnetic field into a ‘spin’ part S and an ‘orbital’ part L. We show that both
‘spin’ and ‘orbital’ angular momentum are observables. However, the transvers-
ality of the radiation field affects the commutation relations for the associated
quantum operators. This implies that neither 8 nor L are angular momentum
operators. Moreover their eigenvalues are not discrete. We construct field modes
such that each mode excitation (photon) is in a simultaneous eigenstate of S, and
L,. We consider the interaction of such a photon with an atom and the resulting
effect on the internal and external part of the atomic angular momentum.

1. Introduction
As is well known the total mechanical angular momentum J of a system of matter
particles can be separated into an external and an internal part. One writes

J=L+S. 1)

The external part L gives the angular momentum associated with the centre-of-mass
motion. The quantities L and 8§ obey independent evolution equations, and the
corresponding quantum operators commute and both represent observables.

The angular momentum J of the free classical electromagnetic field is well
defined: it is the conserved quantity resulting from the invariance of the free Maxwell
equations under arbitrary rotations [1]. In this case the separation of J into spin and
orbital angular momentum is known to be impossible [2-5]. There are two main
reasons for this. First, the spin part should correspond to the total angular
momentum of a particle in its rest frame, but this frame does not exist for a photon.
In fact, for a photon one can define only the component of the spin operator along the
propagation direction, 1.e. the helicity. For a massless spin-s particle the helicity
takes the values 1 s. Furthermore, the spin is expected to generate rotations of only
the polarization of the field, while leaving the amplitude unchanged. This would
destroy the transversality of the field, so that the spin operator would not leave the
physical subspace invariant [4,5]. In general, for a massless particle the gauge
conditions introduce an interdependence between the vectorial nature and the
spatial dependence of the field, and it is not possible to define spin and orbital
rotations of the field separately [2].

On the other hand, for the electromagnetic field the vector J can be separated into
two gauge-invariant parts L and S, which are often termed the ‘orbital’ and the ‘spin’
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part [4, 5]. The former quantity is similar to external angular momentum, as it is
defined relative to a reference point. The ‘spin’ part is known as the intrinsic part,
since it is independent of the choice of this point. For the classical free electromagne-
tic field both quantities L and 8 are conserved. Only in interaction with matter do
they change in time (see section 2). The question arises, what is the physical
significance of these two quantities L and 8, and how for instance a given component
of the ‘orbital’ angular momentum can be measured.

For light beams, the components of L and 8 along the propagation direction can
be separately observed by measuring the change of the angular momentum of matter
after it has interacted with an appropriate mode of the radiation field. For instance,
Beth measured the torque exerted on a birefringent plate, when the plate transforms
right circularly polarized light into left circularly polarized light [6]. This has been
interpreted as a measurement of the component of the spin angular momentum of
light along the propagation (2) direction of the beam. An analogous experiment is
being performed in which the 2 component of the orbital angular momentum of a
paraxial laser beam is measured. Here a (monochromatic) Hermite—Gaussian laser
mode is transformed into a Laguerre-Gaussian beam by means of two astigmatic
lenses [7, 8]. The former mode does not possess angular momentum, whereas the
transformed beam has an azimuthal exp (im¢) dependence, which implies that the
ratio of orbital angular momentum L, to energy is m/w, where w is the frequency of
the light. Since L, is conserved during propagation between the lenses [9], a torque
must be exterted on the lens system. In this experiment the polarization state of the
light beam and hence S, are not affected, while in the Beth experiment the spatial
field distribution of the light beam and hence L, are left unchanged. Therefore one is
able to measure L, and S, separately. All these results may be explained by a classical
theory.

The physical significance of the quantities L and $ of the radiation field is
illustrated by considering the quantized field. It is common practice to quantize the
radiation field after expanding it in plane waves. However, two components of the
classical angular momentum density in a plane wave diverge for |[r|=>o0. The
corresponding two components of J are thus ill defined, and so are the components of
L. Furthermore, the component of the angular momentum density along the wave-
vector k vanishes identically. This fact leads to paradoxical results (see e.g. [3, 4, 10]):
in the Beth experiment the birefringent plate picks up spin angular momentum,
while the field apparently does not possess angular momentum. Classically one
justifies this result by taking into account the fact that a detector placed in a plane
wave causes gradients in this field [4]. The field can no longer be considered as a
plane wave, and the z component of the angular momentum density does not vanish.
However, in quantum mechanics the problem remains. As is well known, the z
component of the internal angular momentum of an atom changes by +# on
absorption of a photon from a circularly polarized beam moving in that direction.
The picture arises that photons in a circularly polarized plane-wave mode possess
internal angular momentum # in the propagation direction. This again seems to
contradict the fact that J, vanishes for a plane-wave mode.

In order to investigate the above issues we quantize the field after expanding it
into a different complete set of modes. This allows us to quantize the classical
quantities 8 and L, and determine the commutation relations and eigenvalues for
these operators. We compare these with the standard commutation rules and the
eigenvalue spectra for spin and orbital angular momenta of fields with spin one. We
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find essential differences, which can be traced back to the transversality of the
radiation field.

Next, we construct modes for which the photon number states are eigenstates of
both L, and S,. We subsequently consider the interaction of a photon in such a mode
with an atom. One might expect that the ‘spin’ and ‘orbital’ angular momentum of
the photon are transferred exclusively to, respectively, internal and external angular
momentum of the atom. We examine to what extent this statement is correct. We
start by considering the classical field in interaction with matter and calculate the
concomitant exchange of angular momentum.

2. Angular momentum of the classical field

The electromagnetic field can be separated into transverse and longitudinal fields
[1, 5]. These parts have by definition a vanishing divergence and curl, respectively,
so0 that their Fourier transforms are perpendicular and parallel to the vector k for all
k. One uses the symbols 1 and || to denote the transverse and longitudinal parts of
the fields. Although this separation is not Lorentz covariant it has nevertheless
proved very useful, both in classical theory and for the quantization procedure. The
magnetic field is purely transverse, while the longitudinal electric field E is given by
the instantaneous Coulomb field of the charges. The transverse electric field E; thus
describes the radiation part, which contains in fact the only real dynamical degrees of
freedom of the field. Moreover, the transverse part A | of the vector potential is gauge
invariant.

The angular momentum J of the classical electromagnetic field relative to the
origin is defined by

J= jdreorx(Ex B). (2)

This quantity i1s conserved in the absence of charged particles, as a result of the
invariance of the free Maxwell equations under spatial rotations. The longitudinal
and radiation parts of E contribute independently to J. The following expressions for
the respective contributions can be derived when using B=V x A | and by applying
partial integration (see also [5], p. 45-47):

Jlong= jdr p(l’ X AJ.)’

Jrad=€o; jdr Ef(r x YA} +¢ jdr E, <A,

ELrad'l"srad’ (3)

with p the charge density. It has been assumed here that the fields vanish sufficiently
fast for {r|] - 0o so that surface terms vanish. These expressions are gauge independ-
ent, since they do not contain the full vector potential, but only the transverse part
A . The longitudinal contribution depends explicitly on the charge density, and is
therefore usually combined with the mechanical angular momentum of the (charged
and neutral) particles Z, which is given by

Jmech::zmirix v;. (4)
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The sum of mechanical and longitudinal momenta thus gives the momentum
associated with the particles 7. In the Coulomb gauge this sum is equal to the
canonical particle angular momentum.

Because of the Lorentz force the mechanical angular momentum changes

according to
d .
a‘jmech= dI'I'X(pE_L-l—jXB). (5)

The longitudinal part of E does not contribute here, as p is proportional to V- E,.
From the Maxwell equations we find the rates of change for the electromagnetic field
angular momentum

d

EJlong= - fdrrx (pEJ_ +.i|| X B)’

d
dt

(6)
Jopa=— fdrrx(jle).

These relations together with (5) show that the total angular momentum of particles
and field is conserved.
Finally we find the time derivatives of L,,4 and S,,4,

0 .
5 Lg= _Zl: J‘dl']ll(l' X V)All’

3 (7)

Esrad: - J‘dr.il x AJ_‘

This result shows that S, and L,,, are separately conserved in the absence of matter.
Furthermore, the change of 8,4 and L4 is entirely due to the magnetic interaction
with the transverse part j, of the electric current.

3. Angular momentum of the quantized field
3.1. General mode expansion and quantization

The radiation field can be expanded in a complete set of transverse mode
functions F;, which are solutions of the wave equation

V2F,= —k°F,, (8)

with the transversality condition
V * Fﬂ. = 0, (9)

and the normalization condition
CFiF.>= fd" FY-Fi=d,., (10)

where the asterisk denotes complex conjugation. The mode index A can be specified
as the discrete and continuous eigenvalues of mutually commuting Hermitian
operators, which have F; as eigenfunctions. For plane-wave mode functions, the
eigenvalues are the three components of the wave-vector k and the polarization
index. In general, mode functions obeying the wave equation (8) are already
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eigenfunctions of V2, and three additional independent Hermitian operators must be
specified.
The transverse part of the vector potential can be expanded as

AL=;&¢1(01F1+01*FY), (11)

with the normalization constant o/ ; = (h/2¢,w;)'/?, where w;=kc is the frequency,
and with a, a dimensionless complex amplitude. With the normalization (10), the
energy of the free radiation field takes the form of the energy of a set of independent
harmonic oscillators

Hrad= jdreo(El 'E_L+CzB° B)/2

h
) —;)1(0701+0107)- (12)

Quantization then proceeds in the same way as for harmonic oscillators, where a; and
a} = a* now become the annihilation and creation operators for photons in the mode
A. They satisfy

[a;, a}']=5u'» (13)

while the remaining commutators vanish. The expressions (11) and (12) for A, and
for the field energy are still valid quantum mechanically, provided that a} replaces
a¥. The transverse electric and the magnetic field are given by

E, =Ziwld A(a;F,—alFY),

' (14)
B=Zdl(alv X Fl+a}'V X Ff)

7

These field variables have then become operators. They act, just as a; and al, on the
Fock space of states of the radiation field. This space is spanned by the photon
number states, which can be defined in terms of the vacuum state vector {0,0,...),
according to

mb>=I1-2 10,0,..> (15)
2 E L Gy 02
with the vacuum defined by
Vi:ala;)0,0,...>=0. (16)

3.2. Angular momentum operators
The operator for the total angular momentum of the transverse field has the same
form as for the classical field,

Jea =60 Jdrrx(Ele). a7n

There is no need to symmetrize this expression, since E, and B, when evaluated at
the same position and time, commute [5]. Just as for the classical field this operator
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can be separated into two terms, corresponding to ‘spin’ and ‘orbital’ angular
momentum. By substituting the expansions (14) one finds

Jrad = Lrad + srad’ (18)

where

$,.4=6 fdrElx A,

1 &
=5 T (alay+ayal)F,8IF.,

L.s=¢6 Z jdr Ei(rxV) A4}

1

=3 Zl ala; +a;.a})}<F,[LIF,.>.
Expressions similar to (19) have been derived before both in real space [11] and in
reciprocal space [5]. The operators L and S are defined by

L= —ih(rxV), } (20)

(Sk) lheqk’

fori,j=x,y, 2, with ¢;; the Levi-Civita pseudo tensor. They have the same form as
the quantum-mechanical operators for orbital angular momentum and spin of a
spin-one particle, respectively. The operator L acts on the position dependence of
the classical mode functions F,, whereas § acts as vector of 3 x 3 matrices on their
cartesian components. We will denote these operators by carets, in order to
distinguish them from field operators such as S,,4 and L_,4, which act on Fock states.

It must be noted that the expression for L,,; may contain additional boundary
terms, which result from the integral over all space of a total divergence. Their
explicit form may be found in [12]. These boundary terms do not vanish when the
mode functions F; do not fall off sufficiently fast for |¢| > oc. This applies in particular
to the choice of plane waves as the mode functions. Here we tacitly have assumed that
the boundary terms may be neglected. This is correct when, for example, suitable
boundary conditions have been imposed, or when a set of square-integrable mode
functions has been chosen.

In (19) we already made use of the fact that L and S commute with the Laplace
operator, so that only terms with @, =®;. contribute to J,,4. Hence, for the free field
(19) is manifestly time-independent, and J,,4, S,,4 and L_,4 are conserved, also in the
quantum case. Lenstra and Mandel [12] point out that none of the components of J,,4
is strictly conserved for a quantized field with periodic boundary conditions imposed
on a cube. The reason is that the quantization volume is not invariant under
infinitesimal rotations. On the other hand, S,,4 is always strictly conserved, since the
latter operator does not contain boundary terms.

The operators S and I:, when acting on a transverse field, do not preserve the
transversality of that field [5]. If the mode functions F; were interpreted as the
quantum state vectors for photons, then this would imply that S§ and L cannot
represent observables, since slﬂ) and L|F,> are unphysical states. However, this
argument does not apply as the quantum state of the radiation field is described by
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Fock states. It is the operators 8,4 and L4, and not 8§ and L, that act on these Fock
states and hence are the physical variables.

Finally, we note that in a similar fashion one may obtain the expression for the
linear momentum operator P4 of the radiation field,

P..=¢ Jdr (E, xB)

1 .
=3 ;Z; (ala; +a;.a))<F,[PIF,>, QN

with P the quantum-mechanical momentum operator,
P=—ihv. (22)

In the remainder of this paper we shall discuss only the momentum P, 4 and the
angular momenta J_4, L,,4 and S, of the radiation field. For convenience we
suppress the suffix ‘rad’ from now on.

3.3. Commutation relations
The operators § and L satisfy the standard commutation rules for angular
momentum operators

(L, L) =; ihe 5Ly (23)
Since the total angular momentum operator J generates rotations in space, as was
explicitly verified in [12], also J obeys the standard rule

[J,JA =; ihe; . 24)

One might expect S and L to obey the same relations (23), because of the form {19).
However, this turns out not to be true. This is most easily seen if we take the standard
expansion of the field in plane-wave modes with wave-vector k, with circular
polarization. Then equation (19) reduces to the form obtained before in [12]

hk
S=; E—(a}\t,+ak,+'—a}\t,—ak,—)' (25)

where the + refers to circular polarization with helicity parallel or anti-parallel.
Since the operator 8 contains only number operators, all its components commute.
Therefore we may write

S, S1=0. (26)

This implies that S does not generate rotations of the polarization of the field, and it
cannot be interpreted as spin angular momentum. Although this result follows
directly from (25) it does not seem to have been noticed before.

The commutation rules are, of course, valid in any representation. However, in
the plane-wave representation the mode expansion (19) for the operator L makes no
sense. We therefore give now an alternative derivation of the commutation rules for
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S and L, which will moreover show explicitly that the modification of the standard
rules arises from the transversality of the fields.

The expansion (19) for a cartesian component S; of § contains matrix elements of
the operator S; between mode functions F,. These matrix elements do not change
their value when the operator S; is replaced by the operator T'S;T, where T denotes
the projection on the space of transverse functions. The action of T on the Fourier
transform % of F(r) is given by the matrix

F =8~ K, 7)

where k;=£;/k is the ith component of the unit vector in the k direction. In Fourier
representation the ‘projected’ spin operator takes the form

(jgkj)ij= —ih[éijk-Z(éisk’cs’cj“éjsk’cs’ci)]- (28)

This operator is a vector operator of antisymmetric 3 X 3 matrices. These matrices
are transverse in the sense that when acting on k; they give a vanishing result. Now
there is only a single antisymmetric transverse matrix, namely the matrix with
components Z,;.k,. Hence each component of the operator g 87 is proportional to
this very matrix. In fact, one finds

(fgkj.)lj= —’ihZ€ijsKsz, (29)

which can be verified by taking the inner product of (28) and (29) with the vector k.
All the components of TS 7 therefore must commute. Therefore the mode functions
F, can be chosen as simultaneous eigenfunctions of T'S, T, T.S’,,Tand TS,T. Insucha
representation, the double summation in (19) reduces to a single summation, and all
components of 8§ depend exclusively on number operators a}a;. Since all number
operators are mutually commuting, we conclude that the components of S are
commuting operators on the Fock space of state vectors of the radiation field.

In fact, the commutation rule (26) can also be proven by starting from the
definition (19) of 8, and applying the commutation relation (see [5], p. 173)

h
[Al,i(r),EL,,-(r’)]=g5$(r—r’), (30)

with J3;(r—r') the transverse delta function.

The commutation relations between J and S read

(s Sj]=§k:ih€ijk‘sk) (31)

which shows that 8 transforms as a vector under rotations. The same is then true for
L. From the three relations (24), (26) and (31) it follows that the ‘orbital angular
momentum operator’ L obeys

Ly, Lj] =; ihéijk(Lk + Sy,
(32)
[Li) SJ] =;ih€ijksk.
The first line implies that also L is not an angular momentum operator. It does not
generate orbital rotations. The second line shows that L and 8 do not commute,
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unlike L and 8, and unlike the corresponding operators for internal and external
angular momentum of matter particles. On the other hand the operator L does
commute with 82. Also, it is clear from the form (25) of the spin operator that § and
the linear momentum operator P can be simultaneously diagonalized. Therefore
these two field operators commute. Since the total angular momentum generates
rotations of the orbital vector P it follows subsequently that

[Li, Pj] =2k: 1he; Py (33)

Finally, we know that the ‘spin’ operator 8 cannot generate general rotations of
the polarization. Instead it generates transformations of the polarization vector such
that the transversality of the field is preserved. From the form (25) it becomes clear
that for an arbitrary unit vector u, the operator

R(x) =exp (—iau- S/h) 34)

rotates the polarization of each k-component of the field around its wave-vector k,
over an angle o cos (u * k/k). Hence the effective rotation vector is the projection of u
along the wave-vector k. This shows once more that only the component of the
operator S along k is a true spin angular momentum operator, since only this
component generates spin rotations.

4. Eigenstates of spin and orbital angular momentum

In order to study the transfer of L and S to an atom at absorption of a photon, we
wish to construct a set of transverse modes in such a way that each photon from a
given mode will be in an eigenstate of both the spin and the orbital angular
momentum in a given (2) direction. Then the operators S, and L, are given by
expansions (19) which are diagonal in A.

We follow a method of construction which is similar to the method used by
Berestetskii to construct the familiar multipolar waves [2]. We start by defining a
complete set of scalar functions f which solve the wave equation. We define the
functions f by requiring them to be eigenfunctions of three commuting hermitian
operators. Then this set of scalar functions is complete and orthogonal. We then
proceed to construct from these scalar functions transverse vector eigenfunctions of
the operators P2, ISZ and of J,. There are two independent solutions. Subsequently
we find the two linear combinations of these solutions which are eigenfunctions of
the reduced spin operator 7' S, 7. These modes describe then eigenstates of energy
and of the field operators J,, P, and S,. Note that the multipolar waves correspond to
eigenstates of energy, J,, J2 and parity.

4.1. Scalar functions
We introduce a complete set of scalar eigenfunctions f of the commuting
operators L, P? and P,, so that

(P2+PYf =h’R},
P.f=hk.f, (35)
l:,,f =mhf,
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where k? = k? — k2. We denote the so-constructed functions by f(k,, k,, m). They can
be written in cylindrical coordinates as
f(kn kza m) =Jm(ktp) eXP (lkzz) exp (lm¢)/Na (36)

with J,(k,p) a Bessel function and N a normalization constant. We may normalize
them according to

Jdrf*(kta kza m)f(k;a k;a m,) = é(kz - k’z)é(kt - k;)émm (37)

4.2. Mode functions
Each orbital vector operator V satisfies the commutation relation

[Eza Vj] =Zk: ihezjk I‘/‘vk' (38)

This relation implies that a vector eigenfunction of J, = L + S, can be constructed by
letting an arbitrary orbital vector operator act on a scalar eigenfunction of the
operator L,. This statement remains true when the ‘vector’ operator transforms as a
vector only with respect to O(2), under rotations about the z axis, which is sufficient
for the validity of (38). Since there are two independent choices for selecting vectors
perpendicular to k in Fourier space we wish to find two commuting vector operators
V, and V, such that the set of functions

Vof (ke by m)
RZLZD

for s=1, 2 forms a complete set of normalized transverse vector eigenfunctions of P2,
P, and J,. We impose the following conditions on V,

P-V,=0, }
v1.€12=01

F(kta kz) m, S) = (39)

(40)

with the dagger denoting the hermitian conjugate. The first condition ensures
transversality, the second orthogonality of the mode functions. Furthermore, we
require these operators to commute with P? and with £,, so that the vector functions
(39) still satisfy the first two eigenvalue equations (35). Then the modes will possess
well-defined energy and linear momentum in the z direction. The most obvious
choice is to take

Vl=?xi, V2=V1X§. (41)

The first operator defines modes with a vanishing E,, i.e. TE modes. The modes with
s=2 are TM modes, since B,=0.

Finally we have to find two linear combinations V, of V, and V, such that V, f
and V_f are eigenvectors of the reduced spin operator TS8,T,

(TS, TWV.f=pusV.f, (42)

with eigenvalues p. Then the modes V, f will possess well-defined spin in the z
direction. From (29) it is obvious that in Fourier space, the two vectors V, and V_
obeying the requirements (40) and (42) are the two circular vectors in the plane
normal to k. They are eigenvectors of TS,T with eigenvalues +hx,. The
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corresponding expressions for the vector operators acting on the scalar functions f

are
1 (Y, iV
vi—ﬁ(hzkk’ih—k’ s (43)

where we included the proper normalization factors, which follow directly from

Vi=P2+ P2,
_ } (44)
Vi=P*Pi+ P2
The corresponding mode functions
F(kn kz) mr i— ) =vif(kn kzr m) (45)
are normalized according to
Jdl’ F*(kn\\kz) m, S) : F(k;) k’z» m’» S’) = 5(kz - k’z)é(kl - k;)émm’éss" (46)
Their cartesian components are given by}
1 kR, Tk
_ iFy=_21" k
\/Z(Fx+1Fy) 2k f(kn »mt 1),
1 k,+k
. 3 _-_2=" - 4
73 P i) =5 S by m=1), ¢ #7)
3
F,=—1 f(k,, k .
z \/2 & SRy, kyym) )

These mode functions are eigenfunctions of the operators P2, P,, J, and TS, T with
eigenvalues h2k2, hk,, mh and +hk,[k.

The mode functions (47) are in fact generalizations of so-called Bessel beams,
which have recently been experimentally realized [13]. Bessel beams are propor-
tional to the zeroth-order Bessel function Jy(k,p), and do not depend on the
azimuthal angle ¢. Our modes, on the other hand, carry arbitrary orbital angular
momentum. They belong to the class of non-diffracting beams [14], since the
intensity profile is independent of the propagation variable 2.

Finally, in relation to the remarks made after equation (19) on the neglect of
boundary terms, we note that the mode functions f(k, k,, m) are not square
integrable, and do not vanish for z—00. The Bessel functions do approach zero as

2
Jm(k!p) ~<

1/2
MQ cos (kp —ymn—4m), (48)

for p— o0, but this is too slow to make the boundary terms in J — 8 vanish. However,
the = component L, is still given by (19) if suitable boundary conditions are imposed
on a cylinder p=constant. Moreover, since this quantization volume is invariant
under rotations about the z axis, L, and J, are strictly conserved in time.

1 We define the relative phases of the functions f(m) for different m by (B, + if’y) f(m)=
—hk f(m+1).
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4.3. Angular momentum operators
The modes A=(k,, k,, m, 5) just defined have well-defined values for the angular
momentum J, of mh per photon. More precisely, on substituting the expansions (14)

for E; and B one finds

J,= f dk, f dk,y mhN,, (49)

in terms of the number operators N,=ala;. By construction the operator S, is
diagonal in the eigenstates of these number operators

S,= fdk,fdkzz fﬁ%m. (50)

The eigenvalues of this operator are given by +k,h/k per photon. This follows
immediately from the eigenvalues of the projected spin operator. This result
confirms that S, is not a true angular momentum operator, since then its eigenvalues
would have been discrete, viz. +# per photon. The operator for orbital angular

momentum L, is
L= fdk,fdkz y <mh—sZkZ)Ni. 51)

Again, the eigenvalues mh T k,h/k per photon of this operator are not discrete.

5. Interaction with atoms

The creation operators a} acting on the vacuum state result in state vectors of the
radiation field that are eigenvector of the total angular momentum in the 2z direction
with eigenvalue m#, of the spin part S,(+ k,%/k), and hence also of the orbital part L,;
furthermore of the z component of the linear momentum P_(fk,), and of the energy
H,_,s(hke).

We now want to investigate where the quantities L, and S, go when a photon is
absorbed by an atom. The total angular momentum of the atom is separated as

JatzJext+Jim) (52)
where

Jo=RxP, (53)

with R the position of the centre of mass, and P the total momentum of the atom, and
where Jd;,, is the total internal angular momentum. The atom—field interaction in the
dipole approximation is described by the interaction Hamiltonian

Hy=—d"-E(R). (54)

It must be noted that this approximation does not neglect the spatial dependence of
the field, so that the orbital angular momentum of the field is still included. The
dipole operator can be written in terms of internal atomic operators alone, and
external operators occur only through E, which is given by an expansion of the form
(14). As a consequence, in a matrix element {f|H,|i) between some initial and some
final state, the position dependence of the field mode determines the selection rules
concerning external variables, whereas the vectorial character determines the
selection rules for internal quantities.
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5.1. Transfer of angular momentum

We consider an initial state [ M, M,..; >, where a single atom is in simultaneous
eigenstates of the 2 components of external and internal atomic angular momentum
with eigenvalues M,,, and M,,, in units #, where the external momentum is defined
relative to the origin of the coordinate system. The remaining atomic quantum
numbers are left unspecified. The radiation field contains one photon in the mode A
defined above, i.e. in an eigenstate of the field operators S, and L,.

This state is coupled, by absorption of the photon, to a final state |f) of the form

|f>= , Z , ‘Q(M;xg,Mgn.'M’exh M;m; 0>, (55)

M!x!‘Min!

with zero photons. The amplitudes & are proportional to the matrix elements
<M;nt, M;xt; Olwldld * FA(R)allMint, Mext; '1> (56)

of the appropriate part of the interaction Hamiltonian H,.

Now the field F; is given by (47). This implies that the final atomic state is in
general no longer an eigenstate of internal and external angular momentum, but
consists of a superposition of three different kinds of states. Namely, the angular
momentum J, of the photon, m#, can be divided among internal and external degrees
of freedom of the atom in three ways: the change in external angular momentum
OM.,, of the atom may be equal to M, =(m— 1), m, (m+1). This follows from the
matrix elementst

<M;nt, M,ext‘(Fx - le)(x + iy)lMint) Mext> ac 8[M’ext - Mcxt - (m - 1)] )
X S(M;nt_Mint_ 1),
<M;nt) M;xtl(Fx + le)(x — iy)lMint) Mext> Cts[M’ext —Mext_ (m + 1)]

X (M — M, + 1), (6D
Mg, M| Fozl, Mg, M) CO(M oy — My —m)
X O( M — M, J
The concomitant change in the internal angular momentum is given by 8M,;,,=1,0,

—1, respectively, so that total angular momentum is, indeed, conserved. The relative
transition probabilities corresponding to 8M;,,=1,0, —1 are determined by the
corresponding Clebsch—Gordan coefficient and by the integral over the atomic
external wavefunctions of the appropriate spherical component of the field mode, as
given in (47).

Only for a mode with k=0, i.e. k,= +k, is it true that the ‘spin’ and ‘orbital’
angular momentum of a photon are converted into internal and external angular
momentum of an atom, respectively. In that case only one of the spherical
components is different from zero, and S, and L, can be detected in a single
measurement of the change in angular momentum of the atom. Perhaps not
surprisingly, such a mode corresponds to a circularly polarized plane wave
propagating in the z direction. However, the case k,=0 is singular, in that only the
modes with vanishing orbital angular momentum (and S, = +#) survive, since for all
m #0 the Bessel functions J,,(k,p) vanish everywhere for k,= 0. It also shows that the

t A matrix element {(f|Hj|i) consists of the sum of three factorized terms, as the internal
and external atomic operators and the photon operators commute.
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angular momentum along the propagation direction of a photon in a plane wave does
not vanish. This contradicts the fact that the corresponding component of the
classical angular momentum density vanishes in a plane wave. The difference is due
to the erroneous neglect of boundary terms in the transition from (17) to (19).
However, since this latter result is consistent with angular momentum conservation,
as just shown, it seems that the expression (19) is to be preferred over the expression
7).

Also in a circularly polarized paraxial Laguerre-~Gaussian beam, it is well
possible to measure the orbital angular momentum of one photon [7-9]. Such a beam
is a superposition of coherent states of modes (%, k,, m, +) with k,« k. This latter
condition implies that only one of the components (47) is appreciable, while the other
two are negligibly small. Hence in a paraxial beam, the quantity S,+J;, , is
separately conserved, as is L_+J,, .. An important distinction with plane waves is,
that now modes with arbitrary integer values for L, exist.

The atomic states considered so far had well-defined values for angular
momentum M., relative to the origin. This implies that the centre-of-mass part of
the atomic wavefunction is centred around the z axis. On the other hand, if an atom
has a well-defined position outside this axis, then the atom must be in a superposition
of states with different M_,,. Now consider an atom placed outside the centre of a
Laguerre—Gaussian laser beam with azimuthal index m. When it absorbs a laser
photon, it will end up in the same superposition but with each M., shifted by m. This
reflects the conservation law for external angular momentum valid for paraxial
beams.

6. Conclusions

We considered the angular momentum J of electromagnetic radiation, and its
standard separation in the external (orbital) and intrinsic (spin) part. It is generally
believed that this separation is unphysical. However, we demonstrate that for the
quantized radiation field, the operators L and $ are both Hermitian and gauge-
invariant, which implies that both operators represent observable quantities.
Furthermore, both for classical and quantum radiation fiels, both quantities vary
only due to their interaction with the transverse part of the currents. Therefore, for
the free radiation field, L and 8 are separately conserved, as is the field momentum P,

For the quantized field, the operators L, 8 and P can be expressed as a summation
of matrix elements of operators acting on the mode functions in which the field is
expanded. These operators, indicated as L, § and P have the same form as the
standard quantum-mechanical operators for spin, orbital angular momentum and
momentum of a particle with spin one. We stress that these operators do not
represent observable quantities of the radiation field. The physical meaning of the
operators L and 8 is further clarified by determining their commutation rules. We
notice that the three components of 8 commute, and that they have non-vanishing
commutators with the components of L. Hence, since these operators do not obey the
commutation rules for the components of angular momentum, they do not generate
rotations, and they do not represent proper angular momenta. On the other hand, the
components of the total angular momentum J do obey the correct commutation
rules. The transformation generated by the component S, of 8 represents a rotation
of the polarization of each plane wave mode about the propagation direction, over an
angle that is reduced by the cosine of the angle between this propagation direction
and the z axis.
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Finally, we investigated what happens to the separate parts 8 and L of the field
angular momentum when a photon is absorbed by an atom. For this purpose we
constructed a complete set of transverse mode functions, such that photons in these
modes have well-defined values for L,, S,, P,, and energy. There is no conservation
law for intrinsic and external angular momentum separately, such as does exist for
total angular momentum, or for total linear momentum. In fact, this would be
impossible, since the eigenvalues in general no longer match: M,,,, M,,, are discrete,
S,, L, are continuous. Separate conservation laws do exist for paraxial beams
running in the 2 direction. Moreover, an atom initially in an eigenstate of internal
(external) angular momentum will in general not remain in such a state after
absorption of a photon in an eigenstate of S,(L,), except, again, for the paraxial beam
in the 2 direction.

The conclusion is that both ‘spin’ § and ‘orbital’ angular momentum L of a
photon are well defined and separately measurable. This concerns all three
components. However, only the components along the propagation direction can be
measured by detecting the change in internal and external angular momentum of an
atom, respectively.
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